1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file defines the MIPS-specific support for the FastISel class. 11 /// Some of the target-specific code is generated by tablegen in the file 12 /// MipsGenFastISel.inc, which is #included here. 13 /// 14 //===----------------------------------------------------------------------===// 15 16 #include "MCTargetDesc/MipsABIInfo.h" 17 #include "MCTargetDesc/MipsBaseInfo.h" 18 #include "MipsCCState.h" 19 #include "MipsISelLowering.h" 20 #include "MipsInstrInfo.h" 21 #include "MipsMachineFunction.h" 22 #include "MipsSubtarget.h" 23 #include "MipsTargetMachine.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/CodeGen/CallingConvLower.h" 30 #include "llvm/CodeGen/FastISel.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCInstrDesc.h" 60 #include "llvm/MC/MCRegisterInfo.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/MachineValueType.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 74 #define DEBUG_TYPE "mips-fastisel" 75 76 using namespace llvm; 77 78 extern cl::opt<bool> EmitJalrReloc; 79 80 namespace { 81 82 class MipsFastISel final : public FastISel { 83 84 // All possible address modes. 85 class Address { 86 public: 87 using BaseKind = enum { RegBase, FrameIndexBase }; 88 89 private: 90 BaseKind Kind = RegBase; 91 union { 92 unsigned Reg; 93 int FI; 94 } Base; 95 96 int64_t Offset = 0; 97 98 const GlobalValue *GV = nullptr; 99 100 public: 101 // Innocuous defaults for our address. 102 Address() { Base.Reg = 0; } 103 104 void setKind(BaseKind K) { Kind = K; } 105 BaseKind getKind() const { return Kind; } 106 bool isRegBase() const { return Kind == RegBase; } 107 bool isFIBase() const { return Kind == FrameIndexBase; } 108 109 void setReg(unsigned Reg) { 110 assert(isRegBase() && "Invalid base register access!"); 111 Base.Reg = Reg; 112 } 113 114 unsigned getReg() const { 115 assert(isRegBase() && "Invalid base register access!"); 116 return Base.Reg; 117 } 118 119 void setFI(unsigned FI) { 120 assert(isFIBase() && "Invalid base frame index access!"); 121 Base.FI = FI; 122 } 123 124 unsigned getFI() const { 125 assert(isFIBase() && "Invalid base frame index access!"); 126 return Base.FI; 127 } 128 129 void setOffset(int64_t Offset_) { Offset = Offset_; } 130 int64_t getOffset() const { return Offset; } 131 void setGlobalValue(const GlobalValue *G) { GV = G; } 132 const GlobalValue *getGlobalValue() { return GV; } 133 }; 134 135 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can 136 /// make the right decision when generating code for different targets. 137 const TargetMachine &TM; 138 const MipsSubtarget *Subtarget; 139 const TargetInstrInfo &TII; 140 const TargetLowering &TLI; 141 MipsFunctionInfo *MFI; 142 143 // Convenience variables to avoid some queries. 144 LLVMContext *Context; 145 146 bool fastLowerArguments() override; 147 bool fastLowerCall(CallLoweringInfo &CLI) override; 148 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 149 150 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle 151 // floating point but not reject doing fast-isel in other 152 // situations 153 154 private: 155 // Selection routines. 156 bool selectLogicalOp(const Instruction *I); 157 bool selectLoad(const Instruction *I); 158 bool selectStore(const Instruction *I); 159 bool selectBranch(const Instruction *I); 160 bool selectSelect(const Instruction *I); 161 bool selectCmp(const Instruction *I); 162 bool selectFPExt(const Instruction *I); 163 bool selectFPTrunc(const Instruction *I); 164 bool selectFPToInt(const Instruction *I, bool IsSigned); 165 bool selectRet(const Instruction *I); 166 bool selectTrunc(const Instruction *I); 167 bool selectIntExt(const Instruction *I); 168 bool selectShift(const Instruction *I); 169 bool selectDivRem(const Instruction *I, unsigned ISDOpcode); 170 171 // Utility helper routines. 172 bool isTypeLegal(Type *Ty, MVT &VT); 173 bool isTypeSupported(Type *Ty, MVT &VT); 174 bool isLoadTypeLegal(Type *Ty, MVT &VT); 175 bool computeAddress(const Value *Obj, Address &Addr); 176 bool computeCallAddress(const Value *V, Address &Addr); 177 void simplifyAddress(Address &Addr); 178 179 // Emit helper routines. 180 bool emitCmp(unsigned DestReg, const CmpInst *CI); 181 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 182 unsigned Alignment = 0); 183 bool emitStore(MVT VT, unsigned SrcReg, Address Addr, 184 MachineMemOperand *MMO = nullptr); 185 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr, 186 unsigned Alignment = 0); 187 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 188 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg, 189 190 bool IsZExt); 191 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 192 193 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 194 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 195 unsigned DestReg); 196 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 197 unsigned DestReg); 198 199 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned); 200 201 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS, 202 const Value *RHS); 203 204 unsigned materializeFP(const ConstantFP *CFP, MVT VT); 205 unsigned materializeGV(const GlobalValue *GV, MVT VT); 206 unsigned materializeInt(const Constant *C, MVT VT); 207 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); 208 unsigned materializeExternalCallSym(MCSymbol *Syn); 209 210 MachineInstrBuilder emitInst(unsigned Opc) { 211 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 212 } 213 214 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) { 215 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 216 DstReg); 217 } 218 219 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg, 220 unsigned MemReg, int64_t MemOffset) { 221 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset); 222 } 223 224 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg, 225 unsigned MemReg, int64_t MemOffset) { 226 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset); 227 } 228 229 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 230 const TargetRegisterClass *RC, 231 unsigned Op0, bool Op0IsKill, 232 unsigned Op1, bool Op1IsKill); 233 234 // for some reason, this default is not generated by tablegen 235 // so we explicitly generate it here. 236 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC, 237 unsigned Op0, bool Op0IsKill, uint64_t imm1, 238 uint64_t imm2, unsigned Op3, bool Op3IsKill) { 239 return 0; 240 } 241 242 // Call handling routines. 243 private: 244 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; 245 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs, 246 unsigned &NumBytes); 247 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes); 248 249 const MipsABIInfo &getABI() const { 250 return static_cast<const MipsTargetMachine &>(TM).getABI(); 251 } 252 253 public: 254 // Backend specific FastISel code. 255 explicit MipsFastISel(FunctionLoweringInfo &funcInfo, 256 const TargetLibraryInfo *libInfo) 257 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()), 258 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()), 259 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) { 260 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>(); 261 Context = &funcInfo.Fn->getContext(); 262 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat(); 263 } 264 265 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 266 unsigned fastMaterializeConstant(const Constant *C) override; 267 bool fastSelectInstruction(const Instruction *I) override; 268 269 #include "MipsGenFastISel.inc" 270 }; 271 272 } // end anonymous namespace 273 274 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT, 275 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 276 CCState &State) LLVM_ATTRIBUTE_UNUSED; 277 278 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT, 279 CCValAssign::LocInfo LocInfo, 280 ISD::ArgFlagsTy ArgFlags, CCState &State) { 281 llvm_unreachable("should not be called"); 282 } 283 284 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT, 285 CCValAssign::LocInfo LocInfo, 286 ISD::ArgFlagsTy ArgFlags, CCState &State) { 287 llvm_unreachable("should not be called"); 288 } 289 290 #include "MipsGenCallingConv.inc" 291 292 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const { 293 return CC_MipsO32; 294 } 295 296 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT, 297 const Value *LHS, const Value *RHS) { 298 // Canonicalize immediates to the RHS first. 299 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS)) 300 std::swap(LHS, RHS); 301 302 unsigned Opc; 303 switch (ISDOpc) { 304 case ISD::AND: 305 Opc = Mips::AND; 306 break; 307 case ISD::OR: 308 Opc = Mips::OR; 309 break; 310 case ISD::XOR: 311 Opc = Mips::XOR; 312 break; 313 default: 314 llvm_unreachable("unexpected opcode"); 315 } 316 317 unsigned LHSReg = getRegForValue(LHS); 318 if (!LHSReg) 319 return 0; 320 321 unsigned RHSReg; 322 if (const auto *C = dyn_cast<ConstantInt>(RHS)) 323 RHSReg = materializeInt(C, MVT::i32); 324 else 325 RHSReg = getRegForValue(RHS); 326 if (!RHSReg) 327 return 0; 328 329 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 330 if (!ResultReg) 331 return 0; 332 333 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg); 334 return ResultReg; 335 } 336 337 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 338 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 && 339 "Alloca should always return a pointer."); 340 341 DenseMap<const AllocaInst *, int>::iterator SI = 342 FuncInfo.StaticAllocaMap.find(AI); 343 344 if (SI != FuncInfo.StaticAllocaMap.end()) { 345 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu), 347 ResultReg) 348 .addFrameIndex(SI->second) 349 .addImm(0); 350 return ResultReg; 351 } 352 353 return 0; 354 } 355 356 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) { 357 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 358 return 0; 359 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 360 const ConstantInt *CI = cast<ConstantInt>(C); 361 return materialize32BitInt(CI->getZExtValue(), RC); 362 } 363 364 unsigned MipsFastISel::materialize32BitInt(int64_t Imm, 365 const TargetRegisterClass *RC) { 366 unsigned ResultReg = createResultReg(RC); 367 368 if (isInt<16>(Imm)) { 369 unsigned Opc = Mips::ADDiu; 370 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm); 371 return ResultReg; 372 } else if (isUInt<16>(Imm)) { 373 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm); 374 return ResultReg; 375 } 376 unsigned Lo = Imm & 0xFFFF; 377 unsigned Hi = (Imm >> 16) & 0xFFFF; 378 if (Lo) { 379 // Both Lo and Hi have nonzero bits. 380 unsigned TmpReg = createResultReg(RC); 381 emitInst(Mips::LUi, TmpReg).addImm(Hi); 382 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo); 383 } else { 384 emitInst(Mips::LUi, ResultReg).addImm(Hi); 385 } 386 return ResultReg; 387 } 388 389 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) { 390 if (UnsupportedFPMode) 391 return 0; 392 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 393 if (VT == MVT::f32) { 394 const TargetRegisterClass *RC = &Mips::FGR32RegClass; 395 unsigned DestReg = createResultReg(RC); 396 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass); 397 emitInst(Mips::MTC1, DestReg).addReg(TempReg); 398 return DestReg; 399 } else if (VT == MVT::f64) { 400 const TargetRegisterClass *RC = &Mips::AFGR64RegClass; 401 unsigned DestReg = createResultReg(RC); 402 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass); 403 unsigned TempReg2 = 404 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass); 405 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1); 406 return DestReg; 407 } 408 return 0; 409 } 410 411 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) { 412 // For now 32-bit only. 413 if (VT != MVT::i32) 414 return 0; 415 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 416 unsigned DestReg = createResultReg(RC); 417 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 418 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 419 // TLS not supported at this time. 420 if (IsThreadLocal) 421 return 0; 422 emitInst(Mips::LW, DestReg) 423 .addReg(MFI->getGlobalBaseReg()) 424 .addGlobalAddress(GV, 0, MipsII::MO_GOT); 425 if ((GV->hasInternalLinkage() || 426 (GV->hasLocalLinkage() && !isa<Function>(GV)))) { 427 unsigned TempReg = createResultReg(RC); 428 emitInst(Mips::ADDiu, TempReg) 429 .addReg(DestReg) 430 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO); 431 DestReg = TempReg; 432 } 433 return DestReg; 434 } 435 436 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) { 437 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 438 unsigned DestReg = createResultReg(RC); 439 emitInst(Mips::LW, DestReg) 440 .addReg(MFI->getGlobalBaseReg()) 441 .addSym(Sym, MipsII::MO_GOT); 442 return DestReg; 443 } 444 445 // Materialize a constant into a register, and return the register 446 // number (or zero if we failed to handle it). 447 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) { 448 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 449 450 // Only handle simple types. 451 if (!CEVT.isSimple()) 452 return 0; 453 MVT VT = CEVT.getSimpleVT(); 454 455 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 456 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT); 457 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 458 return materializeGV(GV, VT); 459 else if (isa<ConstantInt>(C)) 460 return materializeInt(C, VT); 461 462 return 0; 463 } 464 465 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) { 466 const User *U = nullptr; 467 unsigned Opcode = Instruction::UserOp1; 468 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 469 // Don't walk into other basic blocks unless the object is an alloca from 470 // another block, otherwise it may not have a virtual register assigned. 471 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 472 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 473 Opcode = I->getOpcode(); 474 U = I; 475 } 476 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 477 Opcode = C->getOpcode(); 478 U = C; 479 } 480 switch (Opcode) { 481 default: 482 break; 483 case Instruction::BitCast: 484 // Look through bitcasts. 485 return computeAddress(U->getOperand(0), Addr); 486 case Instruction::GetElementPtr: { 487 Address SavedAddr = Addr; 488 int64_t TmpOffset = Addr.getOffset(); 489 // Iterate through the GEP folding the constants into offsets where 490 // we can. 491 gep_type_iterator GTI = gep_type_begin(U); 492 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; 493 ++i, ++GTI) { 494 const Value *Op = *i; 495 if (StructType *STy = GTI.getStructTypeOrNull()) { 496 const StructLayout *SL = DL.getStructLayout(STy); 497 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 498 TmpOffset += SL->getElementOffset(Idx); 499 } else { 500 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 501 while (true) { 502 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 503 // Constant-offset addressing. 504 TmpOffset += CI->getSExtValue() * S; 505 break; 506 } 507 if (canFoldAddIntoGEP(U, Op)) { 508 // A compatible add with a constant operand. Fold the constant. 509 ConstantInt *CI = 510 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 511 TmpOffset += CI->getSExtValue() * S; 512 // Iterate on the other operand. 513 Op = cast<AddOperator>(Op)->getOperand(0); 514 continue; 515 } 516 // Unsupported 517 goto unsupported_gep; 518 } 519 } 520 } 521 // Try to grab the base operand now. 522 Addr.setOffset(TmpOffset); 523 if (computeAddress(U->getOperand(0), Addr)) 524 return true; 525 // We failed, restore everything and try the other options. 526 Addr = SavedAddr; 527 unsupported_gep: 528 break; 529 } 530 case Instruction::Alloca: { 531 const AllocaInst *AI = cast<AllocaInst>(Obj); 532 DenseMap<const AllocaInst *, int>::iterator SI = 533 FuncInfo.StaticAllocaMap.find(AI); 534 if (SI != FuncInfo.StaticAllocaMap.end()) { 535 Addr.setKind(Address::FrameIndexBase); 536 Addr.setFI(SI->second); 537 return true; 538 } 539 break; 540 } 541 } 542 Addr.setReg(getRegForValue(Obj)); 543 return Addr.getReg() != 0; 544 } 545 546 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) { 547 const User *U = nullptr; 548 unsigned Opcode = Instruction::UserOp1; 549 550 if (const auto *I = dyn_cast<Instruction>(V)) { 551 // Check if the value is defined in the same basic block. This information 552 // is crucial to know whether or not folding an operand is valid. 553 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) { 554 Opcode = I->getOpcode(); 555 U = I; 556 } 557 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) { 558 Opcode = C->getOpcode(); 559 U = C; 560 } 561 562 switch (Opcode) { 563 default: 564 break; 565 case Instruction::BitCast: 566 // Look past bitcasts if its operand is in the same BB. 567 return computeCallAddress(U->getOperand(0), Addr); 568 break; 569 case Instruction::IntToPtr: 570 // Look past no-op inttoptrs if its operand is in the same BB. 571 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 572 TLI.getPointerTy(DL)) 573 return computeCallAddress(U->getOperand(0), Addr); 574 break; 575 case Instruction::PtrToInt: 576 // Look past no-op ptrtoints if its operand is in the same BB. 577 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 578 return computeCallAddress(U->getOperand(0), Addr); 579 break; 580 } 581 582 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 583 Addr.setGlobalValue(GV); 584 return true; 585 } 586 587 // If all else fails, try to materialize the value in a register. 588 if (!Addr.getGlobalValue()) { 589 Addr.setReg(getRegForValue(V)); 590 return Addr.getReg() != 0; 591 } 592 593 return false; 594 } 595 596 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) { 597 EVT evt = TLI.getValueType(DL, Ty, true); 598 // Only handle simple types. 599 if (evt == MVT::Other || !evt.isSimple()) 600 return false; 601 VT = evt.getSimpleVT(); 602 603 // Handle all legal types, i.e. a register that will directly hold this 604 // value. 605 return TLI.isTypeLegal(VT); 606 } 607 608 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) { 609 if (Ty->isVectorTy()) 610 return false; 611 612 if (isTypeLegal(Ty, VT)) 613 return true; 614 615 // If this is a type than can be sign or zero-extended to a basic operation 616 // go ahead and accept it now. 617 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 618 return true; 619 620 return false; 621 } 622 623 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 624 if (isTypeLegal(Ty, VT)) 625 return true; 626 // We will extend this in a later patch: 627 // If this is a type than can be sign or zero-extended to a basic operation 628 // go ahead and accept it now. 629 if (VT == MVT::i8 || VT == MVT::i16) 630 return true; 631 return false; 632 } 633 634 // Because of how EmitCmp is called with fast-isel, you can 635 // end up with redundant "andi" instructions after the sequences emitted below. 636 // We should try and solve this issue in the future. 637 // 638 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) { 639 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1); 640 bool IsUnsigned = CI->isUnsigned(); 641 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned); 642 if (LeftReg == 0) 643 return false; 644 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned); 645 if (RightReg == 0) 646 return false; 647 CmpInst::Predicate P = CI->getPredicate(); 648 649 switch (P) { 650 default: 651 return false; 652 case CmpInst::ICMP_EQ: { 653 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 654 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 655 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1); 656 break; 657 } 658 case CmpInst::ICMP_NE: { 659 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 660 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 661 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg); 662 break; 663 } 664 case CmpInst::ICMP_UGT: 665 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg); 666 break; 667 case CmpInst::ICMP_ULT: 668 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg); 669 break; 670 case CmpInst::ICMP_UGE: { 671 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 672 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg); 673 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 674 break; 675 } 676 case CmpInst::ICMP_ULE: { 677 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 678 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg); 679 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 680 break; 681 } 682 case CmpInst::ICMP_SGT: 683 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg); 684 break; 685 case CmpInst::ICMP_SLT: 686 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg); 687 break; 688 case CmpInst::ICMP_SGE: { 689 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 690 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg); 691 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 692 break; 693 } 694 case CmpInst::ICMP_SLE: { 695 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 696 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg); 697 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 698 break; 699 } 700 case CmpInst::FCMP_OEQ: 701 case CmpInst::FCMP_UNE: 702 case CmpInst::FCMP_OLT: 703 case CmpInst::FCMP_OLE: 704 case CmpInst::FCMP_OGT: 705 case CmpInst::FCMP_OGE: { 706 if (UnsupportedFPMode) 707 return false; 708 bool IsFloat = Left->getType()->isFloatTy(); 709 bool IsDouble = Left->getType()->isDoubleTy(); 710 if (!IsFloat && !IsDouble) 711 return false; 712 unsigned Opc, CondMovOpc; 713 switch (P) { 714 case CmpInst::FCMP_OEQ: 715 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 716 CondMovOpc = Mips::MOVT_I; 717 break; 718 case CmpInst::FCMP_UNE: 719 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 720 CondMovOpc = Mips::MOVF_I; 721 break; 722 case CmpInst::FCMP_OLT: 723 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32; 724 CondMovOpc = Mips::MOVT_I; 725 break; 726 case CmpInst::FCMP_OLE: 727 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32; 728 CondMovOpc = Mips::MOVT_I; 729 break; 730 case CmpInst::FCMP_OGT: 731 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32; 732 CondMovOpc = Mips::MOVF_I; 733 break; 734 case CmpInst::FCMP_OGE: 735 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32; 736 CondMovOpc = Mips::MOVF_I; 737 break; 738 default: 739 llvm_unreachable("Only switching of a subset of CCs."); 740 } 741 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass); 742 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass); 743 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0); 744 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1); 745 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg) 746 .addReg(RightReg); 747 emitInst(CondMovOpc, ResultReg) 748 .addReg(RegWithOne) 749 .addReg(Mips::FCC0) 750 .addReg(RegWithZero); 751 break; 752 } 753 } 754 return true; 755 } 756 757 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 758 unsigned Alignment) { 759 // 760 // more cases will be handled here in following patches. 761 // 762 unsigned Opc; 763 switch (VT.SimpleTy) { 764 case MVT::i32: 765 ResultReg = createResultReg(&Mips::GPR32RegClass); 766 Opc = Mips::LW; 767 break; 768 case MVT::i16: 769 ResultReg = createResultReg(&Mips::GPR32RegClass); 770 Opc = Mips::LHu; 771 break; 772 case MVT::i8: 773 ResultReg = createResultReg(&Mips::GPR32RegClass); 774 Opc = Mips::LBu; 775 break; 776 case MVT::f32: 777 if (UnsupportedFPMode) 778 return false; 779 ResultReg = createResultReg(&Mips::FGR32RegClass); 780 Opc = Mips::LWC1; 781 break; 782 case MVT::f64: 783 if (UnsupportedFPMode) 784 return false; 785 ResultReg = createResultReg(&Mips::AFGR64RegClass); 786 Opc = Mips::LDC1; 787 break; 788 default: 789 return false; 790 } 791 if (Addr.isRegBase()) { 792 simplifyAddress(Addr); 793 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset()); 794 return true; 795 } 796 if (Addr.isFIBase()) { 797 unsigned FI = Addr.getFI(); 798 unsigned Align = 4; 799 int64_t Offset = Addr.getOffset(); 800 MachineFrameInfo &MFI = MF->getFrameInfo(); 801 MachineMemOperand *MMO = MF->getMachineMemOperand( 802 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, 803 MFI.getObjectSize(FI), Align); 804 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 805 .addFrameIndex(FI) 806 .addImm(Offset) 807 .addMemOperand(MMO); 808 return true; 809 } 810 return false; 811 } 812 813 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr, 814 unsigned Alignment) { 815 // 816 // more cases will be handled here in following patches. 817 // 818 unsigned Opc; 819 switch (VT.SimpleTy) { 820 case MVT::i8: 821 Opc = Mips::SB; 822 break; 823 case MVT::i16: 824 Opc = Mips::SH; 825 break; 826 case MVT::i32: 827 Opc = Mips::SW; 828 break; 829 case MVT::f32: 830 if (UnsupportedFPMode) 831 return false; 832 Opc = Mips::SWC1; 833 break; 834 case MVT::f64: 835 if (UnsupportedFPMode) 836 return false; 837 Opc = Mips::SDC1; 838 break; 839 default: 840 return false; 841 } 842 if (Addr.isRegBase()) { 843 simplifyAddress(Addr); 844 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset()); 845 return true; 846 } 847 if (Addr.isFIBase()) { 848 unsigned FI = Addr.getFI(); 849 unsigned Align = 4; 850 int64_t Offset = Addr.getOffset(); 851 MachineFrameInfo &MFI = MF->getFrameInfo(); 852 MachineMemOperand *MMO = MF->getMachineMemOperand( 853 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, 854 MFI.getObjectSize(FI), Align); 855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 856 .addReg(SrcReg) 857 .addFrameIndex(FI) 858 .addImm(Offset) 859 .addMemOperand(MMO); 860 return true; 861 } 862 return false; 863 } 864 865 bool MipsFastISel::selectLogicalOp(const Instruction *I) { 866 MVT VT; 867 if (!isTypeSupported(I->getType(), VT)) 868 return false; 869 870 unsigned ResultReg; 871 switch (I->getOpcode()) { 872 default: 873 llvm_unreachable("Unexpected instruction."); 874 case Instruction::And: 875 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1)); 876 break; 877 case Instruction::Or: 878 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1)); 879 break; 880 case Instruction::Xor: 881 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1)); 882 break; 883 } 884 885 if (!ResultReg) 886 return false; 887 888 updateValueMap(I, ResultReg); 889 return true; 890 } 891 892 bool MipsFastISel::selectLoad(const Instruction *I) { 893 // Atomic loads need special handling. 894 if (cast<LoadInst>(I)->isAtomic()) 895 return false; 896 897 // Verify we have a legal type before going any further. 898 MVT VT; 899 if (!isLoadTypeLegal(I->getType(), VT)) 900 return false; 901 902 // See if we can handle this address. 903 Address Addr; 904 if (!computeAddress(I->getOperand(0), Addr)) 905 return false; 906 907 unsigned ResultReg; 908 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 909 return false; 910 updateValueMap(I, ResultReg); 911 return true; 912 } 913 914 bool MipsFastISel::selectStore(const Instruction *I) { 915 Value *Op0 = I->getOperand(0); 916 unsigned SrcReg = 0; 917 918 // Atomic stores need special handling. 919 if (cast<StoreInst>(I)->isAtomic()) 920 return false; 921 922 // Verify we have a legal type before going any further. 923 MVT VT; 924 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 925 return false; 926 927 // Get the value to be stored into a register. 928 SrcReg = getRegForValue(Op0); 929 if (SrcReg == 0) 930 return false; 931 932 // See if we can handle this address. 933 Address Addr; 934 if (!computeAddress(I->getOperand(1), Addr)) 935 return false; 936 937 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 938 return false; 939 return true; 940 } 941 942 // This can cause a redundant sltiu to be generated. 943 // FIXME: try and eliminate this in a future patch. 944 bool MipsFastISel::selectBranch(const Instruction *I) { 945 const BranchInst *BI = cast<BranchInst>(I); 946 MachineBasicBlock *BrBB = FuncInfo.MBB; 947 // 948 // TBB is the basic block for the case where the comparison is true. 949 // FBB is the basic block for the case where the comparison is false. 950 // if (cond) goto TBB 951 // goto FBB 952 // TBB: 953 // 954 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 955 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 956 957 // Fold the common case of a conditional branch with a comparison 958 // in the same block. 959 unsigned ZExtCondReg = 0; 960 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 961 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 962 ZExtCondReg = createResultReg(&Mips::GPR32RegClass); 963 if (!emitCmp(ZExtCondReg, CI)) 964 return false; 965 } 966 } 967 968 // For the general case, we need to mask with 1. 969 if (ZExtCondReg == 0) { 970 unsigned CondReg = getRegForValue(BI->getCondition()); 971 if (CondReg == 0) 972 return false; 973 974 ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true); 975 if (ZExtCondReg == 0) 976 return false; 977 } 978 979 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ)) 980 .addReg(ZExtCondReg) 981 .addMBB(TBB); 982 finishCondBranch(BI->getParent(), TBB, FBB); 983 return true; 984 } 985 986 bool MipsFastISel::selectCmp(const Instruction *I) { 987 const CmpInst *CI = cast<CmpInst>(I); 988 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 989 if (!emitCmp(ResultReg, CI)) 990 return false; 991 updateValueMap(I, ResultReg); 992 return true; 993 } 994 995 // Attempt to fast-select a floating-point extend instruction. 996 bool MipsFastISel::selectFPExt(const Instruction *I) { 997 if (UnsupportedFPMode) 998 return false; 999 Value *Src = I->getOperand(0); 1000 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1001 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1002 1003 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 1004 return false; 1005 1006 unsigned SrcReg = 1007 getRegForValue(Src); // this must be a 32bit floating point register class 1008 // maybe we should handle this differently 1009 if (!SrcReg) 1010 return false; 1011 1012 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass); 1013 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg); 1014 updateValueMap(I, DestReg); 1015 return true; 1016 } 1017 1018 bool MipsFastISel::selectSelect(const Instruction *I) { 1019 assert(isa<SelectInst>(I) && "Expected a select instruction."); 1020 1021 LLVM_DEBUG(dbgs() << "selectSelect\n"); 1022 1023 MVT VT; 1024 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) { 1025 LLVM_DEBUG( 1026 dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n"); 1027 return false; 1028 } 1029 1030 unsigned CondMovOpc; 1031 const TargetRegisterClass *RC; 1032 1033 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) { 1034 CondMovOpc = Mips::MOVN_I_I; 1035 RC = &Mips::GPR32RegClass; 1036 } else if (VT == MVT::f32) { 1037 CondMovOpc = Mips::MOVN_I_S; 1038 RC = &Mips::FGR32RegClass; 1039 } else if (VT == MVT::f64) { 1040 CondMovOpc = Mips::MOVN_I_D32; 1041 RC = &Mips::AFGR64RegClass; 1042 } else 1043 return false; 1044 1045 const SelectInst *SI = cast<SelectInst>(I); 1046 const Value *Cond = SI->getCondition(); 1047 unsigned Src1Reg = getRegForValue(SI->getTrueValue()); 1048 unsigned Src2Reg = getRegForValue(SI->getFalseValue()); 1049 unsigned CondReg = getRegForValue(Cond); 1050 1051 if (!Src1Reg || !Src2Reg || !CondReg) 1052 return false; 1053 1054 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass); 1055 if (!ZExtCondReg) 1056 return false; 1057 1058 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true)) 1059 return false; 1060 1061 unsigned ResultReg = createResultReg(RC); 1062 unsigned TempReg = createResultReg(RC); 1063 1064 if (!ResultReg || !TempReg) 1065 return false; 1066 1067 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg); 1068 emitInst(CondMovOpc, ResultReg) 1069 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg); 1070 updateValueMap(I, ResultReg); 1071 return true; 1072 } 1073 1074 // Attempt to fast-select a floating-point truncate instruction. 1075 bool MipsFastISel::selectFPTrunc(const Instruction *I) { 1076 if (UnsupportedFPMode) 1077 return false; 1078 Value *Src = I->getOperand(0); 1079 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1080 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1081 1082 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 1083 return false; 1084 1085 unsigned SrcReg = getRegForValue(Src); 1086 if (!SrcReg) 1087 return false; 1088 1089 unsigned DestReg = createResultReg(&Mips::FGR32RegClass); 1090 if (!DestReg) 1091 return false; 1092 1093 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg); 1094 updateValueMap(I, DestReg); 1095 return true; 1096 } 1097 1098 // Attempt to fast-select a floating-point-to-integer conversion. 1099 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) { 1100 if (UnsupportedFPMode) 1101 return false; 1102 MVT DstVT, SrcVT; 1103 if (!IsSigned) 1104 return false; // We don't handle this case yet. There is no native 1105 // instruction for this but it can be synthesized. 1106 Type *DstTy = I->getType(); 1107 if (!isTypeLegal(DstTy, DstVT)) 1108 return false; 1109 1110 if (DstVT != MVT::i32) 1111 return false; 1112 1113 Value *Src = I->getOperand(0); 1114 Type *SrcTy = Src->getType(); 1115 if (!isTypeLegal(SrcTy, SrcVT)) 1116 return false; 1117 1118 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1119 return false; 1120 1121 unsigned SrcReg = getRegForValue(Src); 1122 if (SrcReg == 0) 1123 return false; 1124 1125 // Determine the opcode for the conversion, which takes place 1126 // entirely within FPRs. 1127 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1128 unsigned TempReg = createResultReg(&Mips::FGR32RegClass); 1129 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32; 1130 1131 // Generate the convert. 1132 emitInst(Opc, TempReg).addReg(SrcReg); 1133 emitInst(Mips::MFC1, DestReg).addReg(TempReg); 1134 1135 updateValueMap(I, DestReg); 1136 return true; 1137 } 1138 1139 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI, 1140 SmallVectorImpl<MVT> &OutVTs, 1141 unsigned &NumBytes) { 1142 CallingConv::ID CC = CLI.CallConv; 1143 SmallVector<CCValAssign, 16> ArgLocs; 1144 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context); 1145 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC)); 1146 // Get a count of how many bytes are to be pushed on the stack. 1147 NumBytes = CCInfo.getNextStackOffset(); 1148 // This is the minimum argument area used for A0-A3. 1149 if (NumBytes < 16) 1150 NumBytes = 16; 1151 1152 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0); 1153 // Process the args. 1154 MVT firstMVT; 1155 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1156 CCValAssign &VA = ArgLocs[i]; 1157 const Value *ArgVal = CLI.OutVals[VA.getValNo()]; 1158 MVT ArgVT = OutVTs[VA.getValNo()]; 1159 1160 if (i == 0) { 1161 firstMVT = ArgVT; 1162 if (ArgVT == MVT::f32) { 1163 VA.convertToReg(Mips::F12); 1164 } else if (ArgVT == MVT::f64) { 1165 if (Subtarget->isFP64bit()) 1166 VA.convertToReg(Mips::D6_64); 1167 else 1168 VA.convertToReg(Mips::D6); 1169 } 1170 } else if (i == 1) { 1171 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) { 1172 if (ArgVT == MVT::f32) { 1173 VA.convertToReg(Mips::F14); 1174 } else if (ArgVT == MVT::f64) { 1175 if (Subtarget->isFP64bit()) 1176 VA.convertToReg(Mips::D7_64); 1177 else 1178 VA.convertToReg(Mips::D7); 1179 } 1180 } 1181 } 1182 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) || 1183 (ArgVT == MVT::i8)) && 1184 VA.isMemLoc()) { 1185 switch (VA.getLocMemOffset()) { 1186 case 0: 1187 VA.convertToReg(Mips::A0); 1188 break; 1189 case 4: 1190 VA.convertToReg(Mips::A1); 1191 break; 1192 case 8: 1193 VA.convertToReg(Mips::A2); 1194 break; 1195 case 12: 1196 VA.convertToReg(Mips::A3); 1197 break; 1198 default: 1199 break; 1200 } 1201 } 1202 unsigned ArgReg = getRegForValue(ArgVal); 1203 if (!ArgReg) 1204 return false; 1205 1206 // Handle arg promotion: SExt, ZExt, AExt. 1207 switch (VA.getLocInfo()) { 1208 case CCValAssign::Full: 1209 break; 1210 case CCValAssign::AExt: 1211 case CCValAssign::SExt: { 1212 MVT DestVT = VA.getLocVT(); 1213 MVT SrcVT = ArgVT; 1214 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false); 1215 if (!ArgReg) 1216 return false; 1217 break; 1218 } 1219 case CCValAssign::ZExt: { 1220 MVT DestVT = VA.getLocVT(); 1221 MVT SrcVT = ArgVT; 1222 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true); 1223 if (!ArgReg) 1224 return false; 1225 break; 1226 } 1227 default: 1228 llvm_unreachable("Unknown arg promotion!"); 1229 } 1230 1231 // Now copy/store arg to correct locations. 1232 if (VA.isRegLoc() && !VA.needsCustom()) { 1233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1234 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 1235 CLI.OutRegs.push_back(VA.getLocReg()); 1236 } else if (VA.needsCustom()) { 1237 llvm_unreachable("Mips does not use custom args."); 1238 return false; 1239 } else { 1240 // 1241 // FIXME: This path will currently return false. It was copied 1242 // from the AArch64 port and should be essentially fine for Mips too. 1243 // The work to finish up this path will be done in a follow-on patch. 1244 // 1245 assert(VA.isMemLoc() && "Assuming store on stack."); 1246 // Don't emit stores for undef values. 1247 if (isa<UndefValue>(ArgVal)) 1248 continue; 1249 1250 // Need to store on the stack. 1251 // FIXME: This alignment is incorrect but this path is disabled 1252 // for now (will return false). We need to determine the right alignment 1253 // based on the normal alignment for the underlying machine type. 1254 // 1255 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4); 1256 1257 unsigned BEAlign = 0; 1258 if (ArgSize < 8 && !Subtarget->isLittle()) 1259 BEAlign = 8 - ArgSize; 1260 1261 Address Addr; 1262 Addr.setKind(Address::RegBase); 1263 Addr.setReg(Mips::SP); 1264 Addr.setOffset(VA.getLocMemOffset() + BEAlign); 1265 1266 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); 1267 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1268 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()), 1269 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 1270 (void)(MMO); 1271 // if (!emitStore(ArgVT, ArgReg, Addr, MMO)) 1272 return false; // can't store on the stack yet. 1273 } 1274 } 1275 1276 return true; 1277 } 1278 1279 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT, 1280 unsigned NumBytes) { 1281 CallingConv::ID CC = CLI.CallConv; 1282 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0); 1283 if (RetVT != MVT::isVoid) { 1284 SmallVector<CCValAssign, 16> RVLocs; 1285 MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1286 1287 CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy, 1288 CLI.Symbol ? CLI.Symbol->getName().data() 1289 : nullptr); 1290 1291 // Only handle a single return value. 1292 if (RVLocs.size() != 1) 1293 return false; 1294 // Copy all of the result registers out of their specified physreg. 1295 MVT CopyVT = RVLocs[0].getValVT(); 1296 // Special handling for extended integers. 1297 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 1298 CopyVT = MVT::i32; 1299 1300 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT)); 1301 if (!ResultReg) 1302 return false; 1303 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1304 TII.get(TargetOpcode::COPY), 1305 ResultReg).addReg(RVLocs[0].getLocReg()); 1306 CLI.InRegs.push_back(RVLocs[0].getLocReg()); 1307 1308 CLI.ResultReg = ResultReg; 1309 CLI.NumResultRegs = 1; 1310 } 1311 return true; 1312 } 1313 1314 bool MipsFastISel::fastLowerArguments() { 1315 LLVM_DEBUG(dbgs() << "fastLowerArguments\n"); 1316 1317 if (!FuncInfo.CanLowerReturn) { 1318 LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n"); 1319 return false; 1320 } 1321 1322 const Function *F = FuncInfo.Fn; 1323 if (F->isVarArg()) { 1324 LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n"); 1325 return false; 1326 } 1327 1328 CallingConv::ID CC = F->getCallingConv(); 1329 if (CC != CallingConv::C) { 1330 LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n"); 1331 return false; 1332 } 1333 1334 std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2, 1335 Mips::A3}}; 1336 std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}}; 1337 std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}}; 1338 auto NextGPR32 = GPR32ArgRegs.begin(); 1339 auto NextFGR32 = FGR32ArgRegs.begin(); 1340 auto NextAFGR64 = AFGR64ArgRegs.begin(); 1341 1342 struct AllocatedReg { 1343 const TargetRegisterClass *RC; 1344 unsigned Reg; 1345 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg) 1346 : RC(RC), Reg(Reg) {} 1347 }; 1348 1349 // Only handle simple cases. i.e. All arguments are directly mapped to 1350 // registers of the appropriate type. 1351 SmallVector<AllocatedReg, 4> Allocation; 1352 for (const auto &FormalArg : F->args()) { 1353 if (FormalArg.hasAttribute(Attribute::InReg) || 1354 FormalArg.hasAttribute(Attribute::StructRet) || 1355 FormalArg.hasAttribute(Attribute::ByVal)) { 1356 LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n"); 1357 return false; 1358 } 1359 1360 Type *ArgTy = FormalArg.getType(); 1361 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) { 1362 LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n"); 1363 return false; 1364 } 1365 1366 EVT ArgVT = TLI.getValueType(DL, ArgTy); 1367 LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": " 1368 << ArgVT.getEVTString() << "\n"); 1369 if (!ArgVT.isSimple()) { 1370 LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n"); 1371 return false; 1372 } 1373 1374 switch (ArgVT.getSimpleVT().SimpleTy) { 1375 case MVT::i1: 1376 case MVT::i8: 1377 case MVT::i16: 1378 if (!FormalArg.hasAttribute(Attribute::SExt) && 1379 !FormalArg.hasAttribute(Attribute::ZExt)) { 1380 // It must be any extend, this shouldn't happen for clang-generated IR 1381 // so just fall back on SelectionDAG. 1382 LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n"); 1383 return false; 1384 } 1385 1386 if (NextGPR32 == GPR32ArgRegs.end()) { 1387 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n"); 1388 return false; 1389 } 1390 1391 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n"); 1392 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++); 1393 1394 // Allocating any GPR32 prohibits further use of floating point arguments. 1395 NextFGR32 = FGR32ArgRegs.end(); 1396 NextAFGR64 = AFGR64ArgRegs.end(); 1397 break; 1398 1399 case MVT::i32: 1400 if (FormalArg.hasAttribute(Attribute::ZExt)) { 1401 // The O32 ABI does not permit a zero-extended i32. 1402 LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n"); 1403 return false; 1404 } 1405 1406 if (NextGPR32 == GPR32ArgRegs.end()) { 1407 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n"); 1408 return false; 1409 } 1410 1411 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n"); 1412 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++); 1413 1414 // Allocating any GPR32 prohibits further use of floating point arguments. 1415 NextFGR32 = FGR32ArgRegs.end(); 1416 NextAFGR64 = AFGR64ArgRegs.end(); 1417 break; 1418 1419 case MVT::f32: 1420 if (UnsupportedFPMode) { 1421 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n"); 1422 return false; 1423 } 1424 if (NextFGR32 == FGR32ArgRegs.end()) { 1425 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n"); 1426 return false; 1427 } 1428 LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n"); 1429 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++); 1430 // Allocating an FGR32 also allocates the super-register AFGR64, and 1431 // ABI rules require us to skip the corresponding GPR32. 1432 if (NextGPR32 != GPR32ArgRegs.end()) 1433 NextGPR32++; 1434 if (NextAFGR64 != AFGR64ArgRegs.end()) 1435 NextAFGR64++; 1436 break; 1437 1438 case MVT::f64: 1439 if (UnsupportedFPMode) { 1440 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n"); 1441 return false; 1442 } 1443 if (NextAFGR64 == AFGR64ArgRegs.end()) { 1444 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n"); 1445 return false; 1446 } 1447 LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n"); 1448 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++); 1449 // Allocating an FGR32 also allocates the super-register AFGR64, and 1450 // ABI rules require us to skip the corresponding GPR32 pair. 1451 if (NextGPR32 != GPR32ArgRegs.end()) 1452 NextGPR32++; 1453 if (NextGPR32 != GPR32ArgRegs.end()) 1454 NextGPR32++; 1455 if (NextFGR32 != FGR32ArgRegs.end()) 1456 NextFGR32++; 1457 break; 1458 1459 default: 1460 LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n"); 1461 return false; 1462 } 1463 } 1464 1465 for (const auto &FormalArg : F->args()) { 1466 unsigned ArgNo = FormalArg.getArgNo(); 1467 unsigned SrcReg = Allocation[ArgNo].Reg; 1468 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC); 1469 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 1470 // Without this, EmitLiveInCopies may eliminate the livein if its only 1471 // use is a bitcast (which isn't turned into an instruction). 1472 unsigned ResultReg = createResultReg(Allocation[ArgNo].RC); 1473 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1474 TII.get(TargetOpcode::COPY), ResultReg) 1475 .addReg(DstReg, getKillRegState(true)); 1476 updateValueMap(&FormalArg, ResultReg); 1477 } 1478 1479 // Calculate the size of the incoming arguments area. 1480 // We currently reject all the cases where this would be non-zero. 1481 unsigned IncomingArgSizeInBytes = 0; 1482 1483 // Account for the reserved argument area on ABI's that have one (O32). 1484 // It seems strange to do this on the caller side but it's necessary in 1485 // SelectionDAG's implementation. 1486 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC), 1487 IncomingArgSizeInBytes); 1488 1489 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes, 1490 false); 1491 1492 return true; 1493 } 1494 1495 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1496 CallingConv::ID CC = CLI.CallConv; 1497 bool IsTailCall = CLI.IsTailCall; 1498 bool IsVarArg = CLI.IsVarArg; 1499 const Value *Callee = CLI.Callee; 1500 MCSymbol *Symbol = CLI.Symbol; 1501 1502 // Do not handle FastCC. 1503 if (CC == CallingConv::Fast) 1504 return false; 1505 1506 // Allow SelectionDAG isel to handle tail calls. 1507 if (IsTailCall) 1508 return false; 1509 1510 // Let SDISel handle vararg functions. 1511 if (IsVarArg) 1512 return false; 1513 1514 // FIXME: Only handle *simple* calls for now. 1515 MVT RetVT; 1516 if (CLI.RetTy->isVoidTy()) 1517 RetVT = MVT::isVoid; 1518 else if (!isTypeSupported(CLI.RetTy, RetVT)) 1519 return false; 1520 1521 for (auto Flag : CLI.OutFlags) 1522 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal()) 1523 return false; 1524 1525 // Set up the argument vectors. 1526 SmallVector<MVT, 16> OutVTs; 1527 OutVTs.reserve(CLI.OutVals.size()); 1528 1529 for (auto *Val : CLI.OutVals) { 1530 MVT VT; 1531 if (!isTypeLegal(Val->getType(), VT) && 1532 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) 1533 return false; 1534 1535 // We don't handle vector parameters yet. 1536 if (VT.isVector() || VT.getSizeInBits() > 64) 1537 return false; 1538 1539 OutVTs.push_back(VT); 1540 } 1541 1542 Address Addr; 1543 if (!computeCallAddress(Callee, Addr)) 1544 return false; 1545 1546 // Handle the arguments now that we've gotten them. 1547 unsigned NumBytes; 1548 if (!processCallArgs(CLI, OutVTs, NumBytes)) 1549 return false; 1550 1551 if (!Addr.getGlobalValue()) 1552 return false; 1553 1554 // Issue the call. 1555 unsigned DestAddress; 1556 if (Symbol) 1557 DestAddress = materializeExternalCallSym(Symbol); 1558 else 1559 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32); 1560 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress); 1561 MachineInstrBuilder MIB = 1562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR), 1563 Mips::RA).addReg(Mips::T9); 1564 1565 // Add implicit physical register uses to the call. 1566 for (auto Reg : CLI.OutRegs) 1567 MIB.addReg(Reg, RegState::Implicit); 1568 1569 // Add a register mask with the call-preserved registers. 1570 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 1571 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1572 1573 CLI.Call = MIB; 1574 1575 if (EmitJalrReloc && !Subtarget->inMips16Mode()) { 1576 // Attach callee address to the instruction, let asm printer emit 1577 // .reloc R_MIPS_JALR. 1578 if (Symbol) 1579 MIB.addSym(Symbol, MipsII::MO_JALR); 1580 else 1581 MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol( 1582 Addr.getGlobalValue()->getName()), MipsII::MO_JALR); 1583 } 1584 1585 // Finish off the call including any return values. 1586 return finishCall(CLI, RetVT, NumBytes); 1587 } 1588 1589 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 1590 switch (II->getIntrinsicID()) { 1591 default: 1592 return false; 1593 case Intrinsic::bswap: { 1594 Type *RetTy = II->getCalledFunction()->getReturnType(); 1595 1596 MVT VT; 1597 if (!isTypeSupported(RetTy, VT)) 1598 return false; 1599 1600 unsigned SrcReg = getRegForValue(II->getOperand(0)); 1601 if (SrcReg == 0) 1602 return false; 1603 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1604 if (DestReg == 0) 1605 return false; 1606 if (VT == MVT::i16) { 1607 if (Subtarget->hasMips32r2()) { 1608 emitInst(Mips::WSBH, DestReg).addReg(SrcReg); 1609 updateValueMap(II, DestReg); 1610 return true; 1611 } else { 1612 unsigned TempReg[3]; 1613 for (int i = 0; i < 3; i++) { 1614 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1615 if (TempReg[i] == 0) 1616 return false; 1617 } 1618 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8); 1619 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8); 1620 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]); 1621 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF); 1622 updateValueMap(II, DestReg); 1623 return true; 1624 } 1625 } else if (VT == MVT::i32) { 1626 if (Subtarget->hasMips32r2()) { 1627 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1628 emitInst(Mips::WSBH, TempReg).addReg(SrcReg); 1629 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16); 1630 updateValueMap(II, DestReg); 1631 return true; 1632 } else { 1633 unsigned TempReg[8]; 1634 for (int i = 0; i < 8; i++) { 1635 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1636 if (TempReg[i] == 0) 1637 return false; 1638 } 1639 1640 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8); 1641 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24); 1642 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00); 1643 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]); 1644 1645 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00); 1646 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8); 1647 1648 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24); 1649 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]); 1650 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]); 1651 updateValueMap(II, DestReg); 1652 return true; 1653 } 1654 } 1655 return false; 1656 } 1657 case Intrinsic::memcpy: 1658 case Intrinsic::memmove: { 1659 const auto *MTI = cast<MemTransferInst>(II); 1660 // Don't handle volatile. 1661 if (MTI->isVolatile()) 1662 return false; 1663 if (!MTI->getLength()->getType()->isIntegerTy(32)) 1664 return false; 1665 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove"; 1666 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1); 1667 } 1668 case Intrinsic::memset: { 1669 const MemSetInst *MSI = cast<MemSetInst>(II); 1670 // Don't handle volatile. 1671 if (MSI->isVolatile()) 1672 return false; 1673 if (!MSI->getLength()->getType()->isIntegerTy(32)) 1674 return false; 1675 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); 1676 } 1677 } 1678 return false; 1679 } 1680 1681 bool MipsFastISel::selectRet(const Instruction *I) { 1682 const Function &F = *I->getParent()->getParent(); 1683 const ReturnInst *Ret = cast<ReturnInst>(I); 1684 1685 LLVM_DEBUG(dbgs() << "selectRet\n"); 1686 1687 if (!FuncInfo.CanLowerReturn) 1688 return false; 1689 1690 // Build a list of return value registers. 1691 SmallVector<unsigned, 4> RetRegs; 1692 1693 if (Ret->getNumOperands() > 0) { 1694 CallingConv::ID CC = F.getCallingConv(); 1695 1696 // Do not handle FastCC. 1697 if (CC == CallingConv::Fast) 1698 return false; 1699 1700 SmallVector<ISD::OutputArg, 4> Outs; 1701 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1702 1703 // Analyze operands of the call, assigning locations to each operand. 1704 SmallVector<CCValAssign, 16> ValLocs; 1705 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, 1706 I->getContext()); 1707 CCAssignFn *RetCC = RetCC_Mips; 1708 CCInfo.AnalyzeReturn(Outs, RetCC); 1709 1710 // Only handle a single return value for now. 1711 if (ValLocs.size() != 1) 1712 return false; 1713 1714 CCValAssign &VA = ValLocs[0]; 1715 const Value *RV = Ret->getOperand(0); 1716 1717 // Don't bother handling odd stuff for now. 1718 if ((VA.getLocInfo() != CCValAssign::Full) && 1719 (VA.getLocInfo() != CCValAssign::BCvt)) 1720 return false; 1721 1722 // Only handle register returns for now. 1723 if (!VA.isRegLoc()) 1724 return false; 1725 1726 unsigned Reg = getRegForValue(RV); 1727 if (Reg == 0) 1728 return false; 1729 1730 unsigned SrcReg = Reg + VA.getValNo(); 1731 Register DestReg = VA.getLocReg(); 1732 // Avoid a cross-class copy. This is very unlikely. 1733 if (!MRI.getRegClass(SrcReg)->contains(DestReg)) 1734 return false; 1735 1736 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1737 if (!RVEVT.isSimple()) 1738 return false; 1739 1740 if (RVEVT.isVector()) 1741 return false; 1742 1743 MVT RVVT = RVEVT.getSimpleVT(); 1744 if (RVVT == MVT::f128) 1745 return false; 1746 1747 // Do not handle FGR64 returns for now. 1748 if (RVVT == MVT::f64 && UnsupportedFPMode) { 1749 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n"); 1750 return false; 1751 } 1752 1753 MVT DestVT = VA.getValVT(); 1754 // Special handling for extended integers. 1755 if (RVVT != DestVT) { 1756 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 1757 return false; 1758 1759 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 1760 bool IsZExt = Outs[0].Flags.isZExt(); 1761 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt); 1762 if (SrcReg == 0) 1763 return false; 1764 } 1765 } 1766 1767 // Make the copy. 1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1769 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); 1770 1771 // Add register to return instruction. 1772 RetRegs.push_back(VA.getLocReg()); 1773 } 1774 MachineInstrBuilder MIB = emitInst(Mips::RetRA); 1775 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1776 MIB.addReg(RetRegs[i], RegState::Implicit); 1777 return true; 1778 } 1779 1780 bool MipsFastISel::selectTrunc(const Instruction *I) { 1781 // The high bits for a type smaller than the register size are assumed to be 1782 // undefined. 1783 Value *Op = I->getOperand(0); 1784 1785 EVT SrcVT, DestVT; 1786 SrcVT = TLI.getValueType(DL, Op->getType(), true); 1787 DestVT = TLI.getValueType(DL, I->getType(), true); 1788 1789 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1790 return false; 1791 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1792 return false; 1793 1794 unsigned SrcReg = getRegForValue(Op); 1795 if (!SrcReg) 1796 return false; 1797 1798 // Because the high bits are undefined, a truncate doesn't generate 1799 // any code. 1800 updateValueMap(I, SrcReg); 1801 return true; 1802 } 1803 1804 bool MipsFastISel::selectIntExt(const Instruction *I) { 1805 Type *DestTy = I->getType(); 1806 Value *Src = I->getOperand(0); 1807 Type *SrcTy = Src->getType(); 1808 1809 bool isZExt = isa<ZExtInst>(I); 1810 unsigned SrcReg = getRegForValue(Src); 1811 if (!SrcReg) 1812 return false; 1813 1814 EVT SrcEVT, DestEVT; 1815 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1816 DestEVT = TLI.getValueType(DL, DestTy, true); 1817 if (!SrcEVT.isSimple()) 1818 return false; 1819 if (!DestEVT.isSimple()) 1820 return false; 1821 1822 MVT SrcVT = SrcEVT.getSimpleVT(); 1823 MVT DestVT = DestEVT.getSimpleVT(); 1824 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1825 1826 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt)) 1827 return false; 1828 updateValueMap(I, ResultReg); 1829 return true; 1830 } 1831 1832 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1833 unsigned DestReg) { 1834 unsigned ShiftAmt; 1835 switch (SrcVT.SimpleTy) { 1836 default: 1837 return false; 1838 case MVT::i8: 1839 ShiftAmt = 24; 1840 break; 1841 case MVT::i16: 1842 ShiftAmt = 16; 1843 break; 1844 } 1845 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1846 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt); 1847 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt); 1848 return true; 1849 } 1850 1851 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1852 unsigned DestReg) { 1853 switch (SrcVT.SimpleTy) { 1854 default: 1855 return false; 1856 case MVT::i8: 1857 emitInst(Mips::SEB, DestReg).addReg(SrcReg); 1858 break; 1859 case MVT::i16: 1860 emitInst(Mips::SEH, DestReg).addReg(SrcReg); 1861 break; 1862 } 1863 return true; 1864 } 1865 1866 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1867 unsigned DestReg) { 1868 if ((DestVT != MVT::i32) && (DestVT != MVT::i16)) 1869 return false; 1870 if (Subtarget->hasMips32r2()) 1871 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg); 1872 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg); 1873 } 1874 1875 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1876 unsigned DestReg) { 1877 int64_t Imm; 1878 1879 switch (SrcVT.SimpleTy) { 1880 default: 1881 return false; 1882 case MVT::i1: 1883 Imm = 1; 1884 break; 1885 case MVT::i8: 1886 Imm = 0xff; 1887 break; 1888 case MVT::i16: 1889 Imm = 0xffff; 1890 break; 1891 } 1892 1893 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm); 1894 return true; 1895 } 1896 1897 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1898 unsigned DestReg, bool IsZExt) { 1899 // FastISel does not have plumbing to deal with extensions where the SrcVT or 1900 // DestVT are odd things, so test to make sure that they are both types we can 1901 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise 1902 // bail out to SelectionDAG. 1903 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) || 1904 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16))) 1905 return false; 1906 if (IsZExt) 1907 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg); 1908 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg); 1909 } 1910 1911 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1912 bool isZExt) { 1913 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1914 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt); 1915 return Success ? DestReg : 0; 1916 } 1917 1918 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) { 1919 EVT DestEVT = TLI.getValueType(DL, I->getType(), true); 1920 if (!DestEVT.isSimple()) 1921 return false; 1922 1923 MVT DestVT = DestEVT.getSimpleVT(); 1924 if (DestVT != MVT::i32) 1925 return false; 1926 1927 unsigned DivOpc; 1928 switch (ISDOpcode) { 1929 default: 1930 return false; 1931 case ISD::SDIV: 1932 case ISD::SREM: 1933 DivOpc = Mips::SDIV; 1934 break; 1935 case ISD::UDIV: 1936 case ISD::UREM: 1937 DivOpc = Mips::UDIV; 1938 break; 1939 } 1940 1941 unsigned Src0Reg = getRegForValue(I->getOperand(0)); 1942 unsigned Src1Reg = getRegForValue(I->getOperand(1)); 1943 if (!Src0Reg || !Src1Reg) 1944 return false; 1945 1946 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg); 1947 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7); 1948 1949 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1950 if (!ResultReg) 1951 return false; 1952 1953 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM) 1954 ? Mips::MFHI 1955 : Mips::MFLO; 1956 emitInst(MFOpc, ResultReg); 1957 1958 updateValueMap(I, ResultReg); 1959 return true; 1960 } 1961 1962 bool MipsFastISel::selectShift(const Instruction *I) { 1963 MVT RetVT; 1964 1965 if (!isTypeSupported(I->getType(), RetVT)) 1966 return false; 1967 1968 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1969 if (!ResultReg) 1970 return false; 1971 1972 unsigned Opcode = I->getOpcode(); 1973 const Value *Op0 = I->getOperand(0); 1974 unsigned Op0Reg = getRegForValue(Op0); 1975 if (!Op0Reg) 1976 return false; 1977 1978 // If AShr or LShr, then we need to make sure the operand0 is sign extended. 1979 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) { 1980 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1981 if (!TempReg) 1982 return false; 1983 1984 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT(); 1985 bool IsZExt = Opcode == Instruction::LShr; 1986 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt)) 1987 return false; 1988 1989 Op0Reg = TempReg; 1990 } 1991 1992 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) { 1993 uint64_t ShiftVal = C->getZExtValue(); 1994 1995 switch (Opcode) { 1996 default: 1997 llvm_unreachable("Unexpected instruction."); 1998 case Instruction::Shl: 1999 Opcode = Mips::SLL; 2000 break; 2001 case Instruction::AShr: 2002 Opcode = Mips::SRA; 2003 break; 2004 case Instruction::LShr: 2005 Opcode = Mips::SRL; 2006 break; 2007 } 2008 2009 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal); 2010 updateValueMap(I, ResultReg); 2011 return true; 2012 } 2013 2014 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 2015 if (!Op1Reg) 2016 return false; 2017 2018 switch (Opcode) { 2019 default: 2020 llvm_unreachable("Unexpected instruction."); 2021 case Instruction::Shl: 2022 Opcode = Mips::SLLV; 2023 break; 2024 case Instruction::AShr: 2025 Opcode = Mips::SRAV; 2026 break; 2027 case Instruction::LShr: 2028 Opcode = Mips::SRLV; 2029 break; 2030 } 2031 2032 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg); 2033 updateValueMap(I, ResultReg); 2034 return true; 2035 } 2036 2037 bool MipsFastISel::fastSelectInstruction(const Instruction *I) { 2038 switch (I->getOpcode()) { 2039 default: 2040 break; 2041 case Instruction::Load: 2042 return selectLoad(I); 2043 case Instruction::Store: 2044 return selectStore(I); 2045 case Instruction::SDiv: 2046 if (!selectBinaryOp(I, ISD::SDIV)) 2047 return selectDivRem(I, ISD::SDIV); 2048 return true; 2049 case Instruction::UDiv: 2050 if (!selectBinaryOp(I, ISD::UDIV)) 2051 return selectDivRem(I, ISD::UDIV); 2052 return true; 2053 case Instruction::SRem: 2054 if (!selectBinaryOp(I, ISD::SREM)) 2055 return selectDivRem(I, ISD::SREM); 2056 return true; 2057 case Instruction::URem: 2058 if (!selectBinaryOp(I, ISD::UREM)) 2059 return selectDivRem(I, ISD::UREM); 2060 return true; 2061 case Instruction::Shl: 2062 case Instruction::LShr: 2063 case Instruction::AShr: 2064 return selectShift(I); 2065 case Instruction::And: 2066 case Instruction::Or: 2067 case Instruction::Xor: 2068 return selectLogicalOp(I); 2069 case Instruction::Br: 2070 return selectBranch(I); 2071 case Instruction::Ret: 2072 return selectRet(I); 2073 case Instruction::Trunc: 2074 return selectTrunc(I); 2075 case Instruction::ZExt: 2076 case Instruction::SExt: 2077 return selectIntExt(I); 2078 case Instruction::FPTrunc: 2079 return selectFPTrunc(I); 2080 case Instruction::FPExt: 2081 return selectFPExt(I); 2082 case Instruction::FPToSI: 2083 return selectFPToInt(I, /*isSigned*/ true); 2084 case Instruction::FPToUI: 2085 return selectFPToInt(I, /*isSigned*/ false); 2086 case Instruction::ICmp: 2087 case Instruction::FCmp: 2088 return selectCmp(I); 2089 case Instruction::Select: 2090 return selectSelect(I); 2091 } 2092 return false; 2093 } 2094 2095 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V, 2096 bool IsUnsigned) { 2097 unsigned VReg = getRegForValue(V); 2098 if (VReg == 0) 2099 return 0; 2100 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT(); 2101 2102 if (VMVT == MVT::i1) 2103 return 0; 2104 2105 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) { 2106 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 2107 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned)) 2108 return 0; 2109 VReg = TempReg; 2110 } 2111 return VReg; 2112 } 2113 2114 void MipsFastISel::simplifyAddress(Address &Addr) { 2115 if (!isInt<16>(Addr.getOffset())) { 2116 unsigned TempReg = 2117 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass); 2118 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 2119 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg()); 2120 Addr.setReg(DestReg); 2121 Addr.setOffset(0); 2122 } 2123 } 2124 2125 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2126 const TargetRegisterClass *RC, 2127 unsigned Op0, bool Op0IsKill, 2128 unsigned Op1, bool Op1IsKill) { 2129 // We treat the MUL instruction in a special way because it clobbers 2130 // the HI0 & LO0 registers. The TableGen definition of this instruction can 2131 // mark these registers only as implicitly defined. As a result, the 2132 // register allocator runs out of registers when this instruction is 2133 // followed by another instruction that defines the same registers too. 2134 // We can fix this by explicitly marking those registers as dead. 2135 if (MachineInstOpcode == Mips::MUL) { 2136 unsigned ResultReg = createResultReg(RC); 2137 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2138 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2139 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2141 .addReg(Op0, getKillRegState(Op0IsKill)) 2142 .addReg(Op1, getKillRegState(Op1IsKill)) 2143 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead) 2144 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead); 2145 return ResultReg; 2146 } 2147 2148 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1, 2149 Op1IsKill); 2150 } 2151 2152 namespace llvm { 2153 2154 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo, 2155 const TargetLibraryInfo *libInfo) { 2156 return new MipsFastISel(funcInfo, libInfo); 2157 } 2158 2159 } // end namespace llvm 2160