1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that Mips uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsISelLowering.h" 15 #include "MCTargetDesc/MipsBaseInfo.h" 16 #include "MCTargetDesc/MipsInstPrinter.h" 17 #include "MCTargetDesc/MipsMCTargetDesc.h" 18 #include "MipsCCState.h" 19 #include "MipsInstrInfo.h" 20 #include "MipsMachineFunction.h" 21 #include "MipsRegisterInfo.h" 22 #include "MipsSubtarget.h" 23 #include "MipsTargetMachine.h" 24 #include "MipsTargetObjectFile.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/StringSwitch.h" 31 #include "llvm/CodeGen/CallingConvLower.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineJumpTableInfo.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/MachineValueType.h" 44 #include "llvm/CodeGen/RuntimeLibcalls.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/CodeGen/SelectionDAGNodes.h" 47 #include "llvm/CodeGen/TargetFrameLowering.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/ValueTypes.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalValue.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCRegisterInfo.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CodeGen.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cctype> 73 #include <cstdint> 74 #include <deque> 75 #include <iterator> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "mips-lower" 82 83 STATISTIC(NumTailCalls, "Number of tail calls"); 84 85 static cl::opt<bool> 86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden, 87 cl::desc("MIPS: Don't trap on integer division by zero."), 88 cl::init(false)); 89 90 extern cl::opt<bool> EmitJalrReloc; 91 92 static const MCPhysReg Mips64DPRegs[8] = { 93 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, 94 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 95 }; 96 97 // The MIPS MSA ABI passes vector arguments in the integer register set. 98 // The number of integer registers used is dependant on the ABI used. 99 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 100 CallingConv::ID CC, 101 EVT VT) const { 102 if (!VT.isVector()) 103 return getRegisterType(Context, VT); 104 105 if (VT.isPow2VectorType() && VT.getVectorElementType().isRound()) 106 return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32 107 : MVT::i64; 108 return getRegisterType(Context, VT.getVectorElementType()); 109 } 110 111 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 112 CallingConv::ID CC, 113 EVT VT) const { 114 if (VT.isVector()) { 115 if (VT.isPow2VectorType() && VT.getVectorElementType().isRound()) 116 return divideCeil(VT.getSizeInBits(), Subtarget.isABI_O32() ? 32 : 64); 117 return VT.getVectorNumElements() * 118 getNumRegisters(Context, VT.getVectorElementType()); 119 } 120 return MipsTargetLowering::getNumRegisters(Context, VT); 121 } 122 123 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv( 124 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, 125 unsigned &NumIntermediates, MVT &RegisterVT) const { 126 if (VT.isPow2VectorType()) { 127 IntermediateVT = getRegisterTypeForCallingConv(Context, CC, VT); 128 RegisterVT = IntermediateVT.getSimpleVT(); 129 NumIntermediates = getNumRegistersForCallingConv(Context, CC, VT); 130 return NumIntermediates; 131 } 132 IntermediateVT = VT.getVectorElementType(); 133 NumIntermediates = VT.getVectorNumElements(); 134 RegisterVT = getRegisterType(Context, IntermediateVT); 135 return NumIntermediates * getNumRegisters(Context, IntermediateVT); 136 } 137 138 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { 139 MachineFunction &MF = DAG.getMachineFunction(); 140 MipsFunctionInfo *FI = MF.getInfo<MipsFunctionInfo>(); 141 return DAG.getRegister(FI->getGlobalBaseReg(MF), Ty); 142 } 143 144 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, 145 SelectionDAG &DAG, 146 unsigned Flag) const { 147 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); 148 } 149 150 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, 151 SelectionDAG &DAG, 152 unsigned Flag) const { 153 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); 154 } 155 156 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, 157 SelectionDAG &DAG, 158 unsigned Flag) const { 159 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); 160 } 161 162 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, 163 SelectionDAG &DAG, 164 unsigned Flag) const { 165 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); 166 } 167 168 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, 169 SelectionDAG &DAG, 170 unsigned Flag) const { 171 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 172 N->getOffset(), Flag); 173 } 174 175 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { 176 switch ((MipsISD::NodeType)Opcode) { 177 case MipsISD::FIRST_NUMBER: break; 178 case MipsISD::JmpLink: return "MipsISD::JmpLink"; 179 case MipsISD::TailCall: return "MipsISD::TailCall"; 180 case MipsISD::Highest: return "MipsISD::Highest"; 181 case MipsISD::Higher: return "MipsISD::Higher"; 182 case MipsISD::Hi: return "MipsISD::Hi"; 183 case MipsISD::Lo: return "MipsISD::Lo"; 184 case MipsISD::GotHi: return "MipsISD::GotHi"; 185 case MipsISD::TlsHi: return "MipsISD::TlsHi"; 186 case MipsISD::GPRel: return "MipsISD::GPRel"; 187 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; 188 case MipsISD::Ret: return "MipsISD::Ret"; 189 case MipsISD::ERet: return "MipsISD::ERet"; 190 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN"; 191 case MipsISD::FAbs: return "MipsISD::FAbs"; 192 case MipsISD::FMS: return "MipsISD::FMS"; 193 case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; 194 case MipsISD::FPCmp: return "MipsISD::FPCmp"; 195 case MipsISD::FSELECT: return "MipsISD::FSELECT"; 196 case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64"; 197 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; 198 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; 199 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP"; 200 case MipsISD::MFHI: return "MipsISD::MFHI"; 201 case MipsISD::MFLO: return "MipsISD::MFLO"; 202 case MipsISD::MTLOHI: return "MipsISD::MTLOHI"; 203 case MipsISD::Mult: return "MipsISD::Mult"; 204 case MipsISD::Multu: return "MipsISD::Multu"; 205 case MipsISD::MAdd: return "MipsISD::MAdd"; 206 case MipsISD::MAddu: return "MipsISD::MAddu"; 207 case MipsISD::MSub: return "MipsISD::MSub"; 208 case MipsISD::MSubu: return "MipsISD::MSubu"; 209 case MipsISD::DivRem: return "MipsISD::DivRem"; 210 case MipsISD::DivRemU: return "MipsISD::DivRemU"; 211 case MipsISD::DivRem16: return "MipsISD::DivRem16"; 212 case MipsISD::DivRemU16: return "MipsISD::DivRemU16"; 213 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; 214 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; 215 case MipsISD::Wrapper: return "MipsISD::Wrapper"; 216 case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; 217 case MipsISD::Sync: return "MipsISD::Sync"; 218 case MipsISD::Ext: return "MipsISD::Ext"; 219 case MipsISD::Ins: return "MipsISD::Ins"; 220 case MipsISD::CIns: return "MipsISD::CIns"; 221 case MipsISD::LWL: return "MipsISD::LWL"; 222 case MipsISD::LWR: return "MipsISD::LWR"; 223 case MipsISD::SWL: return "MipsISD::SWL"; 224 case MipsISD::SWR: return "MipsISD::SWR"; 225 case MipsISD::LDL: return "MipsISD::LDL"; 226 case MipsISD::LDR: return "MipsISD::LDR"; 227 case MipsISD::SDL: return "MipsISD::SDL"; 228 case MipsISD::SDR: return "MipsISD::SDR"; 229 case MipsISD::EXTP: return "MipsISD::EXTP"; 230 case MipsISD::EXTPDP: return "MipsISD::EXTPDP"; 231 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H"; 232 case MipsISD::EXTR_W: return "MipsISD::EXTR_W"; 233 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W"; 234 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W"; 235 case MipsISD::SHILO: return "MipsISD::SHILO"; 236 case MipsISD::MTHLIP: return "MipsISD::MTHLIP"; 237 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH"; 238 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL"; 239 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR"; 240 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL"; 241 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR"; 242 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL"; 243 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR"; 244 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL"; 245 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR"; 246 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH"; 247 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH"; 248 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W"; 249 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W"; 250 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH"; 251 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH"; 252 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH"; 253 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH"; 254 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH"; 255 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH"; 256 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH"; 257 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH"; 258 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH"; 259 case MipsISD::MULT: return "MipsISD::MULT"; 260 case MipsISD::MULTU: return "MipsISD::MULTU"; 261 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP"; 262 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP"; 263 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP"; 264 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP"; 265 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP"; 266 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP"; 267 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP"; 268 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP"; 269 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP"; 270 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO"; 271 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO"; 272 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO"; 273 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO"; 274 case MipsISD::VCEQ: return "MipsISD::VCEQ"; 275 case MipsISD::VCLE_S: return "MipsISD::VCLE_S"; 276 case MipsISD::VCLE_U: return "MipsISD::VCLE_U"; 277 case MipsISD::VCLT_S: return "MipsISD::VCLT_S"; 278 case MipsISD::VCLT_U: return "MipsISD::VCLT_U"; 279 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; 280 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; 281 case MipsISD::VNOR: return "MipsISD::VNOR"; 282 case MipsISD::VSHF: return "MipsISD::VSHF"; 283 case MipsISD::SHF: return "MipsISD::SHF"; 284 case MipsISD::ILVEV: return "MipsISD::ILVEV"; 285 case MipsISD::ILVOD: return "MipsISD::ILVOD"; 286 case MipsISD::ILVL: return "MipsISD::ILVL"; 287 case MipsISD::ILVR: return "MipsISD::ILVR"; 288 case MipsISD::PCKEV: return "MipsISD::PCKEV"; 289 case MipsISD::PCKOD: return "MipsISD::PCKOD"; 290 case MipsISD::INSVE: return "MipsISD::INSVE"; 291 } 292 return nullptr; 293 } 294 295 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, 296 const MipsSubtarget &STI) 297 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) { 298 // Mips does not have i1 type, so use i32 for 299 // setcc operations results (slt, sgt, ...). 300 setBooleanContents(ZeroOrOneBooleanContent); 301 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 302 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA 303 // does. Integer booleans still use 0 and 1. 304 if (Subtarget.hasMips32r6()) 305 setBooleanContents(ZeroOrOneBooleanContent, 306 ZeroOrNegativeOneBooleanContent); 307 308 // Load extented operations for i1 types must be promoted 309 for (MVT VT : MVT::integer_valuetypes()) { 310 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 311 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 312 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 313 } 314 315 // MIPS doesn't have extending float->double load/store. Set LoadExtAction 316 // for f32, f16 317 for (MVT VT : MVT::fp_valuetypes()) { 318 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 319 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 320 } 321 322 // Set LoadExtAction for f16 vectors to Expand 323 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 324 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements()); 325 if (F16VT.isValid()) 326 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand); 327 } 328 329 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 330 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 331 332 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 333 334 // Used by legalize types to correctly generate the setcc result. 335 // Without this, every float setcc comes with a AND/OR with the result, 336 // we don't want this, since the fpcmp result goes to a flag register, 337 // which is used implicitly by brcond and select operations. 338 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 339 340 // Mips Custom Operations 341 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 342 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 343 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 344 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 345 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 346 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 347 setOperationAction(ISD::SELECT, MVT::f32, Custom); 348 setOperationAction(ISD::SELECT, MVT::f64, Custom); 349 setOperationAction(ISD::SELECT, MVT::i32, Custom); 350 setOperationAction(ISD::SETCC, MVT::f32, Custom); 351 setOperationAction(ISD::SETCC, MVT::f64, Custom); 352 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 353 setOperationAction(ISD::FABS, MVT::f32, Custom); 354 setOperationAction(ISD::FABS, MVT::f64, Custom); 355 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 356 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 357 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 358 359 if (Subtarget.isGP64bit()) { 360 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 361 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 362 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 363 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 364 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 365 setOperationAction(ISD::SELECT, MVT::i64, Custom); 366 setOperationAction(ISD::LOAD, MVT::i64, Custom); 367 setOperationAction(ISD::STORE, MVT::i64, Custom); 368 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 369 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 370 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 371 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 372 } 373 374 if (!Subtarget.isGP64bit()) { 375 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 376 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 377 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 378 } 379 380 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 381 if (Subtarget.isGP64bit()) 382 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 383 384 setOperationAction(ISD::SDIV, MVT::i32, Expand); 385 setOperationAction(ISD::SREM, MVT::i32, Expand); 386 setOperationAction(ISD::UDIV, MVT::i32, Expand); 387 setOperationAction(ISD::UREM, MVT::i32, Expand); 388 setOperationAction(ISD::SDIV, MVT::i64, Expand); 389 setOperationAction(ISD::SREM, MVT::i64, Expand); 390 setOperationAction(ISD::UDIV, MVT::i64, Expand); 391 setOperationAction(ISD::UREM, MVT::i64, Expand); 392 393 // Operations not directly supported by Mips. 394 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 395 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 396 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 397 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 398 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 399 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 400 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 401 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 402 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 403 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 404 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 405 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 406 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 407 if (Subtarget.hasCnMips()) { 408 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 409 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 410 } else { 411 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 412 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 413 } 414 setOperationAction(ISD::CTTZ, MVT::i32, Expand); 415 setOperationAction(ISD::CTTZ, MVT::i64, Expand); 416 setOperationAction(ISD::ROTL, MVT::i32, Expand); 417 setOperationAction(ISD::ROTL, MVT::i64, Expand); 418 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 419 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 420 421 if (!Subtarget.hasMips32r2()) 422 setOperationAction(ISD::ROTR, MVT::i32, Expand); 423 424 if (!Subtarget.hasMips64r2()) 425 setOperationAction(ISD::ROTR, MVT::i64, Expand); 426 427 setOperationAction(ISD::FSIN, MVT::f32, Expand); 428 setOperationAction(ISD::FSIN, MVT::f64, Expand); 429 setOperationAction(ISD::FCOS, MVT::f32, Expand); 430 setOperationAction(ISD::FCOS, MVT::f64, Expand); 431 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 432 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 433 setOperationAction(ISD::FPOW, MVT::f32, Expand); 434 setOperationAction(ISD::FPOW, MVT::f64, Expand); 435 setOperationAction(ISD::FLOG, MVT::f32, Expand); 436 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 437 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 438 setOperationAction(ISD::FEXP, MVT::f32, Expand); 439 setOperationAction(ISD::FMA, MVT::f32, Expand); 440 setOperationAction(ISD::FMA, MVT::f64, Expand); 441 setOperationAction(ISD::FREM, MVT::f32, Expand); 442 setOperationAction(ISD::FREM, MVT::f64, Expand); 443 444 // Lower f16 conversion operations into library calls 445 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 446 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 447 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 448 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 449 450 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 451 452 setOperationAction(ISD::VASTART, MVT::Other, Custom); 453 setOperationAction(ISD::VAARG, MVT::Other, Custom); 454 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 455 setOperationAction(ISD::VAEND, MVT::Other, Expand); 456 457 // Use the default for now 458 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 459 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 460 461 if (!Subtarget.isGP64bit()) { 462 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 463 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 464 } 465 466 if (!Subtarget.hasMips32r2()) { 467 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 468 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 469 } 470 471 // MIPS16 lacks MIPS32's clz and clo instructions. 472 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) 473 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 474 if (!Subtarget.hasMips64()) 475 setOperationAction(ISD::CTLZ, MVT::i64, Expand); 476 477 if (!Subtarget.hasMips32r2()) 478 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 479 if (!Subtarget.hasMips64r2()) 480 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 481 482 if (Subtarget.isGP64bit()) { 483 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom); 484 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom); 485 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom); 486 setTruncStoreAction(MVT::i64, MVT::i32, Custom); 487 } 488 489 setOperationAction(ISD::TRAP, MVT::Other, Legal); 490 491 setTargetDAGCombine({ISD::SDIVREM, ISD::UDIVREM, ISD::SELECT, ISD::AND, 492 ISD::OR, ISD::ADD, ISD::SUB, ISD::AssertZext, ISD::SHL}); 493 494 if (ABI.IsO32()) { 495 // These libcalls are not available in 32-bit. 496 setLibcallName(RTLIB::SHL_I128, nullptr); 497 setLibcallName(RTLIB::SRL_I128, nullptr); 498 setLibcallName(RTLIB::SRA_I128, nullptr); 499 setLibcallName(RTLIB::MUL_I128, nullptr); 500 setLibcallName(RTLIB::MULO_I64, nullptr); 501 setLibcallName(RTLIB::MULO_I128, nullptr); 502 } 503 504 if (Subtarget.isGP64bit()) 505 setMaxAtomicSizeInBitsSupported(64); 506 else 507 setMaxAtomicSizeInBitsSupported(32); 508 509 setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4)); 510 511 // The arguments on the stack are defined in terms of 4-byte slots on O32 512 // and 8-byte slots on N32/N64. 513 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8) 514 : Align(4)); 515 516 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP); 517 518 MaxStoresPerMemcpy = 16; 519 520 isMicroMips = Subtarget.inMicroMipsMode(); 521 } 522 523 const MipsTargetLowering * 524 MipsTargetLowering::create(const MipsTargetMachine &TM, 525 const MipsSubtarget &STI) { 526 if (STI.inMips16Mode()) 527 return createMips16TargetLowering(TM, STI); 528 529 return createMipsSETargetLowering(TM, STI); 530 } 531 532 // Create a fast isel object. 533 FastISel * 534 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 535 const TargetLibraryInfo *libInfo) const { 536 const MipsTargetMachine &TM = 537 static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget()); 538 539 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs. 540 bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() && 541 !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() && 542 !Subtarget.inMicroMipsMode(); 543 544 // Disable if either of the following is true: 545 // We do not generate PIC, the ABI is not O32, XGOT is being used. 546 if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || 547 Subtarget.useXGOT()) 548 UseFastISel = false; 549 550 return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr; 551 } 552 553 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 554 EVT VT) const { 555 if (!VT.isVector()) 556 return MVT::i32; 557 return VT.changeVectorElementTypeToInteger(); 558 } 559 560 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, 561 TargetLowering::DAGCombinerInfo &DCI, 562 const MipsSubtarget &Subtarget) { 563 if (DCI.isBeforeLegalizeOps()) 564 return SDValue(); 565 566 EVT Ty = N->getValueType(0); 567 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; 568 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; 569 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : 570 MipsISD::DivRemU16; 571 SDLoc DL(N); 572 573 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, 574 N->getOperand(0), N->getOperand(1)); 575 SDValue InChain = DAG.getEntryNode(); 576 SDValue InGlue = DivRem; 577 578 // insert MFLO 579 if (N->hasAnyUseOfValue(0)) { 580 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, 581 InGlue); 582 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); 583 InChain = CopyFromLo.getValue(1); 584 InGlue = CopyFromLo.getValue(2); 585 } 586 587 // insert MFHI 588 if (N->hasAnyUseOfValue(1)) { 589 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, 590 HI, Ty, InGlue); 591 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); 592 } 593 594 return SDValue(); 595 } 596 597 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { 598 switch (CC) { 599 default: llvm_unreachable("Unknown fp condition code!"); 600 case ISD::SETEQ: 601 case ISD::SETOEQ: return Mips::FCOND_OEQ; 602 case ISD::SETUNE: return Mips::FCOND_UNE; 603 case ISD::SETLT: 604 case ISD::SETOLT: return Mips::FCOND_OLT; 605 case ISD::SETGT: 606 case ISD::SETOGT: return Mips::FCOND_OGT; 607 case ISD::SETLE: 608 case ISD::SETOLE: return Mips::FCOND_OLE; 609 case ISD::SETGE: 610 case ISD::SETOGE: return Mips::FCOND_OGE; 611 case ISD::SETULT: return Mips::FCOND_ULT; 612 case ISD::SETULE: return Mips::FCOND_ULE; 613 case ISD::SETUGT: return Mips::FCOND_UGT; 614 case ISD::SETUGE: return Mips::FCOND_UGE; 615 case ISD::SETUO: return Mips::FCOND_UN; 616 case ISD::SETO: return Mips::FCOND_OR; 617 case ISD::SETNE: 618 case ISD::SETONE: return Mips::FCOND_ONE; 619 case ISD::SETUEQ: return Mips::FCOND_UEQ; 620 } 621 } 622 623 /// This function returns true if the floating point conditional branches and 624 /// conditional moves which use condition code CC should be inverted. 625 static bool invertFPCondCodeUser(Mips::CondCode CC) { 626 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) 627 return false; 628 629 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && 630 "Illegal Condition Code"); 631 632 return true; 633 } 634 635 // Creates and returns an FPCmp node from a setcc node. 636 // Returns Op if setcc is not a floating point comparison. 637 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { 638 // must be a SETCC node 639 if (Op.getOpcode() != ISD::SETCC) 640 return Op; 641 642 SDValue LHS = Op.getOperand(0); 643 644 if (!LHS.getValueType().isFloatingPoint()) 645 return Op; 646 647 SDValue RHS = Op.getOperand(1); 648 SDLoc DL(Op); 649 650 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of 651 // node if necessary. 652 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 653 654 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, 655 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32)); 656 } 657 658 // Creates and returns a CMovFPT/F node. 659 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, 660 SDValue False, const SDLoc &DL) { 661 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2)); 662 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); 663 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); 664 665 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, 666 True.getValueType(), True, FCC0, False, Cond); 667 } 668 669 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, 670 TargetLowering::DAGCombinerInfo &DCI, 671 const MipsSubtarget &Subtarget) { 672 if (DCI.isBeforeLegalizeOps()) 673 return SDValue(); 674 675 SDValue SetCC = N->getOperand(0); 676 677 if ((SetCC.getOpcode() != ISD::SETCC) || 678 !SetCC.getOperand(0).getValueType().isInteger()) 679 return SDValue(); 680 681 SDValue False = N->getOperand(2); 682 EVT FalseTy = False.getValueType(); 683 684 if (!FalseTy.isInteger()) 685 return SDValue(); 686 687 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False); 688 689 // If the RHS (False) is 0, we swap the order of the operands 690 // of ISD::SELECT (obviously also inverting the condition) so that we can 691 // take advantage of conditional moves using the $0 register. 692 // Example: 693 // return (a != 0) ? x : 0; 694 // load $reg, x 695 // movz $reg, $0, a 696 if (!FalseC) 697 return SDValue(); 698 699 const SDLoc DL(N); 700 701 if (!FalseC->getZExtValue()) { 702 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 703 SDValue True = N->getOperand(1); 704 705 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), 706 SetCC.getOperand(1), 707 ISD::getSetCCInverse(CC, SetCC.getValueType())); 708 709 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); 710 } 711 712 // If both operands are integer constants there's a possibility that we 713 // can do some interesting optimizations. 714 SDValue True = N->getOperand(1); 715 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True); 716 717 if (!TrueC || !True.getValueType().isInteger()) 718 return SDValue(); 719 720 // We'll also ignore MVT::i64 operands as this optimizations proves 721 // to be ineffective because of the required sign extensions as the result 722 // of a SETCC operator is always MVT::i32 for non-vector types. 723 if (True.getValueType() == MVT::i64) 724 return SDValue(); 725 726 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); 727 728 // 1) (a < x) ? y : y-1 729 // slti $reg1, a, x 730 // addiu $reg2, $reg1, y-1 731 if (Diff == 1) 732 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); 733 734 // 2) (a < x) ? y-1 : y 735 // slti $reg1, a, x 736 // xor $reg1, $reg1, 1 737 // addiu $reg2, $reg1, y-1 738 if (Diff == -1) { 739 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 740 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), 741 SetCC.getOperand(1), 742 ISD::getSetCCInverse(CC, SetCC.getValueType())); 743 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); 744 } 745 746 // Could not optimize. 747 return SDValue(); 748 } 749 750 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG, 751 TargetLowering::DAGCombinerInfo &DCI, 752 const MipsSubtarget &Subtarget) { 753 if (DCI.isBeforeLegalizeOps()) 754 return SDValue(); 755 756 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2); 757 758 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse); 759 if (!FalseC || FalseC->getZExtValue()) 760 return SDValue(); 761 762 // Since RHS (False) is 0, we swap the order of the True/False operands 763 // (obviously also inverting the condition) so that we can 764 // take advantage of conditional moves using the $0 register. 765 // Example: 766 // return (a != 0) ? x : 0; 767 // load $reg, x 768 // movz $reg, $0, a 769 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F : 770 MipsISD::CMovFP_T; 771 772 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3); 773 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(), 774 ValueIfFalse, FCC, ValueIfTrue, Glue); 775 } 776 777 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 778 TargetLowering::DAGCombinerInfo &DCI, 779 const MipsSubtarget &Subtarget) { 780 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) 781 return SDValue(); 782 783 SDValue FirstOperand = N->getOperand(0); 784 unsigned FirstOperandOpc = FirstOperand.getOpcode(); 785 SDValue Mask = N->getOperand(1); 786 EVT ValTy = N->getValueType(0); 787 SDLoc DL(N); 788 789 uint64_t Pos = 0; 790 unsigned SMPos, SMSize; 791 ConstantSDNode *CN; 792 SDValue NewOperand; 793 unsigned Opc; 794 795 // Op's second operand must be a shifted mask. 796 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || 797 !isShiftedMask_64(CN->getZExtValue(), SMPos, SMSize)) 798 return SDValue(); 799 800 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) { 801 // Pattern match EXT. 802 // $dst = and ((sra or srl) $src , pos), (2**size - 1) 803 // => ext $dst, $src, pos, size 804 805 // The second operand of the shift must be an immediate. 806 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) 807 return SDValue(); 808 809 Pos = CN->getZExtValue(); 810 811 // Return if the shifted mask does not start at bit 0 or the sum of its size 812 // and Pos exceeds the word's size. 813 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) 814 return SDValue(); 815 816 Opc = MipsISD::Ext; 817 NewOperand = FirstOperand.getOperand(0); 818 } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) { 819 // Pattern match CINS. 820 // $dst = and (shl $src , pos), mask 821 // => cins $dst, $src, pos, size 822 // mask is a shifted mask with consecutive 1's, pos = shift amount, 823 // size = population count. 824 825 // The second operand of the shift must be an immediate. 826 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) 827 return SDValue(); 828 829 Pos = CN->getZExtValue(); 830 831 if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 || 832 Pos + SMSize > ValTy.getSizeInBits()) 833 return SDValue(); 834 835 NewOperand = FirstOperand.getOperand(0); 836 // SMSize is 'location' (position) in this case, not size. 837 SMSize--; 838 Opc = MipsISD::CIns; 839 } else { 840 // Pattern match EXT. 841 // $dst = and $src, (2**size - 1) , if size > 16 842 // => ext $dst, $src, pos, size , pos = 0 843 844 // If the mask is <= 0xffff, andi can be used instead. 845 if (CN->getZExtValue() <= 0xffff) 846 return SDValue(); 847 848 // Return if the mask doesn't start at position 0. 849 if (SMPos) 850 return SDValue(); 851 852 Opc = MipsISD::Ext; 853 NewOperand = FirstOperand; 854 } 855 return DAG.getNode(Opc, DL, ValTy, NewOperand, 856 DAG.getConstant(Pos, DL, MVT::i32), 857 DAG.getConstant(SMSize, DL, MVT::i32)); 858 } 859 860 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 861 TargetLowering::DAGCombinerInfo &DCI, 862 const MipsSubtarget &Subtarget) { 863 // Pattern match INS. 864 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), 865 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 866 // => ins $dst, $src, size, pos, $src1 867 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) 868 return SDValue(); 869 870 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); 871 unsigned SMPos0, SMSize0, SMPos1, SMSize1; 872 ConstantSDNode *CN, *CN1; 873 874 // See if Op's first operand matches (and $src1 , mask0). 875 if (And0.getOpcode() != ISD::AND) 876 return SDValue(); 877 878 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || 879 !isShiftedMask_64(~CN->getSExtValue(), SMPos0, SMSize0)) 880 return SDValue(); 881 882 // See if Op's second operand matches (and (shl $src, pos), mask1). 883 if (And1.getOpcode() == ISD::AND && 884 And1.getOperand(0).getOpcode() == ISD::SHL) { 885 886 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || 887 !isShiftedMask_64(CN->getZExtValue(), SMPos1, SMSize1)) 888 return SDValue(); 889 890 // The shift masks must have the same position and size. 891 if (SMPos0 != SMPos1 || SMSize0 != SMSize1) 892 return SDValue(); 893 894 SDValue Shl = And1.getOperand(0); 895 896 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) 897 return SDValue(); 898 899 unsigned Shamt = CN->getZExtValue(); 900 901 // Return if the shift amount and the first bit position of mask are not the 902 // same. 903 EVT ValTy = N->getValueType(0); 904 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) 905 return SDValue(); 906 907 SDLoc DL(N); 908 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0), 909 DAG.getConstant(SMPos0, DL, MVT::i32), 910 DAG.getConstant(SMSize0, DL, MVT::i32), 911 And0.getOperand(0)); 912 } else { 913 // Pattern match DINS. 914 // $dst = or (and $src, mask0), mask1 915 // where mask0 = ((1 << SMSize0) -1) << SMPos0 916 // => dins $dst, $src, pos, size 917 if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) && 918 ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) || 919 (SMSize0 + SMPos0 <= 32))) { 920 // Check if AND instruction has constant as argument 921 bool isConstCase = And1.getOpcode() != ISD::AND; 922 if (And1.getOpcode() == ISD::AND) { 923 if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1)))) 924 return SDValue(); 925 } else { 926 if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)))) 927 return SDValue(); 928 } 929 // Don't generate INS if constant OR operand doesn't fit into bits 930 // cleared by constant AND operand. 931 if (CN->getSExtValue() & CN1->getSExtValue()) 932 return SDValue(); 933 934 SDLoc DL(N); 935 EVT ValTy = N->getOperand(0)->getValueType(0); 936 SDValue Const1; 937 SDValue SrlX; 938 if (!isConstCase) { 939 Const1 = DAG.getConstant(SMPos0, DL, MVT::i32); 940 SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1); 941 } 942 return DAG.getNode( 943 MipsISD::Ins, DL, N->getValueType(0), 944 isConstCase 945 ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy) 946 : SrlX, 947 DAG.getConstant(SMPos0, DL, MVT::i32), 948 DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31 949 : SMSize0, 950 DL, MVT::i32), 951 And0->getOperand(0)); 952 953 } 954 return SDValue(); 955 } 956 } 957 958 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG, 959 const MipsSubtarget &Subtarget) { 960 // ROOTNode must have a multiplication as an operand for the match to be 961 // successful. 962 if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL && 963 ROOTNode->getOperand(1).getOpcode() != ISD::MUL) 964 return SDValue(); 965 966 // In the case where we have a multiplication as the left operand of 967 // of a subtraction, we can't combine into a MipsISD::MSub node as the 968 // the instruction definition of msub(u) places the multiplication on 969 // on the right. 970 if (ROOTNode->getOpcode() == ISD::SUB && 971 ROOTNode->getOperand(0).getOpcode() == ISD::MUL) 972 return SDValue(); 973 974 // We don't handle vector types here. 975 if (ROOTNode->getValueType(0).isVector()) 976 return SDValue(); 977 978 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit 979 // arithmetic. E.g. 980 // (add (mul a b) c) => 981 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in 982 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32) 983 // or 984 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32) 985 // 986 // The overhead of setting up the Hi/Lo registers and reassembling the 987 // result makes this a dubious optimzation for MIPS64. The core of the 988 // problem is that Hi/Lo contain the upper and lower 32 bits of the 989 // operand and result. 990 // 991 // It requires a chain of 4 add/mul for MIPS64R2 to get better code 992 // density than doing it naively, 5 for MIPS64. Additionally, using 993 // madd/msub on MIPS64 requires the operands actually be 32 bit sign 994 // extended operands, not true 64 bit values. 995 // 996 // FIXME: For the moment, disable this completely for MIPS64. 997 if (Subtarget.hasMips64()) 998 return SDValue(); 999 1000 SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL 1001 ? ROOTNode->getOperand(0) 1002 : ROOTNode->getOperand(1); 1003 1004 SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL 1005 ? ROOTNode->getOperand(1) 1006 : ROOTNode->getOperand(0); 1007 1008 // Transform this to a MADD only if the user of this node is the add. 1009 // If there are other users of the mul, this function returns here. 1010 if (!Mult.hasOneUse()) 1011 return SDValue(); 1012 1013 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31 1014 // must be in canonical form, i.e. sign extended. For MIPS32, the operands 1015 // of the multiply must have 32 or more sign bits, otherwise we cannot 1016 // perform this optimization. We have to check this here as we're performing 1017 // this optimization pre-legalization. 1018 SDValue MultLHS = Mult->getOperand(0); 1019 SDValue MultRHS = Mult->getOperand(1); 1020 1021 bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND && 1022 MultRHS->getOpcode() == ISD::SIGN_EXTEND; 1023 bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND && 1024 MultRHS->getOpcode() == ISD::ZERO_EXTEND; 1025 1026 if (!IsSigned && !IsUnsigned) 1027 return SDValue(); 1028 1029 // Initialize accumulator. 1030 SDLoc DL(ROOTNode); 1031 SDValue BottomHalf, TopHalf; 1032 std::tie(BottomHalf, TopHalf) = 1033 CurDAG.SplitScalar(AddOperand, DL, MVT::i32, MVT::i32); 1034 SDValue ACCIn = 1035 CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, BottomHalf, TopHalf); 1036 1037 // Create MipsMAdd(u) / MipsMSub(u) node. 1038 bool IsAdd = ROOTNode->getOpcode() == ISD::ADD; 1039 unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd) 1040 : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub); 1041 SDValue MAddOps[3] = { 1042 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)), 1043 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn}; 1044 EVT VTs[2] = {MVT::i32, MVT::i32}; 1045 SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps); 1046 1047 SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd); 1048 SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd); 1049 SDValue Combined = 1050 CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi); 1051 return Combined; 1052 } 1053 1054 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG, 1055 TargetLowering::DAGCombinerInfo &DCI, 1056 const MipsSubtarget &Subtarget) { 1057 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0) 1058 if (DCI.isBeforeLegalizeOps()) { 1059 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && 1060 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) 1061 return performMADD_MSUBCombine(N, DAG, Subtarget); 1062 1063 return SDValue(); 1064 } 1065 1066 return SDValue(); 1067 } 1068 1069 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 1070 TargetLowering::DAGCombinerInfo &DCI, 1071 const MipsSubtarget &Subtarget) { 1072 // (add v0 (mul v1, v2)) => (madd v1, v2, v0) 1073 if (DCI.isBeforeLegalizeOps()) { 1074 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && 1075 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) 1076 return performMADD_MSUBCombine(N, DAG, Subtarget); 1077 1078 return SDValue(); 1079 } 1080 1081 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) 1082 SDValue Add = N->getOperand(1); 1083 1084 if (Add.getOpcode() != ISD::ADD) 1085 return SDValue(); 1086 1087 SDValue Lo = Add.getOperand(1); 1088 1089 if ((Lo.getOpcode() != MipsISD::Lo) || 1090 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) 1091 return SDValue(); 1092 1093 EVT ValTy = N->getValueType(0); 1094 SDLoc DL(N); 1095 1096 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), 1097 Add.getOperand(0)); 1098 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); 1099 } 1100 1101 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, 1102 TargetLowering::DAGCombinerInfo &DCI, 1103 const MipsSubtarget &Subtarget) { 1104 // Pattern match CINS. 1105 // $dst = shl (and $src , imm), pos 1106 // => cins $dst, $src, pos, size 1107 1108 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips()) 1109 return SDValue(); 1110 1111 SDValue FirstOperand = N->getOperand(0); 1112 unsigned FirstOperandOpc = FirstOperand.getOpcode(); 1113 SDValue SecondOperand = N->getOperand(1); 1114 EVT ValTy = N->getValueType(0); 1115 SDLoc DL(N); 1116 1117 uint64_t Pos = 0; 1118 unsigned SMPos, SMSize; 1119 ConstantSDNode *CN; 1120 SDValue NewOperand; 1121 1122 // The second operand of the shift must be an immediate. 1123 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand))) 1124 return SDValue(); 1125 1126 Pos = CN->getZExtValue(); 1127 1128 if (Pos >= ValTy.getSizeInBits()) 1129 return SDValue(); 1130 1131 if (FirstOperandOpc != ISD::AND) 1132 return SDValue(); 1133 1134 // AND's second operand must be a shifted mask. 1135 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) || 1136 !isShiftedMask_64(CN->getZExtValue(), SMPos, SMSize)) 1137 return SDValue(); 1138 1139 // Return if the shifted mask does not start at bit 0 or the sum of its size 1140 // and Pos exceeds the word's size. 1141 if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits()) 1142 return SDValue(); 1143 1144 NewOperand = FirstOperand.getOperand(0); 1145 // SMSize is 'location' (position) in this case, not size. 1146 SMSize--; 1147 1148 return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand, 1149 DAG.getConstant(Pos, DL, MVT::i32), 1150 DAG.getConstant(SMSize, DL, MVT::i32)); 1151 } 1152 1153 SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) 1154 const { 1155 SelectionDAG &DAG = DCI.DAG; 1156 unsigned Opc = N->getOpcode(); 1157 1158 switch (Opc) { 1159 default: break; 1160 case ISD::SDIVREM: 1161 case ISD::UDIVREM: 1162 return performDivRemCombine(N, DAG, DCI, Subtarget); 1163 case ISD::SELECT: 1164 return performSELECTCombine(N, DAG, DCI, Subtarget); 1165 case MipsISD::CMovFP_F: 1166 case MipsISD::CMovFP_T: 1167 return performCMovFPCombine(N, DAG, DCI, Subtarget); 1168 case ISD::AND: 1169 return performANDCombine(N, DAG, DCI, Subtarget); 1170 case ISD::OR: 1171 return performORCombine(N, DAG, DCI, Subtarget); 1172 case ISD::ADD: 1173 return performADDCombine(N, DAG, DCI, Subtarget); 1174 case ISD::SHL: 1175 return performSHLCombine(N, DAG, DCI, Subtarget); 1176 case ISD::SUB: 1177 return performSUBCombine(N, DAG, DCI, Subtarget); 1178 } 1179 1180 return SDValue(); 1181 } 1182 1183 bool MipsTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { 1184 return Subtarget.hasMips32(); 1185 } 1186 1187 bool MipsTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { 1188 return Subtarget.hasMips32(); 1189 } 1190 1191 bool MipsTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1192 // We can use ANDI+SLTIU as a bit test. Y contains the bit position. 1193 // For MIPSR2 or later, we may be able to use the `ext` instruction or its' 1194 // double-word variants. 1195 if (auto *C = dyn_cast<ConstantSDNode>(Y)) 1196 return C->getAPIntValue().ule(15); 1197 1198 return false; 1199 } 1200 1201 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask( 1202 const SDNode *N, CombineLevel Level) const { 1203 assert(((N->getOpcode() == ISD::SHL && 1204 N->getOperand(0).getOpcode() == ISD::SRL) || 1205 (N->getOpcode() == ISD::SRL && 1206 N->getOperand(0).getOpcode() == ISD::SHL)) && 1207 "Expected shift-shift mask"); 1208 1209 if (N->getOperand(0).getValueType().isVector()) 1210 return false; 1211 return true; 1212 } 1213 1214 void 1215 MipsTargetLowering::ReplaceNodeResults(SDNode *N, 1216 SmallVectorImpl<SDValue> &Results, 1217 SelectionDAG &DAG) const { 1218 return LowerOperationWrapper(N, Results, DAG); 1219 } 1220 1221 SDValue MipsTargetLowering:: 1222 LowerOperation(SDValue Op, SelectionDAG &DAG) const 1223 { 1224 switch (Op.getOpcode()) 1225 { 1226 case ISD::BRCOND: return lowerBRCOND(Op, DAG); 1227 case ISD::ConstantPool: return lowerConstantPool(Op, DAG); 1228 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); 1229 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); 1230 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); 1231 case ISD::JumpTable: return lowerJumpTable(Op, DAG); 1232 case ISD::SELECT: return lowerSELECT(Op, DAG); 1233 case ISD::SETCC: return lowerSETCC(Op, DAG); 1234 case ISD::VASTART: return lowerVASTART(Op, DAG); 1235 case ISD::VAARG: return lowerVAARG(Op, DAG); 1236 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG); 1237 case ISD::FABS: return lowerFABS(Op, DAG); 1238 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); 1239 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); 1240 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG); 1241 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); 1242 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); 1243 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); 1244 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); 1245 case ISD::LOAD: return lowerLOAD(Op, DAG); 1246 case ISD::STORE: return lowerSTORE(Op, DAG); 1247 case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG); 1248 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG); 1249 } 1250 return SDValue(); 1251 } 1252 1253 //===----------------------------------------------------------------------===// 1254 // Lower helper functions 1255 //===----------------------------------------------------------------------===// 1256 1257 // addLiveIn - This helper function adds the specified physical register to the 1258 // MachineFunction as a live in value. It also creates a corresponding 1259 // virtual register for it. 1260 static unsigned 1261 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) 1262 { 1263 Register VReg = MF.getRegInfo().createVirtualRegister(RC); 1264 MF.getRegInfo().addLiveIn(PReg, VReg); 1265 return VReg; 1266 } 1267 1268 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI, 1269 MachineBasicBlock &MBB, 1270 const TargetInstrInfo &TII, 1271 bool Is64Bit, bool IsMicroMips) { 1272 if (NoZeroDivCheck) 1273 return &MBB; 1274 1275 // Insert instruction "teq $divisor_reg, $zero, 7". 1276 MachineBasicBlock::iterator I(MI); 1277 MachineInstrBuilder MIB; 1278 MachineOperand &Divisor = MI.getOperand(2); 1279 MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(), 1280 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ)) 1281 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) 1282 .addReg(Mips::ZERO) 1283 .addImm(7); 1284 1285 // Use the 32-bit sub-register if this is a 64-bit division. 1286 if (Is64Bit) 1287 MIB->getOperand(0).setSubReg(Mips::sub_32); 1288 1289 // Clear Divisor's kill flag. 1290 Divisor.setIsKill(false); 1291 1292 // We would normally delete the original instruction here but in this case 1293 // we only needed to inject an additional instruction rather than replace it. 1294 1295 return &MBB; 1296 } 1297 1298 MachineBasicBlock * 1299 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1300 MachineBasicBlock *BB) const { 1301 switch (MI.getOpcode()) { 1302 default: 1303 llvm_unreachable("Unexpected instr type to insert"); 1304 case Mips::ATOMIC_LOAD_ADD_I8: 1305 return emitAtomicBinaryPartword(MI, BB, 1); 1306 case Mips::ATOMIC_LOAD_ADD_I16: 1307 return emitAtomicBinaryPartword(MI, BB, 2); 1308 case Mips::ATOMIC_LOAD_ADD_I32: 1309 return emitAtomicBinary(MI, BB); 1310 case Mips::ATOMIC_LOAD_ADD_I64: 1311 return emitAtomicBinary(MI, BB); 1312 1313 case Mips::ATOMIC_LOAD_AND_I8: 1314 return emitAtomicBinaryPartword(MI, BB, 1); 1315 case Mips::ATOMIC_LOAD_AND_I16: 1316 return emitAtomicBinaryPartword(MI, BB, 2); 1317 case Mips::ATOMIC_LOAD_AND_I32: 1318 return emitAtomicBinary(MI, BB); 1319 case Mips::ATOMIC_LOAD_AND_I64: 1320 return emitAtomicBinary(MI, BB); 1321 1322 case Mips::ATOMIC_LOAD_OR_I8: 1323 return emitAtomicBinaryPartword(MI, BB, 1); 1324 case Mips::ATOMIC_LOAD_OR_I16: 1325 return emitAtomicBinaryPartword(MI, BB, 2); 1326 case Mips::ATOMIC_LOAD_OR_I32: 1327 return emitAtomicBinary(MI, BB); 1328 case Mips::ATOMIC_LOAD_OR_I64: 1329 return emitAtomicBinary(MI, BB); 1330 1331 case Mips::ATOMIC_LOAD_XOR_I8: 1332 return emitAtomicBinaryPartword(MI, BB, 1); 1333 case Mips::ATOMIC_LOAD_XOR_I16: 1334 return emitAtomicBinaryPartword(MI, BB, 2); 1335 case Mips::ATOMIC_LOAD_XOR_I32: 1336 return emitAtomicBinary(MI, BB); 1337 case Mips::ATOMIC_LOAD_XOR_I64: 1338 return emitAtomicBinary(MI, BB); 1339 1340 case Mips::ATOMIC_LOAD_NAND_I8: 1341 return emitAtomicBinaryPartword(MI, BB, 1); 1342 case Mips::ATOMIC_LOAD_NAND_I16: 1343 return emitAtomicBinaryPartword(MI, BB, 2); 1344 case Mips::ATOMIC_LOAD_NAND_I32: 1345 return emitAtomicBinary(MI, BB); 1346 case Mips::ATOMIC_LOAD_NAND_I64: 1347 return emitAtomicBinary(MI, BB); 1348 1349 case Mips::ATOMIC_LOAD_SUB_I8: 1350 return emitAtomicBinaryPartword(MI, BB, 1); 1351 case Mips::ATOMIC_LOAD_SUB_I16: 1352 return emitAtomicBinaryPartword(MI, BB, 2); 1353 case Mips::ATOMIC_LOAD_SUB_I32: 1354 return emitAtomicBinary(MI, BB); 1355 case Mips::ATOMIC_LOAD_SUB_I64: 1356 return emitAtomicBinary(MI, BB); 1357 1358 case Mips::ATOMIC_SWAP_I8: 1359 return emitAtomicBinaryPartword(MI, BB, 1); 1360 case Mips::ATOMIC_SWAP_I16: 1361 return emitAtomicBinaryPartword(MI, BB, 2); 1362 case Mips::ATOMIC_SWAP_I32: 1363 return emitAtomicBinary(MI, BB); 1364 case Mips::ATOMIC_SWAP_I64: 1365 return emitAtomicBinary(MI, BB); 1366 1367 case Mips::ATOMIC_CMP_SWAP_I8: 1368 return emitAtomicCmpSwapPartword(MI, BB, 1); 1369 case Mips::ATOMIC_CMP_SWAP_I16: 1370 return emitAtomicCmpSwapPartword(MI, BB, 2); 1371 case Mips::ATOMIC_CMP_SWAP_I32: 1372 return emitAtomicCmpSwap(MI, BB); 1373 case Mips::ATOMIC_CMP_SWAP_I64: 1374 return emitAtomicCmpSwap(MI, BB); 1375 1376 case Mips::ATOMIC_LOAD_MIN_I8: 1377 return emitAtomicBinaryPartword(MI, BB, 1); 1378 case Mips::ATOMIC_LOAD_MIN_I16: 1379 return emitAtomicBinaryPartword(MI, BB, 2); 1380 case Mips::ATOMIC_LOAD_MIN_I32: 1381 return emitAtomicBinary(MI, BB); 1382 case Mips::ATOMIC_LOAD_MIN_I64: 1383 return emitAtomicBinary(MI, BB); 1384 1385 case Mips::ATOMIC_LOAD_MAX_I8: 1386 return emitAtomicBinaryPartword(MI, BB, 1); 1387 case Mips::ATOMIC_LOAD_MAX_I16: 1388 return emitAtomicBinaryPartword(MI, BB, 2); 1389 case Mips::ATOMIC_LOAD_MAX_I32: 1390 return emitAtomicBinary(MI, BB); 1391 case Mips::ATOMIC_LOAD_MAX_I64: 1392 return emitAtomicBinary(MI, BB); 1393 1394 case Mips::ATOMIC_LOAD_UMIN_I8: 1395 return emitAtomicBinaryPartword(MI, BB, 1); 1396 case Mips::ATOMIC_LOAD_UMIN_I16: 1397 return emitAtomicBinaryPartword(MI, BB, 2); 1398 case Mips::ATOMIC_LOAD_UMIN_I32: 1399 return emitAtomicBinary(MI, BB); 1400 case Mips::ATOMIC_LOAD_UMIN_I64: 1401 return emitAtomicBinary(MI, BB); 1402 1403 case Mips::ATOMIC_LOAD_UMAX_I8: 1404 return emitAtomicBinaryPartword(MI, BB, 1); 1405 case Mips::ATOMIC_LOAD_UMAX_I16: 1406 return emitAtomicBinaryPartword(MI, BB, 2); 1407 case Mips::ATOMIC_LOAD_UMAX_I32: 1408 return emitAtomicBinary(MI, BB); 1409 case Mips::ATOMIC_LOAD_UMAX_I64: 1410 return emitAtomicBinary(MI, BB); 1411 1412 case Mips::PseudoSDIV: 1413 case Mips::PseudoUDIV: 1414 case Mips::DIV: 1415 case Mips::DIVU: 1416 case Mips::MOD: 1417 case Mips::MODU: 1418 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, 1419 false); 1420 case Mips::SDIV_MM_Pseudo: 1421 case Mips::UDIV_MM_Pseudo: 1422 case Mips::SDIV_MM: 1423 case Mips::UDIV_MM: 1424 case Mips::DIV_MMR6: 1425 case Mips::DIVU_MMR6: 1426 case Mips::MOD_MMR6: 1427 case Mips::MODU_MMR6: 1428 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true); 1429 case Mips::PseudoDSDIV: 1430 case Mips::PseudoDUDIV: 1431 case Mips::DDIV: 1432 case Mips::DDIVU: 1433 case Mips::DMOD: 1434 case Mips::DMODU: 1435 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false); 1436 1437 case Mips::PseudoSELECT_I: 1438 case Mips::PseudoSELECT_I64: 1439 case Mips::PseudoSELECT_S: 1440 case Mips::PseudoSELECT_D32: 1441 case Mips::PseudoSELECT_D64: 1442 return emitPseudoSELECT(MI, BB, false, Mips::BNE); 1443 case Mips::PseudoSELECTFP_F_I: 1444 case Mips::PseudoSELECTFP_F_I64: 1445 case Mips::PseudoSELECTFP_F_S: 1446 case Mips::PseudoSELECTFP_F_D32: 1447 case Mips::PseudoSELECTFP_F_D64: 1448 return emitPseudoSELECT(MI, BB, true, Mips::BC1F); 1449 case Mips::PseudoSELECTFP_T_I: 1450 case Mips::PseudoSELECTFP_T_I64: 1451 case Mips::PseudoSELECTFP_T_S: 1452 case Mips::PseudoSELECTFP_T_D32: 1453 case Mips::PseudoSELECTFP_T_D64: 1454 return emitPseudoSELECT(MI, BB, true, Mips::BC1T); 1455 case Mips::PseudoD_SELECT_I: 1456 case Mips::PseudoD_SELECT_I64: 1457 return emitPseudoD_SELECT(MI, BB); 1458 case Mips::LDR_W: 1459 return emitLDR_W(MI, BB); 1460 case Mips::LDR_D: 1461 return emitLDR_D(MI, BB); 1462 case Mips::STR_W: 1463 return emitSTR_W(MI, BB); 1464 case Mips::STR_D: 1465 return emitSTR_D(MI, BB); 1466 } 1467 } 1468 1469 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and 1470 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) 1471 MachineBasicBlock * 1472 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI, 1473 MachineBasicBlock *BB) const { 1474 1475 MachineFunction *MF = BB->getParent(); 1476 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1477 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1478 DebugLoc DL = MI.getDebugLoc(); 1479 1480 unsigned AtomicOp; 1481 bool NeedsAdditionalReg = false; 1482 switch (MI.getOpcode()) { 1483 case Mips::ATOMIC_LOAD_ADD_I32: 1484 AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA; 1485 break; 1486 case Mips::ATOMIC_LOAD_SUB_I32: 1487 AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA; 1488 break; 1489 case Mips::ATOMIC_LOAD_AND_I32: 1490 AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA; 1491 break; 1492 case Mips::ATOMIC_LOAD_OR_I32: 1493 AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA; 1494 break; 1495 case Mips::ATOMIC_LOAD_XOR_I32: 1496 AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA; 1497 break; 1498 case Mips::ATOMIC_LOAD_NAND_I32: 1499 AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA; 1500 break; 1501 case Mips::ATOMIC_SWAP_I32: 1502 AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA; 1503 break; 1504 case Mips::ATOMIC_LOAD_ADD_I64: 1505 AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA; 1506 break; 1507 case Mips::ATOMIC_LOAD_SUB_I64: 1508 AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA; 1509 break; 1510 case Mips::ATOMIC_LOAD_AND_I64: 1511 AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA; 1512 break; 1513 case Mips::ATOMIC_LOAD_OR_I64: 1514 AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA; 1515 break; 1516 case Mips::ATOMIC_LOAD_XOR_I64: 1517 AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA; 1518 break; 1519 case Mips::ATOMIC_LOAD_NAND_I64: 1520 AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA; 1521 break; 1522 case Mips::ATOMIC_SWAP_I64: 1523 AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA; 1524 break; 1525 case Mips::ATOMIC_LOAD_MIN_I32: 1526 AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA; 1527 NeedsAdditionalReg = true; 1528 break; 1529 case Mips::ATOMIC_LOAD_MAX_I32: 1530 AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA; 1531 NeedsAdditionalReg = true; 1532 break; 1533 case Mips::ATOMIC_LOAD_UMIN_I32: 1534 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA; 1535 NeedsAdditionalReg = true; 1536 break; 1537 case Mips::ATOMIC_LOAD_UMAX_I32: 1538 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA; 1539 NeedsAdditionalReg = true; 1540 break; 1541 case Mips::ATOMIC_LOAD_MIN_I64: 1542 AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA; 1543 NeedsAdditionalReg = true; 1544 break; 1545 case Mips::ATOMIC_LOAD_MAX_I64: 1546 AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA; 1547 NeedsAdditionalReg = true; 1548 break; 1549 case Mips::ATOMIC_LOAD_UMIN_I64: 1550 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA; 1551 NeedsAdditionalReg = true; 1552 break; 1553 case Mips::ATOMIC_LOAD_UMAX_I64: 1554 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA; 1555 NeedsAdditionalReg = true; 1556 break; 1557 default: 1558 llvm_unreachable("Unknown pseudo atomic for replacement!"); 1559 } 1560 1561 Register OldVal = MI.getOperand(0).getReg(); 1562 Register Ptr = MI.getOperand(1).getReg(); 1563 Register Incr = MI.getOperand(2).getReg(); 1564 Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal)); 1565 1566 MachineBasicBlock::iterator II(MI); 1567 1568 // The scratch registers here with the EarlyClobber | Define | Implicit 1569 // flags is used to persuade the register allocator and the machine 1570 // verifier to accept the usage of this register. This has to be a real 1571 // register which has an UNDEF value but is dead after the instruction which 1572 // is unique among the registers chosen for the instruction. 1573 1574 // The EarlyClobber flag has the semantic properties that the operand it is 1575 // attached to is clobbered before the rest of the inputs are read. Hence it 1576 // must be unique among the operands to the instruction. 1577 // The Define flag is needed to coerce the machine verifier that an Undef 1578 // value isn't a problem. 1579 // The Dead flag is needed as the value in scratch isn't used by any other 1580 // instruction. Kill isn't used as Dead is more precise. 1581 // The implicit flag is here due to the interaction between the other flags 1582 // and the machine verifier. 1583 1584 // For correctness purpose, a new pseudo is introduced here. We need this 1585 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence 1586 // that is spread over >1 basic blocks. A register allocator which 1587 // introduces (or any codegen infact) a store, can violate the expectations 1588 // of the hardware. 1589 // 1590 // An atomic read-modify-write sequence starts with a linked load 1591 // instruction and ends with a store conditional instruction. The atomic 1592 // read-modify-write sequence fails if any of the following conditions 1593 // occur between the execution of ll and sc: 1594 // * A coherent store is completed by another process or coherent I/O 1595 // module into the block of synchronizable physical memory containing 1596 // the word. The size and alignment of the block is 1597 // implementation-dependent. 1598 // * A coherent store is executed between an LL and SC sequence on the 1599 // same processor to the block of synchornizable physical memory 1600 // containing the word. 1601 // 1602 1603 Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr)); 1604 Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr)); 1605 1606 BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr); 1607 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); 1608 1609 MachineInstrBuilder MIB = 1610 BuildMI(*BB, II, DL, TII->get(AtomicOp)) 1611 .addReg(OldVal, RegState::Define | RegState::EarlyClobber) 1612 .addReg(PtrCopy) 1613 .addReg(IncrCopy) 1614 .addReg(Scratch, RegState::Define | RegState::EarlyClobber | 1615 RegState::Implicit | RegState::Dead); 1616 if (NeedsAdditionalReg) { 1617 Register Scratch2 = 1618 RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal)); 1619 MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber | 1620 RegState::Implicit | RegState::Dead); 1621 } 1622 1623 MI.eraseFromParent(); 1624 1625 return BB; 1626 } 1627 1628 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( 1629 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, 1630 unsigned SrcReg) const { 1631 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1632 const DebugLoc &DL = MI.getDebugLoc(); 1633 1634 if (Subtarget.hasMips32r2() && Size == 1) { 1635 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); 1636 return BB; 1637 } 1638 1639 if (Subtarget.hasMips32r2() && Size == 2) { 1640 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); 1641 return BB; 1642 } 1643 1644 MachineFunction *MF = BB->getParent(); 1645 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1646 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1647 Register ScrReg = RegInfo.createVirtualRegister(RC); 1648 1649 assert(Size < 32); 1650 int64_t ShiftImm = 32 - (Size * 8); 1651 1652 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); 1653 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); 1654 1655 return BB; 1656 } 1657 1658 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( 1659 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { 1660 assert((Size == 1 || Size == 2) && 1661 "Unsupported size for EmitAtomicBinaryPartial."); 1662 1663 MachineFunction *MF = BB->getParent(); 1664 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1665 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1666 const bool ArePtrs64bit = ABI.ArePtrs64bit(); 1667 const TargetRegisterClass *RCp = 1668 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); 1669 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1670 DebugLoc DL = MI.getDebugLoc(); 1671 1672 Register Dest = MI.getOperand(0).getReg(); 1673 Register Ptr = MI.getOperand(1).getReg(); 1674 Register Incr = MI.getOperand(2).getReg(); 1675 1676 Register AlignedAddr = RegInfo.createVirtualRegister(RCp); 1677 Register ShiftAmt = RegInfo.createVirtualRegister(RC); 1678 Register Mask = RegInfo.createVirtualRegister(RC); 1679 Register Mask2 = RegInfo.createVirtualRegister(RC); 1680 Register Incr2 = RegInfo.createVirtualRegister(RC); 1681 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp); 1682 Register PtrLSB2 = RegInfo.createVirtualRegister(RC); 1683 Register MaskUpper = RegInfo.createVirtualRegister(RC); 1684 Register Scratch = RegInfo.createVirtualRegister(RC); 1685 Register Scratch2 = RegInfo.createVirtualRegister(RC); 1686 Register Scratch3 = RegInfo.createVirtualRegister(RC); 1687 1688 unsigned AtomicOp = 0; 1689 bool NeedsAdditionalReg = false; 1690 switch (MI.getOpcode()) { 1691 case Mips::ATOMIC_LOAD_NAND_I8: 1692 AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA; 1693 break; 1694 case Mips::ATOMIC_LOAD_NAND_I16: 1695 AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA; 1696 break; 1697 case Mips::ATOMIC_SWAP_I8: 1698 AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA; 1699 break; 1700 case Mips::ATOMIC_SWAP_I16: 1701 AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA; 1702 break; 1703 case Mips::ATOMIC_LOAD_ADD_I8: 1704 AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA; 1705 break; 1706 case Mips::ATOMIC_LOAD_ADD_I16: 1707 AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA; 1708 break; 1709 case Mips::ATOMIC_LOAD_SUB_I8: 1710 AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA; 1711 break; 1712 case Mips::ATOMIC_LOAD_SUB_I16: 1713 AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA; 1714 break; 1715 case Mips::ATOMIC_LOAD_AND_I8: 1716 AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA; 1717 break; 1718 case Mips::ATOMIC_LOAD_AND_I16: 1719 AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA; 1720 break; 1721 case Mips::ATOMIC_LOAD_OR_I8: 1722 AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA; 1723 break; 1724 case Mips::ATOMIC_LOAD_OR_I16: 1725 AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA; 1726 break; 1727 case Mips::ATOMIC_LOAD_XOR_I8: 1728 AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA; 1729 break; 1730 case Mips::ATOMIC_LOAD_XOR_I16: 1731 AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA; 1732 break; 1733 case Mips::ATOMIC_LOAD_MIN_I8: 1734 AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA; 1735 NeedsAdditionalReg = true; 1736 break; 1737 case Mips::ATOMIC_LOAD_MIN_I16: 1738 AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA; 1739 NeedsAdditionalReg = true; 1740 break; 1741 case Mips::ATOMIC_LOAD_MAX_I8: 1742 AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA; 1743 NeedsAdditionalReg = true; 1744 break; 1745 case Mips::ATOMIC_LOAD_MAX_I16: 1746 AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA; 1747 NeedsAdditionalReg = true; 1748 break; 1749 case Mips::ATOMIC_LOAD_UMIN_I8: 1750 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA; 1751 NeedsAdditionalReg = true; 1752 break; 1753 case Mips::ATOMIC_LOAD_UMIN_I16: 1754 AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA; 1755 NeedsAdditionalReg = true; 1756 break; 1757 case Mips::ATOMIC_LOAD_UMAX_I8: 1758 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA; 1759 NeedsAdditionalReg = true; 1760 break; 1761 case Mips::ATOMIC_LOAD_UMAX_I16: 1762 AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA; 1763 NeedsAdditionalReg = true; 1764 break; 1765 default: 1766 llvm_unreachable("Unknown subword atomic pseudo for expansion!"); 1767 } 1768 1769 // insert new blocks after the current block 1770 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1771 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1772 MachineFunction::iterator It = ++BB->getIterator(); 1773 MF->insert(It, exitMBB); 1774 1775 // Transfer the remainder of BB and its successor edges to exitMBB. 1776 exitMBB->splice(exitMBB->begin(), BB, 1777 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1778 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1779 1780 BB->addSuccessor(exitMBB, BranchProbability::getOne()); 1781 1782 // thisMBB: 1783 // addiu masklsb2,$0,-4 # 0xfffffffc 1784 // and alignedaddr,ptr,masklsb2 1785 // andi ptrlsb2,ptr,3 1786 // sll shiftamt,ptrlsb2,3 1787 // ori maskupper,$0,255 # 0xff 1788 // sll mask,maskupper,shiftamt 1789 // nor mask2,$0,mask 1790 // sll incr2,incr,shiftamt 1791 1792 int64_t MaskImm = (Size == 1) ? 255 : 65535; 1793 BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2) 1794 .addReg(ABI.GetNullPtr()).addImm(-4); 1795 BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr) 1796 .addReg(Ptr).addReg(MaskLSB2); 1797 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) 1798 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); 1799 if (Subtarget.isLittle()) { 1800 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); 1801 } else { 1802 Register Off = RegInfo.createVirtualRegister(RC); 1803 BuildMI(BB, DL, TII->get(Mips::XORi), Off) 1804 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); 1805 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); 1806 } 1807 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) 1808 .addReg(Mips::ZERO).addImm(MaskImm); 1809 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) 1810 .addReg(MaskUpper).addReg(ShiftAmt); 1811 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); 1812 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); 1813 1814 1815 // The purposes of the flags on the scratch registers is explained in 1816 // emitAtomicBinary. In summary, we need a scratch register which is going to 1817 // be undef, that is unique among registers chosen for the instruction. 1818 1819 MachineInstrBuilder MIB = 1820 BuildMI(BB, DL, TII->get(AtomicOp)) 1821 .addReg(Dest, RegState::Define | RegState::EarlyClobber) 1822 .addReg(AlignedAddr) 1823 .addReg(Incr2) 1824 .addReg(Mask) 1825 .addReg(Mask2) 1826 .addReg(ShiftAmt) 1827 .addReg(Scratch, RegState::EarlyClobber | RegState::Define | 1828 RegState::Dead | RegState::Implicit) 1829 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | 1830 RegState::Dead | RegState::Implicit) 1831 .addReg(Scratch3, RegState::EarlyClobber | RegState::Define | 1832 RegState::Dead | RegState::Implicit); 1833 if (NeedsAdditionalReg) { 1834 Register Scratch4 = RegInfo.createVirtualRegister(RC); 1835 MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define | 1836 RegState::Dead | RegState::Implicit); 1837 } 1838 1839 MI.eraseFromParent(); // The instruction is gone now. 1840 1841 return exitMBB; 1842 } 1843 1844 // Lower atomic compare and swap to a pseudo instruction, taking care to 1845 // define a scratch register for the pseudo instruction's expansion. The 1846 // instruction is expanded after the register allocator as to prevent 1847 // the insertion of stores between the linked load and the store conditional. 1848 1849 MachineBasicBlock * 1850 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI, 1851 MachineBasicBlock *BB) const { 1852 1853 assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 || 1854 MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) && 1855 "Unsupported atomic pseudo for EmitAtomicCmpSwap."); 1856 1857 const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8; 1858 1859 MachineFunction *MF = BB->getParent(); 1860 MachineRegisterInfo &MRI = MF->getRegInfo(); 1861 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); 1862 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1863 DebugLoc DL = MI.getDebugLoc(); 1864 1865 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 1866 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA 1867 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA; 1868 Register Dest = MI.getOperand(0).getReg(); 1869 Register Ptr = MI.getOperand(1).getReg(); 1870 Register OldVal = MI.getOperand(2).getReg(); 1871 Register NewVal = MI.getOperand(3).getReg(); 1872 1873 Register Scratch = MRI.createVirtualRegister(RC); 1874 MachineBasicBlock::iterator II(MI); 1875 1876 // We need to create copies of the various registers and kill them at the 1877 // atomic pseudo. If the copies are not made, when the atomic is expanded 1878 // after fast register allocation, the spills will end up outside of the 1879 // blocks that their values are defined in, causing livein errors. 1880 1881 Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr)); 1882 Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal)); 1883 Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal)); 1884 1885 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); 1886 BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal); 1887 BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal); 1888 1889 // The purposes of the flags on the scratch registers is explained in 1890 // emitAtomicBinary. In summary, we need a scratch register which is going to 1891 // be undef, that is unique among registers chosen for the instruction. 1892 1893 BuildMI(*BB, II, DL, TII->get(AtomicOp)) 1894 .addReg(Dest, RegState::Define | RegState::EarlyClobber) 1895 .addReg(PtrCopy, RegState::Kill) 1896 .addReg(OldValCopy, RegState::Kill) 1897 .addReg(NewValCopy, RegState::Kill) 1898 .addReg(Scratch, RegState::EarlyClobber | RegState::Define | 1899 RegState::Dead | RegState::Implicit); 1900 1901 MI.eraseFromParent(); // The instruction is gone now. 1902 1903 return BB; 1904 } 1905 1906 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword( 1907 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { 1908 assert((Size == 1 || Size == 2) && 1909 "Unsupported size for EmitAtomicCmpSwapPartial."); 1910 1911 MachineFunction *MF = BB->getParent(); 1912 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1913 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1914 const bool ArePtrs64bit = ABI.ArePtrs64bit(); 1915 const TargetRegisterClass *RCp = 1916 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); 1917 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1918 DebugLoc DL = MI.getDebugLoc(); 1919 1920 Register Dest = MI.getOperand(0).getReg(); 1921 Register Ptr = MI.getOperand(1).getReg(); 1922 Register CmpVal = MI.getOperand(2).getReg(); 1923 Register NewVal = MI.getOperand(3).getReg(); 1924 1925 Register AlignedAddr = RegInfo.createVirtualRegister(RCp); 1926 Register ShiftAmt = RegInfo.createVirtualRegister(RC); 1927 Register Mask = RegInfo.createVirtualRegister(RC); 1928 Register Mask2 = RegInfo.createVirtualRegister(RC); 1929 Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC); 1930 Register ShiftedNewVal = RegInfo.createVirtualRegister(RC); 1931 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp); 1932 Register PtrLSB2 = RegInfo.createVirtualRegister(RC); 1933 Register MaskUpper = RegInfo.createVirtualRegister(RC); 1934 Register MaskedCmpVal = RegInfo.createVirtualRegister(RC); 1935 Register MaskedNewVal = RegInfo.createVirtualRegister(RC); 1936 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8 1937 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA 1938 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA; 1939 1940 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit 1941 // flags are used to coerce the register allocator and the machine verifier to 1942 // accept the usage of these registers. 1943 // The EarlyClobber flag has the semantic properties that the operand it is 1944 // attached to is clobbered before the rest of the inputs are read. Hence it 1945 // must be unique among the operands to the instruction. 1946 // The Define flag is needed to coerce the machine verifier that an Undef 1947 // value isn't a problem. 1948 // The Dead flag is needed as the value in scratch isn't used by any other 1949 // instruction. Kill isn't used as Dead is more precise. 1950 Register Scratch = RegInfo.createVirtualRegister(RC); 1951 Register Scratch2 = RegInfo.createVirtualRegister(RC); 1952 1953 // insert new blocks after the current block 1954 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1955 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1956 MachineFunction::iterator It = ++BB->getIterator(); 1957 MF->insert(It, exitMBB); 1958 1959 // Transfer the remainder of BB and its successor edges to exitMBB. 1960 exitMBB->splice(exitMBB->begin(), BB, 1961 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1962 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1963 1964 BB->addSuccessor(exitMBB, BranchProbability::getOne()); 1965 1966 // thisMBB: 1967 // addiu masklsb2,$0,-4 # 0xfffffffc 1968 // and alignedaddr,ptr,masklsb2 1969 // andi ptrlsb2,ptr,3 1970 // xori ptrlsb2,ptrlsb2,3 # Only for BE 1971 // sll shiftamt,ptrlsb2,3 1972 // ori maskupper,$0,255 # 0xff 1973 // sll mask,maskupper,shiftamt 1974 // nor mask2,$0,mask 1975 // andi maskedcmpval,cmpval,255 1976 // sll shiftedcmpval,maskedcmpval,shiftamt 1977 // andi maskednewval,newval,255 1978 // sll shiftednewval,maskednewval,shiftamt 1979 int64_t MaskImm = (Size == 1) ? 255 : 65535; 1980 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2) 1981 .addReg(ABI.GetNullPtr()).addImm(-4); 1982 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr) 1983 .addReg(Ptr).addReg(MaskLSB2); 1984 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) 1985 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); 1986 if (Subtarget.isLittle()) { 1987 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); 1988 } else { 1989 Register Off = RegInfo.createVirtualRegister(RC); 1990 BuildMI(BB, DL, TII->get(Mips::XORi), Off) 1991 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); 1992 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); 1993 } 1994 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) 1995 .addReg(Mips::ZERO).addImm(MaskImm); 1996 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) 1997 .addReg(MaskUpper).addReg(ShiftAmt); 1998 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); 1999 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) 2000 .addReg(CmpVal).addImm(MaskImm); 2001 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) 2002 .addReg(MaskedCmpVal).addReg(ShiftAmt); 2003 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) 2004 .addReg(NewVal).addImm(MaskImm); 2005 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) 2006 .addReg(MaskedNewVal).addReg(ShiftAmt); 2007 2008 // The purposes of the flags on the scratch registers are explained in 2009 // emitAtomicBinary. In summary, we need a scratch register which is going to 2010 // be undef, that is unique among the register chosen for the instruction. 2011 2012 BuildMI(BB, DL, TII->get(AtomicOp)) 2013 .addReg(Dest, RegState::Define | RegState::EarlyClobber) 2014 .addReg(AlignedAddr) 2015 .addReg(Mask) 2016 .addReg(ShiftedCmpVal) 2017 .addReg(Mask2) 2018 .addReg(ShiftedNewVal) 2019 .addReg(ShiftAmt) 2020 .addReg(Scratch, RegState::EarlyClobber | RegState::Define | 2021 RegState::Dead | RegState::Implicit) 2022 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | 2023 RegState::Dead | RegState::Implicit); 2024 2025 MI.eraseFromParent(); // The instruction is gone now. 2026 2027 return exitMBB; 2028 } 2029 2030 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2031 // The first operand is the chain, the second is the condition, the third is 2032 // the block to branch to if the condition is true. 2033 SDValue Chain = Op.getOperand(0); 2034 SDValue Dest = Op.getOperand(2); 2035 SDLoc DL(Op); 2036 2037 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 2038 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); 2039 2040 // Return if flag is not set by a floating point comparison. 2041 if (CondRes.getOpcode() != MipsISD::FPCmp) 2042 return Op; 2043 2044 SDValue CCNode = CondRes.getOperand(2); 2045 Mips::CondCode CC = 2046 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); 2047 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; 2048 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32); 2049 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); 2050 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, 2051 FCC0, Dest, CondRes); 2052 } 2053 2054 SDValue MipsTargetLowering:: 2055 lowerSELECT(SDValue Op, SelectionDAG &DAG) const 2056 { 2057 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 2058 SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); 2059 2060 // Return if flag is not set by a floating point comparison. 2061 if (Cond.getOpcode() != MipsISD::FPCmp) 2062 return Op; 2063 2064 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), 2065 SDLoc(Op)); 2066 } 2067 2068 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2069 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 2070 SDValue Cond = createFPCmp(DAG, Op); 2071 2072 assert(Cond.getOpcode() == MipsISD::FPCmp && 2073 "Floating point operand expected."); 2074 2075 SDLoc DL(Op); 2076 SDValue True = DAG.getConstant(1, DL, MVT::i32); 2077 SDValue False = DAG.getConstant(0, DL, MVT::i32); 2078 2079 return createCMovFP(DAG, Cond, True, False, DL); 2080 } 2081 2082 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, 2083 SelectionDAG &DAG) const { 2084 EVT Ty = Op.getValueType(); 2085 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2086 const GlobalValue *GV = N->getGlobal(); 2087 2088 if (!isPositionIndependent()) { 2089 const MipsTargetObjectFile *TLOF = 2090 static_cast<const MipsTargetObjectFile *>( 2091 getTargetMachine().getObjFileLowering()); 2092 const GlobalObject *GO = GV->getAliaseeObject(); 2093 if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine())) 2094 // %gp_rel relocation 2095 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); 2096 2097 // %hi/%lo relocation 2098 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 2099 // %highest/%higher/%hi/%lo relocation 2100 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 2101 } 2102 2103 // Every other architecture would use shouldAssumeDSOLocal in here, but 2104 // mips is special. 2105 // * In PIC code mips requires got loads even for local statics! 2106 // * To save on got entries, for local statics the got entry contains the 2107 // page and an additional add instruction takes care of the low bits. 2108 // * It is legal to access a hidden symbol with a non hidden undefined, 2109 // so one cannot guarantee that all access to a hidden symbol will know 2110 // it is hidden. 2111 // * Mips linkers don't support creating a page and a full got entry for 2112 // the same symbol. 2113 // * Given all that, we have to use a full got entry for hidden symbols :-( 2114 if (GV->hasLocalLinkage()) 2115 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2116 2117 if (Subtarget.useXGOT()) 2118 return getAddrGlobalLargeGOT( 2119 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, 2120 DAG.getEntryNode(), 2121 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2122 2123 return getAddrGlobal( 2124 N, SDLoc(N), Ty, DAG, 2125 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT, 2126 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2127 } 2128 2129 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, 2130 SelectionDAG &DAG) const { 2131 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2132 EVT Ty = Op.getValueType(); 2133 2134 if (!isPositionIndependent()) 2135 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 2136 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 2137 2138 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2139 } 2140 2141 SDValue MipsTargetLowering:: 2142 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const 2143 { 2144 // If the relocation model is PIC, use the General Dynamic TLS Model or 2145 // Local Dynamic TLS model, otherwise use the Initial Exec or 2146 // Local Exec TLS Model. 2147 2148 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2149 if (DAG.getTarget().useEmulatedTLS()) 2150 return LowerToTLSEmulatedModel(GA, DAG); 2151 2152 SDLoc DL(GA); 2153 const GlobalValue *GV = GA->getGlobal(); 2154 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2155 2156 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2157 2158 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2159 // General Dynamic and Local Dynamic TLS Model. 2160 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM 2161 : MipsII::MO_TLSGD; 2162 2163 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); 2164 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, 2165 getGlobalReg(DAG, PtrVT), TGA); 2166 unsigned PtrSize = PtrVT.getSizeInBits(); 2167 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); 2168 2169 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); 2170 2171 ArgListTy Args; 2172 ArgListEntry Entry; 2173 Entry.Node = Argument; 2174 Entry.Ty = PtrTy; 2175 Args.push_back(Entry); 2176 2177 TargetLowering::CallLoweringInfo CLI(DAG); 2178 CLI.setDebugLoc(DL) 2179 .setChain(DAG.getEntryNode()) 2180 .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args)); 2181 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2182 2183 SDValue Ret = CallResult.first; 2184 2185 if (model != TLSModel::LocalDynamic) 2186 return Ret; 2187 2188 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2189 MipsII::MO_DTPREL_HI); 2190 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); 2191 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2192 MipsII::MO_DTPREL_LO); 2193 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); 2194 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); 2195 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); 2196 } 2197 2198 SDValue Offset; 2199 if (model == TLSModel::InitialExec) { 2200 // Initial Exec TLS Model 2201 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2202 MipsII::MO_GOTTPREL); 2203 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), 2204 TGA); 2205 Offset = 2206 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo()); 2207 } else { 2208 // Local Exec TLS Model 2209 assert(model == TLSModel::LocalExec); 2210 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2211 MipsII::MO_TPREL_HI); 2212 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2213 MipsII::MO_TPREL_LO); 2214 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); 2215 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); 2216 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2217 } 2218 2219 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); 2220 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); 2221 } 2222 2223 SDValue MipsTargetLowering:: 2224 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const 2225 { 2226 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2227 EVT Ty = Op.getValueType(); 2228 2229 if (!isPositionIndependent()) 2230 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 2231 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 2232 2233 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2234 } 2235 2236 SDValue MipsTargetLowering:: 2237 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const 2238 { 2239 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2240 EVT Ty = Op.getValueType(); 2241 2242 if (!isPositionIndependent()) { 2243 const MipsTargetObjectFile *TLOF = 2244 static_cast<const MipsTargetObjectFile *>( 2245 getTargetMachine().getObjFileLowering()); 2246 2247 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(), 2248 getTargetMachine())) 2249 // %gp_rel relocation 2250 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); 2251 2252 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 2253 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 2254 } 2255 2256 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2257 } 2258 2259 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2260 MachineFunction &MF = DAG.getMachineFunction(); 2261 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 2262 2263 SDLoc DL(Op); 2264 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2265 getPointerTy(MF.getDataLayout())); 2266 2267 // vastart just stores the address of the VarArgsFrameIndex slot into the 2268 // memory location argument. 2269 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2270 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2271 MachinePointerInfo(SV)); 2272 } 2273 2274 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2275 SDNode *Node = Op.getNode(); 2276 EVT VT = Node->getValueType(0); 2277 SDValue Chain = Node->getOperand(0); 2278 SDValue VAListPtr = Node->getOperand(1); 2279 const Align Align = 2280 llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne(); 2281 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2282 SDLoc DL(Node); 2283 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4; 2284 2285 SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, 2286 VAListPtr, MachinePointerInfo(SV)); 2287 SDValue VAList = VAListLoad; 2288 2289 // Re-align the pointer if necessary. 2290 // It should only ever be necessary for 64-bit types on O32 since the minimum 2291 // argument alignment is the same as the maximum type alignment for N32/N64. 2292 // 2293 // FIXME: We currently align too often. The code generator doesn't notice 2294 // when the pointer is still aligned from the last va_arg (or pair of 2295 // va_args for the i64 on O32 case). 2296 if (Align > getMinStackArgumentAlignment()) { 2297 VAList = DAG.getNode( 2298 ISD::ADD, DL, VAList.getValueType(), VAList, 2299 DAG.getConstant(Align.value() - 1, DL, VAList.getValueType())); 2300 2301 VAList = DAG.getNode( 2302 ISD::AND, DL, VAList.getValueType(), VAList, 2303 DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType())); 2304 } 2305 2306 // Increment the pointer, VAList, to the next vaarg. 2307 auto &TD = DAG.getDataLayout(); 2308 unsigned ArgSizeInBytes = 2309 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); 2310 SDValue Tmp3 = 2311 DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, 2312 DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes), 2313 DL, VAList.getValueType())); 2314 // Store the incremented VAList to the legalized pointer 2315 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, 2316 MachinePointerInfo(SV)); 2317 2318 // In big-endian mode we must adjust the pointer when the load size is smaller 2319 // than the argument slot size. We must also reduce the known alignment to 2320 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get 2321 // the correct half of the slot, and reduce the alignment from 8 (slot 2322 // alignment) down to 4 (type alignment). 2323 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { 2324 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; 2325 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, 2326 DAG.getIntPtrConstant(Adjustment, DL)); 2327 } 2328 // Load the actual argument out of the pointer VAList 2329 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo()); 2330 } 2331 2332 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, 2333 bool HasExtractInsert) { 2334 EVT TyX = Op.getOperand(0).getValueType(); 2335 EVT TyY = Op.getOperand(1).getValueType(); 2336 SDLoc DL(Op); 2337 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); 2338 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32); 2339 SDValue Res; 2340 2341 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it 2342 // to i32. 2343 SDValue X = (TyX == MVT::f32) ? 2344 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : 2345 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), 2346 Const1); 2347 SDValue Y = (TyY == MVT::f32) ? 2348 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : 2349 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), 2350 Const1); 2351 2352 if (HasExtractInsert) { 2353 // ext E, Y, 31, 1 ; extract bit31 of Y 2354 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X 2355 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); 2356 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); 2357 } else { 2358 // sll SllX, X, 1 2359 // srl SrlX, SllX, 1 2360 // srl SrlY, Y, 31 2361 // sll SllY, SrlX, 31 2362 // or Or, SrlX, SllY 2363 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); 2364 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); 2365 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); 2366 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); 2367 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); 2368 } 2369 2370 if (TyX == MVT::f32) 2371 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); 2372 2373 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2374 Op.getOperand(0), 2375 DAG.getConstant(0, DL, MVT::i32)); 2376 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); 2377 } 2378 2379 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, 2380 bool HasExtractInsert) { 2381 unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); 2382 unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); 2383 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); 2384 SDLoc DL(Op); 2385 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); 2386 2387 // Bitcast to integer nodes. 2388 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); 2389 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); 2390 2391 if (HasExtractInsert) { 2392 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y 2393 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X 2394 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, 2395 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1); 2396 2397 if (WidthX > WidthY) 2398 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); 2399 else if (WidthY > WidthX) 2400 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); 2401 2402 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, 2403 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1, 2404 X); 2405 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); 2406 } 2407 2408 // (d)sll SllX, X, 1 2409 // (d)srl SrlX, SllX, 1 2410 // (d)srl SrlY, Y, width(Y)-1 2411 // (d)sll SllY, SrlX, width(Y)-1 2412 // or Or, SrlX, SllY 2413 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); 2414 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); 2415 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, 2416 DAG.getConstant(WidthY - 1, DL, MVT::i32)); 2417 2418 if (WidthX > WidthY) 2419 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); 2420 else if (WidthY > WidthX) 2421 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); 2422 2423 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, 2424 DAG.getConstant(WidthX - 1, DL, MVT::i32)); 2425 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); 2426 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); 2427 } 2428 2429 SDValue 2430 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 2431 if (Subtarget.isGP64bit()) 2432 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); 2433 2434 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); 2435 } 2436 2437 SDValue MipsTargetLowering::lowerFABS32(SDValue Op, SelectionDAG &DAG, 2438 bool HasExtractInsert) const { 2439 SDLoc DL(Op); 2440 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32); 2441 2442 if (DAG.getTarget().Options.NoNaNsFPMath || Subtarget.inAbs2008Mode()) 2443 return DAG.getNode(MipsISD::FAbs, DL, Op.getValueType(), Op.getOperand(0)); 2444 2445 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it 2446 // to i32. 2447 SDValue X = (Op.getValueType() == MVT::f32) 2448 ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) 2449 : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2450 Op.getOperand(0), Const1); 2451 2452 // Clear MSB. 2453 if (HasExtractInsert) 2454 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, 2455 DAG.getRegister(Mips::ZERO, MVT::i32), 2456 DAG.getConstant(31, DL, MVT::i32), Const1, X); 2457 else { 2458 // TODO: Provide DAG patterns which transform (and x, cst) 2459 // back to a (shl (srl x (clz cst)) (clz cst)) sequence. 2460 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); 2461 Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); 2462 } 2463 2464 if (Op.getValueType() == MVT::f32) 2465 return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res); 2466 2467 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64 2468 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we 2469 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in 2470 // place. 2471 SDValue LowX = 2472 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), 2473 DAG.getConstant(0, DL, MVT::i32)); 2474 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); 2475 } 2476 2477 SDValue MipsTargetLowering::lowerFABS64(SDValue Op, SelectionDAG &DAG, 2478 bool HasExtractInsert) const { 2479 SDLoc DL(Op); 2480 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32); 2481 2482 if (DAG.getTarget().Options.NoNaNsFPMath || Subtarget.inAbs2008Mode()) 2483 return DAG.getNode(MipsISD::FAbs, DL, Op.getValueType(), Op.getOperand(0)); 2484 2485 // Bitcast to integer node. 2486 SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0)); 2487 2488 // Clear MSB. 2489 if (HasExtractInsert) 2490 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64, 2491 DAG.getRegister(Mips::ZERO_64, MVT::i64), 2492 DAG.getConstant(63, DL, MVT::i32), Const1, X); 2493 else { 2494 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1); 2495 Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1); 2496 } 2497 2498 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res); 2499 } 2500 2501 SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const { 2502 if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64)) 2503 return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert()); 2504 2505 return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert()); 2506 } 2507 2508 SDValue MipsTargetLowering:: 2509 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 2510 // check the depth 2511 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) { 2512 DAG.getContext()->emitError( 2513 "return address can be determined only for current frame"); 2514 return SDValue(); 2515 } 2516 2517 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2518 MFI.setFrameAddressIsTaken(true); 2519 EVT VT = Op.getValueType(); 2520 SDLoc DL(Op); 2521 SDValue FrameAddr = DAG.getCopyFromReg( 2522 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT); 2523 return FrameAddr; 2524 } 2525 2526 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, 2527 SelectionDAG &DAG) const { 2528 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2529 return SDValue(); 2530 2531 // check the depth 2532 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) { 2533 DAG.getContext()->emitError( 2534 "return address can be determined only for current frame"); 2535 return SDValue(); 2536 } 2537 2538 MachineFunction &MF = DAG.getMachineFunction(); 2539 MachineFrameInfo &MFI = MF.getFrameInfo(); 2540 MVT VT = Op.getSimpleValueType(); 2541 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA; 2542 MFI.setReturnAddressIsTaken(true); 2543 2544 // Return RA, which contains the return address. Mark it an implicit live-in. 2545 Register Reg = MF.addLiveIn(RA, getRegClassFor(VT)); 2546 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); 2547 } 2548 2549 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is 2550 // generated from __builtin_eh_return (offset, handler) 2551 // The effect of this is to adjust the stack pointer by "offset" 2552 // and then branch to "handler". 2553 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) 2554 const { 2555 MachineFunction &MF = DAG.getMachineFunction(); 2556 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 2557 2558 MipsFI->setCallsEhReturn(); 2559 SDValue Chain = Op.getOperand(0); 2560 SDValue Offset = Op.getOperand(1); 2561 SDValue Handler = Op.getOperand(2); 2562 SDLoc DL(Op); 2563 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; 2564 2565 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and 2566 // EH_RETURN nodes, so that instructions are emitted back-to-back. 2567 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1; 2568 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0; 2569 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); 2570 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); 2571 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, 2572 DAG.getRegister(OffsetReg, Ty), 2573 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())), 2574 Chain.getValue(1)); 2575 } 2576 2577 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, 2578 SelectionDAG &DAG) const { 2579 // FIXME: Need pseudo-fence for 'singlethread' fences 2580 // FIXME: Set SType for weaker fences where supported/appropriate. 2581 unsigned SType = 0; 2582 SDLoc DL(Op); 2583 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), 2584 DAG.getConstant(SType, DL, MVT::i32)); 2585 } 2586 2587 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, 2588 SelectionDAG &DAG) const { 2589 SDLoc DL(Op); 2590 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; 2591 2592 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); 2593 SDValue Shamt = Op.getOperand(2); 2594 // if shamt < (VT.bits): 2595 // lo = (shl lo, shamt) 2596 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) 2597 // else: 2598 // lo = 0 2599 // hi = (shl lo, shamt[4:0]) 2600 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, 2601 DAG.getConstant(-1, DL, MVT::i32)); 2602 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, 2603 DAG.getConstant(1, DL, VT)); 2604 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not); 2605 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2606 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2607 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2608 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, 2609 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); 2610 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2611 DAG.getConstant(0, DL, VT), ShiftLeftLo); 2612 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or); 2613 2614 SDValue Ops[2] = {Lo, Hi}; 2615 return DAG.getMergeValues(Ops, DL); 2616 } 2617 2618 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2619 bool IsSRA) const { 2620 SDLoc DL(Op); 2621 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); 2622 SDValue Shamt = Op.getOperand(2); 2623 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; 2624 2625 // if shamt < (VT.bits): 2626 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) 2627 // if isSRA: 2628 // hi = (sra hi, shamt) 2629 // else: 2630 // hi = (srl hi, shamt) 2631 // else: 2632 // if isSRA: 2633 // lo = (sra hi, shamt[4:0]) 2634 // hi = (sra hi, 31) 2635 // else: 2636 // lo = (srl hi, shamt[4:0]) 2637 // hi = 0 2638 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, 2639 DAG.getConstant(-1, DL, MVT::i32)); 2640 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, 2641 DAG.getConstant(1, DL, VT)); 2642 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not); 2643 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2644 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2645 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, 2646 DL, VT, Hi, Shamt); 2647 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, 2648 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); 2649 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi, 2650 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT)); 2651 2652 if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) { 2653 SDVTList VTList = DAG.getVTList(VT, VT); 2654 return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64 2655 : Mips::PseudoD_SELECT_I, 2656 DL, VTList, Cond, ShiftRightHi, 2657 IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or, 2658 ShiftRightHi); 2659 } 2660 2661 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or); 2662 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2663 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi); 2664 2665 SDValue Ops[2] = {Lo, Hi}; 2666 return DAG.getMergeValues(Ops, DL); 2667 } 2668 2669 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, 2670 SDValue Chain, SDValue Src, unsigned Offset) { 2671 SDValue Ptr = LD->getBasePtr(); 2672 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); 2673 EVT BasePtrVT = Ptr.getValueType(); 2674 SDLoc DL(LD); 2675 SDVTList VTList = DAG.getVTList(VT, MVT::Other); 2676 2677 if (Offset) 2678 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, 2679 DAG.getConstant(Offset, DL, BasePtrVT)); 2680 2681 SDValue Ops[] = { Chain, Ptr, Src }; 2682 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, 2683 LD->getMemOperand()); 2684 } 2685 2686 // Expand an unaligned 32 or 64-bit integer load node. 2687 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 2688 LoadSDNode *LD = cast<LoadSDNode>(Op); 2689 EVT MemVT = LD->getMemoryVT(); 2690 2691 if (Subtarget.systemSupportsUnalignedAccess()) 2692 return Op; 2693 2694 // Return if load is aligned or if MemVT is neither i32 nor i64. 2695 if ((LD->getAlign().value() >= (MemVT.getSizeInBits() / 8)) || 2696 ((MemVT != MVT::i32) && (MemVT != MVT::i64))) 2697 return SDValue(); 2698 2699 bool IsLittle = Subtarget.isLittle(); 2700 EVT VT = Op.getValueType(); 2701 ISD::LoadExtType ExtType = LD->getExtensionType(); 2702 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); 2703 2704 assert((VT == MVT::i32) || (VT == MVT::i64)); 2705 2706 // Expand 2707 // (set dst, (i64 (load baseptr))) 2708 // to 2709 // (set tmp, (ldl (add baseptr, 7), undef)) 2710 // (set dst, (ldr baseptr, tmp)) 2711 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { 2712 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, 2713 IsLittle ? 7 : 0); 2714 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, 2715 IsLittle ? 0 : 7); 2716 } 2717 2718 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, 2719 IsLittle ? 3 : 0); 2720 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, 2721 IsLittle ? 0 : 3); 2722 2723 // Expand 2724 // (set dst, (i32 (load baseptr))) or 2725 // (set dst, (i64 (sextload baseptr))) or 2726 // (set dst, (i64 (extload baseptr))) 2727 // to 2728 // (set tmp, (lwl (add baseptr, 3), undef)) 2729 // (set dst, (lwr baseptr, tmp)) 2730 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || 2731 (ExtType == ISD::EXTLOAD)) 2732 return LWR; 2733 2734 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); 2735 2736 // Expand 2737 // (set dst, (i64 (zextload baseptr))) 2738 // to 2739 // (set tmp0, (lwl (add baseptr, 3), undef)) 2740 // (set tmp1, (lwr baseptr, tmp0)) 2741 // (set tmp2, (shl tmp1, 32)) 2742 // (set dst, (srl tmp2, 32)) 2743 SDLoc DL(LD); 2744 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32); 2745 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); 2746 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); 2747 SDValue Ops[] = { SRL, LWR.getValue(1) }; 2748 return DAG.getMergeValues(Ops, DL); 2749 } 2750 2751 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, 2752 SDValue Chain, unsigned Offset) { 2753 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); 2754 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); 2755 SDLoc DL(SD); 2756 SDVTList VTList = DAG.getVTList(MVT::Other); 2757 2758 if (Offset) 2759 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, 2760 DAG.getConstant(Offset, DL, BasePtrVT)); 2761 2762 SDValue Ops[] = { Chain, Value, Ptr }; 2763 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, 2764 SD->getMemOperand()); 2765 } 2766 2767 // Expand an unaligned 32 or 64-bit integer store node. 2768 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, 2769 bool IsLittle) { 2770 SDValue Value = SD->getValue(), Chain = SD->getChain(); 2771 EVT VT = Value.getValueType(); 2772 2773 // Expand 2774 // (store val, baseptr) or 2775 // (truncstore val, baseptr) 2776 // to 2777 // (swl val, (add baseptr, 3)) 2778 // (swr val, baseptr) 2779 if ((VT == MVT::i32) || SD->isTruncatingStore()) { 2780 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, 2781 IsLittle ? 3 : 0); 2782 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); 2783 } 2784 2785 assert(VT == MVT::i64); 2786 2787 // Expand 2788 // (store val, baseptr) 2789 // to 2790 // (sdl val, (add baseptr, 7)) 2791 // (sdr val, baseptr) 2792 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); 2793 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); 2794 } 2795 2796 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). 2797 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG, 2798 bool SingleFloat) { 2799 SDValue Val = SD->getValue(); 2800 2801 if (Val.getOpcode() != ISD::FP_TO_SINT || 2802 (Val.getValueSizeInBits() > 32 && SingleFloat)) 2803 return SDValue(); 2804 2805 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); 2806 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, 2807 Val.getOperand(0)); 2808 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), 2809 SD->getPointerInfo(), SD->getAlign(), 2810 SD->getMemOperand()->getFlags()); 2811 } 2812 2813 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 2814 StoreSDNode *SD = cast<StoreSDNode>(Op); 2815 EVT MemVT = SD->getMemoryVT(); 2816 2817 // Lower unaligned integer stores. 2818 if (!Subtarget.systemSupportsUnalignedAccess() && 2819 (SD->getAlign().value() < (MemVT.getSizeInBits() / 8)) && 2820 ((MemVT == MVT::i32) || (MemVT == MVT::i64))) 2821 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); 2822 2823 return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat()); 2824 } 2825 2826 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op, 2827 SelectionDAG &DAG) const { 2828 2829 // Return a fixed StackObject with offset 0 which points to the old stack 2830 // pointer. 2831 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2832 EVT ValTy = Op->getValueType(0); 2833 int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); 2834 return DAG.getFrameIndex(FI, ValTy); 2835 } 2836 2837 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, 2838 SelectionDAG &DAG) const { 2839 if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat()) 2840 return SDValue(); 2841 2842 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); 2843 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, 2844 Op.getOperand(0)); 2845 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); 2846 } 2847 2848 //===----------------------------------------------------------------------===// 2849 // Calling Convention Implementation 2850 //===----------------------------------------------------------------------===// 2851 2852 //===----------------------------------------------------------------------===// 2853 // TODO: Implement a generic logic using tblgen that can support this. 2854 // Mips O32 ABI rules: 2855 // --- 2856 // i32 - Passed in A0, A1, A2, A3 and stack 2857 // f32 - Only passed in f32 registers if no int reg has been used yet to hold 2858 // an argument. Otherwise, passed in A1, A2, A3 and stack. 2859 // f64 - Only passed in two aliased f32 registers if no int reg has been used 2860 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is 2861 // not used, it must be shadowed. If only A3 is available, shadow it and 2862 // go to stack. 2863 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack. 2864 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3} 2865 // with the remainder spilled to the stack. 2866 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases 2867 // spilling the remainder to the stack. 2868 // 2869 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. 2870 //===----------------------------------------------------------------------===// 2871 2872 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, 2873 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 2874 CCState &State, ArrayRef<MCPhysReg> F64Regs) { 2875 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>( 2876 State.getMachineFunction().getSubtarget()); 2877 2878 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; 2879 2880 const MipsCCState * MipsState = static_cast<MipsCCState *>(&State); 2881 2882 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; 2883 2884 static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 }; 2885 2886 // Do not process byval args here. 2887 if (ArgFlags.isByVal()) 2888 return true; 2889 2890 // Promote i8 and i16 2891 if (ArgFlags.isInReg() && !Subtarget.isLittle()) { 2892 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) { 2893 LocVT = MVT::i32; 2894 if (ArgFlags.isSExt()) 2895 LocInfo = CCValAssign::SExtUpper; 2896 else if (ArgFlags.isZExt()) 2897 LocInfo = CCValAssign::ZExtUpper; 2898 else 2899 LocInfo = CCValAssign::AExtUpper; 2900 } 2901 } 2902 2903 // Promote i8 and i16 2904 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 2905 LocVT = MVT::i32; 2906 if (ArgFlags.isSExt()) 2907 LocInfo = CCValAssign::SExt; 2908 else if (ArgFlags.isZExt()) 2909 LocInfo = CCValAssign::ZExt; 2910 else 2911 LocInfo = CCValAssign::AExt; 2912 } 2913 2914 unsigned Reg; 2915 2916 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following 2917 // is true: function is vararg, argument is 3rd or higher, there is previous 2918 // argument which is not f32 or f64. 2919 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || 2920 State.getFirstUnallocated(F32Regs) != ValNo; 2921 Align OrigAlign = ArgFlags.getNonZeroOrigAlign(); 2922 bool isI64 = (ValVT == MVT::i32 && OrigAlign == Align(8)); 2923 bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo); 2924 2925 // The MIPS vector ABI for floats passes them in a pair of registers 2926 if (ValVT == MVT::i32 && isVectorFloat) { 2927 // This is the start of an vector that was scalarized into an unknown number 2928 // of components. It doesn't matter how many there are. Allocate one of the 2929 // notional 8 byte aligned registers which map onto the argument stack, and 2930 // shadow the register lost to alignment requirements. 2931 if (ArgFlags.isSplit()) { 2932 Reg = State.AllocateReg(FloatVectorIntRegs); 2933 if (Reg == Mips::A2) 2934 State.AllocateReg(Mips::A1); 2935 else if (Reg == 0) 2936 State.AllocateReg(Mips::A3); 2937 } else { 2938 // If we're an intermediate component of the split, we can just attempt to 2939 // allocate a register directly. 2940 Reg = State.AllocateReg(IntRegs); 2941 } 2942 } else if (ValVT == MVT::i32 || 2943 (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { 2944 Reg = State.AllocateReg(IntRegs); 2945 // If this is the first part of an i64 arg, 2946 // the allocated register must be either A0 or A2. 2947 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) 2948 Reg = State.AllocateReg(IntRegs); 2949 LocVT = MVT::i32; 2950 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { 2951 LocVT = MVT::i32; 2952 2953 // Allocate int register and shadow next int register. If first 2954 // available register is Mips::A1 or Mips::A3, shadow it too. 2955 Reg = State.AllocateReg(IntRegs); 2956 if (Reg == Mips::A1 || Reg == Mips::A3) 2957 Reg = State.AllocateReg(IntRegs); 2958 2959 if (Reg) { 2960 State.addLoc( 2961 CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2962 MCRegister HiReg = State.AllocateReg(IntRegs); 2963 assert(HiReg); 2964 State.addLoc( 2965 CCValAssign::getCustomReg(ValNo, ValVT, HiReg, LocVT, LocInfo)); 2966 return false; 2967 } 2968 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { 2969 // we are guaranteed to find an available float register 2970 if (ValVT == MVT::f32) { 2971 Reg = State.AllocateReg(F32Regs); 2972 // Shadow int register 2973 State.AllocateReg(IntRegs); 2974 } else { 2975 Reg = State.AllocateReg(F64Regs); 2976 // Shadow int registers 2977 unsigned Reg2 = State.AllocateReg(IntRegs); 2978 if (Reg2 == Mips::A1 || Reg2 == Mips::A3) 2979 State.AllocateReg(IntRegs); 2980 State.AllocateReg(IntRegs); 2981 } 2982 } else 2983 llvm_unreachable("Cannot handle this ValVT."); 2984 2985 if (!Reg) { 2986 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign); 2987 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 2988 } else 2989 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2990 2991 return false; 2992 } 2993 2994 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, 2995 MVT LocVT, CCValAssign::LocInfo LocInfo, 2996 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2997 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; 2998 2999 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); 3000 } 3001 3002 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, 3003 MVT LocVT, CCValAssign::LocInfo LocInfo, 3004 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3005 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; 3006 3007 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); 3008 } 3009 3010 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, 3011 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 3012 CCState &State) LLVM_ATTRIBUTE_UNUSED; 3013 3014 #include "MipsGenCallingConv.inc" 3015 3016 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{ 3017 return CC_Mips_FixedArg; 3018 } 3019 3020 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{ 3021 return RetCC_Mips; 3022 } 3023 //===----------------------------------------------------------------------===// 3024 // Call Calling Convention Implementation 3025 //===----------------------------------------------------------------------===// 3026 3027 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, 3028 SDValue Chain, SDValue Arg, 3029 const SDLoc &DL, bool IsTailCall, 3030 SelectionDAG &DAG) const { 3031 if (!IsTailCall) { 3032 SDValue PtrOff = 3033 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 3034 DAG.getIntPtrConstant(Offset, DL)); 3035 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()); 3036 } 3037 3038 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3039 int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); 3040 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3041 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), MaybeAlign(), 3042 MachineMemOperand::MOVolatile); 3043 } 3044 3045 void MipsTargetLowering:: 3046 getOpndList(SmallVectorImpl<SDValue> &Ops, 3047 std::deque<std::pair<unsigned, SDValue>> &RegsToPass, 3048 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, 3049 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, 3050 SDValue Chain) const { 3051 // Insert node "GP copy globalreg" before call to function. 3052 // 3053 // R_MIPS_CALL* operators (emitted when non-internal functions are called 3054 // in PIC mode) allow symbols to be resolved via lazy binding. 3055 // The lazy binding stub requires GP to point to the GOT. 3056 // Note that we don't need GP to point to the GOT for indirect calls 3057 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates 3058 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs 3059 // used for the function (that is, Mips linker doesn't generate lazy binding 3060 // stub for a function whose address is taken in the program). 3061 if (IsPICCall && !InternalLinkage && IsCallReloc) { 3062 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP; 3063 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; 3064 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); 3065 } 3066 3067 // Build a sequence of copy-to-reg nodes chained together with token 3068 // chain and flag operands which copy the outgoing args into registers. 3069 // The InGlue in necessary since all emitted instructions must be 3070 // stuck together. 3071 SDValue InGlue; 3072 3073 for (auto &R : RegsToPass) { 3074 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, R.first, R.second, InGlue); 3075 InGlue = Chain.getValue(1); 3076 } 3077 3078 // Add argument registers to the end of the list so that they are 3079 // known live into the call. 3080 for (auto &R : RegsToPass) 3081 Ops.push_back(CLI.DAG.getRegister(R.first, R.second.getValueType())); 3082 3083 // Add a register mask operand representing the call-preserved registers. 3084 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3085 const uint32_t *Mask = 3086 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv); 3087 assert(Mask && "Missing call preserved mask for calling convention"); 3088 if (Subtarget.inMips16HardFloat()) { 3089 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { 3090 StringRef Sym = G->getGlobal()->getName(); 3091 Function *F = G->getGlobal()->getParent()->getFunction(Sym); 3092 if (F && F->hasFnAttribute("__Mips16RetHelper")) { 3093 Mask = MipsRegisterInfo::getMips16RetHelperMask(); 3094 } 3095 } 3096 } 3097 Ops.push_back(CLI.DAG.getRegisterMask(Mask)); 3098 3099 if (InGlue.getNode()) 3100 Ops.push_back(InGlue); 3101 } 3102 3103 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 3104 SDNode *Node) const { 3105 switch (MI.getOpcode()) { 3106 default: 3107 return; 3108 case Mips::JALR: 3109 case Mips::JALRPseudo: 3110 case Mips::JALR64: 3111 case Mips::JALR64Pseudo: 3112 case Mips::JALR16_MM: 3113 case Mips::JALRC16_MMR6: 3114 case Mips::TAILCALLREG: 3115 case Mips::TAILCALLREG64: 3116 case Mips::TAILCALLR6REG: 3117 case Mips::TAILCALL64R6REG: 3118 case Mips::TAILCALLREG_MM: 3119 case Mips::TAILCALLREG_MMR6: { 3120 if (!EmitJalrReloc || 3121 Subtarget.inMips16Mode() || 3122 !isPositionIndependent() || 3123 Node->getNumOperands() < 1 || 3124 Node->getOperand(0).getNumOperands() < 2) { 3125 return; 3126 } 3127 // We are after the callee address, set by LowerCall(). 3128 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the 3129 // symbol. 3130 const SDValue TargetAddr = Node->getOperand(0).getOperand(1); 3131 StringRef Sym; 3132 if (const GlobalAddressSDNode *G = 3133 dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) { 3134 // We must not emit the R_MIPS_JALR relocation against data symbols 3135 // since this will cause run-time crashes if the linker replaces the 3136 // call instruction with a relative branch to the data symbol. 3137 if (!isa<Function>(G->getGlobal())) { 3138 LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol " 3139 << G->getGlobal()->getName() << "\n"); 3140 return; 3141 } 3142 Sym = G->getGlobal()->getName(); 3143 } 3144 else if (const ExternalSymbolSDNode *ES = 3145 dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) { 3146 Sym = ES->getSymbol(); 3147 } 3148 3149 if (Sym.empty()) 3150 return; 3151 3152 MachineFunction *MF = MI.getParent()->getParent(); 3153 MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym); 3154 LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n"); 3155 MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR)); 3156 } 3157 } 3158 } 3159 3160 /// LowerCall - functions arguments are copied from virtual regs to 3161 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 3162 SDValue 3163 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 3164 SmallVectorImpl<SDValue> &InVals) const { 3165 SelectionDAG &DAG = CLI.DAG; 3166 SDLoc DL = CLI.DL; 3167 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3168 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3169 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3170 SDValue Chain = CLI.Chain; 3171 SDValue Callee = CLI.Callee; 3172 bool &IsTailCall = CLI.IsTailCall; 3173 CallingConv::ID CallConv = CLI.CallConv; 3174 bool IsVarArg = CLI.IsVarArg; 3175 3176 MachineFunction &MF = DAG.getMachineFunction(); 3177 MachineFrameInfo &MFI = MF.getFrameInfo(); 3178 const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); 3179 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 3180 bool IsPIC = isPositionIndependent(); 3181 3182 // Analyze operands of the call, assigning locations to each operand. 3183 SmallVector<CCValAssign, 16> ArgLocs; 3184 MipsCCState CCInfo( 3185 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), 3186 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget)); 3187 3188 const ExternalSymbolSDNode *ES = 3189 dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode()); 3190 3191 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which 3192 // is during the lowering of a call with a byval argument which produces 3193 // a call to memcpy. For the O32 case, this causes the caller to allocate 3194 // stack space for the reserved argument area for the callee, then recursively 3195 // again for the memcpy call. In the NEWABI case, this doesn't occur as those 3196 // ABIs mandate that the callee allocates the reserved argument area. We do 3197 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though. 3198 // 3199 // If the callee has a byval argument and memcpy is used, we are mandated 3200 // to already have produced a reserved argument area for the callee for O32. 3201 // Therefore, the reserved argument area can be reused for both calls. 3202 // 3203 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START 3204 // present, as we have yet to hook that node onto the chain. 3205 // 3206 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this 3207 // case. GCC does a similar trick, in that wherever possible, it calculates 3208 // the maximum out going argument area (including the reserved area), and 3209 // preallocates the stack space on entrance to the caller. 3210 // 3211 // FIXME: We should do the same for efficiency and space. 3212 3213 // Note: The check on the calling convention below must match 3214 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes(). 3215 bool MemcpyInByVal = ES && 3216 StringRef(ES->getSymbol()) == StringRef("memcpy") && 3217 CallConv != CallingConv::Fast && 3218 Chain.getOpcode() == ISD::CALLSEQ_START; 3219 3220 // Allocate the reserved argument area. It seems strange to do this from the 3221 // caller side but removing it breaks the frame size calculation. 3222 unsigned ReservedArgArea = 3223 MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv); 3224 CCInfo.AllocateStack(ReservedArgArea, Align(1)); 3225 3226 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), 3227 ES ? ES->getSymbol() : nullptr); 3228 3229 // Get a count of how many bytes are to be pushed on the stack. 3230 unsigned StackSize = CCInfo.getStackSize(); 3231 3232 // Call site info for function parameters tracking. 3233 MachineFunction::CallSiteInfo CSInfo; 3234 3235 // Check if it's really possible to do a tail call. Restrict it to functions 3236 // that are part of this compilation unit. 3237 bool InternalLinkage = false; 3238 if (IsTailCall) { 3239 IsTailCall = isEligibleForTailCallOptimization( 3240 CCInfo, StackSize, *MF.getInfo<MipsFunctionInfo>()); 3241 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3242 InternalLinkage = G->getGlobal()->hasInternalLinkage(); 3243 IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() || 3244 G->getGlobal()->hasPrivateLinkage() || 3245 G->getGlobal()->hasHiddenVisibility() || 3246 G->getGlobal()->hasProtectedVisibility()); 3247 } 3248 } 3249 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) 3250 report_fatal_error("failed to perform tail call elimination on a call " 3251 "site marked musttail"); 3252 3253 if (IsTailCall) 3254 ++NumTailCalls; 3255 3256 // Chain is the output chain of the last Load/Store or CopyToReg node. 3257 // ByValChain is the output chain of the last Memcpy node created for copying 3258 // byval arguments to the stack. 3259 unsigned StackAlignment = TFL->getStackAlignment(); 3260 StackSize = alignTo(StackSize, StackAlignment); 3261 3262 if (!(IsTailCall || MemcpyInByVal)) 3263 Chain = DAG.getCALLSEQ_START(Chain, StackSize, 0, DL); 3264 3265 SDValue StackPtr = 3266 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, 3267 getPointerTy(DAG.getDataLayout())); 3268 3269 std::deque<std::pair<unsigned, SDValue>> RegsToPass; 3270 SmallVector<SDValue, 8> MemOpChains; 3271 3272 CCInfo.rewindByValRegsInfo(); 3273 3274 // Walk the register/memloc assignments, inserting copies/loads. 3275 for (unsigned i = 0, e = ArgLocs.size(), OutIdx = 0; i != e; ++i, ++OutIdx) { 3276 SDValue Arg = OutVals[OutIdx]; 3277 CCValAssign &VA = ArgLocs[i]; 3278 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); 3279 ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags; 3280 bool UseUpperBits = false; 3281 3282 // ByVal Arg. 3283 if (Flags.isByVal()) { 3284 unsigned FirstByValReg, LastByValReg; 3285 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); 3286 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); 3287 3288 assert(Flags.getByValSize() && 3289 "ByVal args of size 0 should have been ignored by front-end."); 3290 assert(ByValIdx < CCInfo.getInRegsParamsCount()); 3291 assert(!IsTailCall && 3292 "Do not tail-call optimize if there is a byval argument."); 3293 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, 3294 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(), 3295 VA); 3296 CCInfo.nextInRegsParam(); 3297 continue; 3298 } 3299 3300 // Promote the value if needed. 3301 switch (VA.getLocInfo()) { 3302 default: 3303 llvm_unreachable("Unknown loc info!"); 3304 case CCValAssign::Full: 3305 if (VA.isRegLoc()) { 3306 if ((ValVT == MVT::f32 && LocVT == MVT::i32) || 3307 (ValVT == MVT::f64 && LocVT == MVT::i64) || 3308 (ValVT == MVT::i64 && LocVT == MVT::f64)) 3309 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); 3310 else if (ValVT == MVT::f64 && LocVT == MVT::i32) { 3311 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 3312 Arg, DAG.getConstant(0, DL, MVT::i32)); 3313 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 3314 Arg, DAG.getConstant(1, DL, MVT::i32)); 3315 if (!Subtarget.isLittle()) 3316 std::swap(Lo, Hi); 3317 3318 assert(VA.needsCustom()); 3319 3320 Register LocRegLo = VA.getLocReg(); 3321 Register LocRegHigh = ArgLocs[++i].getLocReg(); 3322 RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); 3323 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); 3324 continue; 3325 } 3326 } 3327 break; 3328 case CCValAssign::BCvt: 3329 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); 3330 break; 3331 case CCValAssign::SExtUpper: 3332 UseUpperBits = true; 3333 [[fallthrough]]; 3334 case CCValAssign::SExt: 3335 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); 3336 break; 3337 case CCValAssign::ZExtUpper: 3338 UseUpperBits = true; 3339 [[fallthrough]]; 3340 case CCValAssign::ZExt: 3341 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); 3342 break; 3343 case CCValAssign::AExtUpper: 3344 UseUpperBits = true; 3345 [[fallthrough]]; 3346 case CCValAssign::AExt: 3347 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); 3348 break; 3349 } 3350 3351 if (UseUpperBits) { 3352 unsigned ValSizeInBits = Outs[OutIdx].ArgVT.getSizeInBits(); 3353 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3354 Arg = DAG.getNode( 3355 ISD::SHL, DL, VA.getLocVT(), Arg, 3356 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3357 } 3358 3359 // Arguments that can be passed on register must be kept at 3360 // RegsToPass vector 3361 if (VA.isRegLoc()) { 3362 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3363 3364 // If the parameter is passed through reg $D, which splits into 3365 // two physical registers, avoid creating call site info. 3366 if (Mips::AFGR64RegClass.contains(VA.getLocReg())) 3367 continue; 3368 3369 // Collect CSInfo about which register passes which parameter. 3370 const TargetOptions &Options = DAG.getTarget().Options; 3371 if (Options.SupportsDebugEntryValues) 3372 CSInfo.emplace_back(VA.getLocReg(), i); 3373 3374 continue; 3375 } 3376 3377 // Register can't get to this point... 3378 assert(VA.isMemLoc()); 3379 3380 // emit ISD::STORE whichs stores the 3381 // parameter value to a stack Location 3382 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), 3383 Chain, Arg, DL, IsTailCall, DAG)); 3384 } 3385 3386 // Transform all store nodes into one single node because all store 3387 // nodes are independent of each other. 3388 if (!MemOpChains.empty()) 3389 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3390 3391 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 3392 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 3393 // node so that legalize doesn't hack it. 3394 3395 EVT Ty = Callee.getValueType(); 3396 bool GlobalOrExternal = false, IsCallReloc = false; 3397 3398 // The long-calls feature is ignored in case of PIC. 3399 // While we do not support -mshared / -mno-shared properly, 3400 // ignore long-calls in case of -mabicalls too. 3401 if (!Subtarget.isABICalls() && !IsPIC) { 3402 // If the function should be called using "long call", 3403 // get its address into a register to prevent using 3404 // of the `jal` instruction for the direct call. 3405 if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3406 if (Subtarget.useLongCalls()) 3407 Callee = Subtarget.hasSym32() 3408 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 3409 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 3410 } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) { 3411 bool UseLongCalls = Subtarget.useLongCalls(); 3412 // If the function has long-call/far/near attribute 3413 // it overrides command line switch pased to the backend. 3414 if (auto *F = dyn_cast<Function>(N->getGlobal())) { 3415 if (F->hasFnAttribute("long-call")) 3416 UseLongCalls = true; 3417 else if (F->hasFnAttribute("short-call")) 3418 UseLongCalls = false; 3419 } 3420 if (UseLongCalls) 3421 Callee = Subtarget.hasSym32() 3422 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) 3423 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); 3424 } 3425 } 3426 3427 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3428 if (IsPIC) { 3429 const GlobalValue *Val = G->getGlobal(); 3430 InternalLinkage = Val->hasInternalLinkage(); 3431 3432 if (InternalLinkage) 3433 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64()); 3434 else if (Subtarget.useXGOT()) { 3435 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16, 3436 MipsII::MO_CALL_LO16, Chain, 3437 FuncInfo->callPtrInfo(MF, Val)); 3438 IsCallReloc = true; 3439 } else { 3440 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, 3441 FuncInfo->callPtrInfo(MF, Val)); 3442 IsCallReloc = true; 3443 } 3444 } else 3445 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, 3446 getPointerTy(DAG.getDataLayout()), 0, 3447 MipsII::MO_NO_FLAG); 3448 GlobalOrExternal = true; 3449 } 3450 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3451 const char *Sym = S->getSymbol(); 3452 3453 if (!IsPIC) // static 3454 Callee = DAG.getTargetExternalSymbol( 3455 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG); 3456 else if (Subtarget.useXGOT()) { 3457 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16, 3458 MipsII::MO_CALL_LO16, Chain, 3459 FuncInfo->callPtrInfo(MF, Sym)); 3460 IsCallReloc = true; 3461 } else { // PIC 3462 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, 3463 FuncInfo->callPtrInfo(MF, Sym)); 3464 IsCallReloc = true; 3465 } 3466 3467 GlobalOrExternal = true; 3468 } 3469 3470 SmallVector<SDValue, 8> Ops(1, Chain); 3471 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3472 3473 getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage, 3474 IsCallReloc, CLI, Callee, Chain); 3475 3476 if (IsTailCall) { 3477 MF.getFrameInfo().setHasTailCall(); 3478 SDValue Ret = DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); 3479 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); 3480 return Ret; 3481 } 3482 3483 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); 3484 SDValue InGlue = Chain.getValue(1); 3485 3486 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); 3487 3488 // Create the CALLSEQ_END node in the case of where it is not a call to 3489 // memcpy. 3490 if (!(MemcpyInByVal)) { 3491 Chain = DAG.getCALLSEQ_END(Chain, StackSize, 0, InGlue, DL); 3492 InGlue = Chain.getValue(1); 3493 } 3494 3495 // Handle result values, copying them out of physregs into vregs that we 3496 // return. 3497 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, 3498 InVals, CLI); 3499 } 3500 3501 /// LowerCallResult - Lower the result values of a call into the 3502 /// appropriate copies out of appropriate physical registers. 3503 SDValue MipsTargetLowering::LowerCallResult( 3504 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, 3505 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3506 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 3507 TargetLowering::CallLoweringInfo &CLI) const { 3508 // Assign locations to each value returned by this call. 3509 SmallVector<CCValAssign, 16> RVLocs; 3510 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3511 *DAG.getContext()); 3512 3513 const ExternalSymbolSDNode *ES = 3514 dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode()); 3515 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy, 3516 ES ? ES->getSymbol() : nullptr); 3517 3518 // Copy all of the result registers out of their specified physreg. 3519 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3520 CCValAssign &VA = RVLocs[i]; 3521 assert(VA.isRegLoc() && "Can only return in registers!"); 3522 3523 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), 3524 RVLocs[i].getLocVT(), InGlue); 3525 Chain = Val.getValue(1); 3526 InGlue = Val.getValue(2); 3527 3528 if (VA.isUpperBitsInLoc()) { 3529 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits(); 3530 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3531 unsigned Shift = 3532 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; 3533 Val = DAG.getNode( 3534 Shift, DL, VA.getLocVT(), Val, 3535 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3536 } 3537 3538 switch (VA.getLocInfo()) { 3539 default: 3540 llvm_unreachable("Unknown loc info!"); 3541 case CCValAssign::Full: 3542 break; 3543 case CCValAssign::BCvt: 3544 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3545 break; 3546 case CCValAssign::AExt: 3547 case CCValAssign::AExtUpper: 3548 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3549 break; 3550 case CCValAssign::ZExt: 3551 case CCValAssign::ZExtUpper: 3552 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 3553 DAG.getValueType(VA.getValVT())); 3554 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3555 break; 3556 case CCValAssign::SExt: 3557 case CCValAssign::SExtUpper: 3558 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 3559 DAG.getValueType(VA.getValVT())); 3560 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3561 break; 3562 } 3563 3564 InVals.push_back(Val); 3565 } 3566 3567 return Chain; 3568 } 3569 3570 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA, 3571 EVT ArgVT, const SDLoc &DL, 3572 SelectionDAG &DAG) { 3573 MVT LocVT = VA.getLocVT(); 3574 EVT ValVT = VA.getValVT(); 3575 3576 // Shift into the upper bits if necessary. 3577 switch (VA.getLocInfo()) { 3578 default: 3579 break; 3580 case CCValAssign::AExtUpper: 3581 case CCValAssign::SExtUpper: 3582 case CCValAssign::ZExtUpper: { 3583 unsigned ValSizeInBits = ArgVT.getSizeInBits(); 3584 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3585 unsigned Opcode = 3586 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; 3587 Val = DAG.getNode( 3588 Opcode, DL, VA.getLocVT(), Val, 3589 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3590 break; 3591 } 3592 } 3593 3594 // If this is an value smaller than the argument slot size (32-bit for O32, 3595 // 64-bit for N32/N64), it has been promoted in some way to the argument slot 3596 // size. Extract the value and insert any appropriate assertions regarding 3597 // sign/zero extension. 3598 switch (VA.getLocInfo()) { 3599 default: 3600 llvm_unreachable("Unknown loc info!"); 3601 case CCValAssign::Full: 3602 break; 3603 case CCValAssign::AExtUpper: 3604 case CCValAssign::AExt: 3605 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3606 break; 3607 case CCValAssign::SExtUpper: 3608 case CCValAssign::SExt: 3609 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT)); 3610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3611 break; 3612 case CCValAssign::ZExtUpper: 3613 case CCValAssign::ZExt: 3614 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT)); 3615 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3616 break; 3617 case CCValAssign::BCvt: 3618 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 3619 break; 3620 } 3621 3622 return Val; 3623 } 3624 3625 //===----------------------------------------------------------------------===// 3626 // Formal Arguments Calling Convention Implementation 3627 //===----------------------------------------------------------------------===// 3628 /// LowerFormalArguments - transform physical registers into virtual registers 3629 /// and generate load operations for arguments places on the stack. 3630 SDValue MipsTargetLowering::LowerFormalArguments( 3631 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3632 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3633 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3634 MachineFunction &MF = DAG.getMachineFunction(); 3635 MachineFrameInfo &MFI = MF.getFrameInfo(); 3636 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3637 3638 MipsFI->setVarArgsFrameIndex(0); 3639 3640 // Used with vargs to acumulate store chains. 3641 std::vector<SDValue> OutChains; 3642 3643 // Assign locations to all of the incoming arguments. 3644 SmallVector<CCValAssign, 16> ArgLocs; 3645 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 3646 *DAG.getContext()); 3647 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), Align(1)); 3648 const Function &Func = DAG.getMachineFunction().getFunction(); 3649 Function::const_arg_iterator FuncArg = Func.arg_begin(); 3650 3651 if (Func.hasFnAttribute("interrupt") && !Func.arg_empty()) 3652 report_fatal_error( 3653 "Functions with the interrupt attribute cannot have arguments!"); 3654 3655 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg); 3656 MipsFI->setFormalArgInfo(CCInfo.getStackSize(), 3657 CCInfo.getInRegsParamsCount() > 0); 3658 3659 unsigned CurArgIdx = 0; 3660 CCInfo.rewindByValRegsInfo(); 3661 3662 for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) { 3663 CCValAssign &VA = ArgLocs[i]; 3664 if (Ins[InsIdx].isOrigArg()) { 3665 std::advance(FuncArg, Ins[InsIdx].getOrigArgIndex() - CurArgIdx); 3666 CurArgIdx = Ins[InsIdx].getOrigArgIndex(); 3667 } 3668 EVT ValVT = VA.getValVT(); 3669 ISD::ArgFlagsTy Flags = Ins[InsIdx].Flags; 3670 bool IsRegLoc = VA.isRegLoc(); 3671 3672 if (Flags.isByVal()) { 3673 assert(Ins[InsIdx].isOrigArg() && "Byval arguments cannot be implicit"); 3674 unsigned FirstByValReg, LastByValReg; 3675 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); 3676 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); 3677 3678 assert(Flags.getByValSize() && 3679 "ByVal args of size 0 should have been ignored by front-end."); 3680 assert(ByValIdx < CCInfo.getInRegsParamsCount()); 3681 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, 3682 FirstByValReg, LastByValReg, VA, CCInfo); 3683 CCInfo.nextInRegsParam(); 3684 continue; 3685 } 3686 3687 // Arguments stored on registers 3688 if (IsRegLoc) { 3689 MVT RegVT = VA.getLocVT(); 3690 Register ArgReg = VA.getLocReg(); 3691 const TargetRegisterClass *RC = getRegClassFor(RegVT); 3692 3693 // Transform the arguments stored on 3694 // physical registers into virtual ones 3695 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); 3696 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 3697 3698 ArgValue = 3699 UnpackFromArgumentSlot(ArgValue, VA, Ins[InsIdx].ArgVT, DL, DAG); 3700 3701 // Handle floating point arguments passed in integer registers and 3702 // long double arguments passed in floating point registers. 3703 if ((RegVT == MVT::i32 && ValVT == MVT::f32) || 3704 (RegVT == MVT::i64 && ValVT == MVT::f64) || 3705 (RegVT == MVT::f64 && ValVT == MVT::i64)) 3706 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); 3707 else if (ABI.IsO32() && RegVT == MVT::i32 && 3708 ValVT == MVT::f64) { 3709 assert(VA.needsCustom() && "Expected custom argument for f64 split"); 3710 CCValAssign &NextVA = ArgLocs[++i]; 3711 unsigned Reg2 = 3712 addLiveIn(DAG.getMachineFunction(), NextVA.getLocReg(), RC); 3713 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); 3714 if (!Subtarget.isLittle()) 3715 std::swap(ArgValue, ArgValue2); 3716 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, 3717 ArgValue, ArgValue2); 3718 } 3719 3720 InVals.push_back(ArgValue); 3721 } else { // VA.isRegLoc() 3722 MVT LocVT = VA.getLocVT(); 3723 3724 assert(!VA.needsCustom() && "unexpected custom memory argument"); 3725 3726 if (ABI.IsO32()) { 3727 // We ought to be able to use LocVT directly but O32 sets it to i32 3728 // when allocating floating point values to integer registers. 3729 // This shouldn't influence how we load the value into registers unless 3730 // we are targeting softfloat. 3731 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat()) 3732 LocVT = VA.getValVT(); 3733 } 3734 3735 // Only arguments pased on the stack should make it here. 3736 assert(VA.isMemLoc()); 3737 3738 // The stack pointer offset is relative to the caller stack frame. 3739 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 3740 VA.getLocMemOffset(), true); 3741 3742 // Create load nodes to retrieve arguments from the stack 3743 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3744 SDValue ArgValue = DAG.getLoad( 3745 LocVT, DL, Chain, FIN, 3746 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 3747 OutChains.push_back(ArgValue.getValue(1)); 3748 3749 ArgValue = 3750 UnpackFromArgumentSlot(ArgValue, VA, Ins[InsIdx].ArgVT, DL, DAG); 3751 3752 InVals.push_back(ArgValue); 3753 } 3754 } 3755 3756 for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) { 3757 3758 if (ArgLocs[i].needsCustom()) { 3759 ++i; 3760 continue; 3761 } 3762 3763 // The mips ABIs for returning structs by value requires that we copy 3764 // the sret argument into $v0 for the return. Save the argument into 3765 // a virtual register so that we can access it from the return points. 3766 if (Ins[InsIdx].Flags.isSRet()) { 3767 unsigned Reg = MipsFI->getSRetReturnReg(); 3768 if (!Reg) { 3769 Reg = MF.getRegInfo().createVirtualRegister( 3770 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32)); 3771 MipsFI->setSRetReturnReg(Reg); 3772 } 3773 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); 3774 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 3775 break; 3776 } 3777 } 3778 3779 if (IsVarArg) 3780 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo); 3781 3782 // All stores are grouped in one node to allow the matching between 3783 // the size of Ins and InVals. This only happens when on varg functions 3784 if (!OutChains.empty()) { 3785 OutChains.push_back(Chain); 3786 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3787 } 3788 3789 return Chain; 3790 } 3791 3792 //===----------------------------------------------------------------------===// 3793 // Return Value Calling Convention Implementation 3794 //===----------------------------------------------------------------------===// 3795 3796 bool 3797 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3798 MachineFunction &MF, bool IsVarArg, 3799 const SmallVectorImpl<ISD::OutputArg> &Outs, 3800 LLVMContext &Context) const { 3801 SmallVector<CCValAssign, 16> RVLocs; 3802 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3803 return CCInfo.CheckReturn(Outs, RetCC_Mips); 3804 } 3805 3806 bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, 3807 bool IsSigned) const { 3808 if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32) 3809 return true; 3810 3811 return IsSigned; 3812 } 3813 3814 SDValue 3815 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, 3816 const SDLoc &DL, 3817 SelectionDAG &DAG) const { 3818 MachineFunction &MF = DAG.getMachineFunction(); 3819 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3820 3821 MipsFI->setISR(); 3822 3823 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps); 3824 } 3825 3826 SDValue 3827 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3828 bool IsVarArg, 3829 const SmallVectorImpl<ISD::OutputArg> &Outs, 3830 const SmallVectorImpl<SDValue> &OutVals, 3831 const SDLoc &DL, SelectionDAG &DAG) const { 3832 // CCValAssign - represent the assignment of 3833 // the return value to a location 3834 SmallVector<CCValAssign, 16> RVLocs; 3835 MachineFunction &MF = DAG.getMachineFunction(); 3836 3837 // CCState - Info about the registers and stack slot. 3838 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3839 3840 // Analyze return values. 3841 CCInfo.AnalyzeReturn(Outs, RetCC_Mips); 3842 3843 SDValue Glue; 3844 SmallVector<SDValue, 4> RetOps(1, Chain); 3845 3846 // Copy the result values into the output registers. 3847 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3848 SDValue Val = OutVals[i]; 3849 CCValAssign &VA = RVLocs[i]; 3850 assert(VA.isRegLoc() && "Can only return in registers!"); 3851 bool UseUpperBits = false; 3852 3853 switch (VA.getLocInfo()) { 3854 default: 3855 llvm_unreachable("Unknown loc info!"); 3856 case CCValAssign::Full: 3857 break; 3858 case CCValAssign::BCvt: 3859 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val); 3860 break; 3861 case CCValAssign::AExtUpper: 3862 UseUpperBits = true; 3863 [[fallthrough]]; 3864 case CCValAssign::AExt: 3865 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val); 3866 break; 3867 case CCValAssign::ZExtUpper: 3868 UseUpperBits = true; 3869 [[fallthrough]]; 3870 case CCValAssign::ZExt: 3871 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val); 3872 break; 3873 case CCValAssign::SExtUpper: 3874 UseUpperBits = true; 3875 [[fallthrough]]; 3876 case CCValAssign::SExt: 3877 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val); 3878 break; 3879 } 3880 3881 if (UseUpperBits) { 3882 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); 3883 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3884 Val = DAG.getNode( 3885 ISD::SHL, DL, VA.getLocVT(), Val, 3886 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3887 } 3888 3889 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 3890 3891 // Guarantee that all emitted copies are stuck together with flags. 3892 Glue = Chain.getValue(1); 3893 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3894 } 3895 3896 // The mips ABIs for returning structs by value requires that we copy 3897 // the sret argument into $v0 for the return. We saved the argument into 3898 // a virtual register in the entry block, so now we copy the value out 3899 // and into $v0. 3900 if (MF.getFunction().hasStructRetAttr()) { 3901 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3902 unsigned Reg = MipsFI->getSRetReturnReg(); 3903 3904 if (!Reg) 3905 llvm_unreachable("sret virtual register not created in the entry block"); 3906 SDValue Val = 3907 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 3908 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0; 3909 3910 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Glue); 3911 Glue = Chain.getValue(1); 3912 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout()))); 3913 } 3914 3915 RetOps[0] = Chain; // Update chain. 3916 3917 // Add the glue if we have it. 3918 if (Glue.getNode()) 3919 RetOps.push_back(Glue); 3920 3921 // ISRs must use "eret". 3922 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt")) 3923 return LowerInterruptReturn(RetOps, DL, DAG); 3924 3925 // Standard return on Mips is a "jr $ra" 3926 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); 3927 } 3928 3929 //===----------------------------------------------------------------------===// 3930 // Mips Inline Assembly Support 3931 //===----------------------------------------------------------------------===// 3932 3933 /// getConstraintType - Given a constraint letter, return the type of 3934 /// constraint it is for this target. 3935 MipsTargetLowering::ConstraintType 3936 MipsTargetLowering::getConstraintType(StringRef Constraint) const { 3937 // Mips specific constraints 3938 // GCC config/mips/constraints.md 3939 // 3940 // 'd' : An address register. Equivalent to r 3941 // unless generating MIPS16 code. 3942 // 'y' : Equivalent to r; retained for 3943 // backwards compatibility. 3944 // 'c' : A register suitable for use in an indirect 3945 // jump. This will always be $25 for -mabicalls. 3946 // 'l' : The lo register. 1 word storage. 3947 // 'x' : The hilo register pair. Double word storage. 3948 if (Constraint.size() == 1) { 3949 switch (Constraint[0]) { 3950 default : break; 3951 case 'd': 3952 case 'y': 3953 case 'f': 3954 case 'c': 3955 case 'l': 3956 case 'x': 3957 return C_RegisterClass; 3958 case 'R': 3959 return C_Memory; 3960 } 3961 } 3962 3963 if (Constraint == "ZC") 3964 return C_Memory; 3965 3966 return TargetLowering::getConstraintType(Constraint); 3967 } 3968 3969 /// Examine constraint type and operand type and determine a weight value. 3970 /// This object must already have been set up with the operand type 3971 /// and the current alternative constraint selected. 3972 TargetLowering::ConstraintWeight 3973 MipsTargetLowering::getSingleConstraintMatchWeight( 3974 AsmOperandInfo &info, const char *constraint) const { 3975 ConstraintWeight weight = CW_Invalid; 3976 Value *CallOperandVal = info.CallOperandVal; 3977 // If we don't have a value, we can't do a match, 3978 // but allow it at the lowest weight. 3979 if (!CallOperandVal) 3980 return CW_Default; 3981 Type *type = CallOperandVal->getType(); 3982 // Look at the constraint type. 3983 switch (*constraint) { 3984 default: 3985 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3986 break; 3987 case 'd': 3988 case 'y': 3989 if (type->isIntegerTy()) 3990 weight = CW_Register; 3991 break; 3992 case 'f': // FPU or MSA register 3993 if (Subtarget.hasMSA() && type->isVectorTy() && 3994 type->getPrimitiveSizeInBits().getFixedValue() == 128) 3995 weight = CW_Register; 3996 else if (type->isFloatTy()) 3997 weight = CW_Register; 3998 break; 3999 case 'c': // $25 for indirect jumps 4000 case 'l': // lo register 4001 case 'x': // hilo register pair 4002 if (type->isIntegerTy()) 4003 weight = CW_SpecificReg; 4004 break; 4005 case 'I': // signed 16 bit immediate 4006 case 'J': // integer zero 4007 case 'K': // unsigned 16 bit immediate 4008 case 'L': // signed 32 bit immediate where lower 16 bits are 0 4009 case 'N': // immediate in the range of -65535 to -1 (inclusive) 4010 case 'O': // signed 15 bit immediate (+- 16383) 4011 case 'P': // immediate in the range of 65535 to 1 (inclusive) 4012 if (isa<ConstantInt>(CallOperandVal)) 4013 weight = CW_Constant; 4014 break; 4015 case 'R': 4016 weight = CW_Memory; 4017 break; 4018 } 4019 return weight; 4020 } 4021 4022 /// This is a helper function to parse a physical register string and split it 4023 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag 4024 /// that is returned indicates whether parsing was successful. The second flag 4025 /// is true if the numeric part exists. 4026 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix, 4027 unsigned long long &Reg) { 4028 if (C.front() != '{' || C.back() != '}') 4029 return std::make_pair(false, false); 4030 4031 // Search for the first numeric character. 4032 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; 4033 I = std::find_if(B, E, isdigit); 4034 4035 Prefix = StringRef(B, I - B); 4036 4037 // The second flag is set to false if no numeric characters were found. 4038 if (I == E) 4039 return std::make_pair(true, false); 4040 4041 // Parse the numeric characters. 4042 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), 4043 true); 4044 } 4045 4046 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 4047 ISD::NodeType) const { 4048 bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32; 4049 EVT MinVT = getRegisterType(Cond ? MVT::i64 : MVT::i32); 4050 return VT.bitsLT(MinVT) ? MinVT : VT; 4051 } 4052 4053 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering:: 4054 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { 4055 const TargetRegisterInfo *TRI = 4056 Subtarget.getRegisterInfo(); 4057 const TargetRegisterClass *RC; 4058 StringRef Prefix; 4059 unsigned long long Reg; 4060 4061 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg); 4062 4063 if (!R.first) 4064 return std::make_pair(0U, nullptr); 4065 4066 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. 4067 // No numeric characters follow "hi" or "lo". 4068 if (R.second) 4069 return std::make_pair(0U, nullptr); 4070 4071 RC = TRI->getRegClass(Prefix == "hi" ? 4072 Mips::HI32RegClassID : Mips::LO32RegClassID); 4073 return std::make_pair(*(RC->begin()), RC); 4074 } else if (Prefix.startswith("$msa")) { 4075 // Parse $msa(ir|csr|access|save|modify|request|map|unmap) 4076 4077 // No numeric characters follow the name. 4078 if (R.second) 4079 return std::make_pair(0U, nullptr); 4080 4081 Reg = StringSwitch<unsigned long long>(Prefix) 4082 .Case("$msair", Mips::MSAIR) 4083 .Case("$msacsr", Mips::MSACSR) 4084 .Case("$msaaccess", Mips::MSAAccess) 4085 .Case("$msasave", Mips::MSASave) 4086 .Case("$msamodify", Mips::MSAModify) 4087 .Case("$msarequest", Mips::MSARequest) 4088 .Case("$msamap", Mips::MSAMap) 4089 .Case("$msaunmap", Mips::MSAUnmap) 4090 .Default(0); 4091 4092 if (!Reg) 4093 return std::make_pair(0U, nullptr); 4094 4095 RC = TRI->getRegClass(Mips::MSACtrlRegClassID); 4096 return std::make_pair(Reg, RC); 4097 } 4098 4099 if (!R.second) 4100 return std::make_pair(0U, nullptr); 4101 4102 if (Prefix == "$f") { // Parse $f0-$f31. 4103 // If the size of FP registers is 64-bit or Reg is an even number, select 4104 // the 64-bit register class. Otherwise, select the 32-bit register class. 4105 if (VT == MVT::Other) 4106 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; 4107 4108 RC = getRegClassFor(VT); 4109 4110 if (RC == &Mips::AFGR64RegClass) { 4111 assert(Reg % 2 == 0); 4112 Reg >>= 1; 4113 } 4114 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. 4115 RC = TRI->getRegClass(Mips::FCCRegClassID); 4116 else if (Prefix == "$w") { // Parse $w0-$w31. 4117 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); 4118 } else { // Parse $0-$31. 4119 assert(Prefix == "$"); 4120 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); 4121 } 4122 4123 assert(Reg < RC->getNumRegs()); 4124 return std::make_pair(*(RC->begin() + Reg), RC); 4125 } 4126 4127 /// Given a register class constraint, like 'r', if this corresponds directly 4128 /// to an LLVM register class, return a register of 0 and the register class 4129 /// pointer. 4130 std::pair<unsigned, const TargetRegisterClass *> 4131 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 4132 StringRef Constraint, 4133 MVT VT) const { 4134 if (Constraint.size() == 1) { 4135 switch (Constraint[0]) { 4136 case 'd': // Address register. Same as 'r' unless generating MIPS16 code. 4137 case 'y': // Same as 'r'. Exists for compatibility. 4138 case 'r': 4139 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8 || VT == MVT::i1) { 4140 if (Subtarget.inMips16Mode()) 4141 return std::make_pair(0U, &Mips::CPU16RegsRegClass); 4142 return std::make_pair(0U, &Mips::GPR32RegClass); 4143 } 4144 if (VT == MVT::i64 && !Subtarget.isGP64bit()) 4145 return std::make_pair(0U, &Mips::GPR32RegClass); 4146 if (VT == MVT::i64 && Subtarget.isGP64bit()) 4147 return std::make_pair(0U, &Mips::GPR64RegClass); 4148 // This will generate an error message 4149 return std::make_pair(0U, nullptr); 4150 case 'f': // FPU or MSA register 4151 if (VT == MVT::v16i8) 4152 return std::make_pair(0U, &Mips::MSA128BRegClass); 4153 else if (VT == MVT::v8i16 || VT == MVT::v8f16) 4154 return std::make_pair(0U, &Mips::MSA128HRegClass); 4155 else if (VT == MVT::v4i32 || VT == MVT::v4f32) 4156 return std::make_pair(0U, &Mips::MSA128WRegClass); 4157 else if (VT == MVT::v2i64 || VT == MVT::v2f64) 4158 return std::make_pair(0U, &Mips::MSA128DRegClass); 4159 else if (VT == MVT::f32) 4160 return std::make_pair(0U, &Mips::FGR32RegClass); 4161 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { 4162 if (Subtarget.isFP64bit()) 4163 return std::make_pair(0U, &Mips::FGR64RegClass); 4164 return std::make_pair(0U, &Mips::AFGR64RegClass); 4165 } 4166 break; 4167 case 'c': // register suitable for indirect jump 4168 if (VT == MVT::i32) 4169 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); 4170 if (VT == MVT::i64) 4171 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); 4172 // This will generate an error message 4173 return std::make_pair(0U, nullptr); 4174 case 'l': // use the `lo` register to store values 4175 // that are no bigger than a word 4176 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) 4177 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); 4178 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); 4179 case 'x': // use the concatenated `hi` and `lo` registers 4180 // to store doubleword values 4181 // Fixme: Not triggering the use of both hi and low 4182 // This will generate an error message 4183 return std::make_pair(0U, nullptr); 4184 } 4185 } 4186 4187 if (!Constraint.empty()) { 4188 std::pair<unsigned, const TargetRegisterClass *> R; 4189 R = parseRegForInlineAsmConstraint(Constraint, VT); 4190 4191 if (R.second) 4192 return R; 4193 } 4194 4195 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4196 } 4197 4198 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 4199 /// vector. If it is invalid, don't add anything to Ops. 4200 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4201 std::string &Constraint, 4202 std::vector<SDValue>&Ops, 4203 SelectionDAG &DAG) const { 4204 SDLoc DL(Op); 4205 SDValue Result; 4206 4207 // Only support length 1 constraints for now. 4208 if (Constraint.length() > 1) return; 4209 4210 char ConstraintLetter = Constraint[0]; 4211 switch (ConstraintLetter) { 4212 default: break; // This will fall through to the generic implementation 4213 case 'I': // Signed 16 bit constant 4214 // If this fails, the parent routine will give an error 4215 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4216 EVT Type = Op.getValueType(); 4217 int64_t Val = C->getSExtValue(); 4218 if (isInt<16>(Val)) { 4219 Result = DAG.getTargetConstant(Val, DL, Type); 4220 break; 4221 } 4222 } 4223 return; 4224 case 'J': // integer zero 4225 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4226 EVT Type = Op.getValueType(); 4227 int64_t Val = C->getZExtValue(); 4228 if (Val == 0) { 4229 Result = DAG.getTargetConstant(0, DL, Type); 4230 break; 4231 } 4232 } 4233 return; 4234 case 'K': // unsigned 16 bit immediate 4235 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4236 EVT Type = Op.getValueType(); 4237 uint64_t Val = (uint64_t)C->getZExtValue(); 4238 if (isUInt<16>(Val)) { 4239 Result = DAG.getTargetConstant(Val, DL, Type); 4240 break; 4241 } 4242 } 4243 return; 4244 case 'L': // signed 32 bit immediate where lower 16 bits are 0 4245 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4246 EVT Type = Op.getValueType(); 4247 int64_t Val = C->getSExtValue(); 4248 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ 4249 Result = DAG.getTargetConstant(Val, DL, Type); 4250 break; 4251 } 4252 } 4253 return; 4254 case 'N': // immediate in the range of -65535 to -1 (inclusive) 4255 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4256 EVT Type = Op.getValueType(); 4257 int64_t Val = C->getSExtValue(); 4258 if ((Val >= -65535) && (Val <= -1)) { 4259 Result = DAG.getTargetConstant(Val, DL, Type); 4260 break; 4261 } 4262 } 4263 return; 4264 case 'O': // signed 15 bit immediate 4265 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4266 EVT Type = Op.getValueType(); 4267 int64_t Val = C->getSExtValue(); 4268 if ((isInt<15>(Val))) { 4269 Result = DAG.getTargetConstant(Val, DL, Type); 4270 break; 4271 } 4272 } 4273 return; 4274 case 'P': // immediate in the range of 1 to 65535 (inclusive) 4275 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4276 EVT Type = Op.getValueType(); 4277 int64_t Val = C->getSExtValue(); 4278 if ((Val <= 65535) && (Val >= 1)) { 4279 Result = DAG.getTargetConstant(Val, DL, Type); 4280 break; 4281 } 4282 } 4283 return; 4284 } 4285 4286 if (Result.getNode()) { 4287 Ops.push_back(Result); 4288 return; 4289 } 4290 4291 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 4292 } 4293 4294 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL, 4295 const AddrMode &AM, Type *Ty, 4296 unsigned AS, 4297 Instruction *I) const { 4298 // No global is ever allowed as a base. 4299 if (AM.BaseGV) 4300 return false; 4301 4302 switch (AM.Scale) { 4303 case 0: // "r+i" or just "i", depending on HasBaseReg. 4304 break; 4305 case 1: 4306 if (!AM.HasBaseReg) // allow "r+i". 4307 break; 4308 return false; // disallow "r+r" or "r+r+i". 4309 default: 4310 return false; 4311 } 4312 4313 return true; 4314 } 4315 4316 bool 4317 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 4318 // The Mips target isn't yet aware of offsets. 4319 return false; 4320 } 4321 4322 EVT MipsTargetLowering::getOptimalMemOpType( 4323 const MemOp &Op, const AttributeList &FuncAttributes) const { 4324 if (Subtarget.hasMips64()) 4325 return MVT::i64; 4326 4327 return MVT::i32; 4328 } 4329 4330 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 4331 bool ForCodeSize) const { 4332 if (VT != MVT::f32 && VT != MVT::f64) 4333 return false; 4334 if (Imm.isNegZero()) 4335 return false; 4336 return Imm.isZero(); 4337 } 4338 4339 unsigned MipsTargetLowering::getJumpTableEncoding() const { 4340 4341 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress. 4342 if (ABI.IsN64() && isPositionIndependent()) 4343 return MachineJumpTableInfo::EK_GPRel64BlockAddress; 4344 4345 return TargetLowering::getJumpTableEncoding(); 4346 } 4347 4348 bool MipsTargetLowering::useSoftFloat() const { 4349 return Subtarget.useSoftFloat(); 4350 } 4351 4352 void MipsTargetLowering::copyByValRegs( 4353 SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains, 4354 SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags, 4355 SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg, 4356 unsigned FirstReg, unsigned LastReg, const CCValAssign &VA, 4357 MipsCCState &State) const { 4358 MachineFunction &MF = DAG.getMachineFunction(); 4359 MachineFrameInfo &MFI = MF.getFrameInfo(); 4360 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); 4361 unsigned NumRegs = LastReg - FirstReg; 4362 unsigned RegAreaSize = NumRegs * GPRSizeInBytes; 4363 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); 4364 int FrameObjOffset; 4365 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs(); 4366 4367 if (RegAreaSize) 4368 FrameObjOffset = 4369 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - 4370 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes); 4371 else 4372 FrameObjOffset = VA.getLocMemOffset(); 4373 4374 // Create frame object. 4375 EVT PtrTy = getPointerTy(DAG.getDataLayout()); 4376 // Make the fixed object stored to mutable so that the load instructions 4377 // referencing it have their memory dependencies added. 4378 // Set the frame object as isAliased which clears the underlying objects 4379 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all 4380 // stores as dependencies for loads referencing this fixed object. 4381 int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true); 4382 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4383 InVals.push_back(FIN); 4384 4385 if (!NumRegs) 4386 return; 4387 4388 // Copy arg registers. 4389 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); 4390 const TargetRegisterClass *RC = getRegClassFor(RegTy); 4391 4392 for (unsigned I = 0; I < NumRegs; ++I) { 4393 unsigned ArgReg = ByValArgRegs[FirstReg + I]; 4394 unsigned VReg = addLiveIn(MF, ArgReg, RC); 4395 unsigned Offset = I * GPRSizeInBytes; 4396 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, 4397 DAG.getConstant(Offset, DL, PtrTy)); 4398 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), 4399 StorePtr, MachinePointerInfo(FuncArg, Offset)); 4400 OutChains.push_back(Store); 4401 } 4402 } 4403 4404 // Copy byVal arg to registers and stack. 4405 void MipsTargetLowering::passByValArg( 4406 SDValue Chain, const SDLoc &DL, 4407 std::deque<std::pair<unsigned, SDValue>> &RegsToPass, 4408 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr, 4409 MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, 4410 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, 4411 const CCValAssign &VA) const { 4412 unsigned ByValSizeInBytes = Flags.getByValSize(); 4413 unsigned OffsetInBytes = 0; // From beginning of struct 4414 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 4415 Align Alignment = 4416 std::min(Flags.getNonZeroByValAlign(), Align(RegSizeInBytes)); 4417 EVT PtrTy = getPointerTy(DAG.getDataLayout()), 4418 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); 4419 unsigned NumRegs = LastReg - FirstReg; 4420 4421 if (NumRegs) { 4422 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs(); 4423 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes); 4424 unsigned I = 0; 4425 4426 // Copy words to registers. 4427 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { 4428 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 4429 DAG.getConstant(OffsetInBytes, DL, PtrTy)); 4430 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, 4431 MachinePointerInfo(), Alignment); 4432 MemOpChains.push_back(LoadVal.getValue(1)); 4433 unsigned ArgReg = ArgRegs[FirstReg + I]; 4434 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); 4435 } 4436 4437 // Return if the struct has been fully copied. 4438 if (ByValSizeInBytes == OffsetInBytes) 4439 return; 4440 4441 // Copy the remainder of the byval argument with sub-word loads and shifts. 4442 if (LeftoverBytes) { 4443 SDValue Val; 4444 4445 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; 4446 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { 4447 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; 4448 4449 if (RemainingSizeInBytes < LoadSizeInBytes) 4450 continue; 4451 4452 // Load subword. 4453 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 4454 DAG.getConstant(OffsetInBytes, DL, 4455 PtrTy)); 4456 SDValue LoadVal = DAG.getExtLoad( 4457 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), 4458 MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment); 4459 MemOpChains.push_back(LoadVal.getValue(1)); 4460 4461 // Shift the loaded value. 4462 unsigned Shamt; 4463 4464 if (isLittle) 4465 Shamt = TotalBytesLoaded * 8; 4466 else 4467 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; 4468 4469 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, 4470 DAG.getConstant(Shamt, DL, MVT::i32)); 4471 4472 if (Val.getNode()) 4473 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); 4474 else 4475 Val = Shift; 4476 4477 OffsetInBytes += LoadSizeInBytes; 4478 TotalBytesLoaded += LoadSizeInBytes; 4479 Alignment = std::min(Alignment, Align(LoadSizeInBytes)); 4480 } 4481 4482 unsigned ArgReg = ArgRegs[FirstReg + I]; 4483 RegsToPass.push_back(std::make_pair(ArgReg, Val)); 4484 return; 4485 } 4486 } 4487 4488 // Copy remainder of byval arg to it with memcpy. 4489 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; 4490 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 4491 DAG.getConstant(OffsetInBytes, DL, PtrTy)); 4492 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, 4493 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 4494 Chain = DAG.getMemcpy( 4495 Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, DL, PtrTy), 4496 Align(Alignment), /*isVolatile=*/false, /*AlwaysInline=*/false, 4497 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo()); 4498 MemOpChains.push_back(Chain); 4499 } 4500 4501 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains, 4502 SDValue Chain, const SDLoc &DL, 4503 SelectionDAG &DAG, 4504 CCState &State) const { 4505 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs(); 4506 unsigned Idx = State.getFirstUnallocated(ArgRegs); 4507 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 4508 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); 4509 const TargetRegisterClass *RC = getRegClassFor(RegTy); 4510 MachineFunction &MF = DAG.getMachineFunction(); 4511 MachineFrameInfo &MFI = MF.getFrameInfo(); 4512 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 4513 4514 // Offset of the first variable argument from stack pointer. 4515 int VaArgOffset; 4516 4517 if (ArgRegs.size() == Idx) 4518 VaArgOffset = alignTo(State.getStackSize(), RegSizeInBytes); 4519 else { 4520 VaArgOffset = 4521 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - 4522 (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); 4523 } 4524 4525 // Record the frame index of the first variable argument 4526 // which is a value necessary to VASTART. 4527 int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); 4528 MipsFI->setVarArgsFrameIndex(FI); 4529 4530 // Copy the integer registers that have not been used for argument passing 4531 // to the argument register save area. For O32, the save area is allocated 4532 // in the caller's stack frame, while for N32/64, it is allocated in the 4533 // callee's stack frame. 4534 for (unsigned I = Idx; I < ArgRegs.size(); 4535 ++I, VaArgOffset += RegSizeInBytes) { 4536 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); 4537 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); 4538 FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); 4539 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 4540 SDValue Store = 4541 DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo()); 4542 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue( 4543 (Value *)nullptr); 4544 OutChains.push_back(Store); 4545 } 4546 } 4547 4548 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size, 4549 Align Alignment) const { 4550 const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); 4551 4552 assert(Size && "Byval argument's size shouldn't be 0."); 4553 4554 Alignment = std::min(Alignment, TFL->getStackAlign()); 4555 4556 unsigned FirstReg = 0; 4557 unsigned NumRegs = 0; 4558 4559 if (State->getCallingConv() != CallingConv::Fast) { 4560 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 4561 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs(); 4562 // FIXME: The O32 case actually describes no shadow registers. 4563 const MCPhysReg *ShadowRegs = 4564 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs; 4565 4566 // We used to check the size as well but we can't do that anymore since 4567 // CCState::HandleByVal() rounds up the size after calling this function. 4568 assert( 4569 Alignment >= Align(RegSizeInBytes) && 4570 "Byval argument's alignment should be a multiple of RegSizeInBytes."); 4571 4572 FirstReg = State->getFirstUnallocated(IntArgRegs); 4573 4574 // If Alignment > RegSizeInBytes, the first arg register must be even. 4575 // FIXME: This condition happens to do the right thing but it's not the 4576 // right way to test it. We want to check that the stack frame offset 4577 // of the register is aligned. 4578 if ((Alignment > RegSizeInBytes) && (FirstReg % 2)) { 4579 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]); 4580 ++FirstReg; 4581 } 4582 4583 // Mark the registers allocated. 4584 Size = alignTo(Size, RegSizeInBytes); 4585 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size()); 4586 Size -= RegSizeInBytes, ++I, ++NumRegs) 4587 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]); 4588 } 4589 4590 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs); 4591 } 4592 4593 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI, 4594 MachineBasicBlock *BB, 4595 bool isFPCmp, 4596 unsigned Opc) const { 4597 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && 4598 "Subtarget already supports SELECT nodes with the use of" 4599 "conditional-move instructions."); 4600 4601 const TargetInstrInfo *TII = 4602 Subtarget.getInstrInfo(); 4603 DebugLoc DL = MI.getDebugLoc(); 4604 4605 // To "insert" a SELECT instruction, we actually have to insert the 4606 // diamond control-flow pattern. The incoming instruction knows the 4607 // destination vreg to set, the condition code register to branch on, the 4608 // true/false values to select between, and a branch opcode to use. 4609 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4610 MachineFunction::iterator It = ++BB->getIterator(); 4611 4612 // thisMBB: 4613 // ... 4614 // TrueVal = ... 4615 // setcc r1, r2, r3 4616 // bNE r1, r0, copy1MBB 4617 // fallthrough --> copy0MBB 4618 MachineBasicBlock *thisMBB = BB; 4619 MachineFunction *F = BB->getParent(); 4620 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4621 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4622 F->insert(It, copy0MBB); 4623 F->insert(It, sinkMBB); 4624 4625 // Transfer the remainder of BB and its successor edges to sinkMBB. 4626 sinkMBB->splice(sinkMBB->begin(), BB, 4627 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 4628 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4629 4630 // Next, add the true and fallthrough blocks as its successors. 4631 BB->addSuccessor(copy0MBB); 4632 BB->addSuccessor(sinkMBB); 4633 4634 if (isFPCmp) { 4635 // bc1[tf] cc, sinkMBB 4636 BuildMI(BB, DL, TII->get(Opc)) 4637 .addReg(MI.getOperand(1).getReg()) 4638 .addMBB(sinkMBB); 4639 } else { 4640 // bne rs, $0, sinkMBB 4641 BuildMI(BB, DL, TII->get(Opc)) 4642 .addReg(MI.getOperand(1).getReg()) 4643 .addReg(Mips::ZERO) 4644 .addMBB(sinkMBB); 4645 } 4646 4647 // copy0MBB: 4648 // %FalseValue = ... 4649 // # fallthrough to sinkMBB 4650 BB = copy0MBB; 4651 4652 // Update machine-CFG edges 4653 BB->addSuccessor(sinkMBB); 4654 4655 // sinkMBB: 4656 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 4657 // ... 4658 BB = sinkMBB; 4659 4660 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) 4661 .addReg(MI.getOperand(2).getReg()) 4662 .addMBB(thisMBB) 4663 .addReg(MI.getOperand(3).getReg()) 4664 .addMBB(copy0MBB); 4665 4666 MI.eraseFromParent(); // The pseudo instruction is gone now. 4667 4668 return BB; 4669 } 4670 4671 MachineBasicBlock * 4672 MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI, 4673 MachineBasicBlock *BB) const { 4674 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && 4675 "Subtarget already supports SELECT nodes with the use of" 4676 "conditional-move instructions."); 4677 4678 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 4679 DebugLoc DL = MI.getDebugLoc(); 4680 4681 // D_SELECT substitutes two SELECT nodes that goes one after another and 4682 // have the same condition operand. On machines which don't have 4683 // conditional-move instruction, it reduces unnecessary branch instructions 4684 // which are result of using two diamond patterns that are result of two 4685 // SELECT pseudo instructions. 4686 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4687 MachineFunction::iterator It = ++BB->getIterator(); 4688 4689 // thisMBB: 4690 // ... 4691 // TrueVal = ... 4692 // setcc r1, r2, r3 4693 // bNE r1, r0, copy1MBB 4694 // fallthrough --> copy0MBB 4695 MachineBasicBlock *thisMBB = BB; 4696 MachineFunction *F = BB->getParent(); 4697 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4698 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4699 F->insert(It, copy0MBB); 4700 F->insert(It, sinkMBB); 4701 4702 // Transfer the remainder of BB and its successor edges to sinkMBB. 4703 sinkMBB->splice(sinkMBB->begin(), BB, 4704 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 4705 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4706 4707 // Next, add the true and fallthrough blocks as its successors. 4708 BB->addSuccessor(copy0MBB); 4709 BB->addSuccessor(sinkMBB); 4710 4711 // bne rs, $0, sinkMBB 4712 BuildMI(BB, DL, TII->get(Mips::BNE)) 4713 .addReg(MI.getOperand(2).getReg()) 4714 .addReg(Mips::ZERO) 4715 .addMBB(sinkMBB); 4716 4717 // copy0MBB: 4718 // %FalseValue = ... 4719 // # fallthrough to sinkMBB 4720 BB = copy0MBB; 4721 4722 // Update machine-CFG edges 4723 BB->addSuccessor(sinkMBB); 4724 4725 // sinkMBB: 4726 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 4727 // ... 4728 BB = sinkMBB; 4729 4730 // Use two PHI nodes to select two reults 4731 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) 4732 .addReg(MI.getOperand(3).getReg()) 4733 .addMBB(thisMBB) 4734 .addReg(MI.getOperand(5).getReg()) 4735 .addMBB(copy0MBB); 4736 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg()) 4737 .addReg(MI.getOperand(4).getReg()) 4738 .addMBB(thisMBB) 4739 .addReg(MI.getOperand(6).getReg()) 4740 .addMBB(copy0MBB); 4741 4742 MI.eraseFromParent(); // The pseudo instruction is gone now. 4743 4744 return BB; 4745 } 4746 4747 // FIXME? Maybe this could be a TableGen attribute on some registers and 4748 // this table could be generated automatically from RegInfo. 4749 Register 4750 MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT, 4751 const MachineFunction &MF) const { 4752 // The Linux kernel uses $28 and sp. 4753 if (Subtarget.isGP64bit()) { 4754 Register Reg = StringSwitch<Register>(RegName) 4755 .Case("$28", Mips::GP_64) 4756 .Case("sp", Mips::SP_64) 4757 .Default(Register()); 4758 if (Reg) 4759 return Reg; 4760 } else { 4761 Register Reg = StringSwitch<Register>(RegName) 4762 .Case("$28", Mips::GP) 4763 .Case("sp", Mips::SP) 4764 .Default(Register()); 4765 if (Reg) 4766 return Reg; 4767 } 4768 report_fatal_error("Invalid register name global variable"); 4769 } 4770 4771 MachineBasicBlock *MipsTargetLowering::emitLDR_W(MachineInstr &MI, 4772 MachineBasicBlock *BB) const { 4773 MachineFunction *MF = BB->getParent(); 4774 MachineRegisterInfo &MRI = MF->getRegInfo(); 4775 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 4776 const bool IsLittle = Subtarget.isLittle(); 4777 DebugLoc DL = MI.getDebugLoc(); 4778 4779 Register Dest = MI.getOperand(0).getReg(); 4780 Register Address = MI.getOperand(1).getReg(); 4781 unsigned Imm = MI.getOperand(2).getImm(); 4782 4783 MachineBasicBlock::iterator I(MI); 4784 4785 if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) { 4786 // Mips release 6 can load from adress that is not naturally-aligned. 4787 Register Temp = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4788 BuildMI(*BB, I, DL, TII->get(Mips::LW)) 4789 .addDef(Temp) 4790 .addUse(Address) 4791 .addImm(Imm); 4792 BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(Temp); 4793 } else { 4794 // Mips release 5 needs to use instructions that can load from an unaligned 4795 // memory address. 4796 Register LoadHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4797 Register LoadFull = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4798 Register Undef = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4799 BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(Undef); 4800 BuildMI(*BB, I, DL, TII->get(Mips::LWR)) 4801 .addDef(LoadHalf) 4802 .addUse(Address) 4803 .addImm(Imm + (IsLittle ? 0 : 3)) 4804 .addUse(Undef); 4805 BuildMI(*BB, I, DL, TII->get(Mips::LWL)) 4806 .addDef(LoadFull) 4807 .addUse(Address) 4808 .addImm(Imm + (IsLittle ? 3 : 0)) 4809 .addUse(LoadHalf); 4810 BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(LoadFull); 4811 } 4812 4813 MI.eraseFromParent(); 4814 return BB; 4815 } 4816 4817 MachineBasicBlock *MipsTargetLowering::emitLDR_D(MachineInstr &MI, 4818 MachineBasicBlock *BB) const { 4819 MachineFunction *MF = BB->getParent(); 4820 MachineRegisterInfo &MRI = MF->getRegInfo(); 4821 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 4822 const bool IsLittle = Subtarget.isLittle(); 4823 DebugLoc DL = MI.getDebugLoc(); 4824 4825 Register Dest = MI.getOperand(0).getReg(); 4826 Register Address = MI.getOperand(1).getReg(); 4827 unsigned Imm = MI.getOperand(2).getImm(); 4828 4829 MachineBasicBlock::iterator I(MI); 4830 4831 if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) { 4832 // Mips release 6 can load from adress that is not naturally-aligned. 4833 if (Subtarget.isGP64bit()) { 4834 Register Temp = MRI.createVirtualRegister(&Mips::GPR64RegClass); 4835 BuildMI(*BB, I, DL, TII->get(Mips::LD)) 4836 .addDef(Temp) 4837 .addUse(Address) 4838 .addImm(Imm); 4839 BuildMI(*BB, I, DL, TII->get(Mips::FILL_D)).addDef(Dest).addUse(Temp); 4840 } else { 4841 Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass); 4842 Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4843 Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4844 BuildMI(*BB, I, DL, TII->get(Mips::LW)) 4845 .addDef(Lo) 4846 .addUse(Address) 4847 .addImm(Imm + (IsLittle ? 0 : 4)); 4848 BuildMI(*BB, I, DL, TII->get(Mips::LW)) 4849 .addDef(Hi) 4850 .addUse(Address) 4851 .addImm(Imm + (IsLittle ? 4 : 0)); 4852 BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(Lo); 4853 BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest) 4854 .addUse(Wtemp) 4855 .addUse(Hi) 4856 .addImm(1); 4857 } 4858 } else { 4859 // Mips release 5 needs to use instructions that can load from an unaligned 4860 // memory address. 4861 Register LoHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4862 Register LoFull = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4863 Register LoUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4864 Register HiHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4865 Register HiFull = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4866 Register HiUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4867 Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass); 4868 BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(LoUndef); 4869 BuildMI(*BB, I, DL, TII->get(Mips::LWR)) 4870 .addDef(LoHalf) 4871 .addUse(Address) 4872 .addImm(Imm + (IsLittle ? 0 : 7)) 4873 .addUse(LoUndef); 4874 BuildMI(*BB, I, DL, TII->get(Mips::LWL)) 4875 .addDef(LoFull) 4876 .addUse(Address) 4877 .addImm(Imm + (IsLittle ? 3 : 4)) 4878 .addUse(LoHalf); 4879 BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(HiUndef); 4880 BuildMI(*BB, I, DL, TII->get(Mips::LWR)) 4881 .addDef(HiHalf) 4882 .addUse(Address) 4883 .addImm(Imm + (IsLittle ? 4 : 3)) 4884 .addUse(HiUndef); 4885 BuildMI(*BB, I, DL, TII->get(Mips::LWL)) 4886 .addDef(HiFull) 4887 .addUse(Address) 4888 .addImm(Imm + (IsLittle ? 7 : 0)) 4889 .addUse(HiHalf); 4890 BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(LoFull); 4891 BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest) 4892 .addUse(Wtemp) 4893 .addUse(HiFull) 4894 .addImm(1); 4895 } 4896 4897 MI.eraseFromParent(); 4898 return BB; 4899 } 4900 4901 MachineBasicBlock *MipsTargetLowering::emitSTR_W(MachineInstr &MI, 4902 MachineBasicBlock *BB) const { 4903 MachineFunction *MF = BB->getParent(); 4904 MachineRegisterInfo &MRI = MF->getRegInfo(); 4905 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 4906 const bool IsLittle = Subtarget.isLittle(); 4907 DebugLoc DL = MI.getDebugLoc(); 4908 4909 Register StoreVal = MI.getOperand(0).getReg(); 4910 Register Address = MI.getOperand(1).getReg(); 4911 unsigned Imm = MI.getOperand(2).getImm(); 4912 4913 MachineBasicBlock::iterator I(MI); 4914 4915 if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) { 4916 // Mips release 6 can store to adress that is not naturally-aligned. 4917 Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass); 4918 Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4919 BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(BitcastW).addUse(StoreVal); 4920 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W)) 4921 .addDef(Tmp) 4922 .addUse(BitcastW) 4923 .addImm(0); 4924 BuildMI(*BB, I, DL, TII->get(Mips::SW)) 4925 .addUse(Tmp) 4926 .addUse(Address) 4927 .addImm(Imm); 4928 } else { 4929 // Mips release 5 needs to use instructions that can store to an unaligned 4930 // memory address. 4931 Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4932 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W)) 4933 .addDef(Tmp) 4934 .addUse(StoreVal) 4935 .addImm(0); 4936 BuildMI(*BB, I, DL, TII->get(Mips::SWR)) 4937 .addUse(Tmp) 4938 .addUse(Address) 4939 .addImm(Imm + (IsLittle ? 0 : 3)); 4940 BuildMI(*BB, I, DL, TII->get(Mips::SWL)) 4941 .addUse(Tmp) 4942 .addUse(Address) 4943 .addImm(Imm + (IsLittle ? 3 : 0)); 4944 } 4945 4946 MI.eraseFromParent(); 4947 4948 return BB; 4949 } 4950 4951 MachineBasicBlock *MipsTargetLowering::emitSTR_D(MachineInstr &MI, 4952 MachineBasicBlock *BB) const { 4953 MachineFunction *MF = BB->getParent(); 4954 MachineRegisterInfo &MRI = MF->getRegInfo(); 4955 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 4956 const bool IsLittle = Subtarget.isLittle(); 4957 DebugLoc DL = MI.getDebugLoc(); 4958 4959 Register StoreVal = MI.getOperand(0).getReg(); 4960 Register Address = MI.getOperand(1).getReg(); 4961 unsigned Imm = MI.getOperand(2).getImm(); 4962 4963 MachineBasicBlock::iterator I(MI); 4964 4965 if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) { 4966 // Mips release 6 can store to adress that is not naturally-aligned. 4967 if (Subtarget.isGP64bit()) { 4968 Register BitcastD = MRI.createVirtualRegister(&Mips::MSA128DRegClass); 4969 Register Lo = MRI.createVirtualRegister(&Mips::GPR64RegClass); 4970 BuildMI(*BB, I, DL, TII->get(Mips::COPY)) 4971 .addDef(BitcastD) 4972 .addUse(StoreVal); 4973 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_D)) 4974 .addDef(Lo) 4975 .addUse(BitcastD) 4976 .addImm(0); 4977 BuildMI(*BB, I, DL, TII->get(Mips::SD)) 4978 .addUse(Lo) 4979 .addUse(Address) 4980 .addImm(Imm); 4981 } else { 4982 Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass); 4983 Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4984 Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass); 4985 BuildMI(*BB, I, DL, TII->get(Mips::COPY)) 4986 .addDef(BitcastW) 4987 .addUse(StoreVal); 4988 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W)) 4989 .addDef(Lo) 4990 .addUse(BitcastW) 4991 .addImm(0); 4992 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W)) 4993 .addDef(Hi) 4994 .addUse(BitcastW) 4995 .addImm(1); 4996 BuildMI(*BB, I, DL, TII->get(Mips::SW)) 4997 .addUse(Lo) 4998 .addUse(Address) 4999 .addImm(Imm + (IsLittle ? 0 : 4)); 5000 BuildMI(*BB, I, DL, TII->get(Mips::SW)) 5001 .addUse(Hi) 5002 .addUse(Address) 5003 .addImm(Imm + (IsLittle ? 4 : 0)); 5004 } 5005 } else { 5006 // Mips release 5 needs to use instructions that can store to an unaligned 5007 // memory address. 5008 Register Bitcast = MRI.createVirtualRegister(&Mips::MSA128WRegClass); 5009 Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass); 5010 Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass); 5011 BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(Bitcast).addUse(StoreVal); 5012 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W)) 5013 .addDef(Lo) 5014 .addUse(Bitcast) 5015 .addImm(0); 5016 BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W)) 5017 .addDef(Hi) 5018 .addUse(Bitcast) 5019 .addImm(1); 5020 BuildMI(*BB, I, DL, TII->get(Mips::SWR)) 5021 .addUse(Lo) 5022 .addUse(Address) 5023 .addImm(Imm + (IsLittle ? 0 : 3)); 5024 BuildMI(*BB, I, DL, TII->get(Mips::SWL)) 5025 .addUse(Lo) 5026 .addUse(Address) 5027 .addImm(Imm + (IsLittle ? 3 : 0)); 5028 BuildMI(*BB, I, DL, TII->get(Mips::SWR)) 5029 .addUse(Hi) 5030 .addUse(Address) 5031 .addImm(Imm + (IsLittle ? 4 : 7)); 5032 BuildMI(*BB, I, DL, TII->get(Mips::SWL)) 5033 .addUse(Hi) 5034 .addUse(Address) 5035 .addImm(Imm + (IsLittle ? 7 : 4)); 5036 } 5037 5038 MI.eraseFromParent(); 5039 return BB; 5040 } 5041