xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsISelLowering.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cctype>
73 #include <cstdint>
74 #include <deque>
75 #include <iterator>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "mips-lower"
82 
83 STATISTIC(NumTailCalls, "Number of tail calls");
84 
85 static cl::opt<bool>
86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
87                cl::desc("MIPS: Don't trap on integer division by zero."),
88                cl::init(false));
89 
90 extern cl::opt<bool> EmitJalrReloc;
91 
92 static const MCPhysReg Mips64DPRegs[8] = {
93   Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
94   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
95 };
96 
97 // If I is a shifted mask, set the size (Size) and the first bit of the
98 // mask (Pos), and return true.
99 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
100 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
101   if (!isShiftedMask_64(I))
102     return false;
103 
104   Size = countPopulation(I);
105   Pos = countTrailingZeros(I);
106   return true;
107 }
108 
109 // The MIPS MSA ABI passes vector arguments in the integer register set.
110 // The number of integer registers used is dependant on the ABI used.
111 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
112                                                       CallingConv::ID CC,
113                                                       EVT VT) const {
114   if (!VT.isVector())
115     return getRegisterType(Context, VT);
116 
117   return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32
118                                                            : MVT::i64;
119 }
120 
121 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
122                                                            CallingConv::ID CC,
123                                                            EVT VT) const {
124   if (VT.isVector())
125     return divideCeil(VT.getSizeInBits(), Subtarget.isABI_O32() ? 32 : 64);
126   return MipsTargetLowering::getNumRegisters(Context, VT);
127 }
128 
129 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
130     LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
131     unsigned &NumIntermediates, MVT &RegisterVT) const {
132   // Break down vector types to either 2 i64s or 4 i32s.
133   RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
134   IntermediateVT = RegisterVT;
135   NumIntermediates =
136       VT.getFixedSizeInBits() < RegisterVT.getFixedSizeInBits()
137           ? VT.getVectorNumElements()
138           : divideCeil(VT.getSizeInBits(), RegisterVT.getSizeInBits());
139   return NumIntermediates;
140 }
141 
142 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
143   MachineFunction &MF = DAG.getMachineFunction();
144   MipsFunctionInfo *FI = MF.getInfo<MipsFunctionInfo>();
145   return DAG.getRegister(FI->getGlobalBaseReg(MF), Ty);
146 }
147 
148 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
149                                           SelectionDAG &DAG,
150                                           unsigned Flag) const {
151   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
152 }
153 
154 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
155                                           SelectionDAG &DAG,
156                                           unsigned Flag) const {
157   return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
158 }
159 
160 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
161                                           SelectionDAG &DAG,
162                                           unsigned Flag) const {
163   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
164 }
165 
166 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
167                                           SelectionDAG &DAG,
168                                           unsigned Flag) const {
169   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
170 }
171 
172 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
173                                           SelectionDAG &DAG,
174                                           unsigned Flag) const {
175   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
176                                    N->getOffset(), Flag);
177 }
178 
179 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
180   switch ((MipsISD::NodeType)Opcode) {
181   case MipsISD::FIRST_NUMBER:      break;
182   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
183   case MipsISD::TailCall:          return "MipsISD::TailCall";
184   case MipsISD::Highest:           return "MipsISD::Highest";
185   case MipsISD::Higher:            return "MipsISD::Higher";
186   case MipsISD::Hi:                return "MipsISD::Hi";
187   case MipsISD::Lo:                return "MipsISD::Lo";
188   case MipsISD::GotHi:             return "MipsISD::GotHi";
189   case MipsISD::TlsHi:             return "MipsISD::TlsHi";
190   case MipsISD::GPRel:             return "MipsISD::GPRel";
191   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
192   case MipsISD::Ret:               return "MipsISD::Ret";
193   case MipsISD::ERet:              return "MipsISD::ERet";
194   case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
195   case MipsISD::FMS:               return "MipsISD::FMS";
196   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
197   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
198   case MipsISD::FSELECT:           return "MipsISD::FSELECT";
199   case MipsISD::MTC1_D64:          return "MipsISD::MTC1_D64";
200   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
201   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
202   case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
203   case MipsISD::MFHI:              return "MipsISD::MFHI";
204   case MipsISD::MFLO:              return "MipsISD::MFLO";
205   case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
206   case MipsISD::Mult:              return "MipsISD::Mult";
207   case MipsISD::Multu:             return "MipsISD::Multu";
208   case MipsISD::MAdd:              return "MipsISD::MAdd";
209   case MipsISD::MAddu:             return "MipsISD::MAddu";
210   case MipsISD::MSub:              return "MipsISD::MSub";
211   case MipsISD::MSubu:             return "MipsISD::MSubu";
212   case MipsISD::DivRem:            return "MipsISD::DivRem";
213   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
214   case MipsISD::DivRem16:          return "MipsISD::DivRem16";
215   case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
216   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
217   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
218   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
219   case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
220   case MipsISD::Sync:              return "MipsISD::Sync";
221   case MipsISD::Ext:               return "MipsISD::Ext";
222   case MipsISD::Ins:               return "MipsISD::Ins";
223   case MipsISD::CIns:              return "MipsISD::CIns";
224   case MipsISD::LWL:               return "MipsISD::LWL";
225   case MipsISD::LWR:               return "MipsISD::LWR";
226   case MipsISD::SWL:               return "MipsISD::SWL";
227   case MipsISD::SWR:               return "MipsISD::SWR";
228   case MipsISD::LDL:               return "MipsISD::LDL";
229   case MipsISD::LDR:               return "MipsISD::LDR";
230   case MipsISD::SDL:               return "MipsISD::SDL";
231   case MipsISD::SDR:               return "MipsISD::SDR";
232   case MipsISD::EXTP:              return "MipsISD::EXTP";
233   case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
234   case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
235   case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
236   case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
237   case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
238   case MipsISD::SHILO:             return "MipsISD::SHILO";
239   case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
240   case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH";
241   case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL";
242   case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR";
243   case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL";
244   case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR";
245   case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL";
246   case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR";
247   case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL";
248   case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR";
249   case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH";
250   case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH";
251   case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W";
252   case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W";
253   case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH";
254   case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH";
255   case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH";
256   case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH";
257   case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH";
258   case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH";
259   case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH";
260   case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH";
261   case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH";
262   case MipsISD::MULT:              return "MipsISD::MULT";
263   case MipsISD::MULTU:             return "MipsISD::MULTU";
264   case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
265   case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
266   case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
267   case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
268   case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
269   case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
270   case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
271   case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
272   case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
273   case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
274   case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
275   case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
276   case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
277   case MipsISD::VCEQ:              return "MipsISD::VCEQ";
278   case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
279   case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
280   case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
281   case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
282   case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
283   case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
284   case MipsISD::VNOR:              return "MipsISD::VNOR";
285   case MipsISD::VSHF:              return "MipsISD::VSHF";
286   case MipsISD::SHF:               return "MipsISD::SHF";
287   case MipsISD::ILVEV:             return "MipsISD::ILVEV";
288   case MipsISD::ILVOD:             return "MipsISD::ILVOD";
289   case MipsISD::ILVL:              return "MipsISD::ILVL";
290   case MipsISD::ILVR:              return "MipsISD::ILVR";
291   case MipsISD::PCKEV:             return "MipsISD::PCKEV";
292   case MipsISD::PCKOD:             return "MipsISD::PCKOD";
293   case MipsISD::INSVE:             return "MipsISD::INSVE";
294   }
295   return nullptr;
296 }
297 
298 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
299                                        const MipsSubtarget &STI)
300     : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
301   // Mips does not have i1 type, so use i32 for
302   // setcc operations results (slt, sgt, ...).
303   setBooleanContents(ZeroOrOneBooleanContent);
304   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
305   // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
306   // does. Integer booleans still use 0 and 1.
307   if (Subtarget.hasMips32r6())
308     setBooleanContents(ZeroOrOneBooleanContent,
309                        ZeroOrNegativeOneBooleanContent);
310 
311   // Load extented operations for i1 types must be promoted
312   for (MVT VT : MVT::integer_valuetypes()) {
313     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
314     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
315     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
316   }
317 
318   // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
319   // for f32, f16
320   for (MVT VT : MVT::fp_valuetypes()) {
321     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
322     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
323   }
324 
325   // Set LoadExtAction for f16 vectors to Expand
326   for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
327     MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
328     if (F16VT.isValid())
329       setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
330   }
331 
332   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
333   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
334 
335   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
336 
337   // Used by legalize types to correctly generate the setcc result.
338   // Without this, every float setcc comes with a AND/OR with the result,
339   // we don't want this, since the fpcmp result goes to a flag register,
340   // which is used implicitly by brcond and select operations.
341   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
342 
343   // Mips Custom Operations
344   setOperationAction(ISD::BR_JT,              MVT::Other, Expand);
345   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
346   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
347   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
348   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
349   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
350   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
351   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
352   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
353   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
354   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
355   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
356   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
357   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
358   setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
359 
360   if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
361     setOperationAction(ISD::FABS, MVT::f32, Custom);
362     setOperationAction(ISD::FABS, MVT::f64, Custom);
363   }
364 
365   if (Subtarget.isGP64bit()) {
366     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
367     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
368     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
369     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
370     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
371     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
372     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
373     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
374     setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
375     setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
376     setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
377     setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
378   }
379 
380   if (!Subtarget.isGP64bit()) {
381     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
382     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
383     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
384   }
385 
386   setOperationAction(ISD::EH_DWARF_CFA,         MVT::i32,   Custom);
387   if (Subtarget.isGP64bit())
388     setOperationAction(ISD::EH_DWARF_CFA,       MVT::i64,   Custom);
389 
390   setOperationAction(ISD::SDIV, MVT::i32, Expand);
391   setOperationAction(ISD::SREM, MVT::i32, Expand);
392   setOperationAction(ISD::UDIV, MVT::i32, Expand);
393   setOperationAction(ISD::UREM, MVT::i32, Expand);
394   setOperationAction(ISD::SDIV, MVT::i64, Expand);
395   setOperationAction(ISD::SREM, MVT::i64, Expand);
396   setOperationAction(ISD::UDIV, MVT::i64, Expand);
397   setOperationAction(ISD::UREM, MVT::i64, Expand);
398 
399   // Operations not directly supported by Mips.
400   setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
401   setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
402   setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
403   setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
404   setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
405   setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
406   setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand);
407   setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand);
408   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
409   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
410   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
411   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
412   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
413   if (Subtarget.hasCnMips()) {
414     setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
415     setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
416   } else {
417     setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
418     setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
419   }
420   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
421   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
422   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
423   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
424   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
425   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
426 
427   if (!Subtarget.hasMips32r2())
428     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
429 
430   if (!Subtarget.hasMips64r2())
431     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
432 
433   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
434   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
435   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
436   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
437   setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
438   setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
439   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
440   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
441   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
442   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
443   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
444   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
445   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
446   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
447   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
448   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
449 
450   // Lower f16 conversion operations into library calls
451   setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
452   setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
453   setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
454   setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);
455 
456   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
457 
458   setOperationAction(ISD::VASTART,           MVT::Other, Custom);
459   setOperationAction(ISD::VAARG,             MVT::Other, Custom);
460   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
461   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
462 
463   // Use the default for now
464   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
465   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
466 
467   if (!Subtarget.isGP64bit()) {
468     setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand);
469     setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand);
470   }
471 
472   if (!Subtarget.hasMips32r2()) {
473     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
474     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
475   }
476 
477   // MIPS16 lacks MIPS32's clz and clo instructions.
478   if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
479     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
480   if (!Subtarget.hasMips64())
481     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
482 
483   if (!Subtarget.hasMips32r2())
484     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
485   if (!Subtarget.hasMips64r2())
486     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
487 
488   if (Subtarget.isGP64bit()) {
489     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
490     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
491     setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
492     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
493   }
494 
495   setOperationAction(ISD::TRAP, MVT::Other, Legal);
496 
497   setTargetDAGCombine(ISD::SDIVREM);
498   setTargetDAGCombine(ISD::UDIVREM);
499   setTargetDAGCombine(ISD::SELECT);
500   setTargetDAGCombine(ISD::AND);
501   setTargetDAGCombine(ISD::OR);
502   setTargetDAGCombine(ISD::ADD);
503   setTargetDAGCombine(ISD::SUB);
504   setTargetDAGCombine(ISD::AssertZext);
505   setTargetDAGCombine(ISD::SHL);
506 
507   if (ABI.IsO32()) {
508     // These libcalls are not available in 32-bit.
509     setLibcallName(RTLIB::SHL_I128, nullptr);
510     setLibcallName(RTLIB::SRL_I128, nullptr);
511     setLibcallName(RTLIB::SRA_I128, nullptr);
512   }
513 
514   setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4));
515 
516   // The arguments on the stack are defined in terms of 4-byte slots on O32
517   // and 8-byte slots on N32/N64.
518   setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8)
519                                                             : Align(4));
520 
521   setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
522 
523   MaxStoresPerMemcpy = 16;
524 
525   isMicroMips = Subtarget.inMicroMipsMode();
526 }
527 
528 const MipsTargetLowering *
529 MipsTargetLowering::create(const MipsTargetMachine &TM,
530                            const MipsSubtarget &STI) {
531   if (STI.inMips16Mode())
532     return createMips16TargetLowering(TM, STI);
533 
534   return createMipsSETargetLowering(TM, STI);
535 }
536 
537 // Create a fast isel object.
538 FastISel *
539 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
540                                   const TargetLibraryInfo *libInfo) const {
541   const MipsTargetMachine &TM =
542       static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
543 
544   // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
545   bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
546                      !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
547                      !Subtarget.inMicroMipsMode();
548 
549   // Disable if either of the following is true:
550   // We do not generate PIC, the ABI is not O32, XGOT is being used.
551   if (!TM.isPositionIndependent() || !TM.getABI().IsO32() ||
552       Subtarget.useXGOT())
553     UseFastISel = false;
554 
555   return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
556 }
557 
558 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
559                                            EVT VT) const {
560   if (!VT.isVector())
561     return MVT::i32;
562   return VT.changeVectorElementTypeToInteger();
563 }
564 
565 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
566                                     TargetLowering::DAGCombinerInfo &DCI,
567                                     const MipsSubtarget &Subtarget) {
568   if (DCI.isBeforeLegalizeOps())
569     return SDValue();
570 
571   EVT Ty = N->getValueType(0);
572   unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
573   unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
574   unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
575                                                   MipsISD::DivRemU16;
576   SDLoc DL(N);
577 
578   SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
579                                N->getOperand(0), N->getOperand(1));
580   SDValue InChain = DAG.getEntryNode();
581   SDValue InGlue = DivRem;
582 
583   // insert MFLO
584   if (N->hasAnyUseOfValue(0)) {
585     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
586                                             InGlue);
587     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
588     InChain = CopyFromLo.getValue(1);
589     InGlue = CopyFromLo.getValue(2);
590   }
591 
592   // insert MFHI
593   if (N->hasAnyUseOfValue(1)) {
594     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
595                                             HI, Ty, InGlue);
596     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
597   }
598 
599   return SDValue();
600 }
601 
602 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
603   switch (CC) {
604   default: llvm_unreachable("Unknown fp condition code!");
605   case ISD::SETEQ:
606   case ISD::SETOEQ: return Mips::FCOND_OEQ;
607   case ISD::SETUNE: return Mips::FCOND_UNE;
608   case ISD::SETLT:
609   case ISD::SETOLT: return Mips::FCOND_OLT;
610   case ISD::SETGT:
611   case ISD::SETOGT: return Mips::FCOND_OGT;
612   case ISD::SETLE:
613   case ISD::SETOLE: return Mips::FCOND_OLE;
614   case ISD::SETGE:
615   case ISD::SETOGE: return Mips::FCOND_OGE;
616   case ISD::SETULT: return Mips::FCOND_ULT;
617   case ISD::SETULE: return Mips::FCOND_ULE;
618   case ISD::SETUGT: return Mips::FCOND_UGT;
619   case ISD::SETUGE: return Mips::FCOND_UGE;
620   case ISD::SETUO:  return Mips::FCOND_UN;
621   case ISD::SETO:   return Mips::FCOND_OR;
622   case ISD::SETNE:
623   case ISD::SETONE: return Mips::FCOND_ONE;
624   case ISD::SETUEQ: return Mips::FCOND_UEQ;
625   }
626 }
627 
628 /// This function returns true if the floating point conditional branches and
629 /// conditional moves which use condition code CC should be inverted.
630 static bool invertFPCondCodeUser(Mips::CondCode CC) {
631   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
632     return false;
633 
634   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
635          "Illegal Condition Code");
636 
637   return true;
638 }
639 
640 // Creates and returns an FPCmp node from a setcc node.
641 // Returns Op if setcc is not a floating point comparison.
642 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
643   // must be a SETCC node
644   if (Op.getOpcode() != ISD::SETCC)
645     return Op;
646 
647   SDValue LHS = Op.getOperand(0);
648 
649   if (!LHS.getValueType().isFloatingPoint())
650     return Op;
651 
652   SDValue RHS = Op.getOperand(1);
653   SDLoc DL(Op);
654 
655   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
656   // node if necessary.
657   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
658 
659   return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
660                      DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
661 }
662 
663 // Creates and returns a CMovFPT/F node.
664 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
665                             SDValue False, const SDLoc &DL) {
666   ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
667   bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
668   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
669 
670   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
671                      True.getValueType(), True, FCC0, False, Cond);
672 }
673 
674 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
675                                     TargetLowering::DAGCombinerInfo &DCI,
676                                     const MipsSubtarget &Subtarget) {
677   if (DCI.isBeforeLegalizeOps())
678     return SDValue();
679 
680   SDValue SetCC = N->getOperand(0);
681 
682   if ((SetCC.getOpcode() != ISD::SETCC) ||
683       !SetCC.getOperand(0).getValueType().isInteger())
684     return SDValue();
685 
686   SDValue False = N->getOperand(2);
687   EVT FalseTy = False.getValueType();
688 
689   if (!FalseTy.isInteger())
690     return SDValue();
691 
692   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
693 
694   // If the RHS (False) is 0, we swap the order of the operands
695   // of ISD::SELECT (obviously also inverting the condition) so that we can
696   // take advantage of conditional moves using the $0 register.
697   // Example:
698   //   return (a != 0) ? x : 0;
699   //     load $reg, x
700   //     movz $reg, $0, a
701   if (!FalseC)
702     return SDValue();
703 
704   const SDLoc DL(N);
705 
706   if (!FalseC->getZExtValue()) {
707     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
708     SDValue True = N->getOperand(1);
709 
710     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
711                          SetCC.getOperand(1),
712                          ISD::getSetCCInverse(CC, SetCC.getValueType()));
713 
714     return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
715   }
716 
717   // If both operands are integer constants there's a possibility that we
718   // can do some interesting optimizations.
719   SDValue True = N->getOperand(1);
720   ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
721 
722   if (!TrueC || !True.getValueType().isInteger())
723     return SDValue();
724 
725   // We'll also ignore MVT::i64 operands as this optimizations proves
726   // to be ineffective because of the required sign extensions as the result
727   // of a SETCC operator is always MVT::i32 for non-vector types.
728   if (True.getValueType() == MVT::i64)
729     return SDValue();
730 
731   int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
732 
733   // 1)  (a < x) ? y : y-1
734   //  slti $reg1, a, x
735   //  addiu $reg2, $reg1, y-1
736   if (Diff == 1)
737     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
738 
739   // 2)  (a < x) ? y-1 : y
740   //  slti $reg1, a, x
741   //  xor $reg1, $reg1, 1
742   //  addiu $reg2, $reg1, y-1
743   if (Diff == -1) {
744     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
745     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
746                          SetCC.getOperand(1),
747                          ISD::getSetCCInverse(CC, SetCC.getValueType()));
748     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
749   }
750 
751   // Could not optimize.
752   return SDValue();
753 }
754 
755 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
756                                     TargetLowering::DAGCombinerInfo &DCI,
757                                     const MipsSubtarget &Subtarget) {
758   if (DCI.isBeforeLegalizeOps())
759     return SDValue();
760 
761   SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
762 
763   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
764   if (!FalseC || FalseC->getZExtValue())
765     return SDValue();
766 
767   // Since RHS (False) is 0, we swap the order of the True/False operands
768   // (obviously also inverting the condition) so that we can
769   // take advantage of conditional moves using the $0 register.
770   // Example:
771   //   return (a != 0) ? x : 0;
772   //     load $reg, x
773   //     movz $reg, $0, a
774   unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
775                                                          MipsISD::CMovFP_T;
776 
777   SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
778   return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
779                      ValueIfFalse, FCC, ValueIfTrue, Glue);
780 }
781 
782 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
783                                  TargetLowering::DAGCombinerInfo &DCI,
784                                  const MipsSubtarget &Subtarget) {
785   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
786     return SDValue();
787 
788   SDValue FirstOperand = N->getOperand(0);
789   unsigned FirstOperandOpc = FirstOperand.getOpcode();
790   SDValue Mask = N->getOperand(1);
791   EVT ValTy = N->getValueType(0);
792   SDLoc DL(N);
793 
794   uint64_t Pos = 0, SMPos, SMSize;
795   ConstantSDNode *CN;
796   SDValue NewOperand;
797   unsigned Opc;
798 
799   // Op's second operand must be a shifted mask.
800   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
801       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
802     return SDValue();
803 
804   if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
805     // Pattern match EXT.
806     //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
807     //  => ext $dst, $src, pos, size
808 
809     // The second operand of the shift must be an immediate.
810     if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
811       return SDValue();
812 
813     Pos = CN->getZExtValue();
814 
815     // Return if the shifted mask does not start at bit 0 or the sum of its size
816     // and Pos exceeds the word's size.
817     if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
818       return SDValue();
819 
820     Opc = MipsISD::Ext;
821     NewOperand = FirstOperand.getOperand(0);
822   } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
823     // Pattern match CINS.
824     //  $dst = and (shl $src , pos), mask
825     //  => cins $dst, $src, pos, size
826     // mask is a shifted mask with consecutive 1's, pos = shift amount,
827     // size = population count.
828 
829     // The second operand of the shift must be an immediate.
830     if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
831       return SDValue();
832 
833     Pos = CN->getZExtValue();
834 
835     if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
836         Pos + SMSize > ValTy.getSizeInBits())
837       return SDValue();
838 
839     NewOperand = FirstOperand.getOperand(0);
840     // SMSize is 'location' (position) in this case, not size.
841     SMSize--;
842     Opc = MipsISD::CIns;
843   } else {
844     // Pattern match EXT.
845     //  $dst = and $src, (2**size - 1) , if size > 16
846     //  => ext $dst, $src, pos, size , pos = 0
847 
848     // If the mask is <= 0xffff, andi can be used instead.
849     if (CN->getZExtValue() <= 0xffff)
850       return SDValue();
851 
852     // Return if the mask doesn't start at position 0.
853     if (SMPos)
854       return SDValue();
855 
856     Opc = MipsISD::Ext;
857     NewOperand = FirstOperand;
858   }
859   return DAG.getNode(Opc, DL, ValTy, NewOperand,
860                      DAG.getConstant(Pos, DL, MVT::i32),
861                      DAG.getConstant(SMSize, DL, MVT::i32));
862 }
863 
864 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
865                                 TargetLowering::DAGCombinerInfo &DCI,
866                                 const MipsSubtarget &Subtarget) {
867   // Pattern match INS.
868   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
869   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
870   //  => ins $dst, $src, size, pos, $src1
871   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
872     return SDValue();
873 
874   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
875   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
876   ConstantSDNode *CN, *CN1;
877 
878   // See if Op's first operand matches (and $src1 , mask0).
879   if (And0.getOpcode() != ISD::AND)
880     return SDValue();
881 
882   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
883       !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
884     return SDValue();
885 
886   // See if Op's second operand matches (and (shl $src, pos), mask1).
887   if (And1.getOpcode() == ISD::AND &&
888       And1.getOperand(0).getOpcode() == ISD::SHL) {
889 
890     if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
891         !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
892       return SDValue();
893 
894     // The shift masks must have the same position and size.
895     if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
896       return SDValue();
897 
898     SDValue Shl = And1.getOperand(0);
899 
900     if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
901       return SDValue();
902 
903     unsigned Shamt = CN->getZExtValue();
904 
905     // Return if the shift amount and the first bit position of mask are not the
906     // same.
907     EVT ValTy = N->getValueType(0);
908     if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
909       return SDValue();
910 
911     SDLoc DL(N);
912     return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
913                        DAG.getConstant(SMPos0, DL, MVT::i32),
914                        DAG.getConstant(SMSize0, DL, MVT::i32),
915                        And0.getOperand(0));
916   } else {
917     // Pattern match DINS.
918     //  $dst = or (and $src, mask0), mask1
919     //  where mask0 = ((1 << SMSize0) -1) << SMPos0
920     //  => dins $dst, $src, pos, size
921     if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
922         ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
923          (SMSize0 + SMPos0 <= 32))) {
924       // Check if AND instruction has constant as argument
925       bool isConstCase = And1.getOpcode() != ISD::AND;
926       if (And1.getOpcode() == ISD::AND) {
927         if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
928           return SDValue();
929       } else {
930         if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
931           return SDValue();
932       }
933       // Don't generate INS if constant OR operand doesn't fit into bits
934       // cleared by constant AND operand.
935       if (CN->getSExtValue() & CN1->getSExtValue())
936         return SDValue();
937 
938       SDLoc DL(N);
939       EVT ValTy = N->getOperand(0)->getValueType(0);
940       SDValue Const1;
941       SDValue SrlX;
942       if (!isConstCase) {
943         Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
944         SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
945       }
946       return DAG.getNode(
947           MipsISD::Ins, DL, N->getValueType(0),
948           isConstCase
949               ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
950               : SrlX,
951           DAG.getConstant(SMPos0, DL, MVT::i32),
952           DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
953                                                         : SMSize0,
954                           DL, MVT::i32),
955           And0->getOperand(0));
956 
957     }
958     return SDValue();
959   }
960 }
961 
962 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
963                                        const MipsSubtarget &Subtarget) {
964   // ROOTNode must have a multiplication as an operand for the match to be
965   // successful.
966   if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
967       ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
968     return SDValue();
969 
970   // We don't handle vector types here.
971   if (ROOTNode->getValueType(0).isVector())
972     return SDValue();
973 
974   // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
975   // arithmetic. E.g.
976   // (add (mul a b) c) =>
977   //   let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
978   //   MIPS64:   (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
979   //   or
980   //   MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
981   //
982   // The overhead of setting up the Hi/Lo registers and reassembling the
983   // result makes this a dubious optimzation for MIPS64. The core of the
984   // problem is that Hi/Lo contain the upper and lower 32 bits of the
985   // operand and result.
986   //
987   // It requires a chain of 4 add/mul for MIPS64R2 to get better code
988   // density than doing it naively, 5 for MIPS64. Additionally, using
989   // madd/msub on MIPS64 requires the operands actually be 32 bit sign
990   // extended operands, not true 64 bit values.
991   //
992   // FIXME: For the moment, disable this completely for MIPS64.
993   if (Subtarget.hasMips64())
994     return SDValue();
995 
996   SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
997                      ? ROOTNode->getOperand(0)
998                      : ROOTNode->getOperand(1);
999 
1000   SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1001                      ? ROOTNode->getOperand(1)
1002                      : ROOTNode->getOperand(0);
1003 
1004   // Transform this to a MADD only if the user of this node is the add.
1005   // If there are other users of the mul, this function returns here.
1006   if (!Mult.hasOneUse())
1007     return SDValue();
1008 
1009   // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1010   // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1011   // of the multiply must have 32 or more sign bits, otherwise we cannot
1012   // perform this optimization. We have to check this here as we're performing
1013   // this optimization pre-legalization.
1014   SDValue MultLHS = Mult->getOperand(0);
1015   SDValue MultRHS = Mult->getOperand(1);
1016 
1017   bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1018                   MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1019   bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1020                     MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1021 
1022   if (!IsSigned && !IsUnsigned)
1023     return SDValue();
1024 
1025   // Initialize accumulator.
1026   SDLoc DL(ROOTNode);
1027   SDValue TopHalf;
1028   SDValue BottomHalf;
1029   BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1030                               CurDAG.getIntPtrConstant(0, DL));
1031 
1032   TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1033                            CurDAG.getIntPtrConstant(1, DL));
1034   SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
1035                                   BottomHalf,
1036                                   TopHalf);
1037 
1038   // Create MipsMAdd(u) / MipsMSub(u) node.
1039   bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1040   unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1041                           : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1042   SDValue MAddOps[3] = {
1043       CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1044       CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1045   EVT VTs[2] = {MVT::i32, MVT::i32};
1046   SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1047 
1048   SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1049   SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1050   SDValue Combined =
1051       CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1052   return Combined;
1053 }
1054 
1055 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1056                                  TargetLowering::DAGCombinerInfo &DCI,
1057                                  const MipsSubtarget &Subtarget) {
1058   // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1059   if (DCI.isBeforeLegalizeOps()) {
1060     if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1061         !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1062       return performMADD_MSUBCombine(N, DAG, Subtarget);
1063 
1064     return SDValue();
1065   }
1066 
1067   return SDValue();
1068 }
1069 
1070 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1071                                  TargetLowering::DAGCombinerInfo &DCI,
1072                                  const MipsSubtarget &Subtarget) {
1073   // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1074   if (DCI.isBeforeLegalizeOps()) {
1075     if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1076         !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1077       return performMADD_MSUBCombine(N, DAG, Subtarget);
1078 
1079     return SDValue();
1080   }
1081 
1082   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1083   SDValue Add = N->getOperand(1);
1084 
1085   if (Add.getOpcode() != ISD::ADD)
1086     return SDValue();
1087 
1088   SDValue Lo = Add.getOperand(1);
1089 
1090   if ((Lo.getOpcode() != MipsISD::Lo) ||
1091       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1092     return SDValue();
1093 
1094   EVT ValTy = N->getValueType(0);
1095   SDLoc DL(N);
1096 
1097   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1098                              Add.getOperand(0));
1099   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1100 }
1101 
1102 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1103                                  TargetLowering::DAGCombinerInfo &DCI,
1104                                  const MipsSubtarget &Subtarget) {
1105   // Pattern match CINS.
1106   //  $dst = shl (and $src , imm), pos
1107   //  => cins $dst, $src, pos, size
1108 
1109   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1110     return SDValue();
1111 
1112   SDValue FirstOperand = N->getOperand(0);
1113   unsigned FirstOperandOpc = FirstOperand.getOpcode();
1114   SDValue SecondOperand = N->getOperand(1);
1115   EVT ValTy = N->getValueType(0);
1116   SDLoc DL(N);
1117 
1118   uint64_t Pos = 0, SMPos, SMSize;
1119   ConstantSDNode *CN;
1120   SDValue NewOperand;
1121 
1122   // The second operand of the shift must be an immediate.
1123   if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1124     return SDValue();
1125 
1126   Pos = CN->getZExtValue();
1127 
1128   if (Pos >= ValTy.getSizeInBits())
1129     return SDValue();
1130 
1131   if (FirstOperandOpc != ISD::AND)
1132     return SDValue();
1133 
1134   // AND's second operand must be a shifted mask.
1135   if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1136       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
1137     return SDValue();
1138 
1139   // Return if the shifted mask does not start at bit 0 or the sum of its size
1140   // and Pos exceeds the word's size.
1141   if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1142     return SDValue();
1143 
1144   NewOperand = FirstOperand.getOperand(0);
1145   // SMSize is 'location' (position) in this case, not size.
1146   SMSize--;
1147 
1148   return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1149                      DAG.getConstant(Pos, DL, MVT::i32),
1150                      DAG.getConstant(SMSize, DL, MVT::i32));
1151 }
1152 
1153 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1154   const {
1155   SelectionDAG &DAG = DCI.DAG;
1156   unsigned Opc = N->getOpcode();
1157 
1158   switch (Opc) {
1159   default: break;
1160   case ISD::SDIVREM:
1161   case ISD::UDIVREM:
1162     return performDivRemCombine(N, DAG, DCI, Subtarget);
1163   case ISD::SELECT:
1164     return performSELECTCombine(N, DAG, DCI, Subtarget);
1165   case MipsISD::CMovFP_F:
1166   case MipsISD::CMovFP_T:
1167     return performCMovFPCombine(N, DAG, DCI, Subtarget);
1168   case ISD::AND:
1169     return performANDCombine(N, DAG, DCI, Subtarget);
1170   case ISD::OR:
1171     return performORCombine(N, DAG, DCI, Subtarget);
1172   case ISD::ADD:
1173     return performADDCombine(N, DAG, DCI, Subtarget);
1174   case ISD::SHL:
1175     return performSHLCombine(N, DAG, DCI, Subtarget);
1176   case ISD::SUB:
1177     return performSUBCombine(N, DAG, DCI, Subtarget);
1178   }
1179 
1180   return SDValue();
1181 }
1182 
1183 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1184   return Subtarget.hasMips32();
1185 }
1186 
1187 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1188   return Subtarget.hasMips32();
1189 }
1190 
1191 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1192     const SDNode *N, CombineLevel Level) const {
1193   if (N->getOperand(0).getValueType().isVector())
1194     return false;
1195   return true;
1196 }
1197 
1198 void
1199 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1200                                        SmallVectorImpl<SDValue> &Results,
1201                                        SelectionDAG &DAG) const {
1202   return LowerOperationWrapper(N, Results, DAG);
1203 }
1204 
1205 SDValue MipsTargetLowering::
1206 LowerOperation(SDValue Op, SelectionDAG &DAG) const
1207 {
1208   switch (Op.getOpcode())
1209   {
1210   case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
1211   case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
1212   case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
1213   case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
1214   case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
1215   case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
1216   case ISD::SELECT:             return lowerSELECT(Op, DAG);
1217   case ISD::SETCC:              return lowerSETCC(Op, DAG);
1218   case ISD::VASTART:            return lowerVASTART(Op, DAG);
1219   case ISD::VAARG:              return lowerVAARG(Op, DAG);
1220   case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
1221   case ISD::FABS:               return lowerFABS(Op, DAG);
1222   case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
1223   case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
1224   case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
1225   case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
1226   case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
1227   case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
1228   case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
1229   case ISD::LOAD:               return lowerLOAD(Op, DAG);
1230   case ISD::STORE:              return lowerSTORE(Op, DAG);
1231   case ISD::EH_DWARF_CFA:       return lowerEH_DWARF_CFA(Op, DAG);
1232   case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
1233   }
1234   return SDValue();
1235 }
1236 
1237 //===----------------------------------------------------------------------===//
1238 //  Lower helper functions
1239 //===----------------------------------------------------------------------===//
1240 
1241 // addLiveIn - This helper function adds the specified physical register to the
1242 // MachineFunction as a live in value.  It also creates a corresponding
1243 // virtual register for it.
1244 static unsigned
1245 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1246 {
1247   Register VReg = MF.getRegInfo().createVirtualRegister(RC);
1248   MF.getRegInfo().addLiveIn(PReg, VReg);
1249   return VReg;
1250 }
1251 
1252 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1253                                               MachineBasicBlock &MBB,
1254                                               const TargetInstrInfo &TII,
1255                                               bool Is64Bit, bool IsMicroMips) {
1256   if (NoZeroDivCheck)
1257     return &MBB;
1258 
1259   // Insert instruction "teq $divisor_reg, $zero, 7".
1260   MachineBasicBlock::iterator I(MI);
1261   MachineInstrBuilder MIB;
1262   MachineOperand &Divisor = MI.getOperand(2);
1263   MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1264                 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1265             .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1266             .addReg(Mips::ZERO)
1267             .addImm(7);
1268 
1269   // Use the 32-bit sub-register if this is a 64-bit division.
1270   if (Is64Bit)
1271     MIB->getOperand(0).setSubReg(Mips::sub_32);
1272 
1273   // Clear Divisor's kill flag.
1274   Divisor.setIsKill(false);
1275 
1276   // We would normally delete the original instruction here but in this case
1277   // we only needed to inject an additional instruction rather than replace it.
1278 
1279   return &MBB;
1280 }
1281 
1282 MachineBasicBlock *
1283 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1284                                                 MachineBasicBlock *BB) const {
1285   switch (MI.getOpcode()) {
1286   default:
1287     llvm_unreachable("Unexpected instr type to insert");
1288   case Mips::ATOMIC_LOAD_ADD_I8:
1289     return emitAtomicBinaryPartword(MI, BB, 1);
1290   case Mips::ATOMIC_LOAD_ADD_I16:
1291     return emitAtomicBinaryPartword(MI, BB, 2);
1292   case Mips::ATOMIC_LOAD_ADD_I32:
1293     return emitAtomicBinary(MI, BB);
1294   case Mips::ATOMIC_LOAD_ADD_I64:
1295     return emitAtomicBinary(MI, BB);
1296 
1297   case Mips::ATOMIC_LOAD_AND_I8:
1298     return emitAtomicBinaryPartword(MI, BB, 1);
1299   case Mips::ATOMIC_LOAD_AND_I16:
1300     return emitAtomicBinaryPartword(MI, BB, 2);
1301   case Mips::ATOMIC_LOAD_AND_I32:
1302     return emitAtomicBinary(MI, BB);
1303   case Mips::ATOMIC_LOAD_AND_I64:
1304     return emitAtomicBinary(MI, BB);
1305 
1306   case Mips::ATOMIC_LOAD_OR_I8:
1307     return emitAtomicBinaryPartword(MI, BB, 1);
1308   case Mips::ATOMIC_LOAD_OR_I16:
1309     return emitAtomicBinaryPartword(MI, BB, 2);
1310   case Mips::ATOMIC_LOAD_OR_I32:
1311     return emitAtomicBinary(MI, BB);
1312   case Mips::ATOMIC_LOAD_OR_I64:
1313     return emitAtomicBinary(MI, BB);
1314 
1315   case Mips::ATOMIC_LOAD_XOR_I8:
1316     return emitAtomicBinaryPartword(MI, BB, 1);
1317   case Mips::ATOMIC_LOAD_XOR_I16:
1318     return emitAtomicBinaryPartword(MI, BB, 2);
1319   case Mips::ATOMIC_LOAD_XOR_I32:
1320     return emitAtomicBinary(MI, BB);
1321   case Mips::ATOMIC_LOAD_XOR_I64:
1322     return emitAtomicBinary(MI, BB);
1323 
1324   case Mips::ATOMIC_LOAD_NAND_I8:
1325     return emitAtomicBinaryPartword(MI, BB, 1);
1326   case Mips::ATOMIC_LOAD_NAND_I16:
1327     return emitAtomicBinaryPartword(MI, BB, 2);
1328   case Mips::ATOMIC_LOAD_NAND_I32:
1329     return emitAtomicBinary(MI, BB);
1330   case Mips::ATOMIC_LOAD_NAND_I64:
1331     return emitAtomicBinary(MI, BB);
1332 
1333   case Mips::ATOMIC_LOAD_SUB_I8:
1334     return emitAtomicBinaryPartword(MI, BB, 1);
1335   case Mips::ATOMIC_LOAD_SUB_I16:
1336     return emitAtomicBinaryPartword(MI, BB, 2);
1337   case Mips::ATOMIC_LOAD_SUB_I32:
1338     return emitAtomicBinary(MI, BB);
1339   case Mips::ATOMIC_LOAD_SUB_I64:
1340     return emitAtomicBinary(MI, BB);
1341 
1342   case Mips::ATOMIC_SWAP_I8:
1343     return emitAtomicBinaryPartword(MI, BB, 1);
1344   case Mips::ATOMIC_SWAP_I16:
1345     return emitAtomicBinaryPartword(MI, BB, 2);
1346   case Mips::ATOMIC_SWAP_I32:
1347     return emitAtomicBinary(MI, BB);
1348   case Mips::ATOMIC_SWAP_I64:
1349     return emitAtomicBinary(MI, BB);
1350 
1351   case Mips::ATOMIC_CMP_SWAP_I8:
1352     return emitAtomicCmpSwapPartword(MI, BB, 1);
1353   case Mips::ATOMIC_CMP_SWAP_I16:
1354     return emitAtomicCmpSwapPartword(MI, BB, 2);
1355   case Mips::ATOMIC_CMP_SWAP_I32:
1356     return emitAtomicCmpSwap(MI, BB);
1357   case Mips::ATOMIC_CMP_SWAP_I64:
1358     return emitAtomicCmpSwap(MI, BB);
1359 
1360   case Mips::ATOMIC_LOAD_MIN_I8:
1361     return emitAtomicBinaryPartword(MI, BB, 1);
1362   case Mips::ATOMIC_LOAD_MIN_I16:
1363     return emitAtomicBinaryPartword(MI, BB, 2);
1364   case Mips::ATOMIC_LOAD_MIN_I32:
1365     return emitAtomicBinary(MI, BB);
1366   case Mips::ATOMIC_LOAD_MIN_I64:
1367     return emitAtomicBinary(MI, BB);
1368 
1369   case Mips::ATOMIC_LOAD_MAX_I8:
1370     return emitAtomicBinaryPartword(MI, BB, 1);
1371   case Mips::ATOMIC_LOAD_MAX_I16:
1372     return emitAtomicBinaryPartword(MI, BB, 2);
1373   case Mips::ATOMIC_LOAD_MAX_I32:
1374     return emitAtomicBinary(MI, BB);
1375   case Mips::ATOMIC_LOAD_MAX_I64:
1376     return emitAtomicBinary(MI, BB);
1377 
1378   case Mips::ATOMIC_LOAD_UMIN_I8:
1379     return emitAtomicBinaryPartword(MI, BB, 1);
1380   case Mips::ATOMIC_LOAD_UMIN_I16:
1381     return emitAtomicBinaryPartword(MI, BB, 2);
1382   case Mips::ATOMIC_LOAD_UMIN_I32:
1383     return emitAtomicBinary(MI, BB);
1384   case Mips::ATOMIC_LOAD_UMIN_I64:
1385     return emitAtomicBinary(MI, BB);
1386 
1387   case Mips::ATOMIC_LOAD_UMAX_I8:
1388     return emitAtomicBinaryPartword(MI, BB, 1);
1389   case Mips::ATOMIC_LOAD_UMAX_I16:
1390     return emitAtomicBinaryPartword(MI, BB, 2);
1391   case Mips::ATOMIC_LOAD_UMAX_I32:
1392     return emitAtomicBinary(MI, BB);
1393   case Mips::ATOMIC_LOAD_UMAX_I64:
1394     return emitAtomicBinary(MI, BB);
1395 
1396   case Mips::PseudoSDIV:
1397   case Mips::PseudoUDIV:
1398   case Mips::DIV:
1399   case Mips::DIVU:
1400   case Mips::MOD:
1401   case Mips::MODU:
1402     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1403                                false);
1404   case Mips::SDIV_MM_Pseudo:
1405   case Mips::UDIV_MM_Pseudo:
1406   case Mips::SDIV_MM:
1407   case Mips::UDIV_MM:
1408   case Mips::DIV_MMR6:
1409   case Mips::DIVU_MMR6:
1410   case Mips::MOD_MMR6:
1411   case Mips::MODU_MMR6:
1412     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1413   case Mips::PseudoDSDIV:
1414   case Mips::PseudoDUDIV:
1415   case Mips::DDIV:
1416   case Mips::DDIVU:
1417   case Mips::DMOD:
1418   case Mips::DMODU:
1419     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1420 
1421   case Mips::PseudoSELECT_I:
1422   case Mips::PseudoSELECT_I64:
1423   case Mips::PseudoSELECT_S:
1424   case Mips::PseudoSELECT_D32:
1425   case Mips::PseudoSELECT_D64:
1426     return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1427   case Mips::PseudoSELECTFP_F_I:
1428   case Mips::PseudoSELECTFP_F_I64:
1429   case Mips::PseudoSELECTFP_F_S:
1430   case Mips::PseudoSELECTFP_F_D32:
1431   case Mips::PseudoSELECTFP_F_D64:
1432     return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1433   case Mips::PseudoSELECTFP_T_I:
1434   case Mips::PseudoSELECTFP_T_I64:
1435   case Mips::PseudoSELECTFP_T_S:
1436   case Mips::PseudoSELECTFP_T_D32:
1437   case Mips::PseudoSELECTFP_T_D64:
1438     return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1439   case Mips::PseudoD_SELECT_I:
1440   case Mips::PseudoD_SELECT_I64:
1441     return emitPseudoD_SELECT(MI, BB);
1442   case Mips::LDR_W:
1443     return emitLDR_W(MI, BB);
1444   case Mips::LDR_D:
1445     return emitLDR_D(MI, BB);
1446   case Mips::STR_W:
1447     return emitSTR_W(MI, BB);
1448   case Mips::STR_D:
1449     return emitSTR_D(MI, BB);
1450   }
1451 }
1452 
1453 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1454 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1455 MachineBasicBlock *
1456 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1457                                      MachineBasicBlock *BB) const {
1458 
1459   MachineFunction *MF = BB->getParent();
1460   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1461   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1462   DebugLoc DL = MI.getDebugLoc();
1463 
1464   unsigned AtomicOp;
1465   bool NeedsAdditionalReg = false;
1466   switch (MI.getOpcode()) {
1467   case Mips::ATOMIC_LOAD_ADD_I32:
1468     AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1469     break;
1470   case Mips::ATOMIC_LOAD_SUB_I32:
1471     AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1472     break;
1473   case Mips::ATOMIC_LOAD_AND_I32:
1474     AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1475     break;
1476   case Mips::ATOMIC_LOAD_OR_I32:
1477     AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1478     break;
1479   case Mips::ATOMIC_LOAD_XOR_I32:
1480     AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1481     break;
1482   case Mips::ATOMIC_LOAD_NAND_I32:
1483     AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1484     break;
1485   case Mips::ATOMIC_SWAP_I32:
1486     AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1487     break;
1488   case Mips::ATOMIC_LOAD_ADD_I64:
1489     AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1490     break;
1491   case Mips::ATOMIC_LOAD_SUB_I64:
1492     AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1493     break;
1494   case Mips::ATOMIC_LOAD_AND_I64:
1495     AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1496     break;
1497   case Mips::ATOMIC_LOAD_OR_I64:
1498     AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1499     break;
1500   case Mips::ATOMIC_LOAD_XOR_I64:
1501     AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1502     break;
1503   case Mips::ATOMIC_LOAD_NAND_I64:
1504     AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1505     break;
1506   case Mips::ATOMIC_SWAP_I64:
1507     AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1508     break;
1509   case Mips::ATOMIC_LOAD_MIN_I32:
1510     AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA;
1511     NeedsAdditionalReg = true;
1512     break;
1513   case Mips::ATOMIC_LOAD_MAX_I32:
1514     AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA;
1515     NeedsAdditionalReg = true;
1516     break;
1517   case Mips::ATOMIC_LOAD_UMIN_I32:
1518     AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA;
1519     NeedsAdditionalReg = true;
1520     break;
1521   case Mips::ATOMIC_LOAD_UMAX_I32:
1522     AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA;
1523     NeedsAdditionalReg = true;
1524     break;
1525   case Mips::ATOMIC_LOAD_MIN_I64:
1526     AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA;
1527     NeedsAdditionalReg = true;
1528     break;
1529   case Mips::ATOMIC_LOAD_MAX_I64:
1530     AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA;
1531     NeedsAdditionalReg = true;
1532     break;
1533   case Mips::ATOMIC_LOAD_UMIN_I64:
1534     AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA;
1535     NeedsAdditionalReg = true;
1536     break;
1537   case Mips::ATOMIC_LOAD_UMAX_I64:
1538     AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA;
1539     NeedsAdditionalReg = true;
1540     break;
1541   default:
1542     llvm_unreachable("Unknown pseudo atomic for replacement!");
1543   }
1544 
1545   Register OldVal = MI.getOperand(0).getReg();
1546   Register Ptr = MI.getOperand(1).getReg();
1547   Register Incr = MI.getOperand(2).getReg();
1548   Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1549 
1550   MachineBasicBlock::iterator II(MI);
1551 
1552   // The scratch registers here with the EarlyClobber | Define | Implicit
1553   // flags is used to persuade the register allocator and the machine
1554   // verifier to accept the usage of this register. This has to be a real
1555   // register which has an UNDEF value but is dead after the instruction which
1556   // is unique among the registers chosen for the instruction.
1557 
1558   // The EarlyClobber flag has the semantic properties that the operand it is
1559   // attached to is clobbered before the rest of the inputs are read. Hence it
1560   // must be unique among the operands to the instruction.
1561   // The Define flag is needed to coerce the machine verifier that an Undef
1562   // value isn't a problem.
1563   // The Dead flag is needed as the value in scratch isn't used by any other
1564   // instruction. Kill isn't used as Dead is more precise.
1565   // The implicit flag is here due to the interaction between the other flags
1566   // and the machine verifier.
1567 
1568   // For correctness purpose, a new pseudo is introduced here. We need this
1569   // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1570   // that is spread over >1 basic blocks. A register allocator which
1571   // introduces (or any codegen infact) a store, can violate the expectations
1572   // of the hardware.
1573   //
1574   // An atomic read-modify-write sequence starts with a linked load
1575   // instruction and ends with a store conditional instruction. The atomic
1576   // read-modify-write sequence fails if any of the following conditions
1577   // occur between the execution of ll and sc:
1578   //   * A coherent store is completed by another process or coherent I/O
1579   //     module into the block of synchronizable physical memory containing
1580   //     the word. The size and alignment of the block is
1581   //     implementation-dependent.
1582   //   * A coherent store is executed between an LL and SC sequence on the
1583   //     same processor to the block of synchornizable physical memory
1584   //     containing the word.
1585   //
1586 
1587   Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1588   Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1589 
1590   BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1591   BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1592 
1593   MachineInstrBuilder MIB =
1594       BuildMI(*BB, II, DL, TII->get(AtomicOp))
1595           .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1596           .addReg(PtrCopy)
1597           .addReg(IncrCopy)
1598           .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1599                                RegState::Implicit | RegState::Dead);
1600   if (NeedsAdditionalReg) {
1601     Register Scratch2 =
1602         RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1603     MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber |
1604                              RegState::Implicit | RegState::Dead);
1605   }
1606 
1607   MI.eraseFromParent();
1608 
1609   return BB;
1610 }
1611 
1612 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1613     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1614     unsigned SrcReg) const {
1615   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1616   const DebugLoc &DL = MI.getDebugLoc();
1617 
1618   if (Subtarget.hasMips32r2() && Size == 1) {
1619     BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1620     return BB;
1621   }
1622 
1623   if (Subtarget.hasMips32r2() && Size == 2) {
1624     BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1625     return BB;
1626   }
1627 
1628   MachineFunction *MF = BB->getParent();
1629   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1630   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1631   Register ScrReg = RegInfo.createVirtualRegister(RC);
1632 
1633   assert(Size < 32);
1634   int64_t ShiftImm = 32 - (Size * 8);
1635 
1636   BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1637   BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1638 
1639   return BB;
1640 }
1641 
1642 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1643     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1644   assert((Size == 1 || Size == 2) &&
1645          "Unsupported size for EmitAtomicBinaryPartial.");
1646 
1647   MachineFunction *MF = BB->getParent();
1648   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1649   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1650   const bool ArePtrs64bit = ABI.ArePtrs64bit();
1651   const TargetRegisterClass *RCp =
1652     getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1653   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1654   DebugLoc DL = MI.getDebugLoc();
1655 
1656   Register Dest = MI.getOperand(0).getReg();
1657   Register Ptr = MI.getOperand(1).getReg();
1658   Register Incr = MI.getOperand(2).getReg();
1659 
1660   Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1661   Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1662   Register Mask = RegInfo.createVirtualRegister(RC);
1663   Register Mask2 = RegInfo.createVirtualRegister(RC);
1664   Register Incr2 = RegInfo.createVirtualRegister(RC);
1665   Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1666   Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1667   Register MaskUpper = RegInfo.createVirtualRegister(RC);
1668   Register Scratch = RegInfo.createVirtualRegister(RC);
1669   Register Scratch2 = RegInfo.createVirtualRegister(RC);
1670   Register Scratch3 = RegInfo.createVirtualRegister(RC);
1671 
1672   unsigned AtomicOp = 0;
1673   bool NeedsAdditionalReg = false;
1674   switch (MI.getOpcode()) {
1675   case Mips::ATOMIC_LOAD_NAND_I8:
1676     AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1677     break;
1678   case Mips::ATOMIC_LOAD_NAND_I16:
1679     AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1680     break;
1681   case Mips::ATOMIC_SWAP_I8:
1682     AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1683     break;
1684   case Mips::ATOMIC_SWAP_I16:
1685     AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1686     break;
1687   case Mips::ATOMIC_LOAD_ADD_I8:
1688     AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1689     break;
1690   case Mips::ATOMIC_LOAD_ADD_I16:
1691     AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1692     break;
1693   case Mips::ATOMIC_LOAD_SUB_I8:
1694     AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1695     break;
1696   case Mips::ATOMIC_LOAD_SUB_I16:
1697     AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1698     break;
1699   case Mips::ATOMIC_LOAD_AND_I8:
1700     AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1701     break;
1702   case Mips::ATOMIC_LOAD_AND_I16:
1703     AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1704     break;
1705   case Mips::ATOMIC_LOAD_OR_I8:
1706     AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1707     break;
1708   case Mips::ATOMIC_LOAD_OR_I16:
1709     AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1710     break;
1711   case Mips::ATOMIC_LOAD_XOR_I8:
1712     AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1713     break;
1714   case Mips::ATOMIC_LOAD_XOR_I16:
1715     AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1716     break;
1717   case Mips::ATOMIC_LOAD_MIN_I8:
1718     AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA;
1719     NeedsAdditionalReg = true;
1720     break;
1721   case Mips::ATOMIC_LOAD_MIN_I16:
1722     AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA;
1723     NeedsAdditionalReg = true;
1724     break;
1725   case Mips::ATOMIC_LOAD_MAX_I8:
1726     AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA;
1727     NeedsAdditionalReg = true;
1728     break;
1729   case Mips::ATOMIC_LOAD_MAX_I16:
1730     AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA;
1731     NeedsAdditionalReg = true;
1732     break;
1733   case Mips::ATOMIC_LOAD_UMIN_I8:
1734     AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA;
1735     NeedsAdditionalReg = true;
1736     break;
1737   case Mips::ATOMIC_LOAD_UMIN_I16:
1738     AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA;
1739     NeedsAdditionalReg = true;
1740     break;
1741   case Mips::ATOMIC_LOAD_UMAX_I8:
1742     AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA;
1743     NeedsAdditionalReg = true;
1744     break;
1745   case Mips::ATOMIC_LOAD_UMAX_I16:
1746     AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA;
1747     NeedsAdditionalReg = true;
1748     break;
1749   default:
1750     llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1751   }
1752 
1753   // insert new blocks after the current block
1754   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1755   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1756   MachineFunction::iterator It = ++BB->getIterator();
1757   MF->insert(It, exitMBB);
1758 
1759   // Transfer the remainder of BB and its successor edges to exitMBB.
1760   exitMBB->splice(exitMBB->begin(), BB,
1761                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1762   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1763 
1764   BB->addSuccessor(exitMBB, BranchProbability::getOne());
1765 
1766   //  thisMBB:
1767   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1768   //    and     alignedaddr,ptr,masklsb2
1769   //    andi    ptrlsb2,ptr,3
1770   //    sll     shiftamt,ptrlsb2,3
1771   //    ori     maskupper,$0,255               # 0xff
1772   //    sll     mask,maskupper,shiftamt
1773   //    nor     mask2,$0,mask
1774   //    sll     incr2,incr,shiftamt
1775 
1776   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1777   BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1778     .addReg(ABI.GetNullPtr()).addImm(-4);
1779   BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1780     .addReg(Ptr).addReg(MaskLSB2);
1781   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1782       .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1783   if (Subtarget.isLittle()) {
1784     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1785   } else {
1786     Register Off = RegInfo.createVirtualRegister(RC);
1787     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1788       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1789     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1790   }
1791   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1792     .addReg(Mips::ZERO).addImm(MaskImm);
1793   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1794     .addReg(MaskUpper).addReg(ShiftAmt);
1795   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1796   BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1797 
1798 
1799   // The purposes of the flags on the scratch registers is explained in
1800   // emitAtomicBinary. In summary, we need a scratch register which is going to
1801   // be undef, that is unique among registers chosen for the instruction.
1802 
1803   MachineInstrBuilder MIB =
1804       BuildMI(BB, DL, TII->get(AtomicOp))
1805           .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1806           .addReg(AlignedAddr)
1807           .addReg(Incr2)
1808           .addReg(Mask)
1809           .addReg(Mask2)
1810           .addReg(ShiftAmt)
1811           .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1812                                RegState::Dead | RegState::Implicit)
1813           .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1814                                 RegState::Dead | RegState::Implicit)
1815           .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1816                                 RegState::Dead | RegState::Implicit);
1817   if (NeedsAdditionalReg) {
1818     Register Scratch4 = RegInfo.createVirtualRegister(RC);
1819     MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define |
1820                              RegState::Dead | RegState::Implicit);
1821   }
1822 
1823   MI.eraseFromParent(); // The instruction is gone now.
1824 
1825   return exitMBB;
1826 }
1827 
1828 // Lower atomic compare and swap to a pseudo instruction, taking care to
1829 // define a scratch register for the pseudo instruction's expansion. The
1830 // instruction is expanded after the register allocator as to prevent
1831 // the insertion of stores between the linked load and the store conditional.
1832 
1833 MachineBasicBlock *
1834 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1835                                       MachineBasicBlock *BB) const {
1836 
1837   assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1838           MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1839          "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1840 
1841   const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1842 
1843   MachineFunction *MF = BB->getParent();
1844   MachineRegisterInfo &MRI = MF->getRegInfo();
1845   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1846   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1847   DebugLoc DL = MI.getDebugLoc();
1848 
1849   unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1850                           ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1851                           : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1852   Register Dest = MI.getOperand(0).getReg();
1853   Register Ptr = MI.getOperand(1).getReg();
1854   Register OldVal = MI.getOperand(2).getReg();
1855   Register NewVal = MI.getOperand(3).getReg();
1856 
1857   Register Scratch = MRI.createVirtualRegister(RC);
1858   MachineBasicBlock::iterator II(MI);
1859 
1860   // We need to create copies of the various registers and kill them at the
1861   // atomic pseudo. If the copies are not made, when the atomic is expanded
1862   // after fast register allocation, the spills will end up outside of the
1863   // blocks that their values are defined in, causing livein errors.
1864 
1865   Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1866   Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1867   Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1868 
1869   BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1870   BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1871   BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1872 
1873   // The purposes of the flags on the scratch registers is explained in
1874   // emitAtomicBinary. In summary, we need a scratch register which is going to
1875   // be undef, that is unique among registers chosen for the instruction.
1876 
1877   BuildMI(*BB, II, DL, TII->get(AtomicOp))
1878       .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1879       .addReg(PtrCopy, RegState::Kill)
1880       .addReg(OldValCopy, RegState::Kill)
1881       .addReg(NewValCopy, RegState::Kill)
1882       .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1883                            RegState::Dead | RegState::Implicit);
1884 
1885   MI.eraseFromParent(); // The instruction is gone now.
1886 
1887   return BB;
1888 }
1889 
1890 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1891     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1892   assert((Size == 1 || Size == 2) &&
1893       "Unsupported size for EmitAtomicCmpSwapPartial.");
1894 
1895   MachineFunction *MF = BB->getParent();
1896   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1897   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1898   const bool ArePtrs64bit = ABI.ArePtrs64bit();
1899   const TargetRegisterClass *RCp =
1900     getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1901   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1902   DebugLoc DL = MI.getDebugLoc();
1903 
1904   Register Dest = MI.getOperand(0).getReg();
1905   Register Ptr = MI.getOperand(1).getReg();
1906   Register CmpVal = MI.getOperand(2).getReg();
1907   Register NewVal = MI.getOperand(3).getReg();
1908 
1909   Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1910   Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1911   Register Mask = RegInfo.createVirtualRegister(RC);
1912   Register Mask2 = RegInfo.createVirtualRegister(RC);
1913   Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1914   Register ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1915   Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1916   Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1917   Register MaskUpper = RegInfo.createVirtualRegister(RC);
1918   Register MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1919   Register MaskedNewVal = RegInfo.createVirtualRegister(RC);
1920   unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1921                           ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1922                           : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1923 
1924   // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1925   // flags are used to coerce the register allocator and the machine verifier to
1926   // accept the usage of these registers.
1927   // The EarlyClobber flag has the semantic properties that the operand it is
1928   // attached to is clobbered before the rest of the inputs are read. Hence it
1929   // must be unique among the operands to the instruction.
1930   // The Define flag is needed to coerce the machine verifier that an Undef
1931   // value isn't a problem.
1932   // The Dead flag is needed as the value in scratch isn't used by any other
1933   // instruction. Kill isn't used as Dead is more precise.
1934   Register Scratch = RegInfo.createVirtualRegister(RC);
1935   Register Scratch2 = RegInfo.createVirtualRegister(RC);
1936 
1937   // insert new blocks after the current block
1938   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1939   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1940   MachineFunction::iterator It = ++BB->getIterator();
1941   MF->insert(It, exitMBB);
1942 
1943   // Transfer the remainder of BB and its successor edges to exitMBB.
1944   exitMBB->splice(exitMBB->begin(), BB,
1945                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1946   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1947 
1948   BB->addSuccessor(exitMBB, BranchProbability::getOne());
1949 
1950   //  thisMBB:
1951   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1952   //    and     alignedaddr,ptr,masklsb2
1953   //    andi    ptrlsb2,ptr,3
1954   //    xori    ptrlsb2,ptrlsb2,3              # Only for BE
1955   //    sll     shiftamt,ptrlsb2,3
1956   //    ori     maskupper,$0,255               # 0xff
1957   //    sll     mask,maskupper,shiftamt
1958   //    nor     mask2,$0,mask
1959   //    andi    maskedcmpval,cmpval,255
1960   //    sll     shiftedcmpval,maskedcmpval,shiftamt
1961   //    andi    maskednewval,newval,255
1962   //    sll     shiftednewval,maskednewval,shiftamt
1963   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1964   BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1965     .addReg(ABI.GetNullPtr()).addImm(-4);
1966   BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1967     .addReg(Ptr).addReg(MaskLSB2);
1968   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1969       .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1970   if (Subtarget.isLittle()) {
1971     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1972   } else {
1973     Register Off = RegInfo.createVirtualRegister(RC);
1974     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1975       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1976     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1977   }
1978   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1979     .addReg(Mips::ZERO).addImm(MaskImm);
1980   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1981     .addReg(MaskUpper).addReg(ShiftAmt);
1982   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1983   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1984     .addReg(CmpVal).addImm(MaskImm);
1985   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1986     .addReg(MaskedCmpVal).addReg(ShiftAmt);
1987   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1988     .addReg(NewVal).addImm(MaskImm);
1989   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1990     .addReg(MaskedNewVal).addReg(ShiftAmt);
1991 
1992   // The purposes of the flags on the scratch registers are explained in
1993   // emitAtomicBinary. In summary, we need a scratch register which is going to
1994   // be undef, that is unique among the register chosen for the instruction.
1995 
1996   BuildMI(BB, DL, TII->get(AtomicOp))
1997       .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1998       .addReg(AlignedAddr)
1999       .addReg(Mask)
2000       .addReg(ShiftedCmpVal)
2001       .addReg(Mask2)
2002       .addReg(ShiftedNewVal)
2003       .addReg(ShiftAmt)
2004       .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
2005                            RegState::Dead | RegState::Implicit)
2006       .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
2007                             RegState::Dead | RegState::Implicit);
2008 
2009   MI.eraseFromParent(); // The instruction is gone now.
2010 
2011   return exitMBB;
2012 }
2013 
2014 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2015   // The first operand is the chain, the second is the condition, the third is
2016   // the block to branch to if the condition is true.
2017   SDValue Chain = Op.getOperand(0);
2018   SDValue Dest = Op.getOperand(2);
2019   SDLoc DL(Op);
2020 
2021   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2022   SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
2023 
2024   // Return if flag is not set by a floating point comparison.
2025   if (CondRes.getOpcode() != MipsISD::FPCmp)
2026     return Op;
2027 
2028   SDValue CCNode  = CondRes.getOperand(2);
2029   Mips::CondCode CC =
2030     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
2031   unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
2032   SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
2033   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
2034   return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
2035                      FCC0, Dest, CondRes);
2036 }
2037 
2038 SDValue MipsTargetLowering::
2039 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
2040 {
2041   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2042   SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
2043 
2044   // Return if flag is not set by a floating point comparison.
2045   if (Cond.getOpcode() != MipsISD::FPCmp)
2046     return Op;
2047 
2048   return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
2049                       SDLoc(Op));
2050 }
2051 
2052 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2053   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2054   SDValue Cond = createFPCmp(DAG, Op);
2055 
2056   assert(Cond.getOpcode() == MipsISD::FPCmp &&
2057          "Floating point operand expected.");
2058 
2059   SDLoc DL(Op);
2060   SDValue True  = DAG.getConstant(1, DL, MVT::i32);
2061   SDValue False = DAG.getConstant(0, DL, MVT::i32);
2062 
2063   return createCMovFP(DAG, Cond, True, False, DL);
2064 }
2065 
2066 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
2067                                                SelectionDAG &DAG) const {
2068   EVT Ty = Op.getValueType();
2069   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2070   const GlobalValue *GV = N->getGlobal();
2071 
2072   if (!isPositionIndependent()) {
2073     const MipsTargetObjectFile *TLOF =
2074         static_cast<const MipsTargetObjectFile *>(
2075             getTargetMachine().getObjFileLowering());
2076     const GlobalObject *GO = GV->getBaseObject();
2077     if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
2078       // %gp_rel relocation
2079       return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2080 
2081                                 // %hi/%lo relocation
2082     return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2083                                 // %highest/%higher/%hi/%lo relocation
2084                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2085   }
2086 
2087   // Every other architecture would use shouldAssumeDSOLocal in here, but
2088   // mips is special.
2089   // * In PIC code mips requires got loads even for local statics!
2090   // * To save on got entries, for local statics the got entry contains the
2091   //   page and an additional add instruction takes care of the low bits.
2092   // * It is legal to access a hidden symbol with a non hidden undefined,
2093   //   so one cannot guarantee that all access to a hidden symbol will know
2094   //   it is hidden.
2095   // * Mips linkers don't support creating a page and a full got entry for
2096   //   the same symbol.
2097   // * Given all that, we have to use a full got entry for hidden symbols :-(
2098   if (GV->hasLocalLinkage())
2099     return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2100 
2101   if (Subtarget.useXGOT())
2102     return getAddrGlobalLargeGOT(
2103         N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
2104         DAG.getEntryNode(),
2105         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2106 
2107   return getAddrGlobal(
2108       N, SDLoc(N), Ty, DAG,
2109       (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
2110       DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2111 }
2112 
2113 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
2114                                               SelectionDAG &DAG) const {
2115   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2116   EVT Ty = Op.getValueType();
2117 
2118   if (!isPositionIndependent())
2119     return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2120                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2121 
2122   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2123 }
2124 
2125 SDValue MipsTargetLowering::
2126 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2127 {
2128   // If the relocation model is PIC, use the General Dynamic TLS Model or
2129   // Local Dynamic TLS model, otherwise use the Initial Exec or
2130   // Local Exec TLS Model.
2131 
2132   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2133   if (DAG.getTarget().useEmulatedTLS())
2134     return LowerToTLSEmulatedModel(GA, DAG);
2135 
2136   SDLoc DL(GA);
2137   const GlobalValue *GV = GA->getGlobal();
2138   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2139 
2140   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2141 
2142   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2143     // General Dynamic and Local Dynamic TLS Model.
2144     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2145                                                       : MipsII::MO_TLSGD;
2146 
2147     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2148     SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2149                                    getGlobalReg(DAG, PtrVT), TGA);
2150     unsigned PtrSize = PtrVT.getSizeInBits();
2151     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2152 
2153     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2154 
2155     ArgListTy Args;
2156     ArgListEntry Entry;
2157     Entry.Node = Argument;
2158     Entry.Ty = PtrTy;
2159     Args.push_back(Entry);
2160 
2161     TargetLowering::CallLoweringInfo CLI(DAG);
2162     CLI.setDebugLoc(DL)
2163         .setChain(DAG.getEntryNode())
2164         .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2165     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2166 
2167     SDValue Ret = CallResult.first;
2168 
2169     if (model != TLSModel::LocalDynamic)
2170       return Ret;
2171 
2172     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2173                                                MipsII::MO_DTPREL_HI);
2174     SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2175     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2176                                                MipsII::MO_DTPREL_LO);
2177     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2178     SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2179     return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2180   }
2181 
2182   SDValue Offset;
2183   if (model == TLSModel::InitialExec) {
2184     // Initial Exec TLS Model
2185     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2186                                              MipsII::MO_GOTTPREL);
2187     TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2188                       TGA);
2189     Offset =
2190         DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2191   } else {
2192     // Local Exec TLS Model
2193     assert(model == TLSModel::LocalExec);
2194     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2195                                                MipsII::MO_TPREL_HI);
2196     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2197                                                MipsII::MO_TPREL_LO);
2198     SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2199     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2200     Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2201   }
2202 
2203   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2204   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2205 }
2206 
2207 SDValue MipsTargetLowering::
2208 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2209 {
2210   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2211   EVT Ty = Op.getValueType();
2212 
2213   if (!isPositionIndependent())
2214     return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2215                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2216 
2217   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2218 }
2219 
2220 SDValue MipsTargetLowering::
2221 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2222 {
2223   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2224   EVT Ty = Op.getValueType();
2225 
2226   if (!isPositionIndependent()) {
2227     const MipsTargetObjectFile *TLOF =
2228         static_cast<const MipsTargetObjectFile *>(
2229             getTargetMachine().getObjFileLowering());
2230 
2231     if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2232                                        getTargetMachine()))
2233       // %gp_rel relocation
2234       return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2235 
2236     return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2237                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2238   }
2239 
2240  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2241 }
2242 
2243 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2244   MachineFunction &MF = DAG.getMachineFunction();
2245   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2246 
2247   SDLoc DL(Op);
2248   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2249                                  getPointerTy(MF.getDataLayout()));
2250 
2251   // vastart just stores the address of the VarArgsFrameIndex slot into the
2252   // memory location argument.
2253   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2254   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2255                       MachinePointerInfo(SV));
2256 }
2257 
2258 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2259   SDNode *Node = Op.getNode();
2260   EVT VT = Node->getValueType(0);
2261   SDValue Chain = Node->getOperand(0);
2262   SDValue VAListPtr = Node->getOperand(1);
2263   const Align Align =
2264       llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne();
2265   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2266   SDLoc DL(Node);
2267   unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2268 
2269   SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2270                                    VAListPtr, MachinePointerInfo(SV));
2271   SDValue VAList = VAListLoad;
2272 
2273   // Re-align the pointer if necessary.
2274   // It should only ever be necessary for 64-bit types on O32 since the minimum
2275   // argument alignment is the same as the maximum type alignment for N32/N64.
2276   //
2277   // FIXME: We currently align too often. The code generator doesn't notice
2278   //        when the pointer is still aligned from the last va_arg (or pair of
2279   //        va_args for the i64 on O32 case).
2280   if (Align > getMinStackArgumentAlignment()) {
2281     VAList = DAG.getNode(
2282         ISD::ADD, DL, VAList.getValueType(), VAList,
2283         DAG.getConstant(Align.value() - 1, DL, VAList.getValueType()));
2284 
2285     VAList = DAG.getNode(
2286         ISD::AND, DL, VAList.getValueType(), VAList,
2287         DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType()));
2288   }
2289 
2290   // Increment the pointer, VAList, to the next vaarg.
2291   auto &TD = DAG.getDataLayout();
2292   unsigned ArgSizeInBytes =
2293       TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2294   SDValue Tmp3 =
2295       DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2296                   DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2297                                   DL, VAList.getValueType()));
2298   // Store the incremented VAList to the legalized pointer
2299   Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2300                        MachinePointerInfo(SV));
2301 
2302   // In big-endian mode we must adjust the pointer when the load size is smaller
2303   // than the argument slot size. We must also reduce the known alignment to
2304   // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2305   // the correct half of the slot, and reduce the alignment from 8 (slot
2306   // alignment) down to 4 (type alignment).
2307   if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2308     unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2309     VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2310                          DAG.getIntPtrConstant(Adjustment, DL));
2311   }
2312   // Load the actual argument out of the pointer VAList
2313   return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2314 }
2315 
2316 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2317                                 bool HasExtractInsert) {
2318   EVT TyX = Op.getOperand(0).getValueType();
2319   EVT TyY = Op.getOperand(1).getValueType();
2320   SDLoc DL(Op);
2321   SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2322   SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2323   SDValue Res;
2324 
2325   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2326   // to i32.
2327   SDValue X = (TyX == MVT::f32) ?
2328     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2329     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2330                 Const1);
2331   SDValue Y = (TyY == MVT::f32) ?
2332     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2333     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2334                 Const1);
2335 
2336   if (HasExtractInsert) {
2337     // ext  E, Y, 31, 1  ; extract bit31 of Y
2338     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2339     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2340     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2341   } else {
2342     // sll SllX, X, 1
2343     // srl SrlX, SllX, 1
2344     // srl SrlY, Y, 31
2345     // sll SllY, SrlX, 31
2346     // or  Or, SrlX, SllY
2347     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2348     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2349     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2350     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2351     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2352   }
2353 
2354   if (TyX == MVT::f32)
2355     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2356 
2357   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2358                              Op.getOperand(0),
2359                              DAG.getConstant(0, DL, MVT::i32));
2360   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2361 }
2362 
2363 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2364                                 bool HasExtractInsert) {
2365   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2366   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2367   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2368   SDLoc DL(Op);
2369   SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2370 
2371   // Bitcast to integer nodes.
2372   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2373   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2374 
2375   if (HasExtractInsert) {
2376     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2377     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2378     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2379                             DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2380 
2381     if (WidthX > WidthY)
2382       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2383     else if (WidthY > WidthX)
2384       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2385 
2386     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2387                             DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2388                             X);
2389     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2390   }
2391 
2392   // (d)sll SllX, X, 1
2393   // (d)srl SrlX, SllX, 1
2394   // (d)srl SrlY, Y, width(Y)-1
2395   // (d)sll SllY, SrlX, width(Y)-1
2396   // or     Or, SrlX, SllY
2397   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2398   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2399   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2400                              DAG.getConstant(WidthY - 1, DL, MVT::i32));
2401 
2402   if (WidthX > WidthY)
2403     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2404   else if (WidthY > WidthX)
2405     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2406 
2407   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2408                              DAG.getConstant(WidthX - 1, DL, MVT::i32));
2409   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2410   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2411 }
2412 
2413 SDValue
2414 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2415   if (Subtarget.isGP64bit())
2416     return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2417 
2418   return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2419 }
2420 
2421 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
2422                            bool HasExtractInsert) {
2423   SDLoc DL(Op);
2424   SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2425 
2426   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2427   // to i32.
2428   SDValue X = (Op.getValueType() == MVT::f32)
2429                   ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
2430                   : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2431                                 Op.getOperand(0), Const1);
2432 
2433   // Clear MSB.
2434   if (HasExtractInsert)
2435     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2436                       DAG.getRegister(Mips::ZERO, MVT::i32),
2437                       DAG.getConstant(31, DL, MVT::i32), Const1, X);
2438   else {
2439     // TODO: Provide DAG patterns which transform (and x, cst)
2440     // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2441     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2442     Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2443   }
2444 
2445   if (Op.getValueType() == MVT::f32)
2446     return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2447 
2448   // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2449   // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2450   // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2451   // place.
2452   SDValue LowX =
2453       DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2454                   DAG.getConstant(0, DL, MVT::i32));
2455   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2456 }
2457 
2458 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
2459                            bool HasExtractInsert) {
2460   SDLoc DL(Op);
2461   SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2462 
2463   // Bitcast to integer node.
2464   SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2465 
2466   // Clear MSB.
2467   if (HasExtractInsert)
2468     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2469                       DAG.getRegister(Mips::ZERO_64, MVT::i64),
2470                       DAG.getConstant(63, DL, MVT::i32), Const1, X);
2471   else {
2472     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2473     Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2474   }
2475 
2476   return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2477 }
2478 
2479 SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
2480   if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
2481     return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
2482 
2483   return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
2484 }
2485 
2486 SDValue MipsTargetLowering::
2487 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2488   // check the depth
2489   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2490     DAG.getContext()->emitError(
2491         "return address can be determined only for current frame");
2492     return SDValue();
2493   }
2494 
2495   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2496   MFI.setFrameAddressIsTaken(true);
2497   EVT VT = Op.getValueType();
2498   SDLoc DL(Op);
2499   SDValue FrameAddr = DAG.getCopyFromReg(
2500       DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2501   return FrameAddr;
2502 }
2503 
2504 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2505                                             SelectionDAG &DAG) const {
2506   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2507     return SDValue();
2508 
2509   // check the depth
2510   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2511     DAG.getContext()->emitError(
2512         "return address can be determined only for current frame");
2513     return SDValue();
2514   }
2515 
2516   MachineFunction &MF = DAG.getMachineFunction();
2517   MachineFrameInfo &MFI = MF.getFrameInfo();
2518   MVT VT = Op.getSimpleValueType();
2519   unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2520   MFI.setReturnAddressIsTaken(true);
2521 
2522   // Return RA, which contains the return address. Mark it an implicit live-in.
2523   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2524   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2525 }
2526 
2527 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2528 // generated from __builtin_eh_return (offset, handler)
2529 // The effect of this is to adjust the stack pointer by "offset"
2530 // and then branch to "handler".
2531 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2532                                                                      const {
2533   MachineFunction &MF = DAG.getMachineFunction();
2534   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2535 
2536   MipsFI->setCallsEhReturn();
2537   SDValue Chain     = Op.getOperand(0);
2538   SDValue Offset    = Op.getOperand(1);
2539   SDValue Handler   = Op.getOperand(2);
2540   SDLoc DL(Op);
2541   EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2542 
2543   // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2544   // EH_RETURN nodes, so that instructions are emitted back-to-back.
2545   unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2546   unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2547   Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2548   Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2549   return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2550                      DAG.getRegister(OffsetReg, Ty),
2551                      DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2552                      Chain.getValue(1));
2553 }
2554 
2555 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2556                                               SelectionDAG &DAG) const {
2557   // FIXME: Need pseudo-fence for 'singlethread' fences
2558   // FIXME: Set SType for weaker fences where supported/appropriate.
2559   unsigned SType = 0;
2560   SDLoc DL(Op);
2561   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2562                      DAG.getConstant(SType, DL, MVT::i32));
2563 }
2564 
2565 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2566                                                 SelectionDAG &DAG) const {
2567   SDLoc DL(Op);
2568   MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2569 
2570   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2571   SDValue Shamt = Op.getOperand(2);
2572   // if shamt < (VT.bits):
2573   //  lo = (shl lo, shamt)
2574   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2575   // else:
2576   //  lo = 0
2577   //  hi = (shl lo, shamt[4:0])
2578   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2579                             DAG.getConstant(-1, DL, MVT::i32));
2580   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2581                                       DAG.getConstant(1, DL, VT));
2582   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2583   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2584   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2585   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2586   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2587                              DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2588   Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2589                    DAG.getConstant(0, DL, VT), ShiftLeftLo);
2590   Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2591 
2592   SDValue Ops[2] = {Lo, Hi};
2593   return DAG.getMergeValues(Ops, DL);
2594 }
2595 
2596 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2597                                                  bool IsSRA) const {
2598   SDLoc DL(Op);
2599   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2600   SDValue Shamt = Op.getOperand(2);
2601   MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2602 
2603   // if shamt < (VT.bits):
2604   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2605   //  if isSRA:
2606   //    hi = (sra hi, shamt)
2607   //  else:
2608   //    hi = (srl hi, shamt)
2609   // else:
2610   //  if isSRA:
2611   //   lo = (sra hi, shamt[4:0])
2612   //   hi = (sra hi, 31)
2613   //  else:
2614   //   lo = (srl hi, shamt[4:0])
2615   //   hi = 0
2616   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2617                             DAG.getConstant(-1, DL, MVT::i32));
2618   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2619                                      DAG.getConstant(1, DL, VT));
2620   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2621   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2622   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2623   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2624                                      DL, VT, Hi, Shamt);
2625   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2626                              DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2627   SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2628                             DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2629 
2630   if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
2631     SDVTList VTList = DAG.getVTList(VT, VT);
2632     return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
2633                                              : Mips::PseudoD_SELECT_I,
2634                        DL, VTList, Cond, ShiftRightHi,
2635                        IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
2636                        ShiftRightHi);
2637   }
2638 
2639   Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2640   Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2641                    IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2642 
2643   SDValue Ops[2] = {Lo, Hi};
2644   return DAG.getMergeValues(Ops, DL);
2645 }
2646 
2647 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2648                             SDValue Chain, SDValue Src, unsigned Offset) {
2649   SDValue Ptr = LD->getBasePtr();
2650   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2651   EVT BasePtrVT = Ptr.getValueType();
2652   SDLoc DL(LD);
2653   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2654 
2655   if (Offset)
2656     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2657                       DAG.getConstant(Offset, DL, BasePtrVT));
2658 
2659   SDValue Ops[] = { Chain, Ptr, Src };
2660   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2661                                  LD->getMemOperand());
2662 }
2663 
2664 // Expand an unaligned 32 or 64-bit integer load node.
2665 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2666   LoadSDNode *LD = cast<LoadSDNode>(Op);
2667   EVT MemVT = LD->getMemoryVT();
2668 
2669   if (Subtarget.systemSupportsUnalignedAccess())
2670     return Op;
2671 
2672   // Return if load is aligned or if MemVT is neither i32 nor i64.
2673   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2674       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2675     return SDValue();
2676 
2677   bool IsLittle = Subtarget.isLittle();
2678   EVT VT = Op.getValueType();
2679   ISD::LoadExtType ExtType = LD->getExtensionType();
2680   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2681 
2682   assert((VT == MVT::i32) || (VT == MVT::i64));
2683 
2684   // Expand
2685   //  (set dst, (i64 (load baseptr)))
2686   // to
2687   //  (set tmp, (ldl (add baseptr, 7), undef))
2688   //  (set dst, (ldr baseptr, tmp))
2689   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2690     SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2691                                IsLittle ? 7 : 0);
2692     return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2693                         IsLittle ? 0 : 7);
2694   }
2695 
2696   SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2697                              IsLittle ? 3 : 0);
2698   SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2699                              IsLittle ? 0 : 3);
2700 
2701   // Expand
2702   //  (set dst, (i32 (load baseptr))) or
2703   //  (set dst, (i64 (sextload baseptr))) or
2704   //  (set dst, (i64 (extload baseptr)))
2705   // to
2706   //  (set tmp, (lwl (add baseptr, 3), undef))
2707   //  (set dst, (lwr baseptr, tmp))
2708   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2709       (ExtType == ISD::EXTLOAD))
2710     return LWR;
2711 
2712   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2713 
2714   // Expand
2715   //  (set dst, (i64 (zextload baseptr)))
2716   // to
2717   //  (set tmp0, (lwl (add baseptr, 3), undef))
2718   //  (set tmp1, (lwr baseptr, tmp0))
2719   //  (set tmp2, (shl tmp1, 32))
2720   //  (set dst, (srl tmp2, 32))
2721   SDLoc DL(LD);
2722   SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2723   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2724   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2725   SDValue Ops[] = { SRL, LWR.getValue(1) };
2726   return DAG.getMergeValues(Ops, DL);
2727 }
2728 
2729 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2730                              SDValue Chain, unsigned Offset) {
2731   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2732   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2733   SDLoc DL(SD);
2734   SDVTList VTList = DAG.getVTList(MVT::Other);
2735 
2736   if (Offset)
2737     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2738                       DAG.getConstant(Offset, DL, BasePtrVT));
2739 
2740   SDValue Ops[] = { Chain, Value, Ptr };
2741   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2742                                  SD->getMemOperand());
2743 }
2744 
2745 // Expand an unaligned 32 or 64-bit integer store node.
2746 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2747                                       bool IsLittle) {
2748   SDValue Value = SD->getValue(), Chain = SD->getChain();
2749   EVT VT = Value.getValueType();
2750 
2751   // Expand
2752   //  (store val, baseptr) or
2753   //  (truncstore val, baseptr)
2754   // to
2755   //  (swl val, (add baseptr, 3))
2756   //  (swr val, baseptr)
2757   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2758     SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2759                                 IsLittle ? 3 : 0);
2760     return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2761   }
2762 
2763   assert(VT == MVT::i64);
2764 
2765   // Expand
2766   //  (store val, baseptr)
2767   // to
2768   //  (sdl val, (add baseptr, 7))
2769   //  (sdr val, baseptr)
2770   SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2771   return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2772 }
2773 
2774 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2775 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2776                                      bool SingleFloat) {
2777   SDValue Val = SD->getValue();
2778 
2779   if (Val.getOpcode() != ISD::FP_TO_SINT ||
2780       (Val.getValueSizeInBits() > 32 && SingleFloat))
2781     return SDValue();
2782 
2783   EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2784   SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2785                            Val.getOperand(0));
2786   return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2787                       SD->getPointerInfo(), SD->getAlignment(),
2788                       SD->getMemOperand()->getFlags());
2789 }
2790 
2791 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2792   StoreSDNode *SD = cast<StoreSDNode>(Op);
2793   EVT MemVT = SD->getMemoryVT();
2794 
2795   // Lower unaligned integer stores.
2796   if (!Subtarget.systemSupportsUnalignedAccess() &&
2797       (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2798       ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2799     return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2800 
2801   return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2802 }
2803 
2804 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2805                                               SelectionDAG &DAG) const {
2806 
2807   // Return a fixed StackObject with offset 0 which points to the old stack
2808   // pointer.
2809   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2810   EVT ValTy = Op->getValueType(0);
2811   int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2812   return DAG.getFrameIndex(FI, ValTy);
2813 }
2814 
2815 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2816                                             SelectionDAG &DAG) const {
2817   if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2818     return SDValue();
2819 
2820   EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2821   SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2822                               Op.getOperand(0));
2823   return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2824 }
2825 
2826 //===----------------------------------------------------------------------===//
2827 //                      Calling Convention Implementation
2828 //===----------------------------------------------------------------------===//
2829 
2830 //===----------------------------------------------------------------------===//
2831 // TODO: Implement a generic logic using tblgen that can support this.
2832 // Mips O32 ABI rules:
2833 // ---
2834 // i32 - Passed in A0, A1, A2, A3 and stack
2835 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2836 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
2837 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2838 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2839 //       not used, it must be shadowed. If only A3 is available, shadow it and
2840 //       go to stack.
2841 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2842 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2843 //         with the remainder spilled to the stack.
2844 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2845 //         spilling the remainder to the stack.
2846 //
2847 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2848 //===----------------------------------------------------------------------===//
2849 
2850 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2851                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2852                        CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2853   const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2854       State.getMachineFunction().getSubtarget());
2855 
2856   static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2857 
2858   const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2859 
2860   static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2861 
2862   static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2863 
2864   // Do not process byval args here.
2865   if (ArgFlags.isByVal())
2866     return true;
2867 
2868   // Promote i8 and i16
2869   if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2870     if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2871       LocVT = MVT::i32;
2872       if (ArgFlags.isSExt())
2873         LocInfo = CCValAssign::SExtUpper;
2874       else if (ArgFlags.isZExt())
2875         LocInfo = CCValAssign::ZExtUpper;
2876       else
2877         LocInfo = CCValAssign::AExtUpper;
2878     }
2879   }
2880 
2881   // Promote i8 and i16
2882   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2883     LocVT = MVT::i32;
2884     if (ArgFlags.isSExt())
2885       LocInfo = CCValAssign::SExt;
2886     else if (ArgFlags.isZExt())
2887       LocInfo = CCValAssign::ZExt;
2888     else
2889       LocInfo = CCValAssign::AExt;
2890   }
2891 
2892   unsigned Reg;
2893 
2894   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2895   // is true: function is vararg, argument is 3rd or higher, there is previous
2896   // argument which is not f32 or f64.
2897   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2898                                 State.getFirstUnallocated(F32Regs) != ValNo;
2899   Align OrigAlign = ArgFlags.getNonZeroOrigAlign();
2900   bool isI64 = (ValVT == MVT::i32 && OrigAlign == Align(8));
2901   bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2902 
2903   // The MIPS vector ABI for floats passes them in a pair of registers
2904   if (ValVT == MVT::i32 && isVectorFloat) {
2905     // This is the start of an vector that was scalarized into an unknown number
2906     // of components. It doesn't matter how many there are. Allocate one of the
2907     // notional 8 byte aligned registers which map onto the argument stack, and
2908     // shadow the register lost to alignment requirements.
2909     if (ArgFlags.isSplit()) {
2910       Reg = State.AllocateReg(FloatVectorIntRegs);
2911       if (Reg == Mips::A2)
2912         State.AllocateReg(Mips::A1);
2913       else if (Reg == 0)
2914         State.AllocateReg(Mips::A3);
2915     } else {
2916       // If we're an intermediate component of the split, we can just attempt to
2917       // allocate a register directly.
2918       Reg = State.AllocateReg(IntRegs);
2919     }
2920   } else if (ValVT == MVT::i32 ||
2921              (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2922     Reg = State.AllocateReg(IntRegs);
2923     // If this is the first part of an i64 arg,
2924     // the allocated register must be either A0 or A2.
2925     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2926       Reg = State.AllocateReg(IntRegs);
2927     LocVT = MVT::i32;
2928   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2929     LocVT = MVT::i32;
2930 
2931     // Allocate int register and shadow next int register. If first
2932     // available register is Mips::A1 or Mips::A3, shadow it too.
2933     Reg = State.AllocateReg(IntRegs);
2934     if (Reg == Mips::A1 || Reg == Mips::A3)
2935       Reg = State.AllocateReg(IntRegs);
2936 
2937     if (Reg) {
2938       State.addLoc(
2939           CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2940       MCRegister HiReg = State.AllocateReg(IntRegs);
2941       assert(HiReg);
2942       State.addLoc(
2943           CCValAssign::getCustomReg(ValNo, ValVT, HiReg, LocVT, LocInfo));
2944       return false;
2945     }
2946   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2947     // we are guaranteed to find an available float register
2948     if (ValVT == MVT::f32) {
2949       Reg = State.AllocateReg(F32Regs);
2950       // Shadow int register
2951       State.AllocateReg(IntRegs);
2952     } else {
2953       Reg = State.AllocateReg(F64Regs);
2954       // Shadow int registers
2955       unsigned Reg2 = State.AllocateReg(IntRegs);
2956       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2957         State.AllocateReg(IntRegs);
2958       State.AllocateReg(IntRegs);
2959     }
2960   } else
2961     llvm_unreachable("Cannot handle this ValVT.");
2962 
2963   if (!Reg) {
2964     unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2965     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2966   } else
2967     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2968 
2969   return false;
2970 }
2971 
2972 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2973                             MVT LocVT, CCValAssign::LocInfo LocInfo,
2974                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
2975   static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2976 
2977   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2978 }
2979 
2980 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2981                             MVT LocVT, CCValAssign::LocInfo LocInfo,
2982                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
2983   static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2984 
2985   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2986 }
2987 
2988 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2989                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2990                        CCState &State) LLVM_ATTRIBUTE_UNUSED;
2991 
2992 #include "MipsGenCallingConv.inc"
2993 
2994  CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
2995    return CC_Mips_FixedArg;
2996  }
2997 
2998  CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
2999    return RetCC_Mips;
3000  }
3001 //===----------------------------------------------------------------------===//
3002 //                  Call Calling Convention Implementation
3003 //===----------------------------------------------------------------------===//
3004 
3005 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
3006                                            SDValue Chain, SDValue Arg,
3007                                            const SDLoc &DL, bool IsTailCall,
3008                                            SelectionDAG &DAG) const {
3009   if (!IsTailCall) {
3010     SDValue PtrOff =
3011         DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
3012                     DAG.getIntPtrConstant(Offset, DL));
3013     return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
3014   }
3015 
3016   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3017   int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
3018   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3019   return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), MaybeAlign(),
3020                       MachineMemOperand::MOVolatile);
3021 }
3022 
3023 void MipsTargetLowering::
3024 getOpndList(SmallVectorImpl<SDValue> &Ops,
3025             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
3026             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
3027             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
3028             SDValue Chain) const {
3029   // Insert node "GP copy globalreg" before call to function.
3030   //
3031   // R_MIPS_CALL* operators (emitted when non-internal functions are called
3032   // in PIC mode) allow symbols to be resolved via lazy binding.
3033   // The lazy binding stub requires GP to point to the GOT.
3034   // Note that we don't need GP to point to the GOT for indirect calls
3035   // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
3036   // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
3037   // used for the function (that is, Mips linker doesn't generate lazy binding
3038   // stub for a function whose address is taken in the program).
3039   if (IsPICCall && !InternalLinkage && IsCallReloc) {
3040     unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
3041     EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
3042     RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
3043   }
3044 
3045   // Build a sequence of copy-to-reg nodes chained together with token
3046   // chain and flag operands which copy the outgoing args into registers.
3047   // The InFlag in necessary since all emitted instructions must be
3048   // stuck together.
3049   SDValue InFlag;
3050 
3051   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3052     Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
3053                                  RegsToPass[i].second, InFlag);
3054     InFlag = Chain.getValue(1);
3055   }
3056 
3057   // Add argument registers to the end of the list so that they are
3058   // known live into the call.
3059   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3060     Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
3061                                       RegsToPass[i].second.getValueType()));
3062 
3063   // Add a register mask operand representing the call-preserved registers.
3064   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3065   const uint32_t *Mask =
3066       TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
3067   assert(Mask && "Missing call preserved mask for calling convention");
3068   if (Subtarget.inMips16HardFloat()) {
3069     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
3070       StringRef Sym = G->getGlobal()->getName();
3071       Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3072       if (F && F->hasFnAttribute("__Mips16RetHelper")) {
3073         Mask = MipsRegisterInfo::getMips16RetHelperMask();
3074       }
3075     }
3076   }
3077   Ops.push_back(CLI.DAG.getRegisterMask(Mask));
3078 
3079   if (InFlag.getNode())
3080     Ops.push_back(InFlag);
3081 }
3082 
3083 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3084                                                        SDNode *Node) const {
3085   switch (MI.getOpcode()) {
3086     default:
3087       return;
3088     case Mips::JALR:
3089     case Mips::JALRPseudo:
3090     case Mips::JALR64:
3091     case Mips::JALR64Pseudo:
3092     case Mips::JALR16_MM:
3093     case Mips::JALRC16_MMR6:
3094     case Mips::TAILCALLREG:
3095     case Mips::TAILCALLREG64:
3096     case Mips::TAILCALLR6REG:
3097     case Mips::TAILCALL64R6REG:
3098     case Mips::TAILCALLREG_MM:
3099     case Mips::TAILCALLREG_MMR6: {
3100       if (!EmitJalrReloc ||
3101           Subtarget.inMips16Mode() ||
3102           !isPositionIndependent() ||
3103           Node->getNumOperands() < 1 ||
3104           Node->getOperand(0).getNumOperands() < 2) {
3105         return;
3106       }
3107       // We are after the callee address, set by LowerCall().
3108       // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
3109       // symbol.
3110       const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
3111       StringRef Sym;
3112       if (const GlobalAddressSDNode *G =
3113               dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
3114         // We must not emit the R_MIPS_JALR relocation against data symbols
3115         // since this will cause run-time crashes if the linker replaces the
3116         // call instruction with a relative branch to the data symbol.
3117         if (!isa<Function>(G->getGlobal())) {
3118           LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
3119                             << G->getGlobal()->getName() << "\n");
3120           return;
3121         }
3122         Sym = G->getGlobal()->getName();
3123       }
3124       else if (const ExternalSymbolSDNode *ES =
3125                    dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
3126         Sym = ES->getSymbol();
3127       }
3128 
3129       if (Sym.empty())
3130         return;
3131 
3132       MachineFunction *MF = MI.getParent()->getParent();
3133       MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
3134       LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n");
3135       MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
3136     }
3137   }
3138 }
3139 
3140 /// LowerCall - functions arguments are copied from virtual regs to
3141 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3142 SDValue
3143 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3144                               SmallVectorImpl<SDValue> &InVals) const {
3145   SelectionDAG &DAG                     = CLI.DAG;
3146   SDLoc DL                              = CLI.DL;
3147   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3148   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3149   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3150   SDValue Chain                         = CLI.Chain;
3151   SDValue Callee                        = CLI.Callee;
3152   bool &IsTailCall                      = CLI.IsTailCall;
3153   CallingConv::ID CallConv              = CLI.CallConv;
3154   bool IsVarArg                         = CLI.IsVarArg;
3155 
3156   MachineFunction &MF = DAG.getMachineFunction();
3157   MachineFrameInfo &MFI = MF.getFrameInfo();
3158   const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3159   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
3160   bool IsPIC = isPositionIndependent();
3161 
3162   // Analyze operands of the call, assigning locations to each operand.
3163   SmallVector<CCValAssign, 16> ArgLocs;
3164   MipsCCState CCInfo(
3165       CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
3166       MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
3167 
3168   const ExternalSymbolSDNode *ES =
3169       dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
3170 
3171   // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3172   // is during the lowering of a call with a byval argument which produces
3173   // a call to memcpy. For the O32 case, this causes the caller to allocate
3174   // stack space for the reserved argument area for the callee, then recursively
3175   // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3176   // ABIs mandate that the callee allocates the reserved argument area. We do
3177   // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3178   //
3179   // If the callee has a byval argument and memcpy is used, we are mandated
3180   // to already have produced a reserved argument area for the callee for O32.
3181   // Therefore, the reserved argument area can be reused for both calls.
3182   //
3183   // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3184   // present, as we have yet to hook that node onto the chain.
3185   //
3186   // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3187   // case. GCC does a similar trick, in that wherever possible, it calculates
3188   // the maximum out going argument area (including the reserved area), and
3189   // preallocates the stack space on entrance to the caller.
3190   //
3191   // FIXME: We should do the same for efficiency and space.
3192 
3193   // Note: The check on the calling convention below must match
3194   //       MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3195   bool MemcpyInByVal = ES &&
3196                        StringRef(ES->getSymbol()) == StringRef("memcpy") &&
3197                        CallConv != CallingConv::Fast &&
3198                        Chain.getOpcode() == ISD::CALLSEQ_START;
3199 
3200   // Allocate the reserved argument area. It seems strange to do this from the
3201   // caller side but removing it breaks the frame size calculation.
3202   unsigned ReservedArgArea =
3203       MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
3204   CCInfo.AllocateStack(ReservedArgArea, Align(1));
3205 
3206   CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
3207                              ES ? ES->getSymbol() : nullptr);
3208 
3209   // Get a count of how many bytes are to be pushed on the stack.
3210   unsigned NextStackOffset = CCInfo.getNextStackOffset();
3211 
3212   // Call site info for function parameters tracking.
3213   MachineFunction::CallSiteInfo CSInfo;
3214 
3215   // Check if it's really possible to do a tail call. Restrict it to functions
3216   // that are part of this compilation unit.
3217   bool InternalLinkage = false;
3218   if (IsTailCall) {
3219     IsTailCall = isEligibleForTailCallOptimization(
3220         CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
3221      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3222       InternalLinkage = G->getGlobal()->hasInternalLinkage();
3223       IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
3224                      G->getGlobal()->hasPrivateLinkage() ||
3225                      G->getGlobal()->hasHiddenVisibility() ||
3226                      G->getGlobal()->hasProtectedVisibility());
3227      }
3228   }
3229   if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall())
3230     report_fatal_error("failed to perform tail call elimination on a call "
3231                        "site marked musttail");
3232 
3233   if (IsTailCall)
3234     ++NumTailCalls;
3235 
3236   // Chain is the output chain of the last Load/Store or CopyToReg node.
3237   // ByValChain is the output chain of the last Memcpy node created for copying
3238   // byval arguments to the stack.
3239   unsigned StackAlignment = TFL->getStackAlignment();
3240   NextStackOffset = alignTo(NextStackOffset, StackAlignment);
3241   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
3242 
3243   if (!(IsTailCall || MemcpyInByVal))
3244     Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
3245 
3246   SDValue StackPtr =
3247       DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
3248                          getPointerTy(DAG.getDataLayout()));
3249 
3250   std::deque<std::pair<unsigned, SDValue>> RegsToPass;
3251   SmallVector<SDValue, 8> MemOpChains;
3252 
3253   CCInfo.rewindByValRegsInfo();
3254 
3255   // Walk the register/memloc assignments, inserting copies/loads.
3256   for (unsigned i = 0, e = ArgLocs.size(), OutIdx = 0; i != e; ++i, ++OutIdx) {
3257     SDValue Arg = OutVals[OutIdx];
3258     CCValAssign &VA = ArgLocs[i];
3259     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3260     ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags;
3261     bool UseUpperBits = false;
3262 
3263     // ByVal Arg.
3264     if (Flags.isByVal()) {
3265       unsigned FirstByValReg, LastByValReg;
3266       unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3267       CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3268 
3269       assert(Flags.getByValSize() &&
3270              "ByVal args of size 0 should have been ignored by front-end.");
3271       assert(ByValIdx < CCInfo.getInRegsParamsCount());
3272       assert(!IsTailCall &&
3273              "Do not tail-call optimize if there is a byval argument.");
3274       passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3275                    FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3276                    VA);
3277       CCInfo.nextInRegsParam();
3278       continue;
3279     }
3280 
3281     // Promote the value if needed.
3282     switch (VA.getLocInfo()) {
3283     default:
3284       llvm_unreachable("Unknown loc info!");
3285     case CCValAssign::Full:
3286       if (VA.isRegLoc()) {
3287         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3288             (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3289             (ValVT == MVT::i64 && LocVT == MVT::f64))
3290           Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3291         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3292           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3293                                    Arg, DAG.getConstant(0, DL, MVT::i32));
3294           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3295                                    Arg, DAG.getConstant(1, DL, MVT::i32));
3296           if (!Subtarget.isLittle())
3297             std::swap(Lo, Hi);
3298 
3299           assert(VA.needsCustom());
3300 
3301           Register LocRegLo = VA.getLocReg();
3302           Register LocRegHigh = ArgLocs[++i].getLocReg();
3303           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3304           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3305           continue;
3306         }
3307       }
3308       break;
3309     case CCValAssign::BCvt:
3310       Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3311       break;
3312     case CCValAssign::SExtUpper:
3313       UseUpperBits = true;
3314       LLVM_FALLTHROUGH;
3315     case CCValAssign::SExt:
3316       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3317       break;
3318     case CCValAssign::ZExtUpper:
3319       UseUpperBits = true;
3320       LLVM_FALLTHROUGH;
3321     case CCValAssign::ZExt:
3322       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3323       break;
3324     case CCValAssign::AExtUpper:
3325       UseUpperBits = true;
3326       LLVM_FALLTHROUGH;
3327     case CCValAssign::AExt:
3328       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3329       break;
3330     }
3331 
3332     if (UseUpperBits) {
3333       unsigned ValSizeInBits = Outs[OutIdx].ArgVT.getSizeInBits();
3334       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3335       Arg = DAG.getNode(
3336           ISD::SHL, DL, VA.getLocVT(), Arg,
3337           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3338     }
3339 
3340     // Arguments that can be passed on register must be kept at
3341     // RegsToPass vector
3342     if (VA.isRegLoc()) {
3343       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3344 
3345       // If the parameter is passed through reg $D, which splits into
3346       // two physical registers, avoid creating call site info.
3347       if (Mips::AFGR64RegClass.contains(VA.getLocReg()))
3348         continue;
3349 
3350       // Collect CSInfo about which register passes which parameter.
3351       const TargetOptions &Options = DAG.getTarget().Options;
3352       if (Options.SupportsDebugEntryValues)
3353         CSInfo.emplace_back(VA.getLocReg(), i);
3354 
3355       continue;
3356     }
3357 
3358     // Register can't get to this point...
3359     assert(VA.isMemLoc());
3360 
3361     // emit ISD::STORE whichs stores the
3362     // parameter value to a stack Location
3363     MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3364                                          Chain, Arg, DL, IsTailCall, DAG));
3365   }
3366 
3367   // Transform all store nodes into one single node because all store
3368   // nodes are independent of each other.
3369   if (!MemOpChains.empty())
3370     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3371 
3372   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3373   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3374   // node so that legalize doesn't hack it.
3375 
3376   EVT Ty = Callee.getValueType();
3377   bool GlobalOrExternal = false, IsCallReloc = false;
3378 
3379   // The long-calls feature is ignored in case of PIC.
3380   // While we do not support -mshared / -mno-shared properly,
3381   // ignore long-calls in case of -mabicalls too.
3382   if (!Subtarget.isABICalls() && !IsPIC) {
3383     // If the function should be called using "long call",
3384     // get its address into a register to prevent using
3385     // of the `jal` instruction for the direct call.
3386     if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3387       if (Subtarget.useLongCalls())
3388         Callee = Subtarget.hasSym32()
3389                      ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3390                      : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3391     } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3392       bool UseLongCalls = Subtarget.useLongCalls();
3393       // If the function has long-call/far/near attribute
3394       // it overrides command line switch pased to the backend.
3395       if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3396         if (F->hasFnAttribute("long-call"))
3397           UseLongCalls = true;
3398         else if (F->hasFnAttribute("short-call"))
3399           UseLongCalls = false;
3400       }
3401       if (UseLongCalls)
3402         Callee = Subtarget.hasSym32()
3403                      ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3404                      : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3405     }
3406   }
3407 
3408   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3409     if (IsPIC) {
3410       const GlobalValue *Val = G->getGlobal();
3411       InternalLinkage = Val->hasInternalLinkage();
3412 
3413       if (InternalLinkage)
3414         Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3415       else if (Subtarget.useXGOT()) {
3416         Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3417                                        MipsII::MO_CALL_LO16, Chain,
3418                                        FuncInfo->callPtrInfo(MF, Val));
3419         IsCallReloc = true;
3420       } else {
3421         Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3422                                FuncInfo->callPtrInfo(MF, Val));
3423         IsCallReloc = true;
3424       }
3425     } else
3426       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3427                                           getPointerTy(DAG.getDataLayout()), 0,
3428                                           MipsII::MO_NO_FLAG);
3429     GlobalOrExternal = true;
3430   }
3431   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3432     const char *Sym = S->getSymbol();
3433 
3434     if (!IsPIC) // static
3435       Callee = DAG.getTargetExternalSymbol(
3436           Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3437     else if (Subtarget.useXGOT()) {
3438       Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3439                                      MipsII::MO_CALL_LO16, Chain,
3440                                      FuncInfo->callPtrInfo(MF, Sym));
3441       IsCallReloc = true;
3442     } else { // PIC
3443       Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3444                              FuncInfo->callPtrInfo(MF, Sym));
3445       IsCallReloc = true;
3446     }
3447 
3448     GlobalOrExternal = true;
3449   }
3450 
3451   SmallVector<SDValue, 8> Ops(1, Chain);
3452   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3453 
3454   getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3455               IsCallReloc, CLI, Callee, Chain);
3456 
3457   if (IsTailCall) {
3458     MF.getFrameInfo().setHasTailCall();
3459     SDValue Ret = DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3460     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
3461     return Ret;
3462   }
3463 
3464   Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3465   SDValue InFlag = Chain.getValue(1);
3466 
3467   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
3468 
3469   // Create the CALLSEQ_END node in the case of where it is not a call to
3470   // memcpy.
3471   if (!(MemcpyInByVal)) {
3472     Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3473                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3474     InFlag = Chain.getValue(1);
3475   }
3476 
3477   // Handle result values, copying them out of physregs into vregs that we
3478   // return.
3479   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3480                          InVals, CLI);
3481 }
3482 
3483 /// LowerCallResult - Lower the result values of a call into the
3484 /// appropriate copies out of appropriate physical registers.
3485 SDValue MipsTargetLowering::LowerCallResult(
3486     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
3487     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3488     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3489     TargetLowering::CallLoweringInfo &CLI) const {
3490   // Assign locations to each value returned by this call.
3491   SmallVector<CCValAssign, 16> RVLocs;
3492   MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3493                      *DAG.getContext());
3494 
3495   const ExternalSymbolSDNode *ES =
3496       dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3497   CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3498                            ES ? ES->getSymbol() : nullptr);
3499 
3500   // Copy all of the result registers out of their specified physreg.
3501   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3502     CCValAssign &VA = RVLocs[i];
3503     assert(VA.isRegLoc() && "Can only return in registers!");
3504 
3505     SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3506                                      RVLocs[i].getLocVT(), InFlag);
3507     Chain = Val.getValue(1);
3508     InFlag = Val.getValue(2);
3509 
3510     if (VA.isUpperBitsInLoc()) {
3511       unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3512       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3513       unsigned Shift =
3514           VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3515       Val = DAG.getNode(
3516           Shift, DL, VA.getLocVT(), Val,
3517           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3518     }
3519 
3520     switch (VA.getLocInfo()) {
3521     default:
3522       llvm_unreachable("Unknown loc info!");
3523     case CCValAssign::Full:
3524       break;
3525     case CCValAssign::BCvt:
3526       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3527       break;
3528     case CCValAssign::AExt:
3529     case CCValAssign::AExtUpper:
3530       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3531       break;
3532     case CCValAssign::ZExt:
3533     case CCValAssign::ZExtUpper:
3534       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3535                         DAG.getValueType(VA.getValVT()));
3536       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3537       break;
3538     case CCValAssign::SExt:
3539     case CCValAssign::SExtUpper:
3540       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3541                         DAG.getValueType(VA.getValVT()));
3542       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3543       break;
3544     }
3545 
3546     InVals.push_back(Val);
3547   }
3548 
3549   return Chain;
3550 }
3551 
3552 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3553                                       EVT ArgVT, const SDLoc &DL,
3554                                       SelectionDAG &DAG) {
3555   MVT LocVT = VA.getLocVT();
3556   EVT ValVT = VA.getValVT();
3557 
3558   // Shift into the upper bits if necessary.
3559   switch (VA.getLocInfo()) {
3560   default:
3561     break;
3562   case CCValAssign::AExtUpper:
3563   case CCValAssign::SExtUpper:
3564   case CCValAssign::ZExtUpper: {
3565     unsigned ValSizeInBits = ArgVT.getSizeInBits();
3566     unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3567     unsigned Opcode =
3568         VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3569     Val = DAG.getNode(
3570         Opcode, DL, VA.getLocVT(), Val,
3571         DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3572     break;
3573   }
3574   }
3575 
3576   // If this is an value smaller than the argument slot size (32-bit for O32,
3577   // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3578   // size. Extract the value and insert any appropriate assertions regarding
3579   // sign/zero extension.
3580   switch (VA.getLocInfo()) {
3581   default:
3582     llvm_unreachable("Unknown loc info!");
3583   case CCValAssign::Full:
3584     break;
3585   case CCValAssign::AExtUpper:
3586   case CCValAssign::AExt:
3587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3588     break;
3589   case CCValAssign::SExtUpper:
3590   case CCValAssign::SExt:
3591     Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3592     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3593     break;
3594   case CCValAssign::ZExtUpper:
3595   case CCValAssign::ZExt:
3596     Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3597     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3598     break;
3599   case CCValAssign::BCvt:
3600     Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3601     break;
3602   }
3603 
3604   return Val;
3605 }
3606 
3607 //===----------------------------------------------------------------------===//
3608 //             Formal Arguments Calling Convention Implementation
3609 //===----------------------------------------------------------------------===//
3610 /// LowerFormalArguments - transform physical registers into virtual registers
3611 /// and generate load operations for arguments places on the stack.
3612 SDValue MipsTargetLowering::LowerFormalArguments(
3613     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3614     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3615     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3616   MachineFunction &MF = DAG.getMachineFunction();
3617   MachineFrameInfo &MFI = MF.getFrameInfo();
3618   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3619 
3620   MipsFI->setVarArgsFrameIndex(0);
3621 
3622   // Used with vargs to acumulate store chains.
3623   std::vector<SDValue> OutChains;
3624 
3625   // Assign locations to all of the incoming arguments.
3626   SmallVector<CCValAssign, 16> ArgLocs;
3627   MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3628                      *DAG.getContext());
3629   CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), Align(1));
3630   const Function &Func = DAG.getMachineFunction().getFunction();
3631   Function::const_arg_iterator FuncArg = Func.arg_begin();
3632 
3633   if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3634     report_fatal_error(
3635         "Functions with the interrupt attribute cannot have arguments!");
3636 
3637   CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3638   MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3639                            CCInfo.getInRegsParamsCount() > 0);
3640 
3641   unsigned CurArgIdx = 0;
3642   CCInfo.rewindByValRegsInfo();
3643 
3644   for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
3645     CCValAssign &VA = ArgLocs[i];
3646     if (Ins[InsIdx].isOrigArg()) {
3647       std::advance(FuncArg, Ins[InsIdx].getOrigArgIndex() - CurArgIdx);
3648       CurArgIdx = Ins[InsIdx].getOrigArgIndex();
3649     }
3650     EVT ValVT = VA.getValVT();
3651     ISD::ArgFlagsTy Flags = Ins[InsIdx].Flags;
3652     bool IsRegLoc = VA.isRegLoc();
3653 
3654     if (Flags.isByVal()) {
3655       assert(Ins[InsIdx].isOrigArg() && "Byval arguments cannot be implicit");
3656       unsigned FirstByValReg, LastByValReg;
3657       unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3658       CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3659 
3660       assert(Flags.getByValSize() &&
3661              "ByVal args of size 0 should have been ignored by front-end.");
3662       assert(ByValIdx < CCInfo.getInRegsParamsCount());
3663       copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3664                     FirstByValReg, LastByValReg, VA, CCInfo);
3665       CCInfo.nextInRegsParam();
3666       continue;
3667     }
3668 
3669     // Arguments stored on registers
3670     if (IsRegLoc) {
3671       MVT RegVT = VA.getLocVT();
3672       Register ArgReg = VA.getLocReg();
3673       const TargetRegisterClass *RC = getRegClassFor(RegVT);
3674 
3675       // Transform the arguments stored on
3676       // physical registers into virtual ones
3677       unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3678       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3679 
3680       ArgValue =
3681           UnpackFromArgumentSlot(ArgValue, VA, Ins[InsIdx].ArgVT, DL, DAG);
3682 
3683       // Handle floating point arguments passed in integer registers and
3684       // long double arguments passed in floating point registers.
3685       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3686           (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3687           (RegVT == MVT::f64 && ValVT == MVT::i64))
3688         ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3689       else if (ABI.IsO32() && RegVT == MVT::i32 &&
3690                ValVT == MVT::f64) {
3691         assert(VA.needsCustom() && "Expected custom argument for f64 split");
3692         CCValAssign &NextVA = ArgLocs[++i];
3693         unsigned Reg2 =
3694             addLiveIn(DAG.getMachineFunction(), NextVA.getLocReg(), RC);
3695         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3696         if (!Subtarget.isLittle())
3697           std::swap(ArgValue, ArgValue2);
3698         ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3699                                ArgValue, ArgValue2);
3700       }
3701 
3702       InVals.push_back(ArgValue);
3703     } else { // VA.isRegLoc()
3704       MVT LocVT = VA.getLocVT();
3705 
3706       assert(!VA.needsCustom() && "unexpected custom memory argument");
3707 
3708       if (ABI.IsO32()) {
3709         // We ought to be able to use LocVT directly but O32 sets it to i32
3710         // when allocating floating point values to integer registers.
3711         // This shouldn't influence how we load the value into registers unless
3712         // we are targeting softfloat.
3713         if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3714           LocVT = VA.getValVT();
3715       }
3716 
3717       // sanity check
3718       assert(VA.isMemLoc());
3719 
3720       // The stack pointer offset is relative to the caller stack frame.
3721       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3722                                      VA.getLocMemOffset(), true);
3723 
3724       // Create load nodes to retrieve arguments from the stack
3725       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3726       SDValue ArgValue = DAG.getLoad(
3727           LocVT, DL, Chain, FIN,
3728           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3729       OutChains.push_back(ArgValue.getValue(1));
3730 
3731       ArgValue =
3732           UnpackFromArgumentSlot(ArgValue, VA, Ins[InsIdx].ArgVT, DL, DAG);
3733 
3734       InVals.push_back(ArgValue);
3735     }
3736   }
3737 
3738   for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
3739 
3740     if (ArgLocs[i].needsCustom()) {
3741       ++i;
3742       continue;
3743     }
3744 
3745     // The mips ABIs for returning structs by value requires that we copy
3746     // the sret argument into $v0 for the return. Save the argument into
3747     // a virtual register so that we can access it from the return points.
3748     if (Ins[InsIdx].Flags.isSRet()) {
3749       unsigned Reg = MipsFI->getSRetReturnReg();
3750       if (!Reg) {
3751         Reg = MF.getRegInfo().createVirtualRegister(
3752             getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3753         MipsFI->setSRetReturnReg(Reg);
3754       }
3755       SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3756       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3757       break;
3758     }
3759   }
3760 
3761   if (IsVarArg)
3762     writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3763 
3764   // All stores are grouped in one node to allow the matching between
3765   // the size of Ins and InVals. This only happens when on varg functions
3766   if (!OutChains.empty()) {
3767     OutChains.push_back(Chain);
3768     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3769   }
3770 
3771   return Chain;
3772 }
3773 
3774 //===----------------------------------------------------------------------===//
3775 //               Return Value Calling Convention Implementation
3776 //===----------------------------------------------------------------------===//
3777 
3778 bool
3779 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3780                                    MachineFunction &MF, bool IsVarArg,
3781                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3782                                    LLVMContext &Context) const {
3783   SmallVector<CCValAssign, 16> RVLocs;
3784   MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3785   return CCInfo.CheckReturn(Outs, RetCC_Mips);
3786 }
3787 
3788 bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type,
3789                                                        bool IsSigned) const {
3790   if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3791       return true;
3792 
3793   return IsSigned;
3794 }
3795 
3796 SDValue
3797 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3798                                          const SDLoc &DL,
3799                                          SelectionDAG &DAG) const {
3800   MachineFunction &MF = DAG.getMachineFunction();
3801   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3802 
3803   MipsFI->setISR();
3804 
3805   return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3806 }
3807 
3808 SDValue
3809 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3810                                 bool IsVarArg,
3811                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
3812                                 const SmallVectorImpl<SDValue> &OutVals,
3813                                 const SDLoc &DL, SelectionDAG &DAG) const {
3814   // CCValAssign - represent the assignment of
3815   // the return value to a location
3816   SmallVector<CCValAssign, 16> RVLocs;
3817   MachineFunction &MF = DAG.getMachineFunction();
3818 
3819   // CCState - Info about the registers and stack slot.
3820   MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3821 
3822   // Analyze return values.
3823   CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3824 
3825   SDValue Flag;
3826   SmallVector<SDValue, 4> RetOps(1, Chain);
3827 
3828   // Copy the result values into the output registers.
3829   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3830     SDValue Val = OutVals[i];
3831     CCValAssign &VA = RVLocs[i];
3832     assert(VA.isRegLoc() && "Can only return in registers!");
3833     bool UseUpperBits = false;
3834 
3835     switch (VA.getLocInfo()) {
3836     default:
3837       llvm_unreachable("Unknown loc info!");
3838     case CCValAssign::Full:
3839       break;
3840     case CCValAssign::BCvt:
3841       Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3842       break;
3843     case CCValAssign::AExtUpper:
3844       UseUpperBits = true;
3845       LLVM_FALLTHROUGH;
3846     case CCValAssign::AExt:
3847       Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3848       break;
3849     case CCValAssign::ZExtUpper:
3850       UseUpperBits = true;
3851       LLVM_FALLTHROUGH;
3852     case CCValAssign::ZExt:
3853       Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3854       break;
3855     case CCValAssign::SExtUpper:
3856       UseUpperBits = true;
3857       LLVM_FALLTHROUGH;
3858     case CCValAssign::SExt:
3859       Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3860       break;
3861     }
3862 
3863     if (UseUpperBits) {
3864       unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3865       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3866       Val = DAG.getNode(
3867           ISD::SHL, DL, VA.getLocVT(), Val,
3868           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3869     }
3870 
3871     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3872 
3873     // Guarantee that all emitted copies are stuck together with flags.
3874     Flag = Chain.getValue(1);
3875     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3876   }
3877 
3878   // The mips ABIs for returning structs by value requires that we copy
3879   // the sret argument into $v0 for the return. We saved the argument into
3880   // a virtual register in the entry block, so now we copy the value out
3881   // and into $v0.
3882   if (MF.getFunction().hasStructRetAttr()) {
3883     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3884     unsigned Reg = MipsFI->getSRetReturnReg();
3885 
3886     if (!Reg)
3887       llvm_unreachable("sret virtual register not created in the entry block");
3888     SDValue Val =
3889         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3890     unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3891 
3892     Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3893     Flag = Chain.getValue(1);
3894     RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3895   }
3896 
3897   RetOps[0] = Chain;  // Update chain.
3898 
3899   // Add the flag if we have it.
3900   if (Flag.getNode())
3901     RetOps.push_back(Flag);
3902 
3903   // ISRs must use "eret".
3904   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3905     return LowerInterruptReturn(RetOps, DL, DAG);
3906 
3907   // Standard return on Mips is a "jr $ra"
3908   return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3909 }
3910 
3911 //===----------------------------------------------------------------------===//
3912 //                           Mips Inline Assembly Support
3913 //===----------------------------------------------------------------------===//
3914 
3915 /// getConstraintType - Given a constraint letter, return the type of
3916 /// constraint it is for this target.
3917 MipsTargetLowering::ConstraintType
3918 MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3919   // Mips specific constraints
3920   // GCC config/mips/constraints.md
3921   //
3922   // 'd' : An address register. Equivalent to r
3923   //       unless generating MIPS16 code.
3924   // 'y' : Equivalent to r; retained for
3925   //       backwards compatibility.
3926   // 'c' : A register suitable for use in an indirect
3927   //       jump. This will always be $25 for -mabicalls.
3928   // 'l' : The lo register. 1 word storage.
3929   // 'x' : The hilo register pair. Double word storage.
3930   if (Constraint.size() == 1) {
3931     switch (Constraint[0]) {
3932       default : break;
3933       case 'd':
3934       case 'y':
3935       case 'f':
3936       case 'c':
3937       case 'l':
3938       case 'x':
3939         return C_RegisterClass;
3940       case 'R':
3941         return C_Memory;
3942     }
3943   }
3944 
3945   if (Constraint == "ZC")
3946     return C_Memory;
3947 
3948   return TargetLowering::getConstraintType(Constraint);
3949 }
3950 
3951 /// Examine constraint type and operand type and determine a weight value.
3952 /// This object must already have been set up with the operand type
3953 /// and the current alternative constraint selected.
3954 TargetLowering::ConstraintWeight
3955 MipsTargetLowering::getSingleConstraintMatchWeight(
3956     AsmOperandInfo &info, const char *constraint) const {
3957   ConstraintWeight weight = CW_Invalid;
3958   Value *CallOperandVal = info.CallOperandVal;
3959     // If we don't have a value, we can't do a match,
3960     // but allow it at the lowest weight.
3961   if (!CallOperandVal)
3962     return CW_Default;
3963   Type *type = CallOperandVal->getType();
3964   // Look at the constraint type.
3965   switch (*constraint) {
3966   default:
3967     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3968     break;
3969   case 'd':
3970   case 'y':
3971     if (type->isIntegerTy())
3972       weight = CW_Register;
3973     break;
3974   case 'f': // FPU or MSA register
3975     if (Subtarget.hasMSA() && type->isVectorTy() &&
3976         type->getPrimitiveSizeInBits().getFixedSize() == 128)
3977       weight = CW_Register;
3978     else if (type->isFloatTy())
3979       weight = CW_Register;
3980     break;
3981   case 'c': // $25 for indirect jumps
3982   case 'l': // lo register
3983   case 'x': // hilo register pair
3984     if (type->isIntegerTy())
3985       weight = CW_SpecificReg;
3986     break;
3987   case 'I': // signed 16 bit immediate
3988   case 'J': // integer zero
3989   case 'K': // unsigned 16 bit immediate
3990   case 'L': // signed 32 bit immediate where lower 16 bits are 0
3991   case 'N': // immediate in the range of -65535 to -1 (inclusive)
3992   case 'O': // signed 15 bit immediate (+- 16383)
3993   case 'P': // immediate in the range of 65535 to 1 (inclusive)
3994     if (isa<ConstantInt>(CallOperandVal))
3995       weight = CW_Constant;
3996     break;
3997   case 'R':
3998     weight = CW_Memory;
3999     break;
4000   }
4001   return weight;
4002 }
4003 
4004 /// This is a helper function to parse a physical register string and split it
4005 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
4006 /// that is returned indicates whether parsing was successful. The second flag
4007 /// is true if the numeric part exists.
4008 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
4009                                               unsigned long long &Reg) {
4010   if (C.front() != '{' || C.back() != '}')
4011     return std::make_pair(false, false);
4012 
4013   // Search for the first numeric character.
4014   StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
4015   I = std::find_if(B, E, isdigit);
4016 
4017   Prefix = StringRef(B, I - B);
4018 
4019   // The second flag is set to false if no numeric characters were found.
4020   if (I == E)
4021     return std::make_pair(true, false);
4022 
4023   // Parse the numeric characters.
4024   return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
4025                         true);
4026 }
4027 
4028 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
4029                                             ISD::NodeType) const {
4030   bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
4031   EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
4032   return VT.bitsLT(MinVT) ? MinVT : VT;
4033 }
4034 
4035 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
4036 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
4037   const TargetRegisterInfo *TRI =
4038       Subtarget.getRegisterInfo();
4039   const TargetRegisterClass *RC;
4040   StringRef Prefix;
4041   unsigned long long Reg;
4042 
4043   std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
4044 
4045   if (!R.first)
4046     return std::make_pair(0U, nullptr);
4047 
4048   if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
4049     // No numeric characters follow "hi" or "lo".
4050     if (R.second)
4051       return std::make_pair(0U, nullptr);
4052 
4053     RC = TRI->getRegClass(Prefix == "hi" ?
4054                           Mips::HI32RegClassID : Mips::LO32RegClassID);
4055     return std::make_pair(*(RC->begin()), RC);
4056   } else if (Prefix.startswith("$msa")) {
4057     // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
4058 
4059     // No numeric characters follow the name.
4060     if (R.second)
4061       return std::make_pair(0U, nullptr);
4062 
4063     Reg = StringSwitch<unsigned long long>(Prefix)
4064               .Case("$msair", Mips::MSAIR)
4065               .Case("$msacsr", Mips::MSACSR)
4066               .Case("$msaaccess", Mips::MSAAccess)
4067               .Case("$msasave", Mips::MSASave)
4068               .Case("$msamodify", Mips::MSAModify)
4069               .Case("$msarequest", Mips::MSARequest)
4070               .Case("$msamap", Mips::MSAMap)
4071               .Case("$msaunmap", Mips::MSAUnmap)
4072               .Default(0);
4073 
4074     if (!Reg)
4075       return std::make_pair(0U, nullptr);
4076 
4077     RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
4078     return std::make_pair(Reg, RC);
4079   }
4080 
4081   if (!R.second)
4082     return std::make_pair(0U, nullptr);
4083 
4084   if (Prefix == "$f") { // Parse $f0-$f31.
4085     // If the size of FP registers is 64-bit or Reg is an even number, select
4086     // the 64-bit register class. Otherwise, select the 32-bit register class.
4087     if (VT == MVT::Other)
4088       VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
4089 
4090     RC = getRegClassFor(VT);
4091 
4092     if (RC == &Mips::AFGR64RegClass) {
4093       assert(Reg % 2 == 0);
4094       Reg >>= 1;
4095     }
4096   } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
4097     RC = TRI->getRegClass(Mips::FCCRegClassID);
4098   else if (Prefix == "$w") { // Parse $w0-$w31.
4099     RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
4100   } else { // Parse $0-$31.
4101     assert(Prefix == "$");
4102     RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
4103   }
4104 
4105   assert(Reg < RC->getNumRegs());
4106   return std::make_pair(*(RC->begin() + Reg), RC);
4107 }
4108 
4109 /// Given a register class constraint, like 'r', if this corresponds directly
4110 /// to an LLVM register class, return a register of 0 and the register class
4111 /// pointer.
4112 std::pair<unsigned, const TargetRegisterClass *>
4113 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4114                                                  StringRef Constraint,
4115                                                  MVT VT) const {
4116   if (Constraint.size() == 1) {
4117     switch (Constraint[0]) {
4118     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
4119     case 'y': // Same as 'r'. Exists for compatibility.
4120     case 'r':
4121       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
4122         if (Subtarget.inMips16Mode())
4123           return std::make_pair(0U, &Mips::CPU16RegsRegClass);
4124         return std::make_pair(0U, &Mips::GPR32RegClass);
4125       }
4126       if (VT == MVT::i64 && !Subtarget.isGP64bit())
4127         return std::make_pair(0U, &Mips::GPR32RegClass);
4128       if (VT == MVT::i64 && Subtarget.isGP64bit())
4129         return std::make_pair(0U, &Mips::GPR64RegClass);
4130       // This will generate an error message
4131       return std::make_pair(0U, nullptr);
4132     case 'f': // FPU or MSA register
4133       if (VT == MVT::v16i8)
4134         return std::make_pair(0U, &Mips::MSA128BRegClass);
4135       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
4136         return std::make_pair(0U, &Mips::MSA128HRegClass);
4137       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
4138         return std::make_pair(0U, &Mips::MSA128WRegClass);
4139       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
4140         return std::make_pair(0U, &Mips::MSA128DRegClass);
4141       else if (VT == MVT::f32)
4142         return std::make_pair(0U, &Mips::FGR32RegClass);
4143       else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
4144         if (Subtarget.isFP64bit())
4145           return std::make_pair(0U, &Mips::FGR64RegClass);
4146         return std::make_pair(0U, &Mips::AFGR64RegClass);
4147       }
4148       break;
4149     case 'c': // register suitable for indirect jump
4150       if (VT == MVT::i32)
4151         return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
4152       if (VT == MVT::i64)
4153         return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
4154       // This will generate an error message
4155       return std::make_pair(0U, nullptr);
4156     case 'l': // use the `lo` register to store values
4157               // that are no bigger than a word
4158       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
4159         return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
4160       return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
4161     case 'x': // use the concatenated `hi` and `lo` registers
4162               // to store doubleword values
4163       // Fixme: Not triggering the use of both hi and low
4164       // This will generate an error message
4165       return std::make_pair(0U, nullptr);
4166     }
4167   }
4168 
4169   if (!Constraint.empty()) {
4170     std::pair<unsigned, const TargetRegisterClass *> R;
4171     R = parseRegForInlineAsmConstraint(Constraint, VT);
4172 
4173     if (R.second)
4174       return R;
4175   }
4176 
4177   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4178 }
4179 
4180 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4181 /// vector.  If it is invalid, don't add anything to Ops.
4182 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4183                                                      std::string &Constraint,
4184                                                      std::vector<SDValue>&Ops,
4185                                                      SelectionDAG &DAG) const {
4186   SDLoc DL(Op);
4187   SDValue Result;
4188 
4189   // Only support length 1 constraints for now.
4190   if (Constraint.length() > 1) return;
4191 
4192   char ConstraintLetter = Constraint[0];
4193   switch (ConstraintLetter) {
4194   default: break; // This will fall through to the generic implementation
4195   case 'I': // Signed 16 bit constant
4196     // If this fails, the parent routine will give an error
4197     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4198       EVT Type = Op.getValueType();
4199       int64_t Val = C->getSExtValue();
4200       if (isInt<16>(Val)) {
4201         Result = DAG.getTargetConstant(Val, DL, Type);
4202         break;
4203       }
4204     }
4205     return;
4206   case 'J': // integer zero
4207     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4208       EVT Type = Op.getValueType();
4209       int64_t Val = C->getZExtValue();
4210       if (Val == 0) {
4211         Result = DAG.getTargetConstant(0, DL, Type);
4212         break;
4213       }
4214     }
4215     return;
4216   case 'K': // unsigned 16 bit immediate
4217     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4218       EVT Type = Op.getValueType();
4219       uint64_t Val = (uint64_t)C->getZExtValue();
4220       if (isUInt<16>(Val)) {
4221         Result = DAG.getTargetConstant(Val, DL, Type);
4222         break;
4223       }
4224     }
4225     return;
4226   case 'L': // signed 32 bit immediate where lower 16 bits are 0
4227     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4228       EVT Type = Op.getValueType();
4229       int64_t Val = C->getSExtValue();
4230       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4231         Result = DAG.getTargetConstant(Val, DL, Type);
4232         break;
4233       }
4234     }
4235     return;
4236   case 'N': // immediate in the range of -65535 to -1 (inclusive)
4237     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4238       EVT Type = Op.getValueType();
4239       int64_t Val = C->getSExtValue();
4240       if ((Val >= -65535) && (Val <= -1)) {
4241         Result = DAG.getTargetConstant(Val, DL, Type);
4242         break;
4243       }
4244     }
4245     return;
4246   case 'O': // signed 15 bit immediate
4247     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4248       EVT Type = Op.getValueType();
4249       int64_t Val = C->getSExtValue();
4250       if ((isInt<15>(Val))) {
4251         Result = DAG.getTargetConstant(Val, DL, Type);
4252         break;
4253       }
4254     }
4255     return;
4256   case 'P': // immediate in the range of 1 to 65535 (inclusive)
4257     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4258       EVT Type = Op.getValueType();
4259       int64_t Val = C->getSExtValue();
4260       if ((Val <= 65535) && (Val >= 1)) {
4261         Result = DAG.getTargetConstant(Val, DL, Type);
4262         break;
4263       }
4264     }
4265     return;
4266   }
4267 
4268   if (Result.getNode()) {
4269     Ops.push_back(Result);
4270     return;
4271   }
4272 
4273   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4274 }
4275 
4276 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4277                                                const AddrMode &AM, Type *Ty,
4278                                                unsigned AS,
4279                                                Instruction *I) const {
4280   // No global is ever allowed as a base.
4281   if (AM.BaseGV)
4282     return false;
4283 
4284   switch (AM.Scale) {
4285   case 0: // "r+i" or just "i", depending on HasBaseReg.
4286     break;
4287   case 1:
4288     if (!AM.HasBaseReg) // allow "r+i".
4289       break;
4290     return false; // disallow "r+r" or "r+r+i".
4291   default:
4292     return false;
4293   }
4294 
4295   return true;
4296 }
4297 
4298 bool
4299 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4300   // The Mips target isn't yet aware of offsets.
4301   return false;
4302 }
4303 
4304 EVT MipsTargetLowering::getOptimalMemOpType(
4305     const MemOp &Op, const AttributeList &FuncAttributes) const {
4306   if (Subtarget.hasMips64())
4307     return MVT::i64;
4308 
4309   return MVT::i32;
4310 }
4311 
4312 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
4313                                       bool ForCodeSize) const {
4314   if (VT != MVT::f32 && VT != MVT::f64)
4315     return false;
4316   if (Imm.isNegZero())
4317     return false;
4318   return Imm.isZero();
4319 }
4320 
4321 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4322 
4323   // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4324   if (ABI.IsN64() && isPositionIndependent())
4325     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4326 
4327   return TargetLowering::getJumpTableEncoding();
4328 }
4329 
4330 bool MipsTargetLowering::useSoftFloat() const {
4331   return Subtarget.useSoftFloat();
4332 }
4333 
4334 void MipsTargetLowering::copyByValRegs(
4335     SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4336     SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4337     SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4338     unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4339     MipsCCState &State) const {
4340   MachineFunction &MF = DAG.getMachineFunction();
4341   MachineFrameInfo &MFI = MF.getFrameInfo();
4342   unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4343   unsigned NumRegs = LastReg - FirstReg;
4344   unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4345   unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4346   int FrameObjOffset;
4347   ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4348 
4349   if (RegAreaSize)
4350     FrameObjOffset =
4351         (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4352         (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4353   else
4354     FrameObjOffset = VA.getLocMemOffset();
4355 
4356   // Create frame object.
4357   EVT PtrTy = getPointerTy(DAG.getDataLayout());
4358   // Make the fixed object stored to mutable so that the load instructions
4359   // referencing it have their memory dependencies added.
4360   // Set the frame object as isAliased which clears the underlying objects
4361   // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4362   // stores as dependencies for loads referencing this fixed object.
4363   int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4364   SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4365   InVals.push_back(FIN);
4366 
4367   if (!NumRegs)
4368     return;
4369 
4370   // Copy arg registers.
4371   MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4372   const TargetRegisterClass *RC = getRegClassFor(RegTy);
4373 
4374   for (unsigned I = 0; I < NumRegs; ++I) {
4375     unsigned ArgReg = ByValArgRegs[FirstReg + I];
4376     unsigned VReg = addLiveIn(MF, ArgReg, RC);
4377     unsigned Offset = I * GPRSizeInBytes;
4378     SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4379                                    DAG.getConstant(Offset, DL, PtrTy));
4380     SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4381                                  StorePtr, MachinePointerInfo(FuncArg, Offset));
4382     OutChains.push_back(Store);
4383   }
4384 }
4385 
4386 // Copy byVal arg to registers and stack.
4387 void MipsTargetLowering::passByValArg(
4388     SDValue Chain, const SDLoc &DL,
4389     std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4390     SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4391     MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4392     unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4393     const CCValAssign &VA) const {
4394   unsigned ByValSizeInBytes = Flags.getByValSize();
4395   unsigned OffsetInBytes = 0; // From beginning of struct
4396   unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4397   Align Alignment =
4398       std::min(Flags.getNonZeroByValAlign(), Align(RegSizeInBytes));
4399   EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4400       RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4401   unsigned NumRegs = LastReg - FirstReg;
4402 
4403   if (NumRegs) {
4404     ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4405     bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4406     unsigned I = 0;
4407 
4408     // Copy words to registers.
4409     for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4410       SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4411                                     DAG.getConstant(OffsetInBytes, DL, PtrTy));
4412       SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4413                                     MachinePointerInfo(), Alignment);
4414       MemOpChains.push_back(LoadVal.getValue(1));
4415       unsigned ArgReg = ArgRegs[FirstReg + I];
4416       RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4417     }
4418 
4419     // Return if the struct has been fully copied.
4420     if (ByValSizeInBytes == OffsetInBytes)
4421       return;
4422 
4423     // Copy the remainder of the byval argument with sub-word loads and shifts.
4424     if (LeftoverBytes) {
4425       SDValue Val;
4426 
4427       for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4428            OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4429         unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4430 
4431         if (RemainingSizeInBytes < LoadSizeInBytes)
4432           continue;
4433 
4434         // Load subword.
4435         SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4436                                       DAG.getConstant(OffsetInBytes, DL,
4437                                                       PtrTy));
4438         SDValue LoadVal = DAG.getExtLoad(
4439             ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4440             MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
4441         MemOpChains.push_back(LoadVal.getValue(1));
4442 
4443         // Shift the loaded value.
4444         unsigned Shamt;
4445 
4446         if (isLittle)
4447           Shamt = TotalBytesLoaded * 8;
4448         else
4449           Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4450 
4451         SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4452                                     DAG.getConstant(Shamt, DL, MVT::i32));
4453 
4454         if (Val.getNode())
4455           Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4456         else
4457           Val = Shift;
4458 
4459         OffsetInBytes += LoadSizeInBytes;
4460         TotalBytesLoaded += LoadSizeInBytes;
4461         Alignment = std::min(Alignment, Align(LoadSizeInBytes));
4462       }
4463 
4464       unsigned ArgReg = ArgRegs[FirstReg + I];
4465       RegsToPass.push_back(std::make_pair(ArgReg, Val));
4466       return;
4467     }
4468   }
4469 
4470   // Copy remainder of byval arg to it with memcpy.
4471   unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4472   SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4473                             DAG.getConstant(OffsetInBytes, DL, PtrTy));
4474   SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4475                             DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4476   Chain = DAG.getMemcpy(
4477       Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, DL, PtrTy),
4478       Align(Alignment), /*isVolatile=*/false, /*AlwaysInline=*/false,
4479       /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
4480   MemOpChains.push_back(Chain);
4481 }
4482 
4483 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4484                                          SDValue Chain, const SDLoc &DL,
4485                                          SelectionDAG &DAG,
4486                                          CCState &State) const {
4487   ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4488   unsigned Idx = State.getFirstUnallocated(ArgRegs);
4489   unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4490   MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4491   const TargetRegisterClass *RC = getRegClassFor(RegTy);
4492   MachineFunction &MF = DAG.getMachineFunction();
4493   MachineFrameInfo &MFI = MF.getFrameInfo();
4494   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4495 
4496   // Offset of the first variable argument from stack pointer.
4497   int VaArgOffset;
4498 
4499   if (ArgRegs.size() == Idx)
4500     VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
4501   else {
4502     VaArgOffset =
4503         (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4504         (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4505   }
4506 
4507   // Record the frame index of the first variable argument
4508   // which is a value necessary to VASTART.
4509   int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4510   MipsFI->setVarArgsFrameIndex(FI);
4511 
4512   // Copy the integer registers that have not been used for argument passing
4513   // to the argument register save area. For O32, the save area is allocated
4514   // in the caller's stack frame, while for N32/64, it is allocated in the
4515   // callee's stack frame.
4516   for (unsigned I = Idx; I < ArgRegs.size();
4517        ++I, VaArgOffset += RegSizeInBytes) {
4518     unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4519     SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4520     FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4521     SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4522     SDValue Store =
4523         DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4524     cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4525         (Value *)nullptr);
4526     OutChains.push_back(Store);
4527   }
4528 }
4529 
4530 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4531                                      Align Alignment) const {
4532   const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4533 
4534   assert(Size && "Byval argument's size shouldn't be 0.");
4535 
4536   Alignment = std::min(Alignment, TFL->getStackAlign());
4537 
4538   unsigned FirstReg = 0;
4539   unsigned NumRegs = 0;
4540 
4541   if (State->getCallingConv() != CallingConv::Fast) {
4542     unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4543     ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4544     // FIXME: The O32 case actually describes no shadow registers.
4545     const MCPhysReg *ShadowRegs =
4546         ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4547 
4548     // We used to check the size as well but we can't do that anymore since
4549     // CCState::HandleByVal() rounds up the size after calling this function.
4550     assert(
4551         Alignment >= Align(RegSizeInBytes) &&
4552         "Byval argument's alignment should be a multiple of RegSizeInBytes.");
4553 
4554     FirstReg = State->getFirstUnallocated(IntArgRegs);
4555 
4556     // If Alignment > RegSizeInBytes, the first arg register must be even.
4557     // FIXME: This condition happens to do the right thing but it's not the
4558     //        right way to test it. We want to check that the stack frame offset
4559     //        of the register is aligned.
4560     if ((Alignment > RegSizeInBytes) && (FirstReg % 2)) {
4561       State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4562       ++FirstReg;
4563     }
4564 
4565     // Mark the registers allocated.
4566     Size = alignTo(Size, RegSizeInBytes);
4567     for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4568          Size -= RegSizeInBytes, ++I, ++NumRegs)
4569       State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4570   }
4571 
4572   State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4573 }
4574 
4575 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4576                                                         MachineBasicBlock *BB,
4577                                                         bool isFPCmp,
4578                                                         unsigned Opc) const {
4579   assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4580          "Subtarget already supports SELECT nodes with the use of"
4581          "conditional-move instructions.");
4582 
4583   const TargetInstrInfo *TII =
4584       Subtarget.getInstrInfo();
4585   DebugLoc DL = MI.getDebugLoc();
4586 
4587   // To "insert" a SELECT instruction, we actually have to insert the
4588   // diamond control-flow pattern.  The incoming instruction knows the
4589   // destination vreg to set, the condition code register to branch on, the
4590   // true/false values to select between, and a branch opcode to use.
4591   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4592   MachineFunction::iterator It = ++BB->getIterator();
4593 
4594   //  thisMBB:
4595   //  ...
4596   //   TrueVal = ...
4597   //   setcc r1, r2, r3
4598   //   bNE   r1, r0, copy1MBB
4599   //   fallthrough --> copy0MBB
4600   MachineBasicBlock *thisMBB  = BB;
4601   MachineFunction *F = BB->getParent();
4602   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4603   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4604   F->insert(It, copy0MBB);
4605   F->insert(It, sinkMBB);
4606 
4607   // Transfer the remainder of BB and its successor edges to sinkMBB.
4608   sinkMBB->splice(sinkMBB->begin(), BB,
4609                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
4610   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4611 
4612   // Next, add the true and fallthrough blocks as its successors.
4613   BB->addSuccessor(copy0MBB);
4614   BB->addSuccessor(sinkMBB);
4615 
4616   if (isFPCmp) {
4617     // bc1[tf] cc, sinkMBB
4618     BuildMI(BB, DL, TII->get(Opc))
4619         .addReg(MI.getOperand(1).getReg())
4620         .addMBB(sinkMBB);
4621   } else {
4622     // bne rs, $0, sinkMBB
4623     BuildMI(BB, DL, TII->get(Opc))
4624         .addReg(MI.getOperand(1).getReg())
4625         .addReg(Mips::ZERO)
4626         .addMBB(sinkMBB);
4627   }
4628 
4629   //  copy0MBB:
4630   //   %FalseValue = ...
4631   //   # fallthrough to sinkMBB
4632   BB = copy0MBB;
4633 
4634   // Update machine-CFG edges
4635   BB->addSuccessor(sinkMBB);
4636 
4637   //  sinkMBB:
4638   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4639   //  ...
4640   BB = sinkMBB;
4641 
4642   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4643       .addReg(MI.getOperand(2).getReg())
4644       .addMBB(thisMBB)
4645       .addReg(MI.getOperand(3).getReg())
4646       .addMBB(copy0MBB);
4647 
4648   MI.eraseFromParent(); // The pseudo instruction is gone now.
4649 
4650   return BB;
4651 }
4652 
4653 MachineBasicBlock *
4654 MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
4655                                        MachineBasicBlock *BB) const {
4656   assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4657          "Subtarget already supports SELECT nodes with the use of"
4658          "conditional-move instructions.");
4659 
4660   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4661   DebugLoc DL = MI.getDebugLoc();
4662 
4663   // D_SELECT substitutes two SELECT nodes that goes one after another and
4664   // have the same condition operand. On machines which don't have
4665   // conditional-move instruction, it reduces unnecessary branch instructions
4666   // which are result of using two diamond patterns that are result of two
4667   // SELECT pseudo instructions.
4668   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4669   MachineFunction::iterator It = ++BB->getIterator();
4670 
4671   //  thisMBB:
4672   //  ...
4673   //   TrueVal = ...
4674   //   setcc r1, r2, r3
4675   //   bNE   r1, r0, copy1MBB
4676   //   fallthrough --> copy0MBB
4677   MachineBasicBlock *thisMBB = BB;
4678   MachineFunction *F = BB->getParent();
4679   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4680   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4681   F->insert(It, copy0MBB);
4682   F->insert(It, sinkMBB);
4683 
4684   // Transfer the remainder of BB and its successor edges to sinkMBB.
4685   sinkMBB->splice(sinkMBB->begin(), BB,
4686                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
4687   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4688 
4689   // Next, add the true and fallthrough blocks as its successors.
4690   BB->addSuccessor(copy0MBB);
4691   BB->addSuccessor(sinkMBB);
4692 
4693   // bne rs, $0, sinkMBB
4694   BuildMI(BB, DL, TII->get(Mips::BNE))
4695       .addReg(MI.getOperand(2).getReg())
4696       .addReg(Mips::ZERO)
4697       .addMBB(sinkMBB);
4698 
4699   //  copy0MBB:
4700   //   %FalseValue = ...
4701   //   # fallthrough to sinkMBB
4702   BB = copy0MBB;
4703 
4704   // Update machine-CFG edges
4705   BB->addSuccessor(sinkMBB);
4706 
4707   //  sinkMBB:
4708   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4709   //  ...
4710   BB = sinkMBB;
4711 
4712   // Use two PHI nodes to select two reults
4713   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4714       .addReg(MI.getOperand(3).getReg())
4715       .addMBB(thisMBB)
4716       .addReg(MI.getOperand(5).getReg())
4717       .addMBB(copy0MBB);
4718   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
4719       .addReg(MI.getOperand(4).getReg())
4720       .addMBB(thisMBB)
4721       .addReg(MI.getOperand(6).getReg())
4722       .addMBB(copy0MBB);
4723 
4724   MI.eraseFromParent(); // The pseudo instruction is gone now.
4725 
4726   return BB;
4727 }
4728 
4729 // FIXME? Maybe this could be a TableGen attribute on some registers and
4730 // this table could be generated automatically from RegInfo.
4731 Register
4732 MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT,
4733                                       const MachineFunction &MF) const {
4734   // Named registers is expected to be fairly rare. For now, just support $28
4735   // since the linux kernel uses it.
4736   if (Subtarget.isGP64bit()) {
4737     Register Reg = StringSwitch<Register>(RegName)
4738                          .Case("$28", Mips::GP_64)
4739                          .Default(Register());
4740     if (Reg)
4741       return Reg;
4742   } else {
4743     Register Reg = StringSwitch<Register>(RegName)
4744                          .Case("$28", Mips::GP)
4745                          .Default(Register());
4746     if (Reg)
4747       return Reg;
4748   }
4749   report_fatal_error("Invalid register name global variable");
4750 }
4751 
4752 MachineBasicBlock *MipsTargetLowering::emitLDR_W(MachineInstr &MI,
4753                                                  MachineBasicBlock *BB) const {
4754   MachineFunction *MF = BB->getParent();
4755   MachineRegisterInfo &MRI = MF->getRegInfo();
4756   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4757   const bool IsLittle = Subtarget.isLittle();
4758   DebugLoc DL = MI.getDebugLoc();
4759 
4760   Register Dest = MI.getOperand(0).getReg();
4761   Register Address = MI.getOperand(1).getReg();
4762   unsigned Imm = MI.getOperand(2).getImm();
4763 
4764   MachineBasicBlock::iterator I(MI);
4765 
4766   if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4767     // Mips release 6 can load from adress that is not naturally-aligned.
4768     Register Temp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4769     BuildMI(*BB, I, DL, TII->get(Mips::LW))
4770         .addDef(Temp)
4771         .addUse(Address)
4772         .addImm(Imm);
4773     BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(Temp);
4774   } else {
4775     // Mips release 5 needs to use instructions that can load from an unaligned
4776     // memory address.
4777     Register LoadHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4778     Register LoadFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4779     Register Undef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4780     BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(Undef);
4781     BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4782         .addDef(LoadHalf)
4783         .addUse(Address)
4784         .addImm(Imm + (IsLittle ? 0 : 3))
4785         .addUse(Undef);
4786     BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4787         .addDef(LoadFull)
4788         .addUse(Address)
4789         .addImm(Imm + (IsLittle ? 3 : 0))
4790         .addUse(LoadHalf);
4791     BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(LoadFull);
4792   }
4793 
4794   MI.eraseFromParent();
4795   return BB;
4796 }
4797 
4798 MachineBasicBlock *MipsTargetLowering::emitLDR_D(MachineInstr &MI,
4799                                                  MachineBasicBlock *BB) const {
4800   MachineFunction *MF = BB->getParent();
4801   MachineRegisterInfo &MRI = MF->getRegInfo();
4802   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4803   const bool IsLittle = Subtarget.isLittle();
4804   DebugLoc DL = MI.getDebugLoc();
4805 
4806   Register Dest = MI.getOperand(0).getReg();
4807   Register Address = MI.getOperand(1).getReg();
4808   unsigned Imm = MI.getOperand(2).getImm();
4809 
4810   MachineBasicBlock::iterator I(MI);
4811 
4812   if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4813     // Mips release 6 can load from adress that is not naturally-aligned.
4814     if (Subtarget.isGP64bit()) {
4815       Register Temp = MRI.createVirtualRegister(&Mips::GPR64RegClass);
4816       BuildMI(*BB, I, DL, TII->get(Mips::LD))
4817           .addDef(Temp)
4818           .addUse(Address)
4819           .addImm(Imm);
4820       BuildMI(*BB, I, DL, TII->get(Mips::FILL_D)).addDef(Dest).addUse(Temp);
4821     } else {
4822       Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4823       Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4824       Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4825       BuildMI(*BB, I, DL, TII->get(Mips::LW))
4826           .addDef(Lo)
4827           .addUse(Address)
4828           .addImm(Imm + (IsLittle ? 0 : 4));
4829       BuildMI(*BB, I, DL, TII->get(Mips::LW))
4830           .addDef(Hi)
4831           .addUse(Address)
4832           .addImm(Imm + (IsLittle ? 4 : 0));
4833       BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(Lo);
4834       BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
4835           .addUse(Wtemp)
4836           .addUse(Hi)
4837           .addImm(1);
4838     }
4839   } else {
4840     // Mips release 5 needs to use instructions that can load from an unaligned
4841     // memory address.
4842     Register LoHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4843     Register LoFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4844     Register LoUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4845     Register HiHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4846     Register HiFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4847     Register HiUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4848     Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4849     BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(LoUndef);
4850     BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4851         .addDef(LoHalf)
4852         .addUse(Address)
4853         .addImm(Imm + (IsLittle ? 0 : 7))
4854         .addUse(LoUndef);
4855     BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4856         .addDef(LoFull)
4857         .addUse(Address)
4858         .addImm(Imm + (IsLittle ? 3 : 4))
4859         .addUse(LoHalf);
4860     BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(HiUndef);
4861     BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4862         .addDef(HiHalf)
4863         .addUse(Address)
4864         .addImm(Imm + (IsLittle ? 4 : 3))
4865         .addUse(HiUndef);
4866     BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4867         .addDef(HiFull)
4868         .addUse(Address)
4869         .addImm(Imm + (IsLittle ? 7 : 0))
4870         .addUse(HiHalf);
4871     BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(LoFull);
4872     BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
4873         .addUse(Wtemp)
4874         .addUse(HiFull)
4875         .addImm(1);
4876   }
4877 
4878   MI.eraseFromParent();
4879   return BB;
4880 }
4881 
4882 MachineBasicBlock *MipsTargetLowering::emitSTR_W(MachineInstr &MI,
4883                                                  MachineBasicBlock *BB) const {
4884   MachineFunction *MF = BB->getParent();
4885   MachineRegisterInfo &MRI = MF->getRegInfo();
4886   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4887   const bool IsLittle = Subtarget.isLittle();
4888   DebugLoc DL = MI.getDebugLoc();
4889 
4890   Register StoreVal = MI.getOperand(0).getReg();
4891   Register Address = MI.getOperand(1).getReg();
4892   unsigned Imm = MI.getOperand(2).getImm();
4893 
4894   MachineBasicBlock::iterator I(MI);
4895 
4896   if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4897     // Mips release 6 can store to adress that is not naturally-aligned.
4898     Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4899     Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4900     BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(BitcastW).addUse(StoreVal);
4901     BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4902         .addDef(Tmp)
4903         .addUse(BitcastW)
4904         .addImm(0);
4905     BuildMI(*BB, I, DL, TII->get(Mips::SW))
4906         .addUse(Tmp)
4907         .addUse(Address)
4908         .addImm(Imm);
4909   } else {
4910     // Mips release 5 needs to use instructions that can store to an unaligned
4911     // memory address.
4912     Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4913     BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4914         .addDef(Tmp)
4915         .addUse(StoreVal)
4916         .addImm(0);
4917     BuildMI(*BB, I, DL, TII->get(Mips::SWR))
4918         .addUse(Tmp)
4919         .addUse(Address)
4920         .addImm(Imm + (IsLittle ? 0 : 3));
4921     BuildMI(*BB, I, DL, TII->get(Mips::SWL))
4922         .addUse(Tmp)
4923         .addUse(Address)
4924         .addImm(Imm + (IsLittle ? 3 : 0));
4925   }
4926 
4927   MI.eraseFromParent();
4928 
4929   return BB;
4930 }
4931 
4932 MachineBasicBlock *MipsTargetLowering::emitSTR_D(MachineInstr &MI,
4933                                                  MachineBasicBlock *BB) const {
4934   MachineFunction *MF = BB->getParent();
4935   MachineRegisterInfo &MRI = MF->getRegInfo();
4936   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4937   const bool IsLittle = Subtarget.isLittle();
4938   DebugLoc DL = MI.getDebugLoc();
4939 
4940   Register StoreVal = MI.getOperand(0).getReg();
4941   Register Address = MI.getOperand(1).getReg();
4942   unsigned Imm = MI.getOperand(2).getImm();
4943 
4944   MachineBasicBlock::iterator I(MI);
4945 
4946   if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4947     // Mips release 6 can store to adress that is not naturally-aligned.
4948     if (Subtarget.isGP64bit()) {
4949       Register BitcastD = MRI.createVirtualRegister(&Mips::MSA128DRegClass);
4950       Register Lo = MRI.createVirtualRegister(&Mips::GPR64RegClass);
4951       BuildMI(*BB, I, DL, TII->get(Mips::COPY))
4952           .addDef(BitcastD)
4953           .addUse(StoreVal);
4954       BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_D))
4955           .addDef(Lo)
4956           .addUse(BitcastD)
4957           .addImm(0);
4958       BuildMI(*BB, I, DL, TII->get(Mips::SD))
4959           .addUse(Lo)
4960           .addUse(Address)
4961           .addImm(Imm);
4962     } else {
4963       Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4964       Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4965       Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4966       BuildMI(*BB, I, DL, TII->get(Mips::COPY))
4967           .addDef(BitcastW)
4968           .addUse(StoreVal);
4969       BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4970           .addDef(Lo)
4971           .addUse(BitcastW)
4972           .addImm(0);
4973       BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4974           .addDef(Hi)
4975           .addUse(BitcastW)
4976           .addImm(1);
4977       BuildMI(*BB, I, DL, TII->get(Mips::SW))
4978           .addUse(Lo)
4979           .addUse(Address)
4980           .addImm(Imm + (IsLittle ? 0 : 4));
4981       BuildMI(*BB, I, DL, TII->get(Mips::SW))
4982           .addUse(Hi)
4983           .addUse(Address)
4984           .addImm(Imm + (IsLittle ? 4 : 0));
4985     }
4986   } else {
4987     // Mips release 5 needs to use instructions that can store to an unaligned
4988     // memory address.
4989     Register Bitcast = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4990     Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4991     Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4992     BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(Bitcast).addUse(StoreVal);
4993     BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4994         .addDef(Lo)
4995         .addUse(Bitcast)
4996         .addImm(0);
4997     BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4998         .addDef(Hi)
4999         .addUse(Bitcast)
5000         .addImm(1);
5001     BuildMI(*BB, I, DL, TII->get(Mips::SWR))
5002         .addUse(Lo)
5003         .addUse(Address)
5004         .addImm(Imm + (IsLittle ? 0 : 3));
5005     BuildMI(*BB, I, DL, TII->get(Mips::SWL))
5006         .addUse(Lo)
5007         .addUse(Address)
5008         .addImm(Imm + (IsLittle ? 3 : 0));
5009     BuildMI(*BB, I, DL, TII->get(Mips::SWR))
5010         .addUse(Hi)
5011         .addUse(Address)
5012         .addImm(Imm + (IsLittle ? 4 : 7));
5013     BuildMI(*BB, I, DL, TII->get(Mips::SWL))
5014         .addUse(Hi)
5015         .addUse(Address)
5016         .addImm(Imm + (IsLittle ? 7 : 4));
5017   }
5018 
5019   MI.eraseFromParent();
5020   return BB;
5021 }
5022