1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that Mips uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsISelLowering.h" 15 #include "MCTargetDesc/MipsBaseInfo.h" 16 #include "MCTargetDesc/MipsInstPrinter.h" 17 #include "MCTargetDesc/MipsMCTargetDesc.h" 18 #include "MipsCCState.h" 19 #include "MipsInstrInfo.h" 20 #include "MipsMachineFunction.h" 21 #include "MipsRegisterInfo.h" 22 #include "MipsSubtarget.h" 23 #include "MipsTargetMachine.h" 24 #include "MipsTargetObjectFile.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/StringSwitch.h" 31 #include "llvm/CodeGen/CallingConvLower.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineJumpTableInfo.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/RuntimeLibcalls.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/CodeGen/SelectionDAGNodes.h" 46 #include "llvm/CodeGen/TargetFrameLowering.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/ValueTypes.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/MC/MCRegisterInfo.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/MachineValueType.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cctype> 73 #include <cstdint> 74 #include <deque> 75 #include <iterator> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "mips-lower" 82 83 STATISTIC(NumTailCalls, "Number of tail calls"); 84 85 static cl::opt<bool> 86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden, 87 cl::desc("MIPS: Don't trap on integer division by zero."), 88 cl::init(false)); 89 90 extern cl::opt<bool> EmitJalrReloc; 91 92 static const MCPhysReg Mips64DPRegs[8] = { 93 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, 94 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 95 }; 96 97 // If I is a shifted mask, set the size (Size) and the first bit of the 98 // mask (Pos), and return true. 99 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11). 100 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { 101 if (!isShiftedMask_64(I)) 102 return false; 103 104 Size = countPopulation(I); 105 Pos = countTrailingZeros(I); 106 return true; 107 } 108 109 // The MIPS MSA ABI passes vector arguments in the integer register set. 110 // The number of integer registers used is dependant on the ABI used. 111 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 112 CallingConv::ID CC, 113 EVT VT) const { 114 if (!VT.isVector()) 115 return getRegisterType(Context, VT); 116 117 return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32 118 : MVT::i64; 119 } 120 121 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 122 CallingConv::ID CC, 123 EVT VT) const { 124 if (VT.isVector()) 125 return std::max(((unsigned)VT.getSizeInBits() / 126 (Subtarget.isABI_O32() ? 32 : 64)), 127 1U); 128 return MipsTargetLowering::getNumRegisters(Context, VT); 129 } 130 131 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv( 132 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, 133 unsigned &NumIntermediates, MVT &RegisterVT) const { 134 // Break down vector types to either 2 i64s or 4 i32s. 135 RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT); 136 IntermediateVT = RegisterVT; 137 NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits() 138 ? VT.getVectorNumElements() 139 : VT.getSizeInBits() / RegisterVT.getSizeInBits(); 140 141 return NumIntermediates; 142 } 143 144 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { 145 MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>(); 146 return DAG.getRegister(FI->getGlobalBaseReg(), Ty); 147 } 148 149 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, 150 SelectionDAG &DAG, 151 unsigned Flag) const { 152 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); 153 } 154 155 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, 156 SelectionDAG &DAG, 157 unsigned Flag) const { 158 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); 159 } 160 161 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, 162 SelectionDAG &DAG, 163 unsigned Flag) const { 164 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); 165 } 166 167 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, 168 SelectionDAG &DAG, 169 unsigned Flag) const { 170 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); 171 } 172 173 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, 174 SelectionDAG &DAG, 175 unsigned Flag) const { 176 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 177 N->getOffset(), Flag); 178 } 179 180 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { 181 switch ((MipsISD::NodeType)Opcode) { 182 case MipsISD::FIRST_NUMBER: break; 183 case MipsISD::JmpLink: return "MipsISD::JmpLink"; 184 case MipsISD::TailCall: return "MipsISD::TailCall"; 185 case MipsISD::Highest: return "MipsISD::Highest"; 186 case MipsISD::Higher: return "MipsISD::Higher"; 187 case MipsISD::Hi: return "MipsISD::Hi"; 188 case MipsISD::Lo: return "MipsISD::Lo"; 189 case MipsISD::GotHi: return "MipsISD::GotHi"; 190 case MipsISD::TlsHi: return "MipsISD::TlsHi"; 191 case MipsISD::GPRel: return "MipsISD::GPRel"; 192 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; 193 case MipsISD::Ret: return "MipsISD::Ret"; 194 case MipsISD::ERet: return "MipsISD::ERet"; 195 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN"; 196 case MipsISD::FMS: return "MipsISD::FMS"; 197 case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; 198 case MipsISD::FPCmp: return "MipsISD::FPCmp"; 199 case MipsISD::FSELECT: return "MipsISD::FSELECT"; 200 case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64"; 201 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; 202 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; 203 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP"; 204 case MipsISD::MFHI: return "MipsISD::MFHI"; 205 case MipsISD::MFLO: return "MipsISD::MFLO"; 206 case MipsISD::MTLOHI: return "MipsISD::MTLOHI"; 207 case MipsISD::Mult: return "MipsISD::Mult"; 208 case MipsISD::Multu: return "MipsISD::Multu"; 209 case MipsISD::MAdd: return "MipsISD::MAdd"; 210 case MipsISD::MAddu: return "MipsISD::MAddu"; 211 case MipsISD::MSub: return "MipsISD::MSub"; 212 case MipsISD::MSubu: return "MipsISD::MSubu"; 213 case MipsISD::DivRem: return "MipsISD::DivRem"; 214 case MipsISD::DivRemU: return "MipsISD::DivRemU"; 215 case MipsISD::DivRem16: return "MipsISD::DivRem16"; 216 case MipsISD::DivRemU16: return "MipsISD::DivRemU16"; 217 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; 218 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; 219 case MipsISD::Wrapper: return "MipsISD::Wrapper"; 220 case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; 221 case MipsISD::Sync: return "MipsISD::Sync"; 222 case MipsISD::Ext: return "MipsISD::Ext"; 223 case MipsISD::Ins: return "MipsISD::Ins"; 224 case MipsISD::CIns: return "MipsISD::CIns"; 225 case MipsISD::LWL: return "MipsISD::LWL"; 226 case MipsISD::LWR: return "MipsISD::LWR"; 227 case MipsISD::SWL: return "MipsISD::SWL"; 228 case MipsISD::SWR: return "MipsISD::SWR"; 229 case MipsISD::LDL: return "MipsISD::LDL"; 230 case MipsISD::LDR: return "MipsISD::LDR"; 231 case MipsISD::SDL: return "MipsISD::SDL"; 232 case MipsISD::SDR: return "MipsISD::SDR"; 233 case MipsISD::EXTP: return "MipsISD::EXTP"; 234 case MipsISD::EXTPDP: return "MipsISD::EXTPDP"; 235 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H"; 236 case MipsISD::EXTR_W: return "MipsISD::EXTR_W"; 237 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W"; 238 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W"; 239 case MipsISD::SHILO: return "MipsISD::SHILO"; 240 case MipsISD::MTHLIP: return "MipsISD::MTHLIP"; 241 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH"; 242 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL"; 243 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR"; 244 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL"; 245 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR"; 246 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL"; 247 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR"; 248 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL"; 249 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR"; 250 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH"; 251 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH"; 252 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W"; 253 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W"; 254 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH"; 255 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH"; 256 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH"; 257 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH"; 258 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH"; 259 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH"; 260 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH"; 261 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH"; 262 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH"; 263 case MipsISD::MULT: return "MipsISD::MULT"; 264 case MipsISD::MULTU: return "MipsISD::MULTU"; 265 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP"; 266 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP"; 267 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP"; 268 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP"; 269 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP"; 270 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP"; 271 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP"; 272 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP"; 273 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP"; 274 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO"; 275 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO"; 276 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO"; 277 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO"; 278 case MipsISD::VCEQ: return "MipsISD::VCEQ"; 279 case MipsISD::VCLE_S: return "MipsISD::VCLE_S"; 280 case MipsISD::VCLE_U: return "MipsISD::VCLE_U"; 281 case MipsISD::VCLT_S: return "MipsISD::VCLT_S"; 282 case MipsISD::VCLT_U: return "MipsISD::VCLT_U"; 283 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; 284 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; 285 case MipsISD::VNOR: return "MipsISD::VNOR"; 286 case MipsISD::VSHF: return "MipsISD::VSHF"; 287 case MipsISD::SHF: return "MipsISD::SHF"; 288 case MipsISD::ILVEV: return "MipsISD::ILVEV"; 289 case MipsISD::ILVOD: return "MipsISD::ILVOD"; 290 case MipsISD::ILVL: return "MipsISD::ILVL"; 291 case MipsISD::ILVR: return "MipsISD::ILVR"; 292 case MipsISD::PCKEV: return "MipsISD::PCKEV"; 293 case MipsISD::PCKOD: return "MipsISD::PCKOD"; 294 case MipsISD::INSVE: return "MipsISD::INSVE"; 295 } 296 return nullptr; 297 } 298 299 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, 300 const MipsSubtarget &STI) 301 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) { 302 // Mips does not have i1 type, so use i32 for 303 // setcc operations results (slt, sgt, ...). 304 setBooleanContents(ZeroOrOneBooleanContent); 305 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 306 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA 307 // does. Integer booleans still use 0 and 1. 308 if (Subtarget.hasMips32r6()) 309 setBooleanContents(ZeroOrOneBooleanContent, 310 ZeroOrNegativeOneBooleanContent); 311 312 // Load extented operations for i1 types must be promoted 313 for (MVT VT : MVT::integer_valuetypes()) { 314 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 315 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 316 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 317 } 318 319 // MIPS doesn't have extending float->double load/store. Set LoadExtAction 320 // for f32, f16 321 for (MVT VT : MVT::fp_valuetypes()) { 322 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 323 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 324 } 325 326 // Set LoadExtAction for f16 vectors to Expand 327 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 328 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements()); 329 if (F16VT.isValid()) 330 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand); 331 } 332 333 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 334 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 335 336 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 337 338 // Used by legalize types to correctly generate the setcc result. 339 // Without this, every float setcc comes with a AND/OR with the result, 340 // we don't want this, since the fpcmp result goes to a flag register, 341 // which is used implicitly by brcond and select operations. 342 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 343 344 // Mips Custom Operations 345 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 346 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 347 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 348 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 349 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 350 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 351 setOperationAction(ISD::SELECT, MVT::f32, Custom); 352 setOperationAction(ISD::SELECT, MVT::f64, Custom); 353 setOperationAction(ISD::SELECT, MVT::i32, Custom); 354 setOperationAction(ISD::SETCC, MVT::f32, Custom); 355 setOperationAction(ISD::SETCC, MVT::f64, Custom); 356 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 357 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 358 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 359 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 360 361 if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) { 362 setOperationAction(ISD::FABS, MVT::f32, Custom); 363 setOperationAction(ISD::FABS, MVT::f64, Custom); 364 } 365 366 if (Subtarget.isGP64bit()) { 367 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 368 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 369 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 370 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 371 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 372 setOperationAction(ISD::SELECT, MVT::i64, Custom); 373 setOperationAction(ISD::LOAD, MVT::i64, Custom); 374 setOperationAction(ISD::STORE, MVT::i64, Custom); 375 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 376 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 377 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 378 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 379 } 380 381 if (!Subtarget.isGP64bit()) { 382 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 383 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 384 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 385 } 386 387 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 388 if (Subtarget.isGP64bit()) 389 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 390 391 setOperationAction(ISD::SDIV, MVT::i32, Expand); 392 setOperationAction(ISD::SREM, MVT::i32, Expand); 393 setOperationAction(ISD::UDIV, MVT::i32, Expand); 394 setOperationAction(ISD::UREM, MVT::i32, Expand); 395 setOperationAction(ISD::SDIV, MVT::i64, Expand); 396 setOperationAction(ISD::SREM, MVT::i64, Expand); 397 setOperationAction(ISD::UDIV, MVT::i64, Expand); 398 setOperationAction(ISD::UREM, MVT::i64, Expand); 399 400 // Operations not directly supported by Mips. 401 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 402 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 403 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 404 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 405 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 407 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 408 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 409 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 410 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 411 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 412 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 413 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 414 if (Subtarget.hasCnMips()) { 415 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 416 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 417 } else { 418 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 419 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 420 } 421 setOperationAction(ISD::CTTZ, MVT::i32, Expand); 422 setOperationAction(ISD::CTTZ, MVT::i64, Expand); 423 setOperationAction(ISD::ROTL, MVT::i32, Expand); 424 setOperationAction(ISD::ROTL, MVT::i64, Expand); 425 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 426 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 427 428 if (!Subtarget.hasMips32r2()) 429 setOperationAction(ISD::ROTR, MVT::i32, Expand); 430 431 if (!Subtarget.hasMips64r2()) 432 setOperationAction(ISD::ROTR, MVT::i64, Expand); 433 434 setOperationAction(ISD::FSIN, MVT::f32, Expand); 435 setOperationAction(ISD::FSIN, MVT::f64, Expand); 436 setOperationAction(ISD::FCOS, MVT::f32, Expand); 437 setOperationAction(ISD::FCOS, MVT::f64, Expand); 438 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 439 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 440 setOperationAction(ISD::FPOW, MVT::f32, Expand); 441 setOperationAction(ISD::FPOW, MVT::f64, Expand); 442 setOperationAction(ISD::FLOG, MVT::f32, Expand); 443 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 444 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 445 setOperationAction(ISD::FEXP, MVT::f32, Expand); 446 setOperationAction(ISD::FMA, MVT::f32, Expand); 447 setOperationAction(ISD::FMA, MVT::f64, Expand); 448 setOperationAction(ISD::FREM, MVT::f32, Expand); 449 setOperationAction(ISD::FREM, MVT::f64, Expand); 450 451 // Lower f16 conversion operations into library calls 452 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 453 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 454 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 455 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 456 457 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 458 459 setOperationAction(ISD::VASTART, MVT::Other, Custom); 460 setOperationAction(ISD::VAARG, MVT::Other, Custom); 461 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 462 setOperationAction(ISD::VAEND, MVT::Other, Expand); 463 464 // Use the default for now 465 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 466 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 467 468 if (!Subtarget.isGP64bit()) { 469 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 470 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 471 } 472 473 if (!Subtarget.hasMips32r2()) { 474 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 475 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 476 } 477 478 // MIPS16 lacks MIPS32's clz and clo instructions. 479 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) 480 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 481 if (!Subtarget.hasMips64()) 482 setOperationAction(ISD::CTLZ, MVT::i64, Expand); 483 484 if (!Subtarget.hasMips32r2()) 485 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 486 if (!Subtarget.hasMips64r2()) 487 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 488 489 if (Subtarget.isGP64bit()) { 490 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom); 491 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom); 492 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom); 493 setTruncStoreAction(MVT::i64, MVT::i32, Custom); 494 } 495 496 setOperationAction(ISD::TRAP, MVT::Other, Legal); 497 498 setTargetDAGCombine(ISD::SDIVREM); 499 setTargetDAGCombine(ISD::UDIVREM); 500 setTargetDAGCombine(ISD::SELECT); 501 setTargetDAGCombine(ISD::AND); 502 setTargetDAGCombine(ISD::OR); 503 setTargetDAGCombine(ISD::ADD); 504 setTargetDAGCombine(ISD::SUB); 505 setTargetDAGCombine(ISD::AssertZext); 506 setTargetDAGCombine(ISD::SHL); 507 508 if (ABI.IsO32()) { 509 // These libcalls are not available in 32-bit. 510 setLibcallName(RTLIB::SHL_I128, nullptr); 511 setLibcallName(RTLIB::SRL_I128, nullptr); 512 setLibcallName(RTLIB::SRA_I128, nullptr); 513 } 514 515 setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4)); 516 517 // The arguments on the stack are defined in terms of 4-byte slots on O32 518 // and 8-byte slots on N32/N64. 519 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8) 520 : Align(4)); 521 522 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP); 523 524 MaxStoresPerMemcpy = 16; 525 526 isMicroMips = Subtarget.inMicroMipsMode(); 527 } 528 529 const MipsTargetLowering * 530 MipsTargetLowering::create(const MipsTargetMachine &TM, 531 const MipsSubtarget &STI) { 532 if (STI.inMips16Mode()) 533 return createMips16TargetLowering(TM, STI); 534 535 return createMipsSETargetLowering(TM, STI); 536 } 537 538 // Create a fast isel object. 539 FastISel * 540 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 541 const TargetLibraryInfo *libInfo) const { 542 const MipsTargetMachine &TM = 543 static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget()); 544 545 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs. 546 bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() && 547 !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() && 548 !Subtarget.inMicroMipsMode(); 549 550 // Disable if either of the following is true: 551 // We do not generate PIC, the ABI is not O32, XGOT is being used. 552 if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || 553 Subtarget.useXGOT()) 554 UseFastISel = false; 555 556 return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr; 557 } 558 559 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 560 EVT VT) const { 561 if (!VT.isVector()) 562 return MVT::i32; 563 return VT.changeVectorElementTypeToInteger(); 564 } 565 566 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, 567 TargetLowering::DAGCombinerInfo &DCI, 568 const MipsSubtarget &Subtarget) { 569 if (DCI.isBeforeLegalizeOps()) 570 return SDValue(); 571 572 EVT Ty = N->getValueType(0); 573 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; 574 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; 575 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : 576 MipsISD::DivRemU16; 577 SDLoc DL(N); 578 579 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, 580 N->getOperand(0), N->getOperand(1)); 581 SDValue InChain = DAG.getEntryNode(); 582 SDValue InGlue = DivRem; 583 584 // insert MFLO 585 if (N->hasAnyUseOfValue(0)) { 586 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, 587 InGlue); 588 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); 589 InChain = CopyFromLo.getValue(1); 590 InGlue = CopyFromLo.getValue(2); 591 } 592 593 // insert MFHI 594 if (N->hasAnyUseOfValue(1)) { 595 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, 596 HI, Ty, InGlue); 597 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); 598 } 599 600 return SDValue(); 601 } 602 603 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { 604 switch (CC) { 605 default: llvm_unreachable("Unknown fp condition code!"); 606 case ISD::SETEQ: 607 case ISD::SETOEQ: return Mips::FCOND_OEQ; 608 case ISD::SETUNE: return Mips::FCOND_UNE; 609 case ISD::SETLT: 610 case ISD::SETOLT: return Mips::FCOND_OLT; 611 case ISD::SETGT: 612 case ISD::SETOGT: return Mips::FCOND_OGT; 613 case ISD::SETLE: 614 case ISD::SETOLE: return Mips::FCOND_OLE; 615 case ISD::SETGE: 616 case ISD::SETOGE: return Mips::FCOND_OGE; 617 case ISD::SETULT: return Mips::FCOND_ULT; 618 case ISD::SETULE: return Mips::FCOND_ULE; 619 case ISD::SETUGT: return Mips::FCOND_UGT; 620 case ISD::SETUGE: return Mips::FCOND_UGE; 621 case ISD::SETUO: return Mips::FCOND_UN; 622 case ISD::SETO: return Mips::FCOND_OR; 623 case ISD::SETNE: 624 case ISD::SETONE: return Mips::FCOND_ONE; 625 case ISD::SETUEQ: return Mips::FCOND_UEQ; 626 } 627 } 628 629 /// This function returns true if the floating point conditional branches and 630 /// conditional moves which use condition code CC should be inverted. 631 static bool invertFPCondCodeUser(Mips::CondCode CC) { 632 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) 633 return false; 634 635 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && 636 "Illegal Condition Code"); 637 638 return true; 639 } 640 641 // Creates and returns an FPCmp node from a setcc node. 642 // Returns Op if setcc is not a floating point comparison. 643 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { 644 // must be a SETCC node 645 if (Op.getOpcode() != ISD::SETCC) 646 return Op; 647 648 SDValue LHS = Op.getOperand(0); 649 650 if (!LHS.getValueType().isFloatingPoint()) 651 return Op; 652 653 SDValue RHS = Op.getOperand(1); 654 SDLoc DL(Op); 655 656 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of 657 // node if necessary. 658 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 659 660 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, 661 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32)); 662 } 663 664 // Creates and returns a CMovFPT/F node. 665 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, 666 SDValue False, const SDLoc &DL) { 667 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2)); 668 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); 669 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); 670 671 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, 672 True.getValueType(), True, FCC0, False, Cond); 673 } 674 675 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, 676 TargetLowering::DAGCombinerInfo &DCI, 677 const MipsSubtarget &Subtarget) { 678 if (DCI.isBeforeLegalizeOps()) 679 return SDValue(); 680 681 SDValue SetCC = N->getOperand(0); 682 683 if ((SetCC.getOpcode() != ISD::SETCC) || 684 !SetCC.getOperand(0).getValueType().isInteger()) 685 return SDValue(); 686 687 SDValue False = N->getOperand(2); 688 EVT FalseTy = False.getValueType(); 689 690 if (!FalseTy.isInteger()) 691 return SDValue(); 692 693 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False); 694 695 // If the RHS (False) is 0, we swap the order of the operands 696 // of ISD::SELECT (obviously also inverting the condition) so that we can 697 // take advantage of conditional moves using the $0 register. 698 // Example: 699 // return (a != 0) ? x : 0; 700 // load $reg, x 701 // movz $reg, $0, a 702 if (!FalseC) 703 return SDValue(); 704 705 const SDLoc DL(N); 706 707 if (!FalseC->getZExtValue()) { 708 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 709 SDValue True = N->getOperand(1); 710 711 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), 712 SetCC.getOperand(1), 713 ISD::getSetCCInverse(CC, SetCC.getValueType())); 714 715 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); 716 } 717 718 // If both operands are integer constants there's a possibility that we 719 // can do some interesting optimizations. 720 SDValue True = N->getOperand(1); 721 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True); 722 723 if (!TrueC || !True.getValueType().isInteger()) 724 return SDValue(); 725 726 // We'll also ignore MVT::i64 operands as this optimizations proves 727 // to be ineffective because of the required sign extensions as the result 728 // of a SETCC operator is always MVT::i32 for non-vector types. 729 if (True.getValueType() == MVT::i64) 730 return SDValue(); 731 732 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); 733 734 // 1) (a < x) ? y : y-1 735 // slti $reg1, a, x 736 // addiu $reg2, $reg1, y-1 737 if (Diff == 1) 738 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); 739 740 // 2) (a < x) ? y-1 : y 741 // slti $reg1, a, x 742 // xor $reg1, $reg1, 1 743 // addiu $reg2, $reg1, y-1 744 if (Diff == -1) { 745 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 746 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), 747 SetCC.getOperand(1), 748 ISD::getSetCCInverse(CC, SetCC.getValueType())); 749 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); 750 } 751 752 // Could not optimize. 753 return SDValue(); 754 } 755 756 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG, 757 TargetLowering::DAGCombinerInfo &DCI, 758 const MipsSubtarget &Subtarget) { 759 if (DCI.isBeforeLegalizeOps()) 760 return SDValue(); 761 762 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2); 763 764 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse); 765 if (!FalseC || FalseC->getZExtValue()) 766 return SDValue(); 767 768 // Since RHS (False) is 0, we swap the order of the True/False operands 769 // (obviously also inverting the condition) so that we can 770 // take advantage of conditional moves using the $0 register. 771 // Example: 772 // return (a != 0) ? x : 0; 773 // load $reg, x 774 // movz $reg, $0, a 775 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F : 776 MipsISD::CMovFP_T; 777 778 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3); 779 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(), 780 ValueIfFalse, FCC, ValueIfTrue, Glue); 781 } 782 783 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 784 TargetLowering::DAGCombinerInfo &DCI, 785 const MipsSubtarget &Subtarget) { 786 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) 787 return SDValue(); 788 789 SDValue FirstOperand = N->getOperand(0); 790 unsigned FirstOperandOpc = FirstOperand.getOpcode(); 791 SDValue Mask = N->getOperand(1); 792 EVT ValTy = N->getValueType(0); 793 SDLoc DL(N); 794 795 uint64_t Pos = 0, SMPos, SMSize; 796 ConstantSDNode *CN; 797 SDValue NewOperand; 798 unsigned Opc; 799 800 // Op's second operand must be a shifted mask. 801 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || 802 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) 803 return SDValue(); 804 805 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) { 806 // Pattern match EXT. 807 // $dst = and ((sra or srl) $src , pos), (2**size - 1) 808 // => ext $dst, $src, pos, size 809 810 // The second operand of the shift must be an immediate. 811 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) 812 return SDValue(); 813 814 Pos = CN->getZExtValue(); 815 816 // Return if the shifted mask does not start at bit 0 or the sum of its size 817 // and Pos exceeds the word's size. 818 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) 819 return SDValue(); 820 821 Opc = MipsISD::Ext; 822 NewOperand = FirstOperand.getOperand(0); 823 } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) { 824 // Pattern match CINS. 825 // $dst = and (shl $src , pos), mask 826 // => cins $dst, $src, pos, size 827 // mask is a shifted mask with consecutive 1's, pos = shift amount, 828 // size = population count. 829 830 // The second operand of the shift must be an immediate. 831 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) 832 return SDValue(); 833 834 Pos = CN->getZExtValue(); 835 836 if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 || 837 Pos + SMSize > ValTy.getSizeInBits()) 838 return SDValue(); 839 840 NewOperand = FirstOperand.getOperand(0); 841 // SMSize is 'location' (position) in this case, not size. 842 SMSize--; 843 Opc = MipsISD::CIns; 844 } else { 845 // Pattern match EXT. 846 // $dst = and $src, (2**size - 1) , if size > 16 847 // => ext $dst, $src, pos, size , pos = 0 848 849 // If the mask is <= 0xffff, andi can be used instead. 850 if (CN->getZExtValue() <= 0xffff) 851 return SDValue(); 852 853 // Return if the mask doesn't start at position 0. 854 if (SMPos) 855 return SDValue(); 856 857 Opc = MipsISD::Ext; 858 NewOperand = FirstOperand; 859 } 860 return DAG.getNode(Opc, DL, ValTy, NewOperand, 861 DAG.getConstant(Pos, DL, MVT::i32), 862 DAG.getConstant(SMSize, DL, MVT::i32)); 863 } 864 865 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 866 TargetLowering::DAGCombinerInfo &DCI, 867 const MipsSubtarget &Subtarget) { 868 // Pattern match INS. 869 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), 870 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 871 // => ins $dst, $src, size, pos, $src1 872 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) 873 return SDValue(); 874 875 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); 876 uint64_t SMPos0, SMSize0, SMPos1, SMSize1; 877 ConstantSDNode *CN, *CN1; 878 879 // See if Op's first operand matches (and $src1 , mask0). 880 if (And0.getOpcode() != ISD::AND) 881 return SDValue(); 882 883 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || 884 !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) 885 return SDValue(); 886 887 // See if Op's second operand matches (and (shl $src, pos), mask1). 888 if (And1.getOpcode() == ISD::AND && 889 And1.getOperand(0).getOpcode() == ISD::SHL) { 890 891 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || 892 !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) 893 return SDValue(); 894 895 // The shift masks must have the same position and size. 896 if (SMPos0 != SMPos1 || SMSize0 != SMSize1) 897 return SDValue(); 898 899 SDValue Shl = And1.getOperand(0); 900 901 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) 902 return SDValue(); 903 904 unsigned Shamt = CN->getZExtValue(); 905 906 // Return if the shift amount and the first bit position of mask are not the 907 // same. 908 EVT ValTy = N->getValueType(0); 909 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) 910 return SDValue(); 911 912 SDLoc DL(N); 913 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0), 914 DAG.getConstant(SMPos0, DL, MVT::i32), 915 DAG.getConstant(SMSize0, DL, MVT::i32), 916 And0.getOperand(0)); 917 } else { 918 // Pattern match DINS. 919 // $dst = or (and $src, mask0), mask1 920 // where mask0 = ((1 << SMSize0) -1) << SMPos0 921 // => dins $dst, $src, pos, size 922 if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) && 923 ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) || 924 (SMSize0 + SMPos0 <= 32))) { 925 // Check if AND instruction has constant as argument 926 bool isConstCase = And1.getOpcode() != ISD::AND; 927 if (And1.getOpcode() == ISD::AND) { 928 if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1)))) 929 return SDValue(); 930 } else { 931 if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)))) 932 return SDValue(); 933 } 934 // Don't generate INS if constant OR operand doesn't fit into bits 935 // cleared by constant AND operand. 936 if (CN->getSExtValue() & CN1->getSExtValue()) 937 return SDValue(); 938 939 SDLoc DL(N); 940 EVT ValTy = N->getOperand(0)->getValueType(0); 941 SDValue Const1; 942 SDValue SrlX; 943 if (!isConstCase) { 944 Const1 = DAG.getConstant(SMPos0, DL, MVT::i32); 945 SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1); 946 } 947 return DAG.getNode( 948 MipsISD::Ins, DL, N->getValueType(0), 949 isConstCase 950 ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy) 951 : SrlX, 952 DAG.getConstant(SMPos0, DL, MVT::i32), 953 DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31 954 : SMSize0, 955 DL, MVT::i32), 956 And0->getOperand(0)); 957 958 } 959 return SDValue(); 960 } 961 } 962 963 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG, 964 const MipsSubtarget &Subtarget) { 965 // ROOTNode must have a multiplication as an operand for the match to be 966 // successful. 967 if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL && 968 ROOTNode->getOperand(1).getOpcode() != ISD::MUL) 969 return SDValue(); 970 971 // We don't handle vector types here. 972 if (ROOTNode->getValueType(0).isVector()) 973 return SDValue(); 974 975 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit 976 // arithmetic. E.g. 977 // (add (mul a b) c) => 978 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in 979 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32) 980 // or 981 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32) 982 // 983 // The overhead of setting up the Hi/Lo registers and reassembling the 984 // result makes this a dubious optimzation for MIPS64. The core of the 985 // problem is that Hi/Lo contain the upper and lower 32 bits of the 986 // operand and result. 987 // 988 // It requires a chain of 4 add/mul for MIPS64R2 to get better code 989 // density than doing it naively, 5 for MIPS64. Additionally, using 990 // madd/msub on MIPS64 requires the operands actually be 32 bit sign 991 // extended operands, not true 64 bit values. 992 // 993 // FIXME: For the moment, disable this completely for MIPS64. 994 if (Subtarget.hasMips64()) 995 return SDValue(); 996 997 SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL 998 ? ROOTNode->getOperand(0) 999 : ROOTNode->getOperand(1); 1000 1001 SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL 1002 ? ROOTNode->getOperand(1) 1003 : ROOTNode->getOperand(0); 1004 1005 // Transform this to a MADD only if the user of this node is the add. 1006 // If there are other users of the mul, this function returns here. 1007 if (!Mult.hasOneUse()) 1008 return SDValue(); 1009 1010 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31 1011 // must be in canonical form, i.e. sign extended. For MIPS32, the operands 1012 // of the multiply must have 32 or more sign bits, otherwise we cannot 1013 // perform this optimization. We have to check this here as we're performing 1014 // this optimization pre-legalization. 1015 SDValue MultLHS = Mult->getOperand(0); 1016 SDValue MultRHS = Mult->getOperand(1); 1017 1018 bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND && 1019 MultRHS->getOpcode() == ISD::SIGN_EXTEND; 1020 bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND && 1021 MultRHS->getOpcode() == ISD::ZERO_EXTEND; 1022 1023 if (!IsSigned && !IsUnsigned) 1024 return SDValue(); 1025 1026 // Initialize accumulator. 1027 SDLoc DL(ROOTNode); 1028 SDValue TopHalf; 1029 SDValue BottomHalf; 1030 BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand, 1031 CurDAG.getIntPtrConstant(0, DL)); 1032 1033 TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand, 1034 CurDAG.getIntPtrConstant(1, DL)); 1035 SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, 1036 BottomHalf, 1037 TopHalf); 1038 1039 // Create MipsMAdd(u) / MipsMSub(u) node. 1040 bool IsAdd = ROOTNode->getOpcode() == ISD::ADD; 1041 unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd) 1042 : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub); 1043 SDValue MAddOps[3] = { 1044 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)), 1045 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn}; 1046 EVT VTs[2] = {MVT::i32, MVT::i32}; 1047 SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps); 1048 1049 SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd); 1050 SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd); 1051 SDValue Combined = 1052 CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi); 1053 return Combined; 1054 } 1055 1056 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG, 1057 TargetLowering::DAGCombinerInfo &DCI, 1058 const MipsSubtarget &Subtarget) { 1059 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0) 1060 if (DCI.isBeforeLegalizeOps()) { 1061 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && 1062 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) 1063 return performMADD_MSUBCombine(N, DAG, Subtarget); 1064 1065 return SDValue(); 1066 } 1067 1068 return SDValue(); 1069 } 1070 1071 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 1072 TargetLowering::DAGCombinerInfo &DCI, 1073 const MipsSubtarget &Subtarget) { 1074 // (add v0 (mul v1, v2)) => (madd v1, v2, v0) 1075 if (DCI.isBeforeLegalizeOps()) { 1076 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && 1077 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) 1078 return performMADD_MSUBCombine(N, DAG, Subtarget); 1079 1080 return SDValue(); 1081 } 1082 1083 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) 1084 SDValue Add = N->getOperand(1); 1085 1086 if (Add.getOpcode() != ISD::ADD) 1087 return SDValue(); 1088 1089 SDValue Lo = Add.getOperand(1); 1090 1091 if ((Lo.getOpcode() != MipsISD::Lo) || 1092 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) 1093 return SDValue(); 1094 1095 EVT ValTy = N->getValueType(0); 1096 SDLoc DL(N); 1097 1098 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), 1099 Add.getOperand(0)); 1100 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); 1101 } 1102 1103 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, 1104 TargetLowering::DAGCombinerInfo &DCI, 1105 const MipsSubtarget &Subtarget) { 1106 // Pattern match CINS. 1107 // $dst = shl (and $src , imm), pos 1108 // => cins $dst, $src, pos, size 1109 1110 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips()) 1111 return SDValue(); 1112 1113 SDValue FirstOperand = N->getOperand(0); 1114 unsigned FirstOperandOpc = FirstOperand.getOpcode(); 1115 SDValue SecondOperand = N->getOperand(1); 1116 EVT ValTy = N->getValueType(0); 1117 SDLoc DL(N); 1118 1119 uint64_t Pos = 0, SMPos, SMSize; 1120 ConstantSDNode *CN; 1121 SDValue NewOperand; 1122 1123 // The second operand of the shift must be an immediate. 1124 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand))) 1125 return SDValue(); 1126 1127 Pos = CN->getZExtValue(); 1128 1129 if (Pos >= ValTy.getSizeInBits()) 1130 return SDValue(); 1131 1132 if (FirstOperandOpc != ISD::AND) 1133 return SDValue(); 1134 1135 // AND's second operand must be a shifted mask. 1136 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) || 1137 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) 1138 return SDValue(); 1139 1140 // Return if the shifted mask does not start at bit 0 or the sum of its size 1141 // and Pos exceeds the word's size. 1142 if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits()) 1143 return SDValue(); 1144 1145 NewOperand = FirstOperand.getOperand(0); 1146 // SMSize is 'location' (position) in this case, not size. 1147 SMSize--; 1148 1149 return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand, 1150 DAG.getConstant(Pos, DL, MVT::i32), 1151 DAG.getConstant(SMSize, DL, MVT::i32)); 1152 } 1153 1154 SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) 1155 const { 1156 SelectionDAG &DAG = DCI.DAG; 1157 unsigned Opc = N->getOpcode(); 1158 1159 switch (Opc) { 1160 default: break; 1161 case ISD::SDIVREM: 1162 case ISD::UDIVREM: 1163 return performDivRemCombine(N, DAG, DCI, Subtarget); 1164 case ISD::SELECT: 1165 return performSELECTCombine(N, DAG, DCI, Subtarget); 1166 case MipsISD::CMovFP_F: 1167 case MipsISD::CMovFP_T: 1168 return performCMovFPCombine(N, DAG, DCI, Subtarget); 1169 case ISD::AND: 1170 return performANDCombine(N, DAG, DCI, Subtarget); 1171 case ISD::OR: 1172 return performORCombine(N, DAG, DCI, Subtarget); 1173 case ISD::ADD: 1174 return performADDCombine(N, DAG, DCI, Subtarget); 1175 case ISD::SHL: 1176 return performSHLCombine(N, DAG, DCI, Subtarget); 1177 case ISD::SUB: 1178 return performSUBCombine(N, DAG, DCI, Subtarget); 1179 } 1180 1181 return SDValue(); 1182 } 1183 1184 bool MipsTargetLowering::isCheapToSpeculateCttz() const { 1185 return Subtarget.hasMips32(); 1186 } 1187 1188 bool MipsTargetLowering::isCheapToSpeculateCtlz() const { 1189 return Subtarget.hasMips32(); 1190 } 1191 1192 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask( 1193 const SDNode *N, CombineLevel Level) const { 1194 if (N->getOperand(0).getValueType().isVector()) 1195 return false; 1196 return true; 1197 } 1198 1199 void 1200 MipsTargetLowering::LowerOperationWrapper(SDNode *N, 1201 SmallVectorImpl<SDValue> &Results, 1202 SelectionDAG &DAG) const { 1203 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 1204 1205 if (Res) 1206 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) 1207 Results.push_back(Res.getValue(I)); 1208 } 1209 1210 void 1211 MipsTargetLowering::ReplaceNodeResults(SDNode *N, 1212 SmallVectorImpl<SDValue> &Results, 1213 SelectionDAG &DAG) const { 1214 return LowerOperationWrapper(N, Results, DAG); 1215 } 1216 1217 SDValue MipsTargetLowering:: 1218 LowerOperation(SDValue Op, SelectionDAG &DAG) const 1219 { 1220 switch (Op.getOpcode()) 1221 { 1222 case ISD::BRCOND: return lowerBRCOND(Op, DAG); 1223 case ISD::ConstantPool: return lowerConstantPool(Op, DAG); 1224 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); 1225 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); 1226 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); 1227 case ISD::JumpTable: return lowerJumpTable(Op, DAG); 1228 case ISD::SELECT: return lowerSELECT(Op, DAG); 1229 case ISD::SETCC: return lowerSETCC(Op, DAG); 1230 case ISD::VASTART: return lowerVASTART(Op, DAG); 1231 case ISD::VAARG: return lowerVAARG(Op, DAG); 1232 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG); 1233 case ISD::FABS: return lowerFABS(Op, DAG); 1234 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); 1235 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); 1236 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG); 1237 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); 1238 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); 1239 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); 1240 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); 1241 case ISD::LOAD: return lowerLOAD(Op, DAG); 1242 case ISD::STORE: return lowerSTORE(Op, DAG); 1243 case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG); 1244 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG); 1245 } 1246 return SDValue(); 1247 } 1248 1249 //===----------------------------------------------------------------------===// 1250 // Lower helper functions 1251 //===----------------------------------------------------------------------===// 1252 1253 // addLiveIn - This helper function adds the specified physical register to the 1254 // MachineFunction as a live in value. It also creates a corresponding 1255 // virtual register for it. 1256 static unsigned 1257 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) 1258 { 1259 Register VReg = MF.getRegInfo().createVirtualRegister(RC); 1260 MF.getRegInfo().addLiveIn(PReg, VReg); 1261 return VReg; 1262 } 1263 1264 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI, 1265 MachineBasicBlock &MBB, 1266 const TargetInstrInfo &TII, 1267 bool Is64Bit, bool IsMicroMips) { 1268 if (NoZeroDivCheck) 1269 return &MBB; 1270 1271 // Insert instruction "teq $divisor_reg, $zero, 7". 1272 MachineBasicBlock::iterator I(MI); 1273 MachineInstrBuilder MIB; 1274 MachineOperand &Divisor = MI.getOperand(2); 1275 MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(), 1276 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ)) 1277 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) 1278 .addReg(Mips::ZERO) 1279 .addImm(7); 1280 1281 // Use the 32-bit sub-register if this is a 64-bit division. 1282 if (Is64Bit) 1283 MIB->getOperand(0).setSubReg(Mips::sub_32); 1284 1285 // Clear Divisor's kill flag. 1286 Divisor.setIsKill(false); 1287 1288 // We would normally delete the original instruction here but in this case 1289 // we only needed to inject an additional instruction rather than replace it. 1290 1291 return &MBB; 1292 } 1293 1294 MachineBasicBlock * 1295 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1296 MachineBasicBlock *BB) const { 1297 switch (MI.getOpcode()) { 1298 default: 1299 llvm_unreachable("Unexpected instr type to insert"); 1300 case Mips::ATOMIC_LOAD_ADD_I8: 1301 return emitAtomicBinaryPartword(MI, BB, 1); 1302 case Mips::ATOMIC_LOAD_ADD_I16: 1303 return emitAtomicBinaryPartword(MI, BB, 2); 1304 case Mips::ATOMIC_LOAD_ADD_I32: 1305 return emitAtomicBinary(MI, BB); 1306 case Mips::ATOMIC_LOAD_ADD_I64: 1307 return emitAtomicBinary(MI, BB); 1308 1309 case Mips::ATOMIC_LOAD_AND_I8: 1310 return emitAtomicBinaryPartword(MI, BB, 1); 1311 case Mips::ATOMIC_LOAD_AND_I16: 1312 return emitAtomicBinaryPartword(MI, BB, 2); 1313 case Mips::ATOMIC_LOAD_AND_I32: 1314 return emitAtomicBinary(MI, BB); 1315 case Mips::ATOMIC_LOAD_AND_I64: 1316 return emitAtomicBinary(MI, BB); 1317 1318 case Mips::ATOMIC_LOAD_OR_I8: 1319 return emitAtomicBinaryPartword(MI, BB, 1); 1320 case Mips::ATOMIC_LOAD_OR_I16: 1321 return emitAtomicBinaryPartword(MI, BB, 2); 1322 case Mips::ATOMIC_LOAD_OR_I32: 1323 return emitAtomicBinary(MI, BB); 1324 case Mips::ATOMIC_LOAD_OR_I64: 1325 return emitAtomicBinary(MI, BB); 1326 1327 case Mips::ATOMIC_LOAD_XOR_I8: 1328 return emitAtomicBinaryPartword(MI, BB, 1); 1329 case Mips::ATOMIC_LOAD_XOR_I16: 1330 return emitAtomicBinaryPartword(MI, BB, 2); 1331 case Mips::ATOMIC_LOAD_XOR_I32: 1332 return emitAtomicBinary(MI, BB); 1333 case Mips::ATOMIC_LOAD_XOR_I64: 1334 return emitAtomicBinary(MI, BB); 1335 1336 case Mips::ATOMIC_LOAD_NAND_I8: 1337 return emitAtomicBinaryPartword(MI, BB, 1); 1338 case Mips::ATOMIC_LOAD_NAND_I16: 1339 return emitAtomicBinaryPartword(MI, BB, 2); 1340 case Mips::ATOMIC_LOAD_NAND_I32: 1341 return emitAtomicBinary(MI, BB); 1342 case Mips::ATOMIC_LOAD_NAND_I64: 1343 return emitAtomicBinary(MI, BB); 1344 1345 case Mips::ATOMIC_LOAD_SUB_I8: 1346 return emitAtomicBinaryPartword(MI, BB, 1); 1347 case Mips::ATOMIC_LOAD_SUB_I16: 1348 return emitAtomicBinaryPartword(MI, BB, 2); 1349 case Mips::ATOMIC_LOAD_SUB_I32: 1350 return emitAtomicBinary(MI, BB); 1351 case Mips::ATOMIC_LOAD_SUB_I64: 1352 return emitAtomicBinary(MI, BB); 1353 1354 case Mips::ATOMIC_SWAP_I8: 1355 return emitAtomicBinaryPartword(MI, BB, 1); 1356 case Mips::ATOMIC_SWAP_I16: 1357 return emitAtomicBinaryPartword(MI, BB, 2); 1358 case Mips::ATOMIC_SWAP_I32: 1359 return emitAtomicBinary(MI, BB); 1360 case Mips::ATOMIC_SWAP_I64: 1361 return emitAtomicBinary(MI, BB); 1362 1363 case Mips::ATOMIC_CMP_SWAP_I8: 1364 return emitAtomicCmpSwapPartword(MI, BB, 1); 1365 case Mips::ATOMIC_CMP_SWAP_I16: 1366 return emitAtomicCmpSwapPartword(MI, BB, 2); 1367 case Mips::ATOMIC_CMP_SWAP_I32: 1368 return emitAtomicCmpSwap(MI, BB); 1369 case Mips::ATOMIC_CMP_SWAP_I64: 1370 return emitAtomicCmpSwap(MI, BB); 1371 1372 case Mips::ATOMIC_LOAD_MIN_I8: 1373 return emitAtomicBinaryPartword(MI, BB, 1); 1374 case Mips::ATOMIC_LOAD_MIN_I16: 1375 return emitAtomicBinaryPartword(MI, BB, 2); 1376 case Mips::ATOMIC_LOAD_MIN_I32: 1377 return emitAtomicBinary(MI, BB); 1378 case Mips::ATOMIC_LOAD_MIN_I64: 1379 return emitAtomicBinary(MI, BB); 1380 1381 case Mips::ATOMIC_LOAD_MAX_I8: 1382 return emitAtomicBinaryPartword(MI, BB, 1); 1383 case Mips::ATOMIC_LOAD_MAX_I16: 1384 return emitAtomicBinaryPartword(MI, BB, 2); 1385 case Mips::ATOMIC_LOAD_MAX_I32: 1386 return emitAtomicBinary(MI, BB); 1387 case Mips::ATOMIC_LOAD_MAX_I64: 1388 return emitAtomicBinary(MI, BB); 1389 1390 case Mips::ATOMIC_LOAD_UMIN_I8: 1391 return emitAtomicBinaryPartword(MI, BB, 1); 1392 case Mips::ATOMIC_LOAD_UMIN_I16: 1393 return emitAtomicBinaryPartword(MI, BB, 2); 1394 case Mips::ATOMIC_LOAD_UMIN_I32: 1395 return emitAtomicBinary(MI, BB); 1396 case Mips::ATOMIC_LOAD_UMIN_I64: 1397 return emitAtomicBinary(MI, BB); 1398 1399 case Mips::ATOMIC_LOAD_UMAX_I8: 1400 return emitAtomicBinaryPartword(MI, BB, 1); 1401 case Mips::ATOMIC_LOAD_UMAX_I16: 1402 return emitAtomicBinaryPartword(MI, BB, 2); 1403 case Mips::ATOMIC_LOAD_UMAX_I32: 1404 return emitAtomicBinary(MI, BB); 1405 case Mips::ATOMIC_LOAD_UMAX_I64: 1406 return emitAtomicBinary(MI, BB); 1407 1408 case Mips::PseudoSDIV: 1409 case Mips::PseudoUDIV: 1410 case Mips::DIV: 1411 case Mips::DIVU: 1412 case Mips::MOD: 1413 case Mips::MODU: 1414 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, 1415 false); 1416 case Mips::SDIV_MM_Pseudo: 1417 case Mips::UDIV_MM_Pseudo: 1418 case Mips::SDIV_MM: 1419 case Mips::UDIV_MM: 1420 case Mips::DIV_MMR6: 1421 case Mips::DIVU_MMR6: 1422 case Mips::MOD_MMR6: 1423 case Mips::MODU_MMR6: 1424 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true); 1425 case Mips::PseudoDSDIV: 1426 case Mips::PseudoDUDIV: 1427 case Mips::DDIV: 1428 case Mips::DDIVU: 1429 case Mips::DMOD: 1430 case Mips::DMODU: 1431 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false); 1432 1433 case Mips::PseudoSELECT_I: 1434 case Mips::PseudoSELECT_I64: 1435 case Mips::PseudoSELECT_S: 1436 case Mips::PseudoSELECT_D32: 1437 case Mips::PseudoSELECT_D64: 1438 return emitPseudoSELECT(MI, BB, false, Mips::BNE); 1439 case Mips::PseudoSELECTFP_F_I: 1440 case Mips::PseudoSELECTFP_F_I64: 1441 case Mips::PseudoSELECTFP_F_S: 1442 case Mips::PseudoSELECTFP_F_D32: 1443 case Mips::PseudoSELECTFP_F_D64: 1444 return emitPseudoSELECT(MI, BB, true, Mips::BC1F); 1445 case Mips::PseudoSELECTFP_T_I: 1446 case Mips::PseudoSELECTFP_T_I64: 1447 case Mips::PseudoSELECTFP_T_S: 1448 case Mips::PseudoSELECTFP_T_D32: 1449 case Mips::PseudoSELECTFP_T_D64: 1450 return emitPseudoSELECT(MI, BB, true, Mips::BC1T); 1451 case Mips::PseudoD_SELECT_I: 1452 case Mips::PseudoD_SELECT_I64: 1453 return emitPseudoD_SELECT(MI, BB); 1454 } 1455 } 1456 1457 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and 1458 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) 1459 MachineBasicBlock * 1460 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI, 1461 MachineBasicBlock *BB) const { 1462 1463 MachineFunction *MF = BB->getParent(); 1464 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1465 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1466 DebugLoc DL = MI.getDebugLoc(); 1467 1468 unsigned AtomicOp; 1469 bool NeedsAdditionalReg = false; 1470 switch (MI.getOpcode()) { 1471 case Mips::ATOMIC_LOAD_ADD_I32: 1472 AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA; 1473 break; 1474 case Mips::ATOMIC_LOAD_SUB_I32: 1475 AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA; 1476 break; 1477 case Mips::ATOMIC_LOAD_AND_I32: 1478 AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA; 1479 break; 1480 case Mips::ATOMIC_LOAD_OR_I32: 1481 AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA; 1482 break; 1483 case Mips::ATOMIC_LOAD_XOR_I32: 1484 AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA; 1485 break; 1486 case Mips::ATOMIC_LOAD_NAND_I32: 1487 AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA; 1488 break; 1489 case Mips::ATOMIC_SWAP_I32: 1490 AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA; 1491 break; 1492 case Mips::ATOMIC_LOAD_ADD_I64: 1493 AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA; 1494 break; 1495 case Mips::ATOMIC_LOAD_SUB_I64: 1496 AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA; 1497 break; 1498 case Mips::ATOMIC_LOAD_AND_I64: 1499 AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA; 1500 break; 1501 case Mips::ATOMIC_LOAD_OR_I64: 1502 AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA; 1503 break; 1504 case Mips::ATOMIC_LOAD_XOR_I64: 1505 AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA; 1506 break; 1507 case Mips::ATOMIC_LOAD_NAND_I64: 1508 AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA; 1509 break; 1510 case Mips::ATOMIC_SWAP_I64: 1511 AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA; 1512 break; 1513 case Mips::ATOMIC_LOAD_MIN_I32: 1514 AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA; 1515 NeedsAdditionalReg = true; 1516 break; 1517 case Mips::ATOMIC_LOAD_MAX_I32: 1518 AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA; 1519 NeedsAdditionalReg = true; 1520 break; 1521 case Mips::ATOMIC_LOAD_UMIN_I32: 1522 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA; 1523 NeedsAdditionalReg = true; 1524 break; 1525 case Mips::ATOMIC_LOAD_UMAX_I32: 1526 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA; 1527 NeedsAdditionalReg = true; 1528 break; 1529 case Mips::ATOMIC_LOAD_MIN_I64: 1530 AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA; 1531 NeedsAdditionalReg = true; 1532 break; 1533 case Mips::ATOMIC_LOAD_MAX_I64: 1534 AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA; 1535 NeedsAdditionalReg = true; 1536 break; 1537 case Mips::ATOMIC_LOAD_UMIN_I64: 1538 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA; 1539 NeedsAdditionalReg = true; 1540 break; 1541 case Mips::ATOMIC_LOAD_UMAX_I64: 1542 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA; 1543 NeedsAdditionalReg = true; 1544 break; 1545 default: 1546 llvm_unreachable("Unknown pseudo atomic for replacement!"); 1547 } 1548 1549 Register OldVal = MI.getOperand(0).getReg(); 1550 Register Ptr = MI.getOperand(1).getReg(); 1551 Register Incr = MI.getOperand(2).getReg(); 1552 Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal)); 1553 1554 MachineBasicBlock::iterator II(MI); 1555 1556 // The scratch registers here with the EarlyClobber | Define | Implicit 1557 // flags is used to persuade the register allocator and the machine 1558 // verifier to accept the usage of this register. This has to be a real 1559 // register which has an UNDEF value but is dead after the instruction which 1560 // is unique among the registers chosen for the instruction. 1561 1562 // The EarlyClobber flag has the semantic properties that the operand it is 1563 // attached to is clobbered before the rest of the inputs are read. Hence it 1564 // must be unique among the operands to the instruction. 1565 // The Define flag is needed to coerce the machine verifier that an Undef 1566 // value isn't a problem. 1567 // The Dead flag is needed as the value in scratch isn't used by any other 1568 // instruction. Kill isn't used as Dead is more precise. 1569 // The implicit flag is here due to the interaction between the other flags 1570 // and the machine verifier. 1571 1572 // For correctness purpose, a new pseudo is introduced here. We need this 1573 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence 1574 // that is spread over >1 basic blocks. A register allocator which 1575 // introduces (or any codegen infact) a store, can violate the expectations 1576 // of the hardware. 1577 // 1578 // An atomic read-modify-write sequence starts with a linked load 1579 // instruction and ends with a store conditional instruction. The atomic 1580 // read-modify-write sequence fails if any of the following conditions 1581 // occur between the execution of ll and sc: 1582 // * A coherent store is completed by another process or coherent I/O 1583 // module into the block of synchronizable physical memory containing 1584 // the word. The size and alignment of the block is 1585 // implementation-dependent. 1586 // * A coherent store is executed between an LL and SC sequence on the 1587 // same processor to the block of synchornizable physical memory 1588 // containing the word. 1589 // 1590 1591 Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr)); 1592 Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr)); 1593 1594 BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr); 1595 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); 1596 1597 MachineInstrBuilder MIB = 1598 BuildMI(*BB, II, DL, TII->get(AtomicOp)) 1599 .addReg(OldVal, RegState::Define | RegState::EarlyClobber) 1600 .addReg(PtrCopy) 1601 .addReg(IncrCopy) 1602 .addReg(Scratch, RegState::Define | RegState::EarlyClobber | 1603 RegState::Implicit | RegState::Dead); 1604 if (NeedsAdditionalReg) { 1605 Register Scratch2 = 1606 RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal)); 1607 MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber | 1608 RegState::Implicit | RegState::Dead); 1609 } 1610 1611 MI.eraseFromParent(); 1612 1613 return BB; 1614 } 1615 1616 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( 1617 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, 1618 unsigned SrcReg) const { 1619 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1620 const DebugLoc &DL = MI.getDebugLoc(); 1621 1622 if (Subtarget.hasMips32r2() && Size == 1) { 1623 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); 1624 return BB; 1625 } 1626 1627 if (Subtarget.hasMips32r2() && Size == 2) { 1628 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); 1629 return BB; 1630 } 1631 1632 MachineFunction *MF = BB->getParent(); 1633 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1634 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1635 Register ScrReg = RegInfo.createVirtualRegister(RC); 1636 1637 assert(Size < 32); 1638 int64_t ShiftImm = 32 - (Size * 8); 1639 1640 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); 1641 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); 1642 1643 return BB; 1644 } 1645 1646 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( 1647 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { 1648 assert((Size == 1 || Size == 2) && 1649 "Unsupported size for EmitAtomicBinaryPartial."); 1650 1651 MachineFunction *MF = BB->getParent(); 1652 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1653 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1654 const bool ArePtrs64bit = ABI.ArePtrs64bit(); 1655 const TargetRegisterClass *RCp = 1656 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); 1657 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1658 DebugLoc DL = MI.getDebugLoc(); 1659 1660 Register Dest = MI.getOperand(0).getReg(); 1661 Register Ptr = MI.getOperand(1).getReg(); 1662 Register Incr = MI.getOperand(2).getReg(); 1663 1664 Register AlignedAddr = RegInfo.createVirtualRegister(RCp); 1665 Register ShiftAmt = RegInfo.createVirtualRegister(RC); 1666 Register Mask = RegInfo.createVirtualRegister(RC); 1667 Register Mask2 = RegInfo.createVirtualRegister(RC); 1668 Register Incr2 = RegInfo.createVirtualRegister(RC); 1669 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp); 1670 Register PtrLSB2 = RegInfo.createVirtualRegister(RC); 1671 Register MaskUpper = RegInfo.createVirtualRegister(RC); 1672 Register Scratch = RegInfo.createVirtualRegister(RC); 1673 Register Scratch2 = RegInfo.createVirtualRegister(RC); 1674 Register Scratch3 = RegInfo.createVirtualRegister(RC); 1675 1676 unsigned AtomicOp = 0; 1677 bool NeedsAdditionalReg = false; 1678 switch (MI.getOpcode()) { 1679 case Mips::ATOMIC_LOAD_NAND_I8: 1680 AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA; 1681 break; 1682 case Mips::ATOMIC_LOAD_NAND_I16: 1683 AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA; 1684 break; 1685 case Mips::ATOMIC_SWAP_I8: 1686 AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA; 1687 break; 1688 case Mips::ATOMIC_SWAP_I16: 1689 AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA; 1690 break; 1691 case Mips::ATOMIC_LOAD_ADD_I8: 1692 AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA; 1693 break; 1694 case Mips::ATOMIC_LOAD_ADD_I16: 1695 AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA; 1696 break; 1697 case Mips::ATOMIC_LOAD_SUB_I8: 1698 AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA; 1699 break; 1700 case Mips::ATOMIC_LOAD_SUB_I16: 1701 AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA; 1702 break; 1703 case Mips::ATOMIC_LOAD_AND_I8: 1704 AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA; 1705 break; 1706 case Mips::ATOMIC_LOAD_AND_I16: 1707 AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA; 1708 break; 1709 case Mips::ATOMIC_LOAD_OR_I8: 1710 AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA; 1711 break; 1712 case Mips::ATOMIC_LOAD_OR_I16: 1713 AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA; 1714 break; 1715 case Mips::ATOMIC_LOAD_XOR_I8: 1716 AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA; 1717 break; 1718 case Mips::ATOMIC_LOAD_XOR_I16: 1719 AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA; 1720 break; 1721 case Mips::ATOMIC_LOAD_MIN_I8: 1722 AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA; 1723 NeedsAdditionalReg = true; 1724 break; 1725 case Mips::ATOMIC_LOAD_MIN_I16: 1726 AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA; 1727 NeedsAdditionalReg = true; 1728 break; 1729 case Mips::ATOMIC_LOAD_MAX_I8: 1730 AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA; 1731 NeedsAdditionalReg = true; 1732 break; 1733 case Mips::ATOMIC_LOAD_MAX_I16: 1734 AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA; 1735 NeedsAdditionalReg = true; 1736 break; 1737 case Mips::ATOMIC_LOAD_UMIN_I8: 1738 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA; 1739 NeedsAdditionalReg = true; 1740 break; 1741 case Mips::ATOMIC_LOAD_UMIN_I16: 1742 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA; 1743 NeedsAdditionalReg = true; 1744 break; 1745 case Mips::ATOMIC_LOAD_UMAX_I8: 1746 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA; 1747 NeedsAdditionalReg = true; 1748 break; 1749 case Mips::ATOMIC_LOAD_UMAX_I16: 1750 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA; 1751 NeedsAdditionalReg = true; 1752 break; 1753 default: 1754 llvm_unreachable("Unknown subword atomic pseudo for expansion!"); 1755 } 1756 1757 // insert new blocks after the current block 1758 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1759 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1760 MachineFunction::iterator It = ++BB->getIterator(); 1761 MF->insert(It, exitMBB); 1762 1763 // Transfer the remainder of BB and its successor edges to exitMBB. 1764 exitMBB->splice(exitMBB->begin(), BB, 1765 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1766 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1767 1768 BB->addSuccessor(exitMBB, BranchProbability::getOne()); 1769 1770 // thisMBB: 1771 // addiu masklsb2,$0,-4 # 0xfffffffc 1772 // and alignedaddr,ptr,masklsb2 1773 // andi ptrlsb2,ptr,3 1774 // sll shiftamt,ptrlsb2,3 1775 // ori maskupper,$0,255 # 0xff 1776 // sll mask,maskupper,shiftamt 1777 // nor mask2,$0,mask 1778 // sll incr2,incr,shiftamt 1779 1780 int64_t MaskImm = (Size == 1) ? 255 : 65535; 1781 BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2) 1782 .addReg(ABI.GetNullPtr()).addImm(-4); 1783 BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr) 1784 .addReg(Ptr).addReg(MaskLSB2); 1785 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) 1786 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); 1787 if (Subtarget.isLittle()) { 1788 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); 1789 } else { 1790 Register Off = RegInfo.createVirtualRegister(RC); 1791 BuildMI(BB, DL, TII->get(Mips::XORi), Off) 1792 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); 1793 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); 1794 } 1795 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) 1796 .addReg(Mips::ZERO).addImm(MaskImm); 1797 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) 1798 .addReg(MaskUpper).addReg(ShiftAmt); 1799 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); 1800 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); 1801 1802 1803 // The purposes of the flags on the scratch registers is explained in 1804 // emitAtomicBinary. In summary, we need a scratch register which is going to 1805 // be undef, that is unique among registers chosen for the instruction. 1806 1807 MachineInstrBuilder MIB = 1808 BuildMI(BB, DL, TII->get(AtomicOp)) 1809 .addReg(Dest, RegState::Define | RegState::EarlyClobber) 1810 .addReg(AlignedAddr) 1811 .addReg(Incr2) 1812 .addReg(Mask) 1813 .addReg(Mask2) 1814 .addReg(ShiftAmt) 1815 .addReg(Scratch, RegState::EarlyClobber | RegState::Define | 1816 RegState::Dead | RegState::Implicit) 1817 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | 1818 RegState::Dead | RegState::Implicit) 1819 .addReg(Scratch3, RegState::EarlyClobber | RegState::Define | 1820 RegState::Dead | RegState::Implicit); 1821 if (NeedsAdditionalReg) { 1822 Register Scratch4 = RegInfo.createVirtualRegister(RC); 1823 MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define | 1824 RegState::Dead | RegState::Implicit); 1825 } 1826 1827 MI.eraseFromParent(); // The instruction is gone now. 1828 1829 return exitMBB; 1830 } 1831 1832 // Lower atomic compare and swap to a pseudo instruction, taking care to 1833 // define a scratch register for the pseudo instruction's expansion. The 1834 // instruction is expanded after the register allocator as to prevent 1835 // the insertion of stores between the linked load and the store conditional. 1836 1837 MachineBasicBlock * 1838 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI, 1839 MachineBasicBlock *BB) const { 1840 1841 assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 || 1842 MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) && 1843 "Unsupported atomic pseudo for EmitAtomicCmpSwap."); 1844 1845 const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8; 1846 1847 MachineFunction *MF = BB->getParent(); 1848 MachineRegisterInfo &MRI = MF->getRegInfo(); 1849 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); 1850 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1851 DebugLoc DL = MI.getDebugLoc(); 1852 1853 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 1854 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA 1855 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA; 1856 Register Dest = MI.getOperand(0).getReg(); 1857 Register Ptr = MI.getOperand(1).getReg(); 1858 Register OldVal = MI.getOperand(2).getReg(); 1859 Register NewVal = MI.getOperand(3).getReg(); 1860 1861 Register Scratch = MRI.createVirtualRegister(RC); 1862 MachineBasicBlock::iterator II(MI); 1863 1864 // We need to create copies of the various registers and kill them at the 1865 // atomic pseudo. If the copies are not made, when the atomic is expanded 1866 // after fast register allocation, the spills will end up outside of the 1867 // blocks that their values are defined in, causing livein errors. 1868 1869 Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr)); 1870 Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal)); 1871 Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal)); 1872 1873 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); 1874 BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal); 1875 BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal); 1876 1877 // The purposes of the flags on the scratch registers is explained in 1878 // emitAtomicBinary. In summary, we need a scratch register which is going to 1879 // be undef, that is unique among registers chosen for the instruction. 1880 1881 BuildMI(*BB, II, DL, TII->get(AtomicOp)) 1882 .addReg(Dest, RegState::Define | RegState::EarlyClobber) 1883 .addReg(PtrCopy, RegState::Kill) 1884 .addReg(OldValCopy, RegState::Kill) 1885 .addReg(NewValCopy, RegState::Kill) 1886 .addReg(Scratch, RegState::EarlyClobber | RegState::Define | 1887 RegState::Dead | RegState::Implicit); 1888 1889 MI.eraseFromParent(); // The instruction is gone now. 1890 1891 return BB; 1892 } 1893 1894 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword( 1895 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { 1896 assert((Size == 1 || Size == 2) && 1897 "Unsupported size for EmitAtomicCmpSwapPartial."); 1898 1899 MachineFunction *MF = BB->getParent(); 1900 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1901 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1902 const bool ArePtrs64bit = ABI.ArePtrs64bit(); 1903 const TargetRegisterClass *RCp = 1904 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); 1905 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1906 DebugLoc DL = MI.getDebugLoc(); 1907 1908 Register Dest = MI.getOperand(0).getReg(); 1909 Register Ptr = MI.getOperand(1).getReg(); 1910 Register CmpVal = MI.getOperand(2).getReg(); 1911 Register NewVal = MI.getOperand(3).getReg(); 1912 1913 Register AlignedAddr = RegInfo.createVirtualRegister(RCp); 1914 Register ShiftAmt = RegInfo.createVirtualRegister(RC); 1915 Register Mask = RegInfo.createVirtualRegister(RC); 1916 Register Mask2 = RegInfo.createVirtualRegister(RC); 1917 Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC); 1918 Register ShiftedNewVal = RegInfo.createVirtualRegister(RC); 1919 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp); 1920 Register PtrLSB2 = RegInfo.createVirtualRegister(RC); 1921 Register MaskUpper = RegInfo.createVirtualRegister(RC); 1922 Register MaskedCmpVal = RegInfo.createVirtualRegister(RC); 1923 Register MaskedNewVal = RegInfo.createVirtualRegister(RC); 1924 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8 1925 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA 1926 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA; 1927 1928 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit 1929 // flags are used to coerce the register allocator and the machine verifier to 1930 // accept the usage of these registers. 1931 // The EarlyClobber flag has the semantic properties that the operand it is 1932 // attached to is clobbered before the rest of the inputs are read. Hence it 1933 // must be unique among the operands to the instruction. 1934 // The Define flag is needed to coerce the machine verifier that an Undef 1935 // value isn't a problem. 1936 // The Dead flag is needed as the value in scratch isn't used by any other 1937 // instruction. Kill isn't used as Dead is more precise. 1938 Register Scratch = RegInfo.createVirtualRegister(RC); 1939 Register Scratch2 = RegInfo.createVirtualRegister(RC); 1940 1941 // insert new blocks after the current block 1942 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1943 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1944 MachineFunction::iterator It = ++BB->getIterator(); 1945 MF->insert(It, exitMBB); 1946 1947 // Transfer the remainder of BB and its successor edges to exitMBB. 1948 exitMBB->splice(exitMBB->begin(), BB, 1949 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1950 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1951 1952 BB->addSuccessor(exitMBB, BranchProbability::getOne()); 1953 1954 // thisMBB: 1955 // addiu masklsb2,$0,-4 # 0xfffffffc 1956 // and alignedaddr,ptr,masklsb2 1957 // andi ptrlsb2,ptr,3 1958 // xori ptrlsb2,ptrlsb2,3 # Only for BE 1959 // sll shiftamt,ptrlsb2,3 1960 // ori maskupper,$0,255 # 0xff 1961 // sll mask,maskupper,shiftamt 1962 // nor mask2,$0,mask 1963 // andi maskedcmpval,cmpval,255 1964 // sll shiftedcmpval,maskedcmpval,shiftamt 1965 // andi maskednewval,newval,255 1966 // sll shiftednewval,maskednewval,shiftamt 1967 int64_t MaskImm = (Size == 1) ? 255 : 65535; 1968 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2) 1969 .addReg(ABI.GetNullPtr()).addImm(-4); 1970 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr) 1971 .addReg(Ptr).addReg(MaskLSB2); 1972 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) 1973 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); 1974 if (Subtarget.isLittle()) { 1975 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); 1976 } else { 1977 Register Off = RegInfo.createVirtualRegister(RC); 1978 BuildMI(BB, DL, TII->get(Mips::XORi), Off) 1979 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); 1980 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); 1981 } 1982 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) 1983 .addReg(Mips::ZERO).addImm(MaskImm); 1984 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) 1985 .addReg(MaskUpper).addReg(ShiftAmt); 1986 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); 1987 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) 1988 .addReg(CmpVal).addImm(MaskImm); 1989 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) 1990 .addReg(MaskedCmpVal).addReg(ShiftAmt); 1991 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) 1992 .addReg(NewVal).addImm(MaskImm); 1993 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) 1994 .addReg(MaskedNewVal).addReg(ShiftAmt); 1995 1996 // The purposes of the flags on the scratch registers are explained in 1997 // emitAtomicBinary. In summary, we need a scratch register which is going to 1998 // be undef, that is unique among the register chosen for the instruction. 1999 2000 BuildMI(BB, DL, TII->get(AtomicOp)) 2001 .addReg(Dest, RegState::Define | RegState::EarlyClobber) 2002 .addReg(AlignedAddr) 2003 .addReg(Mask) 2004 .addReg(ShiftedCmpVal) 2005 .addReg(Mask2) 2006 .addReg(ShiftedNewVal) 2007 .addReg(ShiftAmt) 2008 .addReg(Scratch, RegState::EarlyClobber | RegState::Define | 2009 RegState::Dead | RegState::Implicit) 2010 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | 2011 RegState::Dead | RegState::Implicit); 2012 2013 MI.eraseFromParent(); // The instruction is gone now. 2014 2015 return exitMBB; 2016 } 2017 2018 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2019 // The first operand is the chain, the second is the condition, the third is 2020 // the block to branch to if the condition is true. 2021 SDValue Chain = Op.getOperand(0); 2022 SDValue Dest = Op.getOperand(2); 2023 SDLoc DL(Op); 2024 2025 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 2026 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); 2027 2028 // Return if flag is not set by a floating point comparison. 2029 if (CondRes.getOpcode() != MipsISD::FPCmp) 2030 return Op; 2031 2032 SDValue CCNode = CondRes.getOperand(2); 2033 Mips::CondCode CC = 2034 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); 2035 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; 2036 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32); 2037 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); 2038 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, 2039 FCC0, Dest, CondRes); 2040 } 2041 2042 SDValue MipsTargetLowering:: 2043 lowerSELECT(SDValue Op, SelectionDAG &DAG) const 2044 { 2045 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 2046 SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); 2047 2048 // Return if flag is not set by a floating point comparison. 2049 if (Cond.getOpcode() != MipsISD::FPCmp) 2050 return Op; 2051 2052 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), 2053 SDLoc(Op)); 2054 } 2055 2056 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2057 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 2058 SDValue Cond = createFPCmp(DAG, Op); 2059 2060 assert(Cond.getOpcode() == MipsISD::FPCmp && 2061 "Floating point operand expected."); 2062 2063 SDLoc DL(Op); 2064 SDValue True = DAG.getConstant(1, DL, MVT::i32); 2065 SDValue False = DAG.getConstant(0, DL, MVT::i32); 2066 2067 return createCMovFP(DAG, Cond, True, False, DL); 2068 } 2069 2070 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, 2071 SelectionDAG &DAG) const { 2072 EVT Ty = Op.getValueType(); 2073 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2074 const GlobalValue *GV = N->getGlobal(); 2075 2076 if (!isPositionIndependent()) { 2077 const MipsTargetObjectFile *TLOF = 2078 static_cast<const MipsTargetObjectFile *>( 2079 getTargetMachine().getObjFileLowering()); 2080 const GlobalObject *GO = GV->getBaseObject(); 2081 if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine())) 2082 // %gp_rel relocation 2083 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); 2084 2085 // %hi/%lo relocation 2086 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 2087 // %highest/%higher/%hi/%lo relocation 2088 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 2089 } 2090 2091 // Every other architecture would use shouldAssumeDSOLocal in here, but 2092 // mips is special. 2093 // * In PIC code mips requires got loads even for local statics! 2094 // * To save on got entries, for local statics the got entry contains the 2095 // page and an additional add instruction takes care of the low bits. 2096 // * It is legal to access a hidden symbol with a non hidden undefined, 2097 // so one cannot guarantee that all access to a hidden symbol will know 2098 // it is hidden. 2099 // * Mips linkers don't support creating a page and a full got entry for 2100 // the same symbol. 2101 // * Given all that, we have to use a full got entry for hidden symbols :-( 2102 if (GV->hasLocalLinkage()) 2103 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2104 2105 if (Subtarget.useXGOT()) 2106 return getAddrGlobalLargeGOT( 2107 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, 2108 DAG.getEntryNode(), 2109 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2110 2111 return getAddrGlobal( 2112 N, SDLoc(N), Ty, DAG, 2113 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT, 2114 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2115 } 2116 2117 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, 2118 SelectionDAG &DAG) const { 2119 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2120 EVT Ty = Op.getValueType(); 2121 2122 if (!isPositionIndependent()) 2123 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 2124 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 2125 2126 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2127 } 2128 2129 SDValue MipsTargetLowering:: 2130 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const 2131 { 2132 // If the relocation model is PIC, use the General Dynamic TLS Model or 2133 // Local Dynamic TLS model, otherwise use the Initial Exec or 2134 // Local Exec TLS Model. 2135 2136 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2137 if (DAG.getTarget().useEmulatedTLS()) 2138 return LowerToTLSEmulatedModel(GA, DAG); 2139 2140 SDLoc DL(GA); 2141 const GlobalValue *GV = GA->getGlobal(); 2142 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2143 2144 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2145 2146 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2147 // General Dynamic and Local Dynamic TLS Model. 2148 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM 2149 : MipsII::MO_TLSGD; 2150 2151 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); 2152 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, 2153 getGlobalReg(DAG, PtrVT), TGA); 2154 unsigned PtrSize = PtrVT.getSizeInBits(); 2155 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); 2156 2157 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); 2158 2159 ArgListTy Args; 2160 ArgListEntry Entry; 2161 Entry.Node = Argument; 2162 Entry.Ty = PtrTy; 2163 Args.push_back(Entry); 2164 2165 TargetLowering::CallLoweringInfo CLI(DAG); 2166 CLI.setDebugLoc(DL) 2167 .setChain(DAG.getEntryNode()) 2168 .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args)); 2169 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2170 2171 SDValue Ret = CallResult.first; 2172 2173 if (model != TLSModel::LocalDynamic) 2174 return Ret; 2175 2176 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2177 MipsII::MO_DTPREL_HI); 2178 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); 2179 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2180 MipsII::MO_DTPREL_LO); 2181 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); 2182 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); 2183 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); 2184 } 2185 2186 SDValue Offset; 2187 if (model == TLSModel::InitialExec) { 2188 // Initial Exec TLS Model 2189 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2190 MipsII::MO_GOTTPREL); 2191 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), 2192 TGA); 2193 Offset = 2194 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo()); 2195 } else { 2196 // Local Exec TLS Model 2197 assert(model == TLSModel::LocalExec); 2198 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2199 MipsII::MO_TPREL_HI); 2200 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2201 MipsII::MO_TPREL_LO); 2202 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); 2203 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); 2204 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2205 } 2206 2207 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); 2208 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); 2209 } 2210 2211 SDValue MipsTargetLowering:: 2212 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const 2213 { 2214 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2215 EVT Ty = Op.getValueType(); 2216 2217 if (!isPositionIndependent()) 2218 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 2219 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 2220 2221 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2222 } 2223 2224 SDValue MipsTargetLowering:: 2225 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const 2226 { 2227 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2228 EVT Ty = Op.getValueType(); 2229 2230 if (!isPositionIndependent()) { 2231 const MipsTargetObjectFile *TLOF = 2232 static_cast<const MipsTargetObjectFile *>( 2233 getTargetMachine().getObjFileLowering()); 2234 2235 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(), 2236 getTargetMachine())) 2237 // %gp_rel relocation 2238 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); 2239 2240 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 2241 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 2242 } 2243 2244 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2245 } 2246 2247 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2248 MachineFunction &MF = DAG.getMachineFunction(); 2249 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 2250 2251 SDLoc DL(Op); 2252 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2253 getPointerTy(MF.getDataLayout())); 2254 2255 // vastart just stores the address of the VarArgsFrameIndex slot into the 2256 // memory location argument. 2257 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2258 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2259 MachinePointerInfo(SV)); 2260 } 2261 2262 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2263 SDNode *Node = Op.getNode(); 2264 EVT VT = Node->getValueType(0); 2265 SDValue Chain = Node->getOperand(0); 2266 SDValue VAListPtr = Node->getOperand(1); 2267 const Align Align = 2268 llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne(); 2269 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2270 SDLoc DL(Node); 2271 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4; 2272 2273 SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, 2274 VAListPtr, MachinePointerInfo(SV)); 2275 SDValue VAList = VAListLoad; 2276 2277 // Re-align the pointer if necessary. 2278 // It should only ever be necessary for 64-bit types on O32 since the minimum 2279 // argument alignment is the same as the maximum type alignment for N32/N64. 2280 // 2281 // FIXME: We currently align too often. The code generator doesn't notice 2282 // when the pointer is still aligned from the last va_arg (or pair of 2283 // va_args for the i64 on O32 case). 2284 if (Align > getMinStackArgumentAlignment()) { 2285 VAList = DAG.getNode( 2286 ISD::ADD, DL, VAList.getValueType(), VAList, 2287 DAG.getConstant(Align.value() - 1, DL, VAList.getValueType())); 2288 2289 VAList = DAG.getNode( 2290 ISD::AND, DL, VAList.getValueType(), VAList, 2291 DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType())); 2292 } 2293 2294 // Increment the pointer, VAList, to the next vaarg. 2295 auto &TD = DAG.getDataLayout(); 2296 unsigned ArgSizeInBytes = 2297 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); 2298 SDValue Tmp3 = 2299 DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, 2300 DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes), 2301 DL, VAList.getValueType())); 2302 // Store the incremented VAList to the legalized pointer 2303 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, 2304 MachinePointerInfo(SV)); 2305 2306 // In big-endian mode we must adjust the pointer when the load size is smaller 2307 // than the argument slot size. We must also reduce the known alignment to 2308 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get 2309 // the correct half of the slot, and reduce the alignment from 8 (slot 2310 // alignment) down to 4 (type alignment). 2311 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { 2312 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; 2313 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, 2314 DAG.getIntPtrConstant(Adjustment, DL)); 2315 } 2316 // Load the actual argument out of the pointer VAList 2317 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo()); 2318 } 2319 2320 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, 2321 bool HasExtractInsert) { 2322 EVT TyX = Op.getOperand(0).getValueType(); 2323 EVT TyY = Op.getOperand(1).getValueType(); 2324 SDLoc DL(Op); 2325 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); 2326 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32); 2327 SDValue Res; 2328 2329 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it 2330 // to i32. 2331 SDValue X = (TyX == MVT::f32) ? 2332 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : 2333 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), 2334 Const1); 2335 SDValue Y = (TyY == MVT::f32) ? 2336 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : 2337 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), 2338 Const1); 2339 2340 if (HasExtractInsert) { 2341 // ext E, Y, 31, 1 ; extract bit31 of Y 2342 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X 2343 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); 2344 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); 2345 } else { 2346 // sll SllX, X, 1 2347 // srl SrlX, SllX, 1 2348 // srl SrlY, Y, 31 2349 // sll SllY, SrlX, 31 2350 // or Or, SrlX, SllY 2351 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); 2352 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); 2353 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); 2354 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); 2355 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); 2356 } 2357 2358 if (TyX == MVT::f32) 2359 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); 2360 2361 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2362 Op.getOperand(0), 2363 DAG.getConstant(0, DL, MVT::i32)); 2364 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); 2365 } 2366 2367 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, 2368 bool HasExtractInsert) { 2369 unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); 2370 unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); 2371 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); 2372 SDLoc DL(Op); 2373 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); 2374 2375 // Bitcast to integer nodes. 2376 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); 2377 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); 2378 2379 if (HasExtractInsert) { 2380 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y 2381 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X 2382 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, 2383 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1); 2384 2385 if (WidthX > WidthY) 2386 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); 2387 else if (WidthY > WidthX) 2388 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); 2389 2390 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, 2391 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1, 2392 X); 2393 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); 2394 } 2395 2396 // (d)sll SllX, X, 1 2397 // (d)srl SrlX, SllX, 1 2398 // (d)srl SrlY, Y, width(Y)-1 2399 // (d)sll SllY, SrlX, width(Y)-1 2400 // or Or, SrlX, SllY 2401 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); 2402 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); 2403 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, 2404 DAG.getConstant(WidthY - 1, DL, MVT::i32)); 2405 2406 if (WidthX > WidthY) 2407 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); 2408 else if (WidthY > WidthX) 2409 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); 2410 2411 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, 2412 DAG.getConstant(WidthX - 1, DL, MVT::i32)); 2413 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); 2414 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); 2415 } 2416 2417 SDValue 2418 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 2419 if (Subtarget.isGP64bit()) 2420 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); 2421 2422 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); 2423 } 2424 2425 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, 2426 bool HasExtractInsert) { 2427 SDLoc DL(Op); 2428 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32); 2429 2430 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it 2431 // to i32. 2432 SDValue X = (Op.getValueType() == MVT::f32) 2433 ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) 2434 : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2435 Op.getOperand(0), Const1); 2436 2437 // Clear MSB. 2438 if (HasExtractInsert) 2439 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, 2440 DAG.getRegister(Mips::ZERO, MVT::i32), 2441 DAG.getConstant(31, DL, MVT::i32), Const1, X); 2442 else { 2443 // TODO: Provide DAG patterns which transform (and x, cst) 2444 // back to a (shl (srl x (clz cst)) (clz cst)) sequence. 2445 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); 2446 Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); 2447 } 2448 2449 if (Op.getValueType() == MVT::f32) 2450 return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res); 2451 2452 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64 2453 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we 2454 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in 2455 // place. 2456 SDValue LowX = 2457 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), 2458 DAG.getConstant(0, DL, MVT::i32)); 2459 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); 2460 } 2461 2462 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, 2463 bool HasExtractInsert) { 2464 SDLoc DL(Op); 2465 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32); 2466 2467 // Bitcast to integer node. 2468 SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0)); 2469 2470 // Clear MSB. 2471 if (HasExtractInsert) 2472 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64, 2473 DAG.getRegister(Mips::ZERO_64, MVT::i64), 2474 DAG.getConstant(63, DL, MVT::i32), Const1, X); 2475 else { 2476 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1); 2477 Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1); 2478 } 2479 2480 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res); 2481 } 2482 2483 SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const { 2484 if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64)) 2485 return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert()); 2486 2487 return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert()); 2488 } 2489 2490 SDValue MipsTargetLowering:: 2491 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 2492 // check the depth 2493 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) { 2494 DAG.getContext()->emitError( 2495 "return address can be determined only for current frame"); 2496 return SDValue(); 2497 } 2498 2499 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2500 MFI.setFrameAddressIsTaken(true); 2501 EVT VT = Op.getValueType(); 2502 SDLoc DL(Op); 2503 SDValue FrameAddr = DAG.getCopyFromReg( 2504 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT); 2505 return FrameAddr; 2506 } 2507 2508 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, 2509 SelectionDAG &DAG) const { 2510 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2511 return SDValue(); 2512 2513 // check the depth 2514 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) { 2515 DAG.getContext()->emitError( 2516 "return address can be determined only for current frame"); 2517 return SDValue(); 2518 } 2519 2520 MachineFunction &MF = DAG.getMachineFunction(); 2521 MachineFrameInfo &MFI = MF.getFrameInfo(); 2522 MVT VT = Op.getSimpleValueType(); 2523 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA; 2524 MFI.setReturnAddressIsTaken(true); 2525 2526 // Return RA, which contains the return address. Mark it an implicit live-in. 2527 unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT)); 2528 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); 2529 } 2530 2531 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is 2532 // generated from __builtin_eh_return (offset, handler) 2533 // The effect of this is to adjust the stack pointer by "offset" 2534 // and then branch to "handler". 2535 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) 2536 const { 2537 MachineFunction &MF = DAG.getMachineFunction(); 2538 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 2539 2540 MipsFI->setCallsEhReturn(); 2541 SDValue Chain = Op.getOperand(0); 2542 SDValue Offset = Op.getOperand(1); 2543 SDValue Handler = Op.getOperand(2); 2544 SDLoc DL(Op); 2545 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; 2546 2547 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and 2548 // EH_RETURN nodes, so that instructions are emitted back-to-back. 2549 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1; 2550 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0; 2551 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); 2552 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); 2553 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, 2554 DAG.getRegister(OffsetReg, Ty), 2555 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())), 2556 Chain.getValue(1)); 2557 } 2558 2559 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, 2560 SelectionDAG &DAG) const { 2561 // FIXME: Need pseudo-fence for 'singlethread' fences 2562 // FIXME: Set SType for weaker fences where supported/appropriate. 2563 unsigned SType = 0; 2564 SDLoc DL(Op); 2565 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), 2566 DAG.getConstant(SType, DL, MVT::i32)); 2567 } 2568 2569 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, 2570 SelectionDAG &DAG) const { 2571 SDLoc DL(Op); 2572 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; 2573 2574 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); 2575 SDValue Shamt = Op.getOperand(2); 2576 // if shamt < (VT.bits): 2577 // lo = (shl lo, shamt) 2578 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) 2579 // else: 2580 // lo = 0 2581 // hi = (shl lo, shamt[4:0]) 2582 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, 2583 DAG.getConstant(-1, DL, MVT::i32)); 2584 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, 2585 DAG.getConstant(1, DL, VT)); 2586 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not); 2587 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2588 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2589 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2590 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, 2591 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); 2592 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2593 DAG.getConstant(0, DL, VT), ShiftLeftLo); 2594 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or); 2595 2596 SDValue Ops[2] = {Lo, Hi}; 2597 return DAG.getMergeValues(Ops, DL); 2598 } 2599 2600 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2601 bool IsSRA) const { 2602 SDLoc DL(Op); 2603 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); 2604 SDValue Shamt = Op.getOperand(2); 2605 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; 2606 2607 // if shamt < (VT.bits): 2608 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) 2609 // if isSRA: 2610 // hi = (sra hi, shamt) 2611 // else: 2612 // hi = (srl hi, shamt) 2613 // else: 2614 // if isSRA: 2615 // lo = (sra hi, shamt[4:0]) 2616 // hi = (sra hi, 31) 2617 // else: 2618 // lo = (srl hi, shamt[4:0]) 2619 // hi = 0 2620 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, 2621 DAG.getConstant(-1, DL, MVT::i32)); 2622 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, 2623 DAG.getConstant(1, DL, VT)); 2624 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not); 2625 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2626 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2627 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, 2628 DL, VT, Hi, Shamt); 2629 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, 2630 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); 2631 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi, 2632 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT)); 2633 2634 if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) { 2635 SDVTList VTList = DAG.getVTList(VT, VT); 2636 return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64 2637 : Mips::PseudoD_SELECT_I, 2638 DL, VTList, Cond, ShiftRightHi, 2639 IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or, 2640 ShiftRightHi); 2641 } 2642 2643 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or); 2644 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2645 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi); 2646 2647 SDValue Ops[2] = {Lo, Hi}; 2648 return DAG.getMergeValues(Ops, DL); 2649 } 2650 2651 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, 2652 SDValue Chain, SDValue Src, unsigned Offset) { 2653 SDValue Ptr = LD->getBasePtr(); 2654 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); 2655 EVT BasePtrVT = Ptr.getValueType(); 2656 SDLoc DL(LD); 2657 SDVTList VTList = DAG.getVTList(VT, MVT::Other); 2658 2659 if (Offset) 2660 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, 2661 DAG.getConstant(Offset, DL, BasePtrVT)); 2662 2663 SDValue Ops[] = { Chain, Ptr, Src }; 2664 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, 2665 LD->getMemOperand()); 2666 } 2667 2668 // Expand an unaligned 32 or 64-bit integer load node. 2669 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 2670 LoadSDNode *LD = cast<LoadSDNode>(Op); 2671 EVT MemVT = LD->getMemoryVT(); 2672 2673 if (Subtarget.systemSupportsUnalignedAccess()) 2674 return Op; 2675 2676 // Return if load is aligned or if MemVT is neither i32 nor i64. 2677 if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) || 2678 ((MemVT != MVT::i32) && (MemVT != MVT::i64))) 2679 return SDValue(); 2680 2681 bool IsLittle = Subtarget.isLittle(); 2682 EVT VT = Op.getValueType(); 2683 ISD::LoadExtType ExtType = LD->getExtensionType(); 2684 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); 2685 2686 assert((VT == MVT::i32) || (VT == MVT::i64)); 2687 2688 // Expand 2689 // (set dst, (i64 (load baseptr))) 2690 // to 2691 // (set tmp, (ldl (add baseptr, 7), undef)) 2692 // (set dst, (ldr baseptr, tmp)) 2693 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { 2694 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, 2695 IsLittle ? 7 : 0); 2696 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, 2697 IsLittle ? 0 : 7); 2698 } 2699 2700 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, 2701 IsLittle ? 3 : 0); 2702 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, 2703 IsLittle ? 0 : 3); 2704 2705 // Expand 2706 // (set dst, (i32 (load baseptr))) or 2707 // (set dst, (i64 (sextload baseptr))) or 2708 // (set dst, (i64 (extload baseptr))) 2709 // to 2710 // (set tmp, (lwl (add baseptr, 3), undef)) 2711 // (set dst, (lwr baseptr, tmp)) 2712 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || 2713 (ExtType == ISD::EXTLOAD)) 2714 return LWR; 2715 2716 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); 2717 2718 // Expand 2719 // (set dst, (i64 (zextload baseptr))) 2720 // to 2721 // (set tmp0, (lwl (add baseptr, 3), undef)) 2722 // (set tmp1, (lwr baseptr, tmp0)) 2723 // (set tmp2, (shl tmp1, 32)) 2724 // (set dst, (srl tmp2, 32)) 2725 SDLoc DL(LD); 2726 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32); 2727 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); 2728 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); 2729 SDValue Ops[] = { SRL, LWR.getValue(1) }; 2730 return DAG.getMergeValues(Ops, DL); 2731 } 2732 2733 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, 2734 SDValue Chain, unsigned Offset) { 2735 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); 2736 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); 2737 SDLoc DL(SD); 2738 SDVTList VTList = DAG.getVTList(MVT::Other); 2739 2740 if (Offset) 2741 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, 2742 DAG.getConstant(Offset, DL, BasePtrVT)); 2743 2744 SDValue Ops[] = { Chain, Value, Ptr }; 2745 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, 2746 SD->getMemOperand()); 2747 } 2748 2749 // Expand an unaligned 32 or 64-bit integer store node. 2750 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, 2751 bool IsLittle) { 2752 SDValue Value = SD->getValue(), Chain = SD->getChain(); 2753 EVT VT = Value.getValueType(); 2754 2755 // Expand 2756 // (store val, baseptr) or 2757 // (truncstore val, baseptr) 2758 // to 2759 // (swl val, (add baseptr, 3)) 2760 // (swr val, baseptr) 2761 if ((VT == MVT::i32) || SD->isTruncatingStore()) { 2762 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, 2763 IsLittle ? 3 : 0); 2764 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); 2765 } 2766 2767 assert(VT == MVT::i64); 2768 2769 // Expand 2770 // (store val, baseptr) 2771 // to 2772 // (sdl val, (add baseptr, 7)) 2773 // (sdr val, baseptr) 2774 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); 2775 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); 2776 } 2777 2778 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). 2779 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG, 2780 bool SingleFloat) { 2781 SDValue Val = SD->getValue(); 2782 2783 if (Val.getOpcode() != ISD::FP_TO_SINT || 2784 (Val.getValueSizeInBits() > 32 && SingleFloat)) 2785 return SDValue(); 2786 2787 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); 2788 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, 2789 Val.getOperand(0)); 2790 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), 2791 SD->getPointerInfo(), SD->getAlignment(), 2792 SD->getMemOperand()->getFlags()); 2793 } 2794 2795 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 2796 StoreSDNode *SD = cast<StoreSDNode>(Op); 2797 EVT MemVT = SD->getMemoryVT(); 2798 2799 // Lower unaligned integer stores. 2800 if (!Subtarget.systemSupportsUnalignedAccess() && 2801 (SD->getAlignment() < MemVT.getSizeInBits() / 8) && 2802 ((MemVT == MVT::i32) || (MemVT == MVT::i64))) 2803 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); 2804 2805 return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat()); 2806 } 2807 2808 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op, 2809 SelectionDAG &DAG) const { 2810 2811 // Return a fixed StackObject with offset 0 which points to the old stack 2812 // pointer. 2813 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2814 EVT ValTy = Op->getValueType(0); 2815 int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); 2816 return DAG.getFrameIndex(FI, ValTy); 2817 } 2818 2819 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, 2820 SelectionDAG &DAG) const { 2821 if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat()) 2822 return SDValue(); 2823 2824 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); 2825 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, 2826 Op.getOperand(0)); 2827 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); 2828 } 2829 2830 //===----------------------------------------------------------------------===// 2831 // Calling Convention Implementation 2832 //===----------------------------------------------------------------------===// 2833 2834 //===----------------------------------------------------------------------===// 2835 // TODO: Implement a generic logic using tblgen that can support this. 2836 // Mips O32 ABI rules: 2837 // --- 2838 // i32 - Passed in A0, A1, A2, A3 and stack 2839 // f32 - Only passed in f32 registers if no int reg has been used yet to hold 2840 // an argument. Otherwise, passed in A1, A2, A3 and stack. 2841 // f64 - Only passed in two aliased f32 registers if no int reg has been used 2842 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is 2843 // not used, it must be shadowed. If only A3 is available, shadow it and 2844 // go to stack. 2845 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack. 2846 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3} 2847 // with the remainder spilled to the stack. 2848 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases 2849 // spilling the remainder to the stack. 2850 // 2851 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. 2852 //===----------------------------------------------------------------------===// 2853 2854 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, 2855 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 2856 CCState &State, ArrayRef<MCPhysReg> F64Regs) { 2857 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>( 2858 State.getMachineFunction().getSubtarget()); 2859 2860 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; 2861 2862 const MipsCCState * MipsState = static_cast<MipsCCState *>(&State); 2863 2864 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; 2865 2866 static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 }; 2867 2868 // Do not process byval args here. 2869 if (ArgFlags.isByVal()) 2870 return true; 2871 2872 // Promote i8 and i16 2873 if (ArgFlags.isInReg() && !Subtarget.isLittle()) { 2874 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) { 2875 LocVT = MVT::i32; 2876 if (ArgFlags.isSExt()) 2877 LocInfo = CCValAssign::SExtUpper; 2878 else if (ArgFlags.isZExt()) 2879 LocInfo = CCValAssign::ZExtUpper; 2880 else 2881 LocInfo = CCValAssign::AExtUpper; 2882 } 2883 } 2884 2885 // Promote i8 and i16 2886 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 2887 LocVT = MVT::i32; 2888 if (ArgFlags.isSExt()) 2889 LocInfo = CCValAssign::SExt; 2890 else if (ArgFlags.isZExt()) 2891 LocInfo = CCValAssign::ZExt; 2892 else 2893 LocInfo = CCValAssign::AExt; 2894 } 2895 2896 unsigned Reg; 2897 2898 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following 2899 // is true: function is vararg, argument is 3rd or higher, there is previous 2900 // argument which is not f32 or f64. 2901 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || 2902 State.getFirstUnallocated(F32Regs) != ValNo; 2903 unsigned OrigAlign = ArgFlags.getOrigAlign(); 2904 bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); 2905 bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo); 2906 2907 // The MIPS vector ABI for floats passes them in a pair of registers 2908 if (ValVT == MVT::i32 && isVectorFloat) { 2909 // This is the start of an vector that was scalarized into an unknown number 2910 // of components. It doesn't matter how many there are. Allocate one of the 2911 // notional 8 byte aligned registers which map onto the argument stack, and 2912 // shadow the register lost to alignment requirements. 2913 if (ArgFlags.isSplit()) { 2914 Reg = State.AllocateReg(FloatVectorIntRegs); 2915 if (Reg == Mips::A2) 2916 State.AllocateReg(Mips::A1); 2917 else if (Reg == 0) 2918 State.AllocateReg(Mips::A3); 2919 } else { 2920 // If we're an intermediate component of the split, we can just attempt to 2921 // allocate a register directly. 2922 Reg = State.AllocateReg(IntRegs); 2923 } 2924 } else if (ValVT == MVT::i32 || 2925 (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { 2926 Reg = State.AllocateReg(IntRegs); 2927 // If this is the first part of an i64 arg, 2928 // the allocated register must be either A0 or A2. 2929 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) 2930 Reg = State.AllocateReg(IntRegs); 2931 LocVT = MVT::i32; 2932 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { 2933 // Allocate int register and shadow next int register. If first 2934 // available register is Mips::A1 or Mips::A3, shadow it too. 2935 Reg = State.AllocateReg(IntRegs); 2936 if (Reg == Mips::A1 || Reg == Mips::A3) 2937 Reg = State.AllocateReg(IntRegs); 2938 State.AllocateReg(IntRegs); 2939 LocVT = MVT::i32; 2940 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { 2941 // we are guaranteed to find an available float register 2942 if (ValVT == MVT::f32) { 2943 Reg = State.AllocateReg(F32Regs); 2944 // Shadow int register 2945 State.AllocateReg(IntRegs); 2946 } else { 2947 Reg = State.AllocateReg(F64Regs); 2948 // Shadow int registers 2949 unsigned Reg2 = State.AllocateReg(IntRegs); 2950 if (Reg2 == Mips::A1 || Reg2 == Mips::A3) 2951 State.AllocateReg(IntRegs); 2952 State.AllocateReg(IntRegs); 2953 } 2954 } else 2955 llvm_unreachable("Cannot handle this ValVT."); 2956 2957 if (!Reg) { 2958 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign); 2959 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 2960 } else 2961 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2962 2963 return false; 2964 } 2965 2966 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, 2967 MVT LocVT, CCValAssign::LocInfo LocInfo, 2968 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2969 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; 2970 2971 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); 2972 } 2973 2974 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, 2975 MVT LocVT, CCValAssign::LocInfo LocInfo, 2976 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2977 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; 2978 2979 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); 2980 } 2981 2982 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, 2983 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 2984 CCState &State) LLVM_ATTRIBUTE_UNUSED; 2985 2986 #include "MipsGenCallingConv.inc" 2987 2988 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{ 2989 return CC_Mips_FixedArg; 2990 } 2991 2992 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{ 2993 return RetCC_Mips; 2994 } 2995 //===----------------------------------------------------------------------===// 2996 // Call Calling Convention Implementation 2997 //===----------------------------------------------------------------------===// 2998 2999 // Return next O32 integer argument register. 3000 static unsigned getNextIntArgReg(unsigned Reg) { 3001 assert((Reg == Mips::A0) || (Reg == Mips::A2)); 3002 return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; 3003 } 3004 3005 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, 3006 SDValue Chain, SDValue Arg, 3007 const SDLoc &DL, bool IsTailCall, 3008 SelectionDAG &DAG) const { 3009 if (!IsTailCall) { 3010 SDValue PtrOff = 3011 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 3012 DAG.getIntPtrConstant(Offset, DL)); 3013 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()); 3014 } 3015 3016 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3017 int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); 3018 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3019 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), 3020 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 3021 } 3022 3023 void MipsTargetLowering:: 3024 getOpndList(SmallVectorImpl<SDValue> &Ops, 3025 std::deque<std::pair<unsigned, SDValue>> &RegsToPass, 3026 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, 3027 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, 3028 SDValue Chain) const { 3029 // Insert node "GP copy globalreg" before call to function. 3030 // 3031 // R_MIPS_CALL* operators (emitted when non-internal functions are called 3032 // in PIC mode) allow symbols to be resolved via lazy binding. 3033 // The lazy binding stub requires GP to point to the GOT. 3034 // Note that we don't need GP to point to the GOT for indirect calls 3035 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates 3036 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs 3037 // used for the function (that is, Mips linker doesn't generate lazy binding 3038 // stub for a function whose address is taken in the program). 3039 if (IsPICCall && !InternalLinkage && IsCallReloc) { 3040 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP; 3041 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; 3042 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); 3043 } 3044 3045 // Build a sequence of copy-to-reg nodes chained together with token 3046 // chain and flag operands which copy the outgoing args into registers. 3047 // The InFlag in necessary since all emitted instructions must be 3048 // stuck together. 3049 SDValue InFlag; 3050 3051 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3052 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first, 3053 RegsToPass[i].second, InFlag); 3054 InFlag = Chain.getValue(1); 3055 } 3056 3057 // Add argument registers to the end of the list so that they are 3058 // known live into the call. 3059 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 3060 Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first, 3061 RegsToPass[i].second.getValueType())); 3062 3063 // Add a register mask operand representing the call-preserved registers. 3064 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3065 const uint32_t *Mask = 3066 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv); 3067 assert(Mask && "Missing call preserved mask for calling convention"); 3068 if (Subtarget.inMips16HardFloat()) { 3069 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { 3070 StringRef Sym = G->getGlobal()->getName(); 3071 Function *F = G->getGlobal()->getParent()->getFunction(Sym); 3072 if (F && F->hasFnAttribute("__Mips16RetHelper")) { 3073 Mask = MipsRegisterInfo::getMips16RetHelperMask(); 3074 } 3075 } 3076 } 3077 Ops.push_back(CLI.DAG.getRegisterMask(Mask)); 3078 3079 if (InFlag.getNode()) 3080 Ops.push_back(InFlag); 3081 } 3082 3083 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 3084 SDNode *Node) const { 3085 switch (MI.getOpcode()) { 3086 default: 3087 return; 3088 case Mips::JALR: 3089 case Mips::JALRPseudo: 3090 case Mips::JALR64: 3091 case Mips::JALR64Pseudo: 3092 case Mips::JALR16_MM: 3093 case Mips::JALRC16_MMR6: 3094 case Mips::TAILCALLREG: 3095 case Mips::TAILCALLREG64: 3096 case Mips::TAILCALLR6REG: 3097 case Mips::TAILCALL64R6REG: 3098 case Mips::TAILCALLREG_MM: 3099 case Mips::TAILCALLREG_MMR6: { 3100 if (!EmitJalrReloc || 3101 Subtarget.inMips16Mode() || 3102 !isPositionIndependent() || 3103 Node->getNumOperands() < 1 || 3104 Node->getOperand(0).getNumOperands() < 2) { 3105 return; 3106 } 3107 // We are after the callee address, set by LowerCall(). 3108 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the 3109 // symbol. 3110 const SDValue TargetAddr = Node->getOperand(0).getOperand(1); 3111 StringRef Sym; 3112 if (const GlobalAddressSDNode *G = 3113 dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) { 3114 // We must not emit the R_MIPS_JALR relocation against data symbols 3115 // since this will cause run-time crashes if the linker replaces the 3116 // call instruction with a relative branch to the data symbol. 3117 if (!isa<Function>(G->getGlobal())) { 3118 LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol " 3119 << G->getGlobal()->getName() << "\n"); 3120 return; 3121 } 3122 Sym = G->getGlobal()->getName(); 3123 } 3124 else if (const ExternalSymbolSDNode *ES = 3125 dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) { 3126 Sym = ES->getSymbol(); 3127 } 3128 3129 if (Sym.empty()) 3130 return; 3131 3132 MachineFunction *MF = MI.getParent()->getParent(); 3133 MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym); 3134 LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n"); 3135 MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR)); 3136 } 3137 } 3138 } 3139 3140 /// LowerCall - functions arguments are copied from virtual regs to 3141 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 3142 SDValue 3143 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 3144 SmallVectorImpl<SDValue> &InVals) const { 3145 SelectionDAG &DAG = CLI.DAG; 3146 SDLoc DL = CLI.DL; 3147 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3148 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3149 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3150 SDValue Chain = CLI.Chain; 3151 SDValue Callee = CLI.Callee; 3152 bool &IsTailCall = CLI.IsTailCall; 3153 CallingConv::ID CallConv = CLI.CallConv; 3154 bool IsVarArg = CLI.IsVarArg; 3155 3156 MachineFunction &MF = DAG.getMachineFunction(); 3157 MachineFrameInfo &MFI = MF.getFrameInfo(); 3158 const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); 3159 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 3160 bool IsPIC = isPositionIndependent(); 3161 3162 // Analyze operands of the call, assigning locations to each operand. 3163 SmallVector<CCValAssign, 16> ArgLocs; 3164 MipsCCState CCInfo( 3165 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), 3166 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget)); 3167 3168 const ExternalSymbolSDNode *ES = 3169 dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode()); 3170 3171 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which 3172 // is during the lowering of a call with a byval argument which produces 3173 // a call to memcpy. For the O32 case, this causes the caller to allocate 3174 // stack space for the reserved argument area for the callee, then recursively 3175 // again for the memcpy call. In the NEWABI case, this doesn't occur as those 3176 // ABIs mandate that the callee allocates the reserved argument area. We do 3177 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though. 3178 // 3179 // If the callee has a byval argument and memcpy is used, we are mandated 3180 // to already have produced a reserved argument area for the callee for O32. 3181 // Therefore, the reserved argument area can be reused for both calls. 3182 // 3183 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START 3184 // present, as we have yet to hook that node onto the chain. 3185 // 3186 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this 3187 // case. GCC does a similar trick, in that wherever possible, it calculates 3188 // the maximum out going argument area (including the reserved area), and 3189 // preallocates the stack space on entrance to the caller. 3190 // 3191 // FIXME: We should do the same for efficiency and space. 3192 3193 // Note: The check on the calling convention below must match 3194 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes(). 3195 bool MemcpyInByVal = ES && 3196 StringRef(ES->getSymbol()) == StringRef("memcpy") && 3197 CallConv != CallingConv::Fast && 3198 Chain.getOpcode() == ISD::CALLSEQ_START; 3199 3200 // Allocate the reserved argument area. It seems strange to do this from the 3201 // caller side but removing it breaks the frame size calculation. 3202 unsigned ReservedArgArea = 3203 MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv); 3204 CCInfo.AllocateStack(ReservedArgArea, 1); 3205 3206 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), 3207 ES ? ES->getSymbol() : nullptr); 3208 3209 // Get a count of how many bytes are to be pushed on the stack. 3210 unsigned NextStackOffset = CCInfo.getNextStackOffset(); 3211 3212 // Check if it's really possible to do a tail call. Restrict it to functions 3213 // that are part of this compilation unit. 3214 bool InternalLinkage = false; 3215 if (IsTailCall) { 3216 IsTailCall = isEligibleForTailCallOptimization( 3217 CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>()); 3218 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3219 InternalLinkage = G->getGlobal()->hasInternalLinkage(); 3220 IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() || 3221 G->getGlobal()->hasPrivateLinkage() || 3222 G->getGlobal()->hasHiddenVisibility() || 3223 G->getGlobal()->hasProtectedVisibility()); 3224 } 3225 } 3226 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) 3227 report_fatal_error("failed to perform tail call elimination on a call " 3228 "site marked musttail"); 3229 3230 if (IsTailCall) 3231 ++NumTailCalls; 3232 3233 // Chain is the output chain of the last Load/Store or CopyToReg node. 3234 // ByValChain is the output chain of the last Memcpy node created for copying 3235 // byval arguments to the stack. 3236 unsigned StackAlignment = TFL->getStackAlignment(); 3237 NextStackOffset = alignTo(NextStackOffset, StackAlignment); 3238 SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true); 3239 3240 if (!(IsTailCall || MemcpyInByVal)) 3241 Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL); 3242 3243 SDValue StackPtr = 3244 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, 3245 getPointerTy(DAG.getDataLayout())); 3246 3247 std::deque<std::pair<unsigned, SDValue>> RegsToPass; 3248 SmallVector<SDValue, 8> MemOpChains; 3249 3250 CCInfo.rewindByValRegsInfo(); 3251 3252 // Walk the register/memloc assignments, inserting copies/loads. 3253 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3254 SDValue Arg = OutVals[i]; 3255 CCValAssign &VA = ArgLocs[i]; 3256 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); 3257 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3258 bool UseUpperBits = false; 3259 3260 // ByVal Arg. 3261 if (Flags.isByVal()) { 3262 unsigned FirstByValReg, LastByValReg; 3263 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); 3264 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); 3265 3266 assert(Flags.getByValSize() && 3267 "ByVal args of size 0 should have been ignored by front-end."); 3268 assert(ByValIdx < CCInfo.getInRegsParamsCount()); 3269 assert(!IsTailCall && 3270 "Do not tail-call optimize if there is a byval argument."); 3271 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, 3272 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(), 3273 VA); 3274 CCInfo.nextInRegsParam(); 3275 continue; 3276 } 3277 3278 // Promote the value if needed. 3279 switch (VA.getLocInfo()) { 3280 default: 3281 llvm_unreachable("Unknown loc info!"); 3282 case CCValAssign::Full: 3283 if (VA.isRegLoc()) { 3284 if ((ValVT == MVT::f32 && LocVT == MVT::i32) || 3285 (ValVT == MVT::f64 && LocVT == MVT::i64) || 3286 (ValVT == MVT::i64 && LocVT == MVT::f64)) 3287 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); 3288 else if (ValVT == MVT::f64 && LocVT == MVT::i32) { 3289 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 3290 Arg, DAG.getConstant(0, DL, MVT::i32)); 3291 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 3292 Arg, DAG.getConstant(1, DL, MVT::i32)); 3293 if (!Subtarget.isLittle()) 3294 std::swap(Lo, Hi); 3295 Register LocRegLo = VA.getLocReg(); 3296 unsigned LocRegHigh = getNextIntArgReg(LocRegLo); 3297 RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); 3298 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); 3299 continue; 3300 } 3301 } 3302 break; 3303 case CCValAssign::BCvt: 3304 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); 3305 break; 3306 case CCValAssign::SExtUpper: 3307 UseUpperBits = true; 3308 LLVM_FALLTHROUGH; 3309 case CCValAssign::SExt: 3310 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); 3311 break; 3312 case CCValAssign::ZExtUpper: 3313 UseUpperBits = true; 3314 LLVM_FALLTHROUGH; 3315 case CCValAssign::ZExt: 3316 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); 3317 break; 3318 case CCValAssign::AExtUpper: 3319 UseUpperBits = true; 3320 LLVM_FALLTHROUGH; 3321 case CCValAssign::AExt: 3322 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); 3323 break; 3324 } 3325 3326 if (UseUpperBits) { 3327 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); 3328 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3329 Arg = DAG.getNode( 3330 ISD::SHL, DL, VA.getLocVT(), Arg, 3331 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3332 } 3333 3334 // Arguments that can be passed on register must be kept at 3335 // RegsToPass vector 3336 if (VA.isRegLoc()) { 3337 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3338 continue; 3339 } 3340 3341 // Register can't get to this point... 3342 assert(VA.isMemLoc()); 3343 3344 // emit ISD::STORE whichs stores the 3345 // parameter value to a stack Location 3346 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), 3347 Chain, Arg, DL, IsTailCall, DAG)); 3348 } 3349 3350 // Transform all store nodes into one single node because all store 3351 // nodes are independent of each other. 3352 if (!MemOpChains.empty()) 3353 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3354 3355 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 3356 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 3357 // node so that legalize doesn't hack it. 3358 3359 EVT Ty = Callee.getValueType(); 3360 bool GlobalOrExternal = false, IsCallReloc = false; 3361 3362 // The long-calls feature is ignored in case of PIC. 3363 // While we do not support -mshared / -mno-shared properly, 3364 // ignore long-calls in case of -mabicalls too. 3365 if (!Subtarget.isABICalls() && !IsPIC) { 3366 // If the function should be called using "long call", 3367 // get its address into a register to prevent using 3368 // of the `jal` instruction for the direct call. 3369 if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3370 if (Subtarget.useLongCalls()) 3371 Callee = Subtarget.hasSym32() 3372 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 3373 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 3374 } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) { 3375 bool UseLongCalls = Subtarget.useLongCalls(); 3376 // If the function has long-call/far/near attribute 3377 // it overrides command line switch pased to the backend. 3378 if (auto *F = dyn_cast<Function>(N->getGlobal())) { 3379 if (F->hasFnAttribute("long-call")) 3380 UseLongCalls = true; 3381 else if (F->hasFnAttribute("short-call")) 3382 UseLongCalls = false; 3383 } 3384 if (UseLongCalls) 3385 Callee = Subtarget.hasSym32() 3386 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 3387 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 3388 } 3389 } 3390 3391 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3392 if (IsPIC) { 3393 const GlobalValue *Val = G->getGlobal(); 3394 InternalLinkage = Val->hasInternalLinkage(); 3395 3396 if (InternalLinkage) 3397 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64()); 3398 else if (Subtarget.useXGOT()) { 3399 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16, 3400 MipsII::MO_CALL_LO16, Chain, 3401 FuncInfo->callPtrInfo(Val)); 3402 IsCallReloc = true; 3403 } else { 3404 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, 3405 FuncInfo->callPtrInfo(Val)); 3406 IsCallReloc = true; 3407 } 3408 } else 3409 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, 3410 getPointerTy(DAG.getDataLayout()), 0, 3411 MipsII::MO_NO_FLAG); 3412 GlobalOrExternal = true; 3413 } 3414 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3415 const char *Sym = S->getSymbol(); 3416 3417 if (!IsPIC) // static 3418 Callee = DAG.getTargetExternalSymbol( 3419 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG); 3420 else if (Subtarget.useXGOT()) { 3421 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16, 3422 MipsII::MO_CALL_LO16, Chain, 3423 FuncInfo->callPtrInfo(Sym)); 3424 IsCallReloc = true; 3425 } else { // PIC 3426 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, 3427 FuncInfo->callPtrInfo(Sym)); 3428 IsCallReloc = true; 3429 } 3430 3431 GlobalOrExternal = true; 3432 } 3433 3434 SmallVector<SDValue, 8> Ops(1, Chain); 3435 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3436 3437 getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage, 3438 IsCallReloc, CLI, Callee, Chain); 3439 3440 if (IsTailCall) { 3441 MF.getFrameInfo().setHasTailCall(); 3442 return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); 3443 } 3444 3445 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); 3446 SDValue InFlag = Chain.getValue(1); 3447 3448 // Create the CALLSEQ_END node in the case of where it is not a call to 3449 // memcpy. 3450 if (!(MemcpyInByVal)) { 3451 Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal, 3452 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 3453 InFlag = Chain.getValue(1); 3454 } 3455 3456 // Handle result values, copying them out of physregs into vregs that we 3457 // return. 3458 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3459 InVals, CLI); 3460 } 3461 3462 /// LowerCallResult - Lower the result values of a call into the 3463 /// appropriate copies out of appropriate physical registers. 3464 SDValue MipsTargetLowering::LowerCallResult( 3465 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 3466 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3467 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 3468 TargetLowering::CallLoweringInfo &CLI) const { 3469 // Assign locations to each value returned by this call. 3470 SmallVector<CCValAssign, 16> RVLocs; 3471 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3472 *DAG.getContext()); 3473 3474 const ExternalSymbolSDNode *ES = 3475 dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode()); 3476 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy, 3477 ES ? ES->getSymbol() : nullptr); 3478 3479 // Copy all of the result registers out of their specified physreg. 3480 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3481 CCValAssign &VA = RVLocs[i]; 3482 assert(VA.isRegLoc() && "Can only return in registers!"); 3483 3484 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), 3485 RVLocs[i].getLocVT(), InFlag); 3486 Chain = Val.getValue(1); 3487 InFlag = Val.getValue(2); 3488 3489 if (VA.isUpperBitsInLoc()) { 3490 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits(); 3491 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3492 unsigned Shift = 3493 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; 3494 Val = DAG.getNode( 3495 Shift, DL, VA.getLocVT(), Val, 3496 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3497 } 3498 3499 switch (VA.getLocInfo()) { 3500 default: 3501 llvm_unreachable("Unknown loc info!"); 3502 case CCValAssign::Full: 3503 break; 3504 case CCValAssign::BCvt: 3505 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3506 break; 3507 case CCValAssign::AExt: 3508 case CCValAssign::AExtUpper: 3509 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3510 break; 3511 case CCValAssign::ZExt: 3512 case CCValAssign::ZExtUpper: 3513 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 3514 DAG.getValueType(VA.getValVT())); 3515 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3516 break; 3517 case CCValAssign::SExt: 3518 case CCValAssign::SExtUpper: 3519 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 3520 DAG.getValueType(VA.getValVT())); 3521 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3522 break; 3523 } 3524 3525 InVals.push_back(Val); 3526 } 3527 3528 return Chain; 3529 } 3530 3531 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA, 3532 EVT ArgVT, const SDLoc &DL, 3533 SelectionDAG &DAG) { 3534 MVT LocVT = VA.getLocVT(); 3535 EVT ValVT = VA.getValVT(); 3536 3537 // Shift into the upper bits if necessary. 3538 switch (VA.getLocInfo()) { 3539 default: 3540 break; 3541 case CCValAssign::AExtUpper: 3542 case CCValAssign::SExtUpper: 3543 case CCValAssign::ZExtUpper: { 3544 unsigned ValSizeInBits = ArgVT.getSizeInBits(); 3545 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3546 unsigned Opcode = 3547 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; 3548 Val = DAG.getNode( 3549 Opcode, DL, VA.getLocVT(), Val, 3550 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3551 break; 3552 } 3553 } 3554 3555 // If this is an value smaller than the argument slot size (32-bit for O32, 3556 // 64-bit for N32/N64), it has been promoted in some way to the argument slot 3557 // size. Extract the value and insert any appropriate assertions regarding 3558 // sign/zero extension. 3559 switch (VA.getLocInfo()) { 3560 default: 3561 llvm_unreachable("Unknown loc info!"); 3562 case CCValAssign::Full: 3563 break; 3564 case CCValAssign::AExtUpper: 3565 case CCValAssign::AExt: 3566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3567 break; 3568 case CCValAssign::SExtUpper: 3569 case CCValAssign::SExt: 3570 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT)); 3571 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3572 break; 3573 case CCValAssign::ZExtUpper: 3574 case CCValAssign::ZExt: 3575 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT)); 3576 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3577 break; 3578 case CCValAssign::BCvt: 3579 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 3580 break; 3581 } 3582 3583 return Val; 3584 } 3585 3586 //===----------------------------------------------------------------------===// 3587 // Formal Arguments Calling Convention Implementation 3588 //===----------------------------------------------------------------------===// 3589 /// LowerFormalArguments - transform physical registers into virtual registers 3590 /// and generate load operations for arguments places on the stack. 3591 SDValue MipsTargetLowering::LowerFormalArguments( 3592 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3593 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3594 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3595 MachineFunction &MF = DAG.getMachineFunction(); 3596 MachineFrameInfo &MFI = MF.getFrameInfo(); 3597 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3598 3599 MipsFI->setVarArgsFrameIndex(0); 3600 3601 // Used with vargs to acumulate store chains. 3602 std::vector<SDValue> OutChains; 3603 3604 // Assign locations to all of the incoming arguments. 3605 SmallVector<CCValAssign, 16> ArgLocs; 3606 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 3607 *DAG.getContext()); 3608 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); 3609 const Function &Func = DAG.getMachineFunction().getFunction(); 3610 Function::const_arg_iterator FuncArg = Func.arg_begin(); 3611 3612 if (Func.hasFnAttribute("interrupt") && !Func.arg_empty()) 3613 report_fatal_error( 3614 "Functions with the interrupt attribute cannot have arguments!"); 3615 3616 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg); 3617 MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(), 3618 CCInfo.getInRegsParamsCount() > 0); 3619 3620 unsigned CurArgIdx = 0; 3621 CCInfo.rewindByValRegsInfo(); 3622 3623 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3624 CCValAssign &VA = ArgLocs[i]; 3625 if (Ins[i].isOrigArg()) { 3626 std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx); 3627 CurArgIdx = Ins[i].getOrigArgIndex(); 3628 } 3629 EVT ValVT = VA.getValVT(); 3630 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3631 bool IsRegLoc = VA.isRegLoc(); 3632 3633 if (Flags.isByVal()) { 3634 assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit"); 3635 unsigned FirstByValReg, LastByValReg; 3636 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); 3637 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); 3638 3639 assert(Flags.getByValSize() && 3640 "ByVal args of size 0 should have been ignored by front-end."); 3641 assert(ByValIdx < CCInfo.getInRegsParamsCount()); 3642 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, 3643 FirstByValReg, LastByValReg, VA, CCInfo); 3644 CCInfo.nextInRegsParam(); 3645 continue; 3646 } 3647 3648 // Arguments stored on registers 3649 if (IsRegLoc) { 3650 MVT RegVT = VA.getLocVT(); 3651 Register ArgReg = VA.getLocReg(); 3652 const TargetRegisterClass *RC = getRegClassFor(RegVT); 3653 3654 // Transform the arguments stored on 3655 // physical registers into virtual ones 3656 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); 3657 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 3658 3659 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); 3660 3661 // Handle floating point arguments passed in integer registers and 3662 // long double arguments passed in floating point registers. 3663 if ((RegVT == MVT::i32 && ValVT == MVT::f32) || 3664 (RegVT == MVT::i64 && ValVT == MVT::f64) || 3665 (RegVT == MVT::f64 && ValVT == MVT::i64)) 3666 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); 3667 else if (ABI.IsO32() && RegVT == MVT::i32 && 3668 ValVT == MVT::f64) { 3669 unsigned Reg2 = addLiveIn(DAG.getMachineFunction(), 3670 getNextIntArgReg(ArgReg), RC); 3671 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); 3672 if (!Subtarget.isLittle()) 3673 std::swap(ArgValue, ArgValue2); 3674 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, 3675 ArgValue, ArgValue2); 3676 } 3677 3678 InVals.push_back(ArgValue); 3679 } else { // VA.isRegLoc() 3680 MVT LocVT = VA.getLocVT(); 3681 3682 if (ABI.IsO32()) { 3683 // We ought to be able to use LocVT directly but O32 sets it to i32 3684 // when allocating floating point values to integer registers. 3685 // This shouldn't influence how we load the value into registers unless 3686 // we are targeting softfloat. 3687 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat()) 3688 LocVT = VA.getValVT(); 3689 } 3690 3691 // sanity check 3692 assert(VA.isMemLoc()); 3693 3694 // The stack pointer offset is relative to the caller stack frame. 3695 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 3696 VA.getLocMemOffset(), true); 3697 3698 // Create load nodes to retrieve arguments from the stack 3699 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3700 SDValue ArgValue = DAG.getLoad( 3701 LocVT, DL, Chain, FIN, 3702 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 3703 OutChains.push_back(ArgValue.getValue(1)); 3704 3705 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); 3706 3707 InVals.push_back(ArgValue); 3708 } 3709 } 3710 3711 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3712 // The mips ABIs for returning structs by value requires that we copy 3713 // the sret argument into $v0 for the return. Save the argument into 3714 // a virtual register so that we can access it from the return points. 3715 if (Ins[i].Flags.isSRet()) { 3716 unsigned Reg = MipsFI->getSRetReturnReg(); 3717 if (!Reg) { 3718 Reg = MF.getRegInfo().createVirtualRegister( 3719 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32)); 3720 MipsFI->setSRetReturnReg(Reg); 3721 } 3722 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); 3723 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 3724 break; 3725 } 3726 } 3727 3728 if (IsVarArg) 3729 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo); 3730 3731 // All stores are grouped in one node to allow the matching between 3732 // the size of Ins and InVals. This only happens when on varg functions 3733 if (!OutChains.empty()) { 3734 OutChains.push_back(Chain); 3735 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3736 } 3737 3738 return Chain; 3739 } 3740 3741 //===----------------------------------------------------------------------===// 3742 // Return Value Calling Convention Implementation 3743 //===----------------------------------------------------------------------===// 3744 3745 bool 3746 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3747 MachineFunction &MF, bool IsVarArg, 3748 const SmallVectorImpl<ISD::OutputArg> &Outs, 3749 LLVMContext &Context) const { 3750 SmallVector<CCValAssign, 16> RVLocs; 3751 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3752 return CCInfo.CheckReturn(Outs, RetCC_Mips); 3753 } 3754 3755 bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, 3756 bool IsSigned) const { 3757 if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32) 3758 return true; 3759 3760 return IsSigned; 3761 } 3762 3763 SDValue 3764 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, 3765 const SDLoc &DL, 3766 SelectionDAG &DAG) const { 3767 MachineFunction &MF = DAG.getMachineFunction(); 3768 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3769 3770 MipsFI->setISR(); 3771 3772 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps); 3773 } 3774 3775 SDValue 3776 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3777 bool IsVarArg, 3778 const SmallVectorImpl<ISD::OutputArg> &Outs, 3779 const SmallVectorImpl<SDValue> &OutVals, 3780 const SDLoc &DL, SelectionDAG &DAG) const { 3781 // CCValAssign - represent the assignment of 3782 // the return value to a location 3783 SmallVector<CCValAssign, 16> RVLocs; 3784 MachineFunction &MF = DAG.getMachineFunction(); 3785 3786 // CCState - Info about the registers and stack slot. 3787 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3788 3789 // Analyze return values. 3790 CCInfo.AnalyzeReturn(Outs, RetCC_Mips); 3791 3792 SDValue Flag; 3793 SmallVector<SDValue, 4> RetOps(1, Chain); 3794 3795 // Copy the result values into the output registers. 3796 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3797 SDValue Val = OutVals[i]; 3798 CCValAssign &VA = RVLocs[i]; 3799 assert(VA.isRegLoc() && "Can only return in registers!"); 3800 bool UseUpperBits = false; 3801 3802 switch (VA.getLocInfo()) { 3803 default: 3804 llvm_unreachable("Unknown loc info!"); 3805 case CCValAssign::Full: 3806 break; 3807 case CCValAssign::BCvt: 3808 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val); 3809 break; 3810 case CCValAssign::AExtUpper: 3811 UseUpperBits = true; 3812 LLVM_FALLTHROUGH; 3813 case CCValAssign::AExt: 3814 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val); 3815 break; 3816 case CCValAssign::ZExtUpper: 3817 UseUpperBits = true; 3818 LLVM_FALLTHROUGH; 3819 case CCValAssign::ZExt: 3820 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val); 3821 break; 3822 case CCValAssign::SExtUpper: 3823 UseUpperBits = true; 3824 LLVM_FALLTHROUGH; 3825 case CCValAssign::SExt: 3826 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val); 3827 break; 3828 } 3829 3830 if (UseUpperBits) { 3831 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); 3832 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3833 Val = DAG.getNode( 3834 ISD::SHL, DL, VA.getLocVT(), Val, 3835 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3836 } 3837 3838 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); 3839 3840 // Guarantee that all emitted copies are stuck together with flags. 3841 Flag = Chain.getValue(1); 3842 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3843 } 3844 3845 // The mips ABIs for returning structs by value requires that we copy 3846 // the sret argument into $v0 for the return. We saved the argument into 3847 // a virtual register in the entry block, so now we copy the value out 3848 // and into $v0. 3849 if (MF.getFunction().hasStructRetAttr()) { 3850 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3851 unsigned Reg = MipsFI->getSRetReturnReg(); 3852 3853 if (!Reg) 3854 llvm_unreachable("sret virtual register not created in the entry block"); 3855 SDValue Val = 3856 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 3857 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0; 3858 3859 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag); 3860 Flag = Chain.getValue(1); 3861 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout()))); 3862 } 3863 3864 RetOps[0] = Chain; // Update chain. 3865 3866 // Add the flag if we have it. 3867 if (Flag.getNode()) 3868 RetOps.push_back(Flag); 3869 3870 // ISRs must use "eret". 3871 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt")) 3872 return LowerInterruptReturn(RetOps, DL, DAG); 3873 3874 // Standard return on Mips is a "jr $ra" 3875 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); 3876 } 3877 3878 //===----------------------------------------------------------------------===// 3879 // Mips Inline Assembly Support 3880 //===----------------------------------------------------------------------===// 3881 3882 /// getConstraintType - Given a constraint letter, return the type of 3883 /// constraint it is for this target. 3884 MipsTargetLowering::ConstraintType 3885 MipsTargetLowering::getConstraintType(StringRef Constraint) const { 3886 // Mips specific constraints 3887 // GCC config/mips/constraints.md 3888 // 3889 // 'd' : An address register. Equivalent to r 3890 // unless generating MIPS16 code. 3891 // 'y' : Equivalent to r; retained for 3892 // backwards compatibility. 3893 // 'c' : A register suitable for use in an indirect 3894 // jump. This will always be $25 for -mabicalls. 3895 // 'l' : The lo register. 1 word storage. 3896 // 'x' : The hilo register pair. Double word storage. 3897 if (Constraint.size() == 1) { 3898 switch (Constraint[0]) { 3899 default : break; 3900 case 'd': 3901 case 'y': 3902 case 'f': 3903 case 'c': 3904 case 'l': 3905 case 'x': 3906 return C_RegisterClass; 3907 case 'R': 3908 return C_Memory; 3909 } 3910 } 3911 3912 if (Constraint == "ZC") 3913 return C_Memory; 3914 3915 return TargetLowering::getConstraintType(Constraint); 3916 } 3917 3918 /// Examine constraint type and operand type and determine a weight value. 3919 /// This object must already have been set up with the operand type 3920 /// and the current alternative constraint selected. 3921 TargetLowering::ConstraintWeight 3922 MipsTargetLowering::getSingleConstraintMatchWeight( 3923 AsmOperandInfo &info, const char *constraint) const { 3924 ConstraintWeight weight = CW_Invalid; 3925 Value *CallOperandVal = info.CallOperandVal; 3926 // If we don't have a value, we can't do a match, 3927 // but allow it at the lowest weight. 3928 if (!CallOperandVal) 3929 return CW_Default; 3930 Type *type = CallOperandVal->getType(); 3931 // Look at the constraint type. 3932 switch (*constraint) { 3933 default: 3934 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3935 break; 3936 case 'd': 3937 case 'y': 3938 if (type->isIntegerTy()) 3939 weight = CW_Register; 3940 break; 3941 case 'f': // FPU or MSA register 3942 if (Subtarget.hasMSA() && type->isVectorTy() && 3943 cast<VectorType>(type)->getBitWidth() == 128) 3944 weight = CW_Register; 3945 else if (type->isFloatTy()) 3946 weight = CW_Register; 3947 break; 3948 case 'c': // $25 for indirect jumps 3949 case 'l': // lo register 3950 case 'x': // hilo register pair 3951 if (type->isIntegerTy()) 3952 weight = CW_SpecificReg; 3953 break; 3954 case 'I': // signed 16 bit immediate 3955 case 'J': // integer zero 3956 case 'K': // unsigned 16 bit immediate 3957 case 'L': // signed 32 bit immediate where lower 16 bits are 0 3958 case 'N': // immediate in the range of -65535 to -1 (inclusive) 3959 case 'O': // signed 15 bit immediate (+- 16383) 3960 case 'P': // immediate in the range of 65535 to 1 (inclusive) 3961 if (isa<ConstantInt>(CallOperandVal)) 3962 weight = CW_Constant; 3963 break; 3964 case 'R': 3965 weight = CW_Memory; 3966 break; 3967 } 3968 return weight; 3969 } 3970 3971 /// This is a helper function to parse a physical register string and split it 3972 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag 3973 /// that is returned indicates whether parsing was successful. The second flag 3974 /// is true if the numeric part exists. 3975 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix, 3976 unsigned long long &Reg) { 3977 if (C.front() != '{' || C.back() != '}') 3978 return std::make_pair(false, false); 3979 3980 // Search for the first numeric character. 3981 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; 3982 I = std::find_if(B, E, isdigit); 3983 3984 Prefix = StringRef(B, I - B); 3985 3986 // The second flag is set to false if no numeric characters were found. 3987 if (I == E) 3988 return std::make_pair(true, false); 3989 3990 // Parse the numeric characters. 3991 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), 3992 true); 3993 } 3994 3995 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 3996 ISD::NodeType) const { 3997 bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32; 3998 EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32); 3999 return VT.bitsLT(MinVT) ? MinVT : VT; 4000 } 4001 4002 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering:: 4003 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { 4004 const TargetRegisterInfo *TRI = 4005 Subtarget.getRegisterInfo(); 4006 const TargetRegisterClass *RC; 4007 StringRef Prefix; 4008 unsigned long long Reg; 4009 4010 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg); 4011 4012 if (!R.first) 4013 return std::make_pair(0U, nullptr); 4014 4015 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. 4016 // No numeric characters follow "hi" or "lo". 4017 if (R.second) 4018 return std::make_pair(0U, nullptr); 4019 4020 RC = TRI->getRegClass(Prefix == "hi" ? 4021 Mips::HI32RegClassID : Mips::LO32RegClassID); 4022 return std::make_pair(*(RC->begin()), RC); 4023 } else if (Prefix.startswith("$msa")) { 4024 // Parse $msa(ir|csr|access|save|modify|request|map|unmap) 4025 4026 // No numeric characters follow the name. 4027 if (R.second) 4028 return std::make_pair(0U, nullptr); 4029 4030 Reg = StringSwitch<unsigned long long>(Prefix) 4031 .Case("$msair", Mips::MSAIR) 4032 .Case("$msacsr", Mips::MSACSR) 4033 .Case("$msaaccess", Mips::MSAAccess) 4034 .Case("$msasave", Mips::MSASave) 4035 .Case("$msamodify", Mips::MSAModify) 4036 .Case("$msarequest", Mips::MSARequest) 4037 .Case("$msamap", Mips::MSAMap) 4038 .Case("$msaunmap", Mips::MSAUnmap) 4039 .Default(0); 4040 4041 if (!Reg) 4042 return std::make_pair(0U, nullptr); 4043 4044 RC = TRI->getRegClass(Mips::MSACtrlRegClassID); 4045 return std::make_pair(Reg, RC); 4046 } 4047 4048 if (!R.second) 4049 return std::make_pair(0U, nullptr); 4050 4051 if (Prefix == "$f") { // Parse $f0-$f31. 4052 // If the size of FP registers is 64-bit or Reg is an even number, select 4053 // the 64-bit register class. Otherwise, select the 32-bit register class. 4054 if (VT == MVT::Other) 4055 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; 4056 4057 RC = getRegClassFor(VT); 4058 4059 if (RC == &Mips::AFGR64RegClass) { 4060 assert(Reg % 2 == 0); 4061 Reg >>= 1; 4062 } 4063 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. 4064 RC = TRI->getRegClass(Mips::FCCRegClassID); 4065 else if (Prefix == "$w") { // Parse $w0-$w31. 4066 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); 4067 } else { // Parse $0-$31. 4068 assert(Prefix == "$"); 4069 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); 4070 } 4071 4072 assert(Reg < RC->getNumRegs()); 4073 return std::make_pair(*(RC->begin() + Reg), RC); 4074 } 4075 4076 /// Given a register class constraint, like 'r', if this corresponds directly 4077 /// to an LLVM register class, return a register of 0 and the register class 4078 /// pointer. 4079 std::pair<unsigned, const TargetRegisterClass *> 4080 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 4081 StringRef Constraint, 4082 MVT VT) const { 4083 if (Constraint.size() == 1) { 4084 switch (Constraint[0]) { 4085 case 'd': // Address register. Same as 'r' unless generating MIPS16 code. 4086 case 'y': // Same as 'r'. Exists for compatibility. 4087 case 'r': 4088 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { 4089 if (Subtarget.inMips16Mode()) 4090 return std::make_pair(0U, &Mips::CPU16RegsRegClass); 4091 return std::make_pair(0U, &Mips::GPR32RegClass); 4092 } 4093 if (VT == MVT::i64 && !Subtarget.isGP64bit()) 4094 return std::make_pair(0U, &Mips::GPR32RegClass); 4095 if (VT == MVT::i64 && Subtarget.isGP64bit()) 4096 return std::make_pair(0U, &Mips::GPR64RegClass); 4097 // This will generate an error message 4098 return std::make_pair(0U, nullptr); 4099 case 'f': // FPU or MSA register 4100 if (VT == MVT::v16i8) 4101 return std::make_pair(0U, &Mips::MSA128BRegClass); 4102 else if (VT == MVT::v8i16 || VT == MVT::v8f16) 4103 return std::make_pair(0U, &Mips::MSA128HRegClass); 4104 else if (VT == MVT::v4i32 || VT == MVT::v4f32) 4105 return std::make_pair(0U, &Mips::MSA128WRegClass); 4106 else if (VT == MVT::v2i64 || VT == MVT::v2f64) 4107 return std::make_pair(0U, &Mips::MSA128DRegClass); 4108 else if (VT == MVT::f32) 4109 return std::make_pair(0U, &Mips::FGR32RegClass); 4110 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { 4111 if (Subtarget.isFP64bit()) 4112 return std::make_pair(0U, &Mips::FGR64RegClass); 4113 return std::make_pair(0U, &Mips::AFGR64RegClass); 4114 } 4115 break; 4116 case 'c': // register suitable for indirect jump 4117 if (VT == MVT::i32) 4118 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); 4119 if (VT == MVT::i64) 4120 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); 4121 // This will generate an error message 4122 return std::make_pair(0U, nullptr); 4123 case 'l': // use the `lo` register to store values 4124 // that are no bigger than a word 4125 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) 4126 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); 4127 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); 4128 case 'x': // use the concatenated `hi` and `lo` registers 4129 // to store doubleword values 4130 // Fixme: Not triggering the use of both hi and low 4131 // This will generate an error message 4132 return std::make_pair(0U, nullptr); 4133 } 4134 } 4135 4136 if (!Constraint.empty()) { 4137 std::pair<unsigned, const TargetRegisterClass *> R; 4138 R = parseRegForInlineAsmConstraint(Constraint, VT); 4139 4140 if (R.second) 4141 return R; 4142 } 4143 4144 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4145 } 4146 4147 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 4148 /// vector. If it is invalid, don't add anything to Ops. 4149 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4150 std::string &Constraint, 4151 std::vector<SDValue>&Ops, 4152 SelectionDAG &DAG) const { 4153 SDLoc DL(Op); 4154 SDValue Result; 4155 4156 // Only support length 1 constraints for now. 4157 if (Constraint.length() > 1) return; 4158 4159 char ConstraintLetter = Constraint[0]; 4160 switch (ConstraintLetter) { 4161 default: break; // This will fall through to the generic implementation 4162 case 'I': // Signed 16 bit constant 4163 // If this fails, the parent routine will give an error 4164 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4165 EVT Type = Op.getValueType(); 4166 int64_t Val = C->getSExtValue(); 4167 if (isInt<16>(Val)) { 4168 Result = DAG.getTargetConstant(Val, DL, Type); 4169 break; 4170 } 4171 } 4172 return; 4173 case 'J': // integer zero 4174 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4175 EVT Type = Op.getValueType(); 4176 int64_t Val = C->getZExtValue(); 4177 if (Val == 0) { 4178 Result = DAG.getTargetConstant(0, DL, Type); 4179 break; 4180 } 4181 } 4182 return; 4183 case 'K': // unsigned 16 bit immediate 4184 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4185 EVT Type = Op.getValueType(); 4186 uint64_t Val = (uint64_t)C->getZExtValue(); 4187 if (isUInt<16>(Val)) { 4188 Result = DAG.getTargetConstant(Val, DL, Type); 4189 break; 4190 } 4191 } 4192 return; 4193 case 'L': // signed 32 bit immediate where lower 16 bits are 0 4194 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4195 EVT Type = Op.getValueType(); 4196 int64_t Val = C->getSExtValue(); 4197 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ 4198 Result = DAG.getTargetConstant(Val, DL, Type); 4199 break; 4200 } 4201 } 4202 return; 4203 case 'N': // immediate in the range of -65535 to -1 (inclusive) 4204 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4205 EVT Type = Op.getValueType(); 4206 int64_t Val = C->getSExtValue(); 4207 if ((Val >= -65535) && (Val <= -1)) { 4208 Result = DAG.getTargetConstant(Val, DL, Type); 4209 break; 4210 } 4211 } 4212 return; 4213 case 'O': // signed 15 bit immediate 4214 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4215 EVT Type = Op.getValueType(); 4216 int64_t Val = C->getSExtValue(); 4217 if ((isInt<15>(Val))) { 4218 Result = DAG.getTargetConstant(Val, DL, Type); 4219 break; 4220 } 4221 } 4222 return; 4223 case 'P': // immediate in the range of 1 to 65535 (inclusive) 4224 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4225 EVT Type = Op.getValueType(); 4226 int64_t Val = C->getSExtValue(); 4227 if ((Val <= 65535) && (Val >= 1)) { 4228 Result = DAG.getTargetConstant(Val, DL, Type); 4229 break; 4230 } 4231 } 4232 return; 4233 } 4234 4235 if (Result.getNode()) { 4236 Ops.push_back(Result); 4237 return; 4238 } 4239 4240 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 4241 } 4242 4243 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL, 4244 const AddrMode &AM, Type *Ty, 4245 unsigned AS, 4246 Instruction *I) const { 4247 // No global is ever allowed as a base. 4248 if (AM.BaseGV) 4249 return false; 4250 4251 switch (AM.Scale) { 4252 case 0: // "r+i" or just "i", depending on HasBaseReg. 4253 break; 4254 case 1: 4255 if (!AM.HasBaseReg) // allow "r+i". 4256 break; 4257 return false; // disallow "r+r" or "r+r+i". 4258 default: 4259 return false; 4260 } 4261 4262 return true; 4263 } 4264 4265 bool 4266 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 4267 // The Mips target isn't yet aware of offsets. 4268 return false; 4269 } 4270 4271 EVT MipsTargetLowering::getOptimalMemOpType( 4272 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 4273 bool ZeroMemset, bool MemcpyStrSrc, 4274 const AttributeList &FuncAttributes) const { 4275 if (Subtarget.hasMips64()) 4276 return MVT::i64; 4277 4278 return MVT::i32; 4279 } 4280 4281 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 4282 bool ForCodeSize) const { 4283 if (VT != MVT::f32 && VT != MVT::f64) 4284 return false; 4285 if (Imm.isNegZero()) 4286 return false; 4287 return Imm.isZero(); 4288 } 4289 4290 unsigned MipsTargetLowering::getJumpTableEncoding() const { 4291 4292 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress. 4293 if (ABI.IsN64() && isPositionIndependent()) 4294 return MachineJumpTableInfo::EK_GPRel64BlockAddress; 4295 4296 return TargetLowering::getJumpTableEncoding(); 4297 } 4298 4299 bool MipsTargetLowering::useSoftFloat() const { 4300 return Subtarget.useSoftFloat(); 4301 } 4302 4303 void MipsTargetLowering::copyByValRegs( 4304 SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains, 4305 SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags, 4306 SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg, 4307 unsigned FirstReg, unsigned LastReg, const CCValAssign &VA, 4308 MipsCCState &State) const { 4309 MachineFunction &MF = DAG.getMachineFunction(); 4310 MachineFrameInfo &MFI = MF.getFrameInfo(); 4311 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); 4312 unsigned NumRegs = LastReg - FirstReg; 4313 unsigned RegAreaSize = NumRegs * GPRSizeInBytes; 4314 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); 4315 int FrameObjOffset; 4316 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs(); 4317 4318 if (RegAreaSize) 4319 FrameObjOffset = 4320 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - 4321 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes); 4322 else 4323 FrameObjOffset = VA.getLocMemOffset(); 4324 4325 // Create frame object. 4326 EVT PtrTy = getPointerTy(DAG.getDataLayout()); 4327 // Make the fixed object stored to mutable so that the load instructions 4328 // referencing it have their memory dependencies added. 4329 // Set the frame object as isAliased which clears the underlying objects 4330 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all 4331 // stores as dependencies for loads referencing this fixed object. 4332 int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true); 4333 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4334 InVals.push_back(FIN); 4335 4336 if (!NumRegs) 4337 return; 4338 4339 // Copy arg registers. 4340 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); 4341 const TargetRegisterClass *RC = getRegClassFor(RegTy); 4342 4343 for (unsigned I = 0; I < NumRegs; ++I) { 4344 unsigned ArgReg = ByValArgRegs[FirstReg + I]; 4345 unsigned VReg = addLiveIn(MF, ArgReg, RC); 4346 unsigned Offset = I * GPRSizeInBytes; 4347 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, 4348 DAG.getConstant(Offset, DL, PtrTy)); 4349 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), 4350 StorePtr, MachinePointerInfo(FuncArg, Offset)); 4351 OutChains.push_back(Store); 4352 } 4353 } 4354 4355 // Copy byVal arg to registers and stack. 4356 void MipsTargetLowering::passByValArg( 4357 SDValue Chain, const SDLoc &DL, 4358 std::deque<std::pair<unsigned, SDValue>> &RegsToPass, 4359 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr, 4360 MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, 4361 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, 4362 const CCValAssign &VA) const { 4363 unsigned ByValSizeInBytes = Flags.getByValSize(); 4364 unsigned OffsetInBytes = 0; // From beginning of struct 4365 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 4366 unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes); 4367 EVT PtrTy = getPointerTy(DAG.getDataLayout()), 4368 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); 4369 unsigned NumRegs = LastReg - FirstReg; 4370 4371 if (NumRegs) { 4372 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs(); 4373 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes); 4374 unsigned I = 0; 4375 4376 // Copy words to registers. 4377 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { 4378 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 4379 DAG.getConstant(OffsetInBytes, DL, PtrTy)); 4380 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, 4381 MachinePointerInfo(), Alignment); 4382 MemOpChains.push_back(LoadVal.getValue(1)); 4383 unsigned ArgReg = ArgRegs[FirstReg + I]; 4384 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); 4385 } 4386 4387 // Return if the struct has been fully copied. 4388 if (ByValSizeInBytes == OffsetInBytes) 4389 return; 4390 4391 // Copy the remainder of the byval argument with sub-word loads and shifts. 4392 if (LeftoverBytes) { 4393 SDValue Val; 4394 4395 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; 4396 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { 4397 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; 4398 4399 if (RemainingSizeInBytes < LoadSizeInBytes) 4400 continue; 4401 4402 // Load subword. 4403 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 4404 DAG.getConstant(OffsetInBytes, DL, 4405 PtrTy)); 4406 SDValue LoadVal = DAG.getExtLoad( 4407 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), 4408 MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment); 4409 MemOpChains.push_back(LoadVal.getValue(1)); 4410 4411 // Shift the loaded value. 4412 unsigned Shamt; 4413 4414 if (isLittle) 4415 Shamt = TotalBytesLoaded * 8; 4416 else 4417 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; 4418 4419 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, 4420 DAG.getConstant(Shamt, DL, MVT::i32)); 4421 4422 if (Val.getNode()) 4423 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); 4424 else 4425 Val = Shift; 4426 4427 OffsetInBytes += LoadSizeInBytes; 4428 TotalBytesLoaded += LoadSizeInBytes; 4429 Alignment = std::min(Alignment, LoadSizeInBytes); 4430 } 4431 4432 unsigned ArgReg = ArgRegs[FirstReg + I]; 4433 RegsToPass.push_back(std::make_pair(ArgReg, Val)); 4434 return; 4435 } 4436 } 4437 4438 // Copy remainder of byval arg to it with memcpy. 4439 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; 4440 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 4441 DAG.getConstant(OffsetInBytes, DL, PtrTy)); 4442 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, 4443 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 4444 Chain = DAG.getMemcpy(Chain, DL, Dst, Src, 4445 DAG.getConstant(MemCpySize, DL, PtrTy), 4446 Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false, 4447 /*isTailCall=*/false, 4448 MachinePointerInfo(), MachinePointerInfo()); 4449 MemOpChains.push_back(Chain); 4450 } 4451 4452 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains, 4453 SDValue Chain, const SDLoc &DL, 4454 SelectionDAG &DAG, 4455 CCState &State) const { 4456 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs(); 4457 unsigned Idx = State.getFirstUnallocated(ArgRegs); 4458 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 4459 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); 4460 const TargetRegisterClass *RC = getRegClassFor(RegTy); 4461 MachineFunction &MF = DAG.getMachineFunction(); 4462 MachineFrameInfo &MFI = MF.getFrameInfo(); 4463 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 4464 4465 // Offset of the first variable argument from stack pointer. 4466 int VaArgOffset; 4467 4468 if (ArgRegs.size() == Idx) 4469 VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes); 4470 else { 4471 VaArgOffset = 4472 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - 4473 (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); 4474 } 4475 4476 // Record the frame index of the first variable argument 4477 // which is a value necessary to VASTART. 4478 int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); 4479 MipsFI->setVarArgsFrameIndex(FI); 4480 4481 // Copy the integer registers that have not been used for argument passing 4482 // to the argument register save area. For O32, the save area is allocated 4483 // in the caller's stack frame, while for N32/64, it is allocated in the 4484 // callee's stack frame. 4485 for (unsigned I = Idx; I < ArgRegs.size(); 4486 ++I, VaArgOffset += RegSizeInBytes) { 4487 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); 4488 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); 4489 FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); 4490 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 4491 SDValue Store = 4492 DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo()); 4493 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue( 4494 (Value *)nullptr); 4495 OutChains.push_back(Store); 4496 } 4497 } 4498 4499 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size, 4500 unsigned Align) const { 4501 const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); 4502 4503 assert(Size && "Byval argument's size shouldn't be 0."); 4504 4505 Align = std::min(Align, TFL->getStackAlignment()); 4506 4507 unsigned FirstReg = 0; 4508 unsigned NumRegs = 0; 4509 4510 if (State->getCallingConv() != CallingConv::Fast) { 4511 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 4512 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs(); 4513 // FIXME: The O32 case actually describes no shadow registers. 4514 const MCPhysReg *ShadowRegs = 4515 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs; 4516 4517 // We used to check the size as well but we can't do that anymore since 4518 // CCState::HandleByVal() rounds up the size after calling this function. 4519 assert(!(Align % RegSizeInBytes) && 4520 "Byval argument's alignment should be a multiple of" 4521 "RegSizeInBytes."); 4522 4523 FirstReg = State->getFirstUnallocated(IntArgRegs); 4524 4525 // If Align > RegSizeInBytes, the first arg register must be even. 4526 // FIXME: This condition happens to do the right thing but it's not the 4527 // right way to test it. We want to check that the stack frame offset 4528 // of the register is aligned. 4529 if ((Align > RegSizeInBytes) && (FirstReg % 2)) { 4530 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]); 4531 ++FirstReg; 4532 } 4533 4534 // Mark the registers allocated. 4535 Size = alignTo(Size, RegSizeInBytes); 4536 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size()); 4537 Size -= RegSizeInBytes, ++I, ++NumRegs) 4538 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]); 4539 } 4540 4541 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs); 4542 } 4543 4544 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI, 4545 MachineBasicBlock *BB, 4546 bool isFPCmp, 4547 unsigned Opc) const { 4548 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && 4549 "Subtarget already supports SELECT nodes with the use of" 4550 "conditional-move instructions."); 4551 4552 const TargetInstrInfo *TII = 4553 Subtarget.getInstrInfo(); 4554 DebugLoc DL = MI.getDebugLoc(); 4555 4556 // To "insert" a SELECT instruction, we actually have to insert the 4557 // diamond control-flow pattern. The incoming instruction knows the 4558 // destination vreg to set, the condition code register to branch on, the 4559 // true/false values to select between, and a branch opcode to use. 4560 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4561 MachineFunction::iterator It = ++BB->getIterator(); 4562 4563 // thisMBB: 4564 // ... 4565 // TrueVal = ... 4566 // setcc r1, r2, r3 4567 // bNE r1, r0, copy1MBB 4568 // fallthrough --> copy0MBB 4569 MachineBasicBlock *thisMBB = BB; 4570 MachineFunction *F = BB->getParent(); 4571 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4572 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4573 F->insert(It, copy0MBB); 4574 F->insert(It, sinkMBB); 4575 4576 // Transfer the remainder of BB and its successor edges to sinkMBB. 4577 sinkMBB->splice(sinkMBB->begin(), BB, 4578 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 4579 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4580 4581 // Next, add the true and fallthrough blocks as its successors. 4582 BB->addSuccessor(copy0MBB); 4583 BB->addSuccessor(sinkMBB); 4584 4585 if (isFPCmp) { 4586 // bc1[tf] cc, sinkMBB 4587 BuildMI(BB, DL, TII->get(Opc)) 4588 .addReg(MI.getOperand(1).getReg()) 4589 .addMBB(sinkMBB); 4590 } else { 4591 // bne rs, $0, sinkMBB 4592 BuildMI(BB, DL, TII->get(Opc)) 4593 .addReg(MI.getOperand(1).getReg()) 4594 .addReg(Mips::ZERO) 4595 .addMBB(sinkMBB); 4596 } 4597 4598 // copy0MBB: 4599 // %FalseValue = ... 4600 // # fallthrough to sinkMBB 4601 BB = copy0MBB; 4602 4603 // Update machine-CFG edges 4604 BB->addSuccessor(sinkMBB); 4605 4606 // sinkMBB: 4607 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 4608 // ... 4609 BB = sinkMBB; 4610 4611 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) 4612 .addReg(MI.getOperand(2).getReg()) 4613 .addMBB(thisMBB) 4614 .addReg(MI.getOperand(3).getReg()) 4615 .addMBB(copy0MBB); 4616 4617 MI.eraseFromParent(); // The pseudo instruction is gone now. 4618 4619 return BB; 4620 } 4621 4622 MachineBasicBlock * 4623 MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI, 4624 MachineBasicBlock *BB) const { 4625 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && 4626 "Subtarget already supports SELECT nodes with the use of" 4627 "conditional-move instructions."); 4628 4629 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 4630 DebugLoc DL = MI.getDebugLoc(); 4631 4632 // D_SELECT substitutes two SELECT nodes that goes one after another and 4633 // have the same condition operand. On machines which don't have 4634 // conditional-move instruction, it reduces unnecessary branch instructions 4635 // which are result of using two diamond patterns that are result of two 4636 // SELECT pseudo instructions. 4637 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4638 MachineFunction::iterator It = ++BB->getIterator(); 4639 4640 // thisMBB: 4641 // ... 4642 // TrueVal = ... 4643 // setcc r1, r2, r3 4644 // bNE r1, r0, copy1MBB 4645 // fallthrough --> copy0MBB 4646 MachineBasicBlock *thisMBB = BB; 4647 MachineFunction *F = BB->getParent(); 4648 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4649 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4650 F->insert(It, copy0MBB); 4651 F->insert(It, sinkMBB); 4652 4653 // Transfer the remainder of BB and its successor edges to sinkMBB. 4654 sinkMBB->splice(sinkMBB->begin(), BB, 4655 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 4656 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4657 4658 // Next, add the true and fallthrough blocks as its successors. 4659 BB->addSuccessor(copy0MBB); 4660 BB->addSuccessor(sinkMBB); 4661 4662 // bne rs, $0, sinkMBB 4663 BuildMI(BB, DL, TII->get(Mips::BNE)) 4664 .addReg(MI.getOperand(2).getReg()) 4665 .addReg(Mips::ZERO) 4666 .addMBB(sinkMBB); 4667 4668 // copy0MBB: 4669 // %FalseValue = ... 4670 // # fallthrough to sinkMBB 4671 BB = copy0MBB; 4672 4673 // Update machine-CFG edges 4674 BB->addSuccessor(sinkMBB); 4675 4676 // sinkMBB: 4677 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 4678 // ... 4679 BB = sinkMBB; 4680 4681 // Use two PHI nodes to select two reults 4682 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) 4683 .addReg(MI.getOperand(3).getReg()) 4684 .addMBB(thisMBB) 4685 .addReg(MI.getOperand(5).getReg()) 4686 .addMBB(copy0MBB); 4687 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg()) 4688 .addReg(MI.getOperand(4).getReg()) 4689 .addMBB(thisMBB) 4690 .addReg(MI.getOperand(6).getReg()) 4691 .addMBB(copy0MBB); 4692 4693 MI.eraseFromParent(); // The pseudo instruction is gone now. 4694 4695 return BB; 4696 } 4697 4698 // FIXME? Maybe this could be a TableGen attribute on some registers and 4699 // this table could be generated automatically from RegInfo. 4700 Register 4701 MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT, 4702 const MachineFunction &MF) const { 4703 // Named registers is expected to be fairly rare. For now, just support $28 4704 // since the linux kernel uses it. 4705 if (Subtarget.isGP64bit()) { 4706 Register Reg = StringSwitch<Register>(RegName) 4707 .Case("$28", Mips::GP_64) 4708 .Default(Register()); 4709 if (Reg) 4710 return Reg; 4711 } else { 4712 Register Reg = StringSwitch<Register>(RegName) 4713 .Case("$28", Mips::GP) 4714 .Default(Register()); 4715 if (Reg) 4716 return Reg; 4717 } 4718 report_fatal_error("Invalid register name global variable"); 4719 } 4720