1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass is used to make Pc relative loads of constants. 10 // For now, only Mips16 will use this. 11 // 12 // Loading constants inline is expensive on Mips16 and it's in general better 13 // to place the constant nearby in code space and then it can be loaded with a 14 // simple 16 bit load instruction. 15 // 16 // The constants can be not just numbers but addresses of functions and labels. 17 // This can be particularly helpful in static relocation mode for embedded 18 // non-linux targets. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "Mips.h" 23 #include "Mips16InstrInfo.h" 24 #include "MipsMachineFunction.h" 25 #include "MipsSubtarget.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineConstantPool.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <iterator> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "mips-constant-islands" 61 62 STATISTIC(NumCPEs, "Number of constpool entries"); 63 STATISTIC(NumSplit, "Number of uncond branches inserted"); 64 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 66 67 // FIXME: This option should be removed once it has received sufficient testing. 68 static cl::opt<bool> 69 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true), 70 cl::desc("Align constant islands in code")); 71 72 // Rather than do make check tests with huge amounts of code, we force 73 // the test to use this amount. 74 static cl::opt<int> ConstantIslandsSmallOffset( 75 "mips-constant-islands-small-offset", 76 cl::init(0), 77 cl::desc("Make small offsets be this amount for testing purposes"), 78 cl::Hidden); 79 80 // For testing purposes we tell it to not use relaxed load forms so that it 81 // will split blocks. 82 static cl::opt<bool> NoLoadRelaxation( 83 "mips-constant-islands-no-load-relaxation", 84 cl::init(false), 85 cl::desc("Don't relax loads to long loads - for testing purposes"), 86 cl::Hidden); 87 88 static unsigned int branchTargetOperand(MachineInstr *MI) { 89 switch (MI->getOpcode()) { 90 case Mips::Bimm16: 91 case Mips::BimmX16: 92 case Mips::Bteqz16: 93 case Mips::BteqzX16: 94 case Mips::Btnez16: 95 case Mips::BtnezX16: 96 case Mips::JalB16: 97 return 0; 98 case Mips::BeqzRxImm16: 99 case Mips::BeqzRxImmX16: 100 case Mips::BnezRxImm16: 101 case Mips::BnezRxImmX16: 102 return 1; 103 } 104 llvm_unreachable("Unknown branch type"); 105 } 106 107 static unsigned int longformBranchOpcode(unsigned int Opcode) { 108 switch (Opcode) { 109 case Mips::Bimm16: 110 case Mips::BimmX16: 111 return Mips::BimmX16; 112 case Mips::Bteqz16: 113 case Mips::BteqzX16: 114 return Mips::BteqzX16; 115 case Mips::Btnez16: 116 case Mips::BtnezX16: 117 return Mips::BtnezX16; 118 case Mips::JalB16: 119 return Mips::JalB16; 120 case Mips::BeqzRxImm16: 121 case Mips::BeqzRxImmX16: 122 return Mips::BeqzRxImmX16; 123 case Mips::BnezRxImm16: 124 case Mips::BnezRxImmX16: 125 return Mips::BnezRxImmX16; 126 } 127 llvm_unreachable("Unknown branch type"); 128 } 129 130 // FIXME: need to go through this whole constant islands port and check 131 // the math for branch ranges and clean this up and make some functions 132 // to calculate things that are done many times identically. 133 // Need to refactor some of the code to call this routine. 134 static unsigned int branchMaxOffsets(unsigned int Opcode) { 135 unsigned Bits, Scale; 136 switch (Opcode) { 137 case Mips::Bimm16: 138 Bits = 11; 139 Scale = 2; 140 break; 141 case Mips::BimmX16: 142 Bits = 16; 143 Scale = 2; 144 break; 145 case Mips::BeqzRxImm16: 146 Bits = 8; 147 Scale = 2; 148 break; 149 case Mips::BeqzRxImmX16: 150 Bits = 16; 151 Scale = 2; 152 break; 153 case Mips::BnezRxImm16: 154 Bits = 8; 155 Scale = 2; 156 break; 157 case Mips::BnezRxImmX16: 158 Bits = 16; 159 Scale = 2; 160 break; 161 case Mips::Bteqz16: 162 Bits = 8; 163 Scale = 2; 164 break; 165 case Mips::BteqzX16: 166 Bits = 16; 167 Scale = 2; 168 break; 169 case Mips::Btnez16: 170 Bits = 8; 171 Scale = 2; 172 break; 173 case Mips::BtnezX16: 174 Bits = 16; 175 Scale = 2; 176 break; 177 default: 178 llvm_unreachable("Unknown branch type"); 179 } 180 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 181 return MaxOffs; 182 } 183 184 namespace { 185 186 using Iter = MachineBasicBlock::iterator; 187 using ReverseIter = MachineBasicBlock::reverse_iterator; 188 189 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips 190 /// requires constant pool entries to be scattered among the instructions 191 /// inside a function. To do this, it completely ignores the normal LLVM 192 /// constant pool; instead, it places constants wherever it feels like with 193 /// special instructions. 194 /// 195 /// The terminology used in this pass includes: 196 /// Islands - Clumps of constants placed in the function. 197 /// Water - Potential places where an island could be formed. 198 /// CPE - A constant pool entry that has been placed somewhere, which 199 /// tracks a list of users. 200 201 class MipsConstantIslands : public MachineFunctionPass { 202 /// BasicBlockInfo - Information about the offset and size of a single 203 /// basic block. 204 struct BasicBlockInfo { 205 /// Offset - Distance from the beginning of the function to the beginning 206 /// of this basic block. 207 /// 208 /// Offsets are computed assuming worst case padding before an aligned 209 /// block. This means that subtracting basic block offsets always gives a 210 /// conservative estimate of the real distance which may be smaller. 211 /// 212 /// Because worst case padding is used, the computed offset of an aligned 213 /// block may not actually be aligned. 214 unsigned Offset = 0; 215 216 /// Size - Size of the basic block in bytes. If the block contains 217 /// inline assembly, this is a worst case estimate. 218 /// 219 /// The size does not include any alignment padding whether from the 220 /// beginning of the block, or from an aligned jump table at the end. 221 unsigned Size = 0; 222 223 BasicBlockInfo() = default; 224 225 unsigned postOffset() const { return Offset + Size; } 226 }; 227 228 std::vector<BasicBlockInfo> BBInfo; 229 230 /// WaterList - A sorted list of basic blocks where islands could be placed 231 /// (i.e. blocks that don't fall through to the following block, due 232 /// to a return, unreachable, or unconditional branch). 233 std::vector<MachineBasicBlock*> WaterList; 234 235 /// NewWaterList - The subset of WaterList that was created since the 236 /// previous iteration by inserting unconditional branches. 237 SmallSet<MachineBasicBlock*, 4> NewWaterList; 238 239 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 240 241 /// CPUser - One user of a constant pool, keeping the machine instruction 242 /// pointer, the constant pool being referenced, and the max displacement 243 /// allowed from the instruction to the CP. The HighWaterMark records the 244 /// highest basic block where a new CPEntry can be placed. To ensure this 245 /// pass terminates, the CP entries are initially placed at the end of the 246 /// function and then move monotonically to lower addresses. The 247 /// exception to this rule is when the current CP entry for a particular 248 /// CPUser is out of range, but there is another CP entry for the same 249 /// constant value in range. We want to use the existing in-range CP 250 /// entry, but if it later moves out of range, the search for new water 251 /// should resume where it left off. The HighWaterMark is used to record 252 /// that point. 253 struct CPUser { 254 MachineInstr *MI; 255 MachineInstr *CPEMI; 256 MachineBasicBlock *HighWaterMark; 257 258 private: 259 unsigned MaxDisp; 260 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions 261 // with different displacements 262 unsigned LongFormOpcode; 263 264 public: 265 bool NegOk; 266 267 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 268 bool neg, 269 unsigned longformmaxdisp, unsigned longformopcode) 270 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), 271 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode), 272 NegOk(neg){ 273 HighWaterMark = CPEMI->getParent(); 274 } 275 276 /// getMaxDisp - Returns the maximum displacement supported by MI. 277 unsigned getMaxDisp() const { 278 unsigned xMaxDisp = ConstantIslandsSmallOffset? 279 ConstantIslandsSmallOffset: MaxDisp; 280 return xMaxDisp; 281 } 282 283 void setMaxDisp(unsigned val) { 284 MaxDisp = val; 285 } 286 287 unsigned getLongFormMaxDisp() const { 288 return LongFormMaxDisp; 289 } 290 291 unsigned getLongFormOpcode() const { 292 return LongFormOpcode; 293 } 294 }; 295 296 /// CPUsers - Keep track of all of the machine instructions that use various 297 /// constant pools and their max displacement. 298 std::vector<CPUser> CPUsers; 299 300 /// CPEntry - One per constant pool entry, keeping the machine instruction 301 /// pointer, the constpool index, and the number of CPUser's which 302 /// reference this entry. 303 struct CPEntry { 304 MachineInstr *CPEMI; 305 unsigned CPI; 306 unsigned RefCount; 307 308 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 309 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 310 }; 311 312 /// CPEntries - Keep track of all of the constant pool entry machine 313 /// instructions. For each original constpool index (i.e. those that 314 /// existed upon entry to this pass), it keeps a vector of entries. 315 /// Original elements are cloned as we go along; the clones are 316 /// put in the vector of the original element, but have distinct CPIs. 317 std::vector<std::vector<CPEntry>> CPEntries; 318 319 /// ImmBranch - One per immediate branch, keeping the machine instruction 320 /// pointer, conditional or unconditional, the max displacement, 321 /// and (if isCond is true) the corresponding unconditional branch 322 /// opcode. 323 struct ImmBranch { 324 MachineInstr *MI; 325 unsigned MaxDisp : 31; 326 bool isCond : 1; 327 int UncondBr; 328 329 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 330 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 331 }; 332 333 /// ImmBranches - Keep track of all the immediate branch instructions. 334 /// 335 std::vector<ImmBranch> ImmBranches; 336 337 /// HasFarJump - True if any far jump instruction has been emitted during 338 /// the branch fix up pass. 339 bool HasFarJump; 340 341 const MipsSubtarget *STI = nullptr; 342 const Mips16InstrInfo *TII; 343 MipsFunctionInfo *MFI; 344 MachineFunction *MF = nullptr; 345 MachineConstantPool *MCP = nullptr; 346 347 unsigned PICLabelUId; 348 bool PrescannedForConstants = false; 349 350 void initPICLabelUId(unsigned UId) { 351 PICLabelUId = UId; 352 } 353 354 unsigned createPICLabelUId() { 355 return PICLabelUId++; 356 } 357 358 public: 359 static char ID; 360 361 MipsConstantIslands() : MachineFunctionPass(ID) {} 362 363 StringRef getPassName() const override { return "Mips Constant Islands"; } 364 365 bool runOnMachineFunction(MachineFunction &F) override; 366 367 MachineFunctionProperties getRequiredProperties() const override { 368 return MachineFunctionProperties().set( 369 MachineFunctionProperties::Property::NoVRegs); 370 } 371 372 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); 373 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 374 Align getCPEAlign(const MachineInstr &CPEMI); 375 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 376 unsigned getOffsetOf(MachineInstr *MI) const; 377 unsigned getUserOffset(CPUser&) const; 378 void dumpBBs(); 379 380 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 381 unsigned Disp, bool NegativeOK); 382 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 383 const CPUser &U); 384 385 void computeBlockSize(MachineBasicBlock *MBB); 386 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); 387 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 388 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 389 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 390 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 391 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset); 392 bool findAvailableWater(CPUser&U, unsigned UserOffset, 393 water_iterator &WaterIter); 394 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 395 MachineBasicBlock *&NewMBB); 396 bool handleConstantPoolUser(unsigned CPUserIndex); 397 void removeDeadCPEMI(MachineInstr *CPEMI); 398 bool removeUnusedCPEntries(); 399 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 400 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 401 bool DoDump = false); 402 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 403 CPUser &U, unsigned &Growth); 404 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 405 bool fixupImmediateBr(ImmBranch &Br); 406 bool fixupConditionalBr(ImmBranch &Br); 407 bool fixupUnconditionalBr(ImmBranch &Br); 408 409 void prescanForConstants(); 410 }; 411 412 } // end anonymous namespace 413 414 char MipsConstantIslands::ID = 0; 415 416 bool MipsConstantIslands::isOffsetInRange 417 (unsigned UserOffset, unsigned TrialOffset, 418 const CPUser &U) { 419 return isOffsetInRange(UserOffset, TrialOffset, 420 U.getMaxDisp(), U.NegOk); 421 } 422 423 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 424 /// print block size and offset information - debugging 425 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() { 426 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 427 const BasicBlockInfo &BBI = BBInfo[J]; 428 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 429 << format(" size=%#x\n", BBInfo[J].Size); 430 } 431 } 432 #endif 433 434 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) { 435 // The intention is for this to be a mips16 only pass for now 436 // FIXME: 437 MF = &mf; 438 MCP = mf.getConstantPool(); 439 STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget()); 440 LLVM_DEBUG(dbgs() << "constant island machine function " 441 << "\n"); 442 if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) { 443 return false; 444 } 445 TII = (const Mips16InstrInfo *)STI->getInstrInfo(); 446 MFI = MF->getInfo<MipsFunctionInfo>(); 447 LLVM_DEBUG(dbgs() << "constant island processing " 448 << "\n"); 449 // 450 // will need to make predermination if there is any constants we need to 451 // put in constant islands. TBD. 452 // 453 if (!PrescannedForConstants) prescanForConstants(); 454 455 HasFarJump = false; 456 // This pass invalidates liveness information when it splits basic blocks. 457 MF->getRegInfo().invalidateLiveness(); 458 459 // Renumber all of the machine basic blocks in the function, guaranteeing that 460 // the numbers agree with the position of the block in the function. 461 MF->RenumberBlocks(); 462 463 bool MadeChange = false; 464 465 // Perform the initial placement of the constant pool entries. To start with, 466 // we put them all at the end of the function. 467 std::vector<MachineInstr*> CPEMIs; 468 if (!MCP->isEmpty()) 469 doInitialPlacement(CPEMIs); 470 471 /// The next UID to take is the first unused one. 472 initPICLabelUId(CPEMIs.size()); 473 474 // Do the initial scan of the function, building up information about the 475 // sizes of each block, the location of all the water, and finding all of the 476 // constant pool users. 477 initializeFunctionInfo(CPEMIs); 478 CPEMIs.clear(); 479 LLVM_DEBUG(dumpBBs()); 480 481 /// Remove dead constant pool entries. 482 MadeChange |= removeUnusedCPEntries(); 483 484 // Iteratively place constant pool entries and fix up branches until there 485 // is no change. 486 unsigned NoCPIters = 0, NoBRIters = 0; 487 (void)NoBRIters; 488 while (true) { 489 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 490 bool CPChange = false; 491 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 492 CPChange |= handleConstantPoolUser(i); 493 if (CPChange && ++NoCPIters > 30) 494 report_fatal_error("Constant Island pass failed to converge!"); 495 LLVM_DEBUG(dumpBBs()); 496 497 // Clear NewWaterList now. If we split a block for branches, it should 498 // appear as "new water" for the next iteration of constant pool placement. 499 NewWaterList.clear(); 500 501 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 502 bool BRChange = false; 503 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 504 BRChange |= fixupImmediateBr(ImmBranches[i]); 505 if (BRChange && ++NoBRIters > 30) 506 report_fatal_error("Branch Fix Up pass failed to converge!"); 507 LLVM_DEBUG(dumpBBs()); 508 if (!CPChange && !BRChange) 509 break; 510 MadeChange = true; 511 } 512 513 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 514 515 BBInfo.clear(); 516 WaterList.clear(); 517 CPUsers.clear(); 518 CPEntries.clear(); 519 ImmBranches.clear(); 520 return MadeChange; 521 } 522 523 /// doInitialPlacement - Perform the initial placement of the constant pool 524 /// entries. To start with, we put them all at the end of the function. 525 void 526 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { 527 // Create the basic block to hold the CPE's. 528 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 529 MF->push_back(BB); 530 531 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 532 const Align MaxAlign = MCP->getConstantPoolAlign(); 533 534 // Mark the basic block as required by the const-pool. 535 // If AlignConstantIslands isn't set, use 4-byte alignment for everything. 536 BB->setAlignment(AlignConstantIslands ? MaxAlign : Align(4)); 537 538 // The function needs to be as aligned as the basic blocks. The linker may 539 // move functions around based on their alignment. 540 MF->ensureAlignment(BB->getAlignment()); 541 542 // Order the entries in BB by descending alignment. That ensures correct 543 // alignment of all entries as long as BB is sufficiently aligned. Keep 544 // track of the insertion point for each alignment. We are going to bucket 545 // sort the entries as they are created. 546 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1, 547 BB->end()); 548 549 // Add all of the constants from the constant pool to the end block, use an 550 // identity mapping of CPI's to CPE's. 551 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 552 553 const DataLayout &TD = MF->getDataLayout(); 554 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 555 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 556 assert(Size >= 4 && "Too small constant pool entry"); 557 Align Alignment = CPs[i].getAlign(); 558 // Verify that all constant pool entries are a multiple of their alignment. 559 // If not, we would have to pad them out so that instructions stay aligned. 560 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 561 562 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 563 unsigned LogAlign = Log2(Alignment); 564 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 565 566 MachineInstr *CPEMI = 567 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) 568 .addImm(i).addConstantPoolIndex(i).addImm(Size); 569 570 CPEMIs.push_back(CPEMI); 571 572 // Ensure that future entries with higher alignment get inserted before 573 // CPEMI. This is bucket sort with iterators. 574 for (unsigned a = LogAlign + 1; a <= Log2(MaxAlign); ++a) 575 if (InsPoint[a] == InsAt) 576 InsPoint[a] = CPEMI; 577 // Add a new CPEntry, but no corresponding CPUser yet. 578 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 579 ++NumCPEs; 580 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 581 << Size << ", align = " << Alignment.value() << '\n'); 582 } 583 LLVM_DEBUG(BB->dump()); 584 } 585 586 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 587 /// into the block immediately after it. 588 static bool BBHasFallthrough(MachineBasicBlock *MBB) { 589 // Get the next machine basic block in the function. 590 MachineFunction::iterator MBBI = MBB->getIterator(); 591 // Can't fall off end of function. 592 if (std::next(MBBI) == MBB->getParent()->end()) 593 return false; 594 595 MachineBasicBlock *NextBB = &*std::next(MBBI); 596 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 597 E = MBB->succ_end(); I != E; ++I) 598 if (*I == NextBB) 599 return true; 600 601 return false; 602 } 603 604 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 605 /// look up the corresponding CPEntry. 606 MipsConstantIslands::CPEntry 607 *MipsConstantIslands::findConstPoolEntry(unsigned CPI, 608 const MachineInstr *CPEMI) { 609 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 610 // Number of entries per constpool index should be small, just do a 611 // linear search. 612 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 613 if (CPEs[i].CPEMI == CPEMI) 614 return &CPEs[i]; 615 } 616 return nullptr; 617 } 618 619 /// getCPEAlign - Returns the required alignment of the constant pool entry 620 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 621 Align MipsConstantIslands::getCPEAlign(const MachineInstr &CPEMI) { 622 assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY); 623 624 // Everything is 4-byte aligned unless AlignConstantIslands is set. 625 if (!AlignConstantIslands) 626 return Align(4); 627 628 unsigned CPI = CPEMI.getOperand(1).getIndex(); 629 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 630 return MCP->getConstants()[CPI].getAlign(); 631 } 632 633 /// initializeFunctionInfo - Do the initial scan of the function, building up 634 /// information about the sizes of each block, the location of all the water, 635 /// and finding all of the constant pool users. 636 void MipsConstantIslands:: 637 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 638 BBInfo.clear(); 639 BBInfo.resize(MF->getNumBlockIDs()); 640 641 // First thing, compute the size of all basic blocks, and see if the function 642 // has any inline assembly in it. If so, we have to be conservative about 643 // alignment assumptions, as we don't know for sure the size of any 644 // instructions in the inline assembly. 645 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 646 computeBlockSize(&*I); 647 648 // Compute block offsets. 649 adjustBBOffsetsAfter(&MF->front()); 650 651 // Now go back through the instructions and build up our data structures. 652 for (MachineBasicBlock &MBB : *MF) { 653 // If this block doesn't fall through into the next MBB, then this is 654 // 'water' that a constant pool island could be placed. 655 if (!BBHasFallthrough(&MBB)) 656 WaterList.push_back(&MBB); 657 for (MachineInstr &MI : MBB) { 658 if (MI.isDebugInstr()) 659 continue; 660 661 int Opc = MI.getOpcode(); 662 if (MI.isBranch()) { 663 bool isCond = false; 664 unsigned Bits = 0; 665 unsigned Scale = 1; 666 int UOpc = Opc; 667 switch (Opc) { 668 default: 669 continue; // Ignore other branches for now 670 case Mips::Bimm16: 671 Bits = 11; 672 Scale = 2; 673 isCond = false; 674 break; 675 case Mips::BimmX16: 676 Bits = 16; 677 Scale = 2; 678 isCond = false; 679 break; 680 case Mips::BeqzRxImm16: 681 UOpc=Mips::Bimm16; 682 Bits = 8; 683 Scale = 2; 684 isCond = true; 685 break; 686 case Mips::BeqzRxImmX16: 687 UOpc=Mips::Bimm16; 688 Bits = 16; 689 Scale = 2; 690 isCond = true; 691 break; 692 case Mips::BnezRxImm16: 693 UOpc=Mips::Bimm16; 694 Bits = 8; 695 Scale = 2; 696 isCond = true; 697 break; 698 case Mips::BnezRxImmX16: 699 UOpc=Mips::Bimm16; 700 Bits = 16; 701 Scale = 2; 702 isCond = true; 703 break; 704 case Mips::Bteqz16: 705 UOpc=Mips::Bimm16; 706 Bits = 8; 707 Scale = 2; 708 isCond = true; 709 break; 710 case Mips::BteqzX16: 711 UOpc=Mips::Bimm16; 712 Bits = 16; 713 Scale = 2; 714 isCond = true; 715 break; 716 case Mips::Btnez16: 717 UOpc=Mips::Bimm16; 718 Bits = 8; 719 Scale = 2; 720 isCond = true; 721 break; 722 case Mips::BtnezX16: 723 UOpc=Mips::Bimm16; 724 Bits = 16; 725 Scale = 2; 726 isCond = true; 727 break; 728 } 729 // Record this immediate branch. 730 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 731 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc)); 732 } 733 734 if (Opc == Mips::CONSTPOOL_ENTRY) 735 continue; 736 737 // Scan the instructions for constant pool operands. 738 for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op) 739 if (MI.getOperand(op).isCPI()) { 740 // We found one. The addressing mode tells us the max displacement 741 // from the PC that this instruction permits. 742 743 // Basic size info comes from the TSFlags field. 744 unsigned Bits = 0; 745 unsigned Scale = 1; 746 bool NegOk = false; 747 unsigned LongFormBits = 0; 748 unsigned LongFormScale = 0; 749 unsigned LongFormOpcode = 0; 750 switch (Opc) { 751 default: 752 llvm_unreachable("Unknown addressing mode for CP reference!"); 753 case Mips::LwRxPcTcp16: 754 Bits = 8; 755 Scale = 4; 756 LongFormOpcode = Mips::LwRxPcTcpX16; 757 LongFormBits = 14; 758 LongFormScale = 1; 759 break; 760 case Mips::LwRxPcTcpX16: 761 Bits = 14; 762 Scale = 1; 763 NegOk = true; 764 break; 765 } 766 // Remember that this is a user of a CP entry. 767 unsigned CPI = MI.getOperand(op).getIndex(); 768 MachineInstr *CPEMI = CPEMIs[CPI]; 769 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 770 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale; 771 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs, 772 LongFormOpcode)); 773 774 // Increment corresponding CPEntry reference count. 775 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 776 assert(CPE && "Cannot find a corresponding CPEntry!"); 777 CPE->RefCount++; 778 779 // Instructions can only use one CP entry, don't bother scanning the 780 // rest of the operands. 781 break; 782 } 783 } 784 } 785 } 786 787 /// computeBlockSize - Compute the size and some alignment information for MBB. 788 /// This function updates BBInfo directly. 789 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 790 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 791 BBI.Size = 0; 792 793 for (const MachineInstr &MI : *MBB) 794 BBI.Size += TII->getInstSizeInBytes(MI); 795 } 796 797 /// getOffsetOf - Return the current offset of the specified machine instruction 798 /// from the start of the function. This offset changes as stuff is moved 799 /// around inside the function. 800 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const { 801 MachineBasicBlock *MBB = MI->getParent(); 802 803 // The offset is composed of two things: the sum of the sizes of all MBB's 804 // before this instruction's block, and the offset from the start of the block 805 // it is in. 806 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 807 808 // Sum instructions before MI in MBB. 809 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 810 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 811 Offset += TII->getInstSizeInBytes(*I); 812 } 813 return Offset; 814 } 815 816 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 817 /// ID. 818 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 819 const MachineBasicBlock *RHS) { 820 return LHS->getNumber() < RHS->getNumber(); 821 } 822 823 /// updateForInsertedWaterBlock - When a block is newly inserted into the 824 /// machine function, it upsets all of the block numbers. Renumber the blocks 825 /// and update the arrays that parallel this numbering. 826 void MipsConstantIslands::updateForInsertedWaterBlock 827 (MachineBasicBlock *NewBB) { 828 // Renumber the MBB's to keep them consecutive. 829 NewBB->getParent()->RenumberBlocks(NewBB); 830 831 // Insert an entry into BBInfo to align it properly with the (newly 832 // renumbered) block numbers. 833 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 834 835 // Next, update WaterList. Specifically, we need to add NewMBB as having 836 // available water after it. 837 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 838 WaterList.insert(IP, NewBB); 839 } 840 841 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const { 842 return getOffsetOf(U.MI); 843 } 844 845 /// Split the basic block containing MI into two blocks, which are joined by 846 /// an unconditional branch. Update data structures and renumber blocks to 847 /// account for this change and returns the newly created block. 848 MachineBasicBlock * 849 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) { 850 MachineBasicBlock *OrigBB = MI.getParent(); 851 852 // Create a new MBB for the code after the OrigBB. 853 MachineBasicBlock *NewBB = 854 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 855 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 856 MF->insert(MBBI, NewBB); 857 858 // Splice the instructions starting with MI over to NewBB. 859 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 860 861 // Add an unconditional branch from OrigBB to NewBB. 862 // Note the new unconditional branch is not being recorded. 863 // There doesn't seem to be meaningful DebugInfo available; this doesn't 864 // correspond to anything in the source. 865 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB); 866 ++NumSplit; 867 868 // Update the CFG. All succs of OrigBB are now succs of NewBB. 869 NewBB->transferSuccessors(OrigBB); 870 871 // OrigBB branches to NewBB. 872 OrigBB->addSuccessor(NewBB); 873 874 // Update internal data structures to account for the newly inserted MBB. 875 // This is almost the same as updateForInsertedWaterBlock, except that 876 // the Water goes after OrigBB, not NewBB. 877 MF->RenumberBlocks(NewBB); 878 879 // Insert an entry into BBInfo to align it properly with the (newly 880 // renumbered) block numbers. 881 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 882 883 // Next, update WaterList. Specifically, we need to add OrigMBB as having 884 // available water after it (but not if it's already there, which happens 885 // when splitting before a conditional branch that is followed by an 886 // unconditional branch - in that case we want to insert NewBB). 887 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 888 MachineBasicBlock* WaterBB = *IP; 889 if (WaterBB == OrigBB) 890 WaterList.insert(std::next(IP), NewBB); 891 else 892 WaterList.insert(IP, OrigBB); 893 NewWaterList.insert(OrigBB); 894 895 // Figure out how large the OrigBB is. As the first half of the original 896 // block, it cannot contain a tablejump. The size includes 897 // the new jump we added. (It should be possible to do this without 898 // recounting everything, but it's very confusing, and this is rarely 899 // executed.) 900 computeBlockSize(OrigBB); 901 902 // Figure out how large the NewMBB is. As the second half of the original 903 // block, it may contain a tablejump. 904 computeBlockSize(NewBB); 905 906 // All BBOffsets following these blocks must be modified. 907 adjustBBOffsetsAfter(OrigBB); 908 909 return NewBB; 910 } 911 912 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 913 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 914 /// constant pool entry). 915 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset, 916 unsigned TrialOffset, unsigned MaxDisp, 917 bool NegativeOK) { 918 if (UserOffset <= TrialOffset) { 919 // User before the Trial. 920 if (TrialOffset - UserOffset <= MaxDisp) 921 return true; 922 } else if (NegativeOK) { 923 if (UserOffset - TrialOffset <= MaxDisp) 924 return true; 925 } 926 return false; 927 } 928 929 /// isWaterInRange - Returns true if a CPE placed after the specified 930 /// Water (a basic block) will be in range for the specific MI. 931 /// 932 /// Compute how much the function will grow by inserting a CPE after Water. 933 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset, 934 MachineBasicBlock* Water, CPUser &U, 935 unsigned &Growth) { 936 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(); 937 unsigned NextBlockOffset; 938 Align NextBlockAlignment; 939 MachineFunction::const_iterator NextBlock = ++Water->getIterator(); 940 if (NextBlock == MF->end()) { 941 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 942 NextBlockAlignment = Align(1); 943 } else { 944 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 945 NextBlockAlignment = NextBlock->getAlignment(); 946 } 947 unsigned Size = U.CPEMI->getOperand(2).getImm(); 948 unsigned CPEEnd = CPEOffset + Size; 949 950 // The CPE may be able to hide in the alignment padding before the next 951 // block. It may also cause more padding to be required if it is more aligned 952 // that the next block. 953 if (CPEEnd > NextBlockOffset) { 954 Growth = CPEEnd - NextBlockOffset; 955 // Compute the padding that would go at the end of the CPE to align the next 956 // block. 957 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 958 959 // If the CPE is to be inserted before the instruction, that will raise 960 // the offset of the instruction. Also account for unknown alignment padding 961 // in blocks between CPE and the user. 962 if (CPEOffset < UserOffset) 963 UserOffset += Growth; 964 } else 965 // CPE fits in existing padding. 966 Growth = 0; 967 968 return isOffsetInRange(UserOffset, CPEOffset, U); 969 } 970 971 /// isCPEntryInRange - Returns true if the distance between specific MI and 972 /// specific ConstPool entry instruction can fit in MI's displacement field. 973 bool MipsConstantIslands::isCPEntryInRange 974 (MachineInstr *MI, unsigned UserOffset, 975 MachineInstr *CPEMI, unsigned MaxDisp, 976 bool NegOk, bool DoDump) { 977 unsigned CPEOffset = getOffsetOf(CPEMI); 978 979 if (DoDump) { 980 LLVM_DEBUG({ 981 unsigned Block = MI->getParent()->getNumber(); 982 const BasicBlockInfo &BBI = BBInfo[Block]; 983 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 984 << " max delta=" << MaxDisp 985 << format(" insn address=%#x", UserOffset) << " in " 986 << printMBBReference(*MI->getParent()) << ": " 987 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 988 << format("CPE address=%#x offset=%+d: ", CPEOffset, 989 int(CPEOffset - UserOffset)); 990 }); 991 } 992 993 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 994 } 995 996 #ifndef NDEBUG 997 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 998 /// unconditionally branches to its only successor. 999 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1000 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1001 return false; 1002 MachineBasicBlock *Succ = *MBB->succ_begin(); 1003 MachineBasicBlock *Pred = *MBB->pred_begin(); 1004 MachineInstr *PredMI = &Pred->back(); 1005 if (PredMI->getOpcode() == Mips::Bimm16) 1006 return PredMI->getOperand(0).getMBB() == Succ; 1007 return false; 1008 } 1009 #endif 1010 1011 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1012 unsigned BBNum = BB->getNumber(); 1013 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1014 // Get the offset and known bits at the end of the layout predecessor. 1015 // Include the alignment of the current block. 1016 unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size; 1017 BBInfo[i].Offset = Offset; 1018 } 1019 } 1020 1021 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1022 /// and instruction CPEMI, and decrement its refcount. If the refcount 1023 /// becomes 0 remove the entry and instruction. Returns true if we removed 1024 /// the entry, false if we didn't. 1025 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1026 MachineInstr *CPEMI) { 1027 // Find the old entry. Eliminate it if it is no longer used. 1028 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1029 assert(CPE && "Unexpected!"); 1030 if (--CPE->RefCount == 0) { 1031 removeDeadCPEMI(CPEMI); 1032 CPE->CPEMI = nullptr; 1033 --NumCPEs; 1034 return true; 1035 } 1036 return false; 1037 } 1038 1039 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1040 /// if not, see if an in-range clone of the CPE is in range, and if so, 1041 /// change the data structures so the user references the clone. Returns: 1042 /// 0 = no existing entry found 1043 /// 1 = entry found, and there were no code insertions or deletions 1044 /// 2 = entry found, and there were code insertions or deletions 1045 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1046 { 1047 MachineInstr *UserMI = U.MI; 1048 MachineInstr *CPEMI = U.CPEMI; 1049 1050 // Check to see if the CPE is already in-range. 1051 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1052 true)) { 1053 LLVM_DEBUG(dbgs() << "In range\n"); 1054 return 1; 1055 } 1056 1057 // No. Look for previously created clones of the CPE that are in range. 1058 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1059 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1060 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1061 // We already tried this one 1062 if (CPEs[i].CPEMI == CPEMI) 1063 continue; 1064 // Removing CPEs can leave empty entries, skip 1065 if (CPEs[i].CPEMI == nullptr) 1066 continue; 1067 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1068 U.NegOk)) { 1069 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1070 << CPEs[i].CPI << "\n"); 1071 // Point the CPUser node to the replacement 1072 U.CPEMI = CPEs[i].CPEMI; 1073 // Change the CPI in the instruction operand to refer to the clone. 1074 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1075 if (UserMI->getOperand(j).isCPI()) { 1076 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1077 break; 1078 } 1079 // Adjust the refcount of the clone... 1080 CPEs[i].RefCount++; 1081 // ...and the original. If we didn't remove the old entry, none of the 1082 // addresses changed, so we don't need another pass. 1083 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1084 } 1085 } 1086 return 0; 1087 } 1088 1089 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1090 /// This version checks if the longer form of the instruction can be used to 1091 /// to satisfy things. 1092 /// if not, see if an in-range clone of the CPE is in range, and if so, 1093 /// change the data structures so the user references the clone. Returns: 1094 /// 0 = no existing entry found 1095 /// 1 = entry found, and there were no code insertions or deletions 1096 /// 2 = entry found, and there were code insertions or deletions 1097 int MipsConstantIslands::findLongFormInRangeCPEntry 1098 (CPUser& U, unsigned UserOffset) 1099 { 1100 MachineInstr *UserMI = U.MI; 1101 MachineInstr *CPEMI = U.CPEMI; 1102 1103 // Check to see if the CPE is already in-range. 1104 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, 1105 U.getLongFormMaxDisp(), U.NegOk, 1106 true)) { 1107 LLVM_DEBUG(dbgs() << "In range\n"); 1108 UserMI->setDesc(TII->get(U.getLongFormOpcode())); 1109 U.setMaxDisp(U.getLongFormMaxDisp()); 1110 return 2; // instruction is longer length now 1111 } 1112 1113 // No. Look for previously created clones of the CPE that are in range. 1114 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1115 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1116 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1117 // We already tried this one 1118 if (CPEs[i].CPEMI == CPEMI) 1119 continue; 1120 // Removing CPEs can leave empty entries, skip 1121 if (CPEs[i].CPEMI == nullptr) 1122 continue; 1123 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, 1124 U.getLongFormMaxDisp(), U.NegOk)) { 1125 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1126 << CPEs[i].CPI << "\n"); 1127 // Point the CPUser node to the replacement 1128 U.CPEMI = CPEs[i].CPEMI; 1129 // Change the CPI in the instruction operand to refer to the clone. 1130 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1131 if (UserMI->getOperand(j).isCPI()) { 1132 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1133 break; 1134 } 1135 // Adjust the refcount of the clone... 1136 CPEs[i].RefCount++; 1137 // ...and the original. If we didn't remove the old entry, none of the 1138 // addresses changed, so we don't need another pass. 1139 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1140 } 1141 } 1142 return 0; 1143 } 1144 1145 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1146 /// the specific unconditional branch instruction. 1147 static inline unsigned getUnconditionalBrDisp(int Opc) { 1148 switch (Opc) { 1149 case Mips::Bimm16: 1150 return ((1<<10)-1)*2; 1151 case Mips::BimmX16: 1152 return ((1<<16)-1)*2; 1153 default: 1154 break; 1155 } 1156 return ((1<<16)-1)*2; 1157 } 1158 1159 /// findAvailableWater - Look for an existing entry in the WaterList in which 1160 /// we can place the CPE referenced from U so it's within range of U's MI. 1161 /// Returns true if found, false if not. If it returns true, WaterIter 1162 /// is set to the WaterList entry. 1163 /// To ensure that this pass 1164 /// terminates, the CPE location for a particular CPUser is only allowed to 1165 /// move to a lower address, so search backward from the end of the list and 1166 /// prefer the first water that is in range. 1167 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1168 water_iterator &WaterIter) { 1169 if (WaterList.empty()) 1170 return false; 1171 1172 unsigned BestGrowth = ~0u; 1173 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1174 --IP) { 1175 MachineBasicBlock* WaterBB = *IP; 1176 // Check if water is in range and is either at a lower address than the 1177 // current "high water mark" or a new water block that was created since 1178 // the previous iteration by inserting an unconditional branch. In the 1179 // latter case, we want to allow resetting the high water mark back to 1180 // this new water since we haven't seen it before. Inserting branches 1181 // should be relatively uncommon and when it does happen, we want to be 1182 // sure to take advantage of it for all the CPEs near that block, so that 1183 // we don't insert more branches than necessary. 1184 unsigned Growth; 1185 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1186 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1187 NewWaterList.count(WaterBB)) && Growth < BestGrowth) { 1188 // This is the least amount of required padding seen so far. 1189 BestGrowth = Growth; 1190 WaterIter = IP; 1191 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1192 << " Growth=" << Growth << '\n'); 1193 1194 // Keep looking unless it is perfect. 1195 if (BestGrowth == 0) 1196 return true; 1197 } 1198 if (IP == B) 1199 break; 1200 } 1201 return BestGrowth != ~0u; 1202 } 1203 1204 /// createNewWater - No existing WaterList entry will work for 1205 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1206 /// block is used if in range, and the conditional branch munged so control 1207 /// flow is correct. Otherwise the block is split to create a hole with an 1208 /// unconditional branch around it. In either case NewMBB is set to a 1209 /// block following which the new island can be inserted (the WaterList 1210 /// is not adjusted). 1211 void MipsConstantIslands::createNewWater(unsigned CPUserIndex, 1212 unsigned UserOffset, 1213 MachineBasicBlock *&NewMBB) { 1214 CPUser &U = CPUsers[CPUserIndex]; 1215 MachineInstr *UserMI = U.MI; 1216 MachineInstr *CPEMI = U.CPEMI; 1217 MachineBasicBlock *UserMBB = UserMI->getParent(); 1218 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1219 1220 // If the block does not end in an unconditional branch already, and if the 1221 // end of the block is within range, make new water there. 1222 if (BBHasFallthrough(UserMBB)) { 1223 // Size of branch to insert. 1224 unsigned Delta = 2; 1225 // Compute the offset where the CPE will begin. 1226 unsigned CPEOffset = UserBBI.postOffset() + Delta; 1227 1228 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1229 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1230 << format(", expected CPE offset %#x\n", CPEOffset)); 1231 NewMBB = &*++UserMBB->getIterator(); 1232 // Add an unconditional branch from UserMBB to fallthrough block. Record 1233 // it for branch lengthening; this new branch will not get out of range, 1234 // but if the preceding conditional branch is out of range, the targets 1235 // will be exchanged, and the altered branch may be out of range, so the 1236 // machinery has to know about it. 1237 int UncondBr = Mips::Bimm16; 1238 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1239 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1240 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1241 MaxDisp, false, UncondBr)); 1242 BBInfo[UserMBB->getNumber()].Size += Delta; 1243 adjustBBOffsetsAfter(UserMBB); 1244 return; 1245 } 1246 } 1247 1248 // What a big block. Find a place within the block to split it. 1249 1250 // Try to split the block so it's fully aligned. Compute the latest split 1251 // point where we can add a 4-byte branch instruction, and then align to 1252 // Align which is the largest possible alignment in the function. 1253 const Align Align = MF->getAlignment(); 1254 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1255 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1256 BaseInsertOffset)); 1257 1258 // The 4 in the following is for the unconditional branch we'll be inserting 1259 // Alignment of the island is handled 1260 // inside isOffsetInRange. 1261 BaseInsertOffset -= 4; 1262 1263 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1264 << " la=" << Log2(Align) << '\n'); 1265 1266 // This could point off the end of the block if we've already got constant 1267 // pool entries following this block; only the last one is in the water list. 1268 // Back past any possible branches (allow for a conditional and a maximally 1269 // long unconditional). 1270 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1271 BaseInsertOffset = UserBBI.postOffset() - 8; 1272 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1273 } 1274 unsigned EndInsertOffset = BaseInsertOffset + 4 + 1275 CPEMI->getOperand(2).getImm(); 1276 MachineBasicBlock::iterator MI = UserMI; 1277 ++MI; 1278 unsigned CPUIndex = CPUserIndex+1; 1279 unsigned NumCPUsers = CPUsers.size(); 1280 //MachineInstr *LastIT = 0; 1281 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1282 Offset < BaseInsertOffset; 1283 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1284 assert(MI != UserMBB->end() && "Fell off end of block"); 1285 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1286 CPUser &U = CPUsers[CPUIndex]; 1287 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1288 // Shift intertion point by one unit of alignment so it is within reach. 1289 BaseInsertOffset -= Align.value(); 1290 EndInsertOffset -= Align.value(); 1291 } 1292 // This is overly conservative, as we don't account for CPEMIs being 1293 // reused within the block, but it doesn't matter much. Also assume CPEs 1294 // are added in order with alignment padding. We may eventually be able 1295 // to pack the aligned CPEs better. 1296 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1297 CPUIndex++; 1298 } 1299 } 1300 1301 NewMBB = splitBlockBeforeInstr(*--MI); 1302 } 1303 1304 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1305 /// is out-of-range. If so, pick up the constant pool value and move it some 1306 /// place in-range. Return true if we changed any addresses (thus must run 1307 /// another pass of branch lengthening), false otherwise. 1308 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1309 CPUser &U = CPUsers[CPUserIndex]; 1310 MachineInstr *UserMI = U.MI; 1311 MachineInstr *CPEMI = U.CPEMI; 1312 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1313 unsigned Size = CPEMI->getOperand(2).getImm(); 1314 // Compute this only once, it's expensive. 1315 unsigned UserOffset = getUserOffset(U); 1316 1317 // See if the current entry is within range, or there is a clone of it 1318 // in range. 1319 int result = findInRangeCPEntry(U, UserOffset); 1320 if (result==1) return false; 1321 else if (result==2) return true; 1322 1323 // Look for water where we can place this CPE. 1324 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1325 MachineBasicBlock *NewMBB; 1326 water_iterator IP; 1327 if (findAvailableWater(U, UserOffset, IP)) { 1328 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1329 MachineBasicBlock *WaterBB = *IP; 1330 1331 // If the original WaterList entry was "new water" on this iteration, 1332 // propagate that to the new island. This is just keeping NewWaterList 1333 // updated to match the WaterList, which will be updated below. 1334 if (NewWaterList.erase(WaterBB)) 1335 NewWaterList.insert(NewIsland); 1336 1337 // The new CPE goes before the following block (NewMBB). 1338 NewMBB = &*++WaterBB->getIterator(); 1339 } else { 1340 // No water found. 1341 // we first see if a longer form of the instrucion could have reached 1342 // the constant. in that case we won't bother to split 1343 if (!NoLoadRelaxation) { 1344 result = findLongFormInRangeCPEntry(U, UserOffset); 1345 if (result != 0) return true; 1346 } 1347 LLVM_DEBUG(dbgs() << "No water found\n"); 1348 createNewWater(CPUserIndex, UserOffset, NewMBB); 1349 1350 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1351 // called while handling branches so that the water will be seen on the 1352 // next iteration for constant pools, but in this context, we don't want 1353 // it. Check for this so it will be removed from the WaterList. 1354 // Also remove any entry from NewWaterList. 1355 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1356 IP = llvm::find(WaterList, WaterBB); 1357 if (IP != WaterList.end()) 1358 NewWaterList.erase(WaterBB); 1359 1360 // We are adding new water. Update NewWaterList. 1361 NewWaterList.insert(NewIsland); 1362 } 1363 1364 // Remove the original WaterList entry; we want subsequent insertions in 1365 // this vicinity to go after the one we're about to insert. This 1366 // considerably reduces the number of times we have to move the same CPE 1367 // more than once and is also important to ensure the algorithm terminates. 1368 if (IP != WaterList.end()) 1369 WaterList.erase(IP); 1370 1371 // Okay, we know we can put an island before NewMBB now, do it! 1372 MF->insert(NewMBB->getIterator(), NewIsland); 1373 1374 // Update internal data structures to account for the newly inserted MBB. 1375 updateForInsertedWaterBlock(NewIsland); 1376 1377 // Decrement the old entry, and remove it if refcount becomes 0. 1378 decrementCPEReferenceCount(CPI, CPEMI); 1379 1380 // No existing clone of this CPE is within range. 1381 // We will be generating a new clone. Get a UID for it. 1382 unsigned ID = createPICLabelUId(); 1383 1384 // Now that we have an island to add the CPE to, clone the original CPE and 1385 // add it to the island. 1386 U.HighWaterMark = NewIsland; 1387 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) 1388 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1389 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1390 ++NumCPEs; 1391 1392 // Mark the basic block as aligned as required by the const-pool entry. 1393 NewIsland->setAlignment(getCPEAlign(*U.CPEMI)); 1394 1395 // Increase the size of the island block to account for the new entry. 1396 BBInfo[NewIsland->getNumber()].Size += Size; 1397 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1398 1399 // Finally, change the CPI in the instruction operand to be ID. 1400 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1401 if (UserMI->getOperand(i).isCPI()) { 1402 UserMI->getOperand(i).setIndex(ID); 1403 break; 1404 } 1405 1406 LLVM_DEBUG( 1407 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1408 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1409 1410 return true; 1411 } 1412 1413 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1414 /// sizes and offsets of impacted basic blocks. 1415 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1416 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1417 unsigned Size = CPEMI->getOperand(2).getImm(); 1418 CPEMI->eraseFromParent(); 1419 BBInfo[CPEBB->getNumber()].Size -= Size; 1420 // All succeeding offsets have the current size value added in, fix this. 1421 if (CPEBB->empty()) { 1422 BBInfo[CPEBB->getNumber()].Size = 0; 1423 1424 // This block no longer needs to be aligned. 1425 CPEBB->setAlignment(Align(1)); 1426 } else { 1427 // Entries are sorted by descending alignment, so realign from the front. 1428 CPEBB->setAlignment(getCPEAlign(*CPEBB->begin())); 1429 } 1430 1431 adjustBBOffsetsAfter(CPEBB); 1432 // An island has only one predecessor BB and one successor BB. Check if 1433 // this BB's predecessor jumps directly to this BB's successor. This 1434 // shouldn't happen currently. 1435 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1436 // FIXME: remove the empty blocks after all the work is done? 1437 } 1438 1439 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1440 /// are zero. 1441 bool MipsConstantIslands::removeUnusedCPEntries() { 1442 unsigned MadeChange = false; 1443 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1444 std::vector<CPEntry> &CPEs = CPEntries[i]; 1445 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1446 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1447 removeDeadCPEMI(CPEs[j].CPEMI); 1448 CPEs[j].CPEMI = nullptr; 1449 MadeChange = true; 1450 } 1451 } 1452 } 1453 return MadeChange; 1454 } 1455 1456 /// isBBInRange - Returns true if the distance between specific MI and 1457 /// specific BB can fit in MI's displacement field. 1458 bool MipsConstantIslands::isBBInRange 1459 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { 1460 unsigned PCAdj = 4; 1461 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1462 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1463 1464 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1465 << " from " << printMBBReference(*MI->getParent()) 1466 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1467 << " to " << DestOffset << " offset " 1468 << int(DestOffset - BrOffset) << "\t" << *MI); 1469 1470 if (BrOffset <= DestOffset) { 1471 // Branch before the Dest. 1472 if (DestOffset-BrOffset <= MaxDisp) 1473 return true; 1474 } else { 1475 if (BrOffset-DestOffset <= MaxDisp) 1476 return true; 1477 } 1478 return false; 1479 } 1480 1481 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1482 /// away to fit in its displacement field. 1483 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1484 MachineInstr *MI = Br.MI; 1485 unsigned TargetOperand = branchTargetOperand(MI); 1486 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); 1487 1488 // Check to see if the DestBB is already in-range. 1489 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1490 return false; 1491 1492 if (!Br.isCond) 1493 return fixupUnconditionalBr(Br); 1494 return fixupConditionalBr(Br); 1495 } 1496 1497 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1498 /// too far away to fit in its displacement field. If the LR register has been 1499 /// spilled in the epilogue, then we can use BL to implement a far jump. 1500 /// Otherwise, add an intermediate branch instruction to a branch. 1501 bool 1502 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1503 MachineInstr *MI = Br.MI; 1504 MachineBasicBlock *MBB = MI->getParent(); 1505 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1506 // Use BL to implement far jump. 1507 unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2; 1508 if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) { 1509 Br.MaxDisp = BimmX16MaxDisp; 1510 MI->setDesc(TII->get(Mips::BimmX16)); 1511 } 1512 else { 1513 // need to give the math a more careful look here 1514 // this is really a segment address and not 1515 // a PC relative address. FIXME. But I think that 1516 // just reducing the bits by 1 as I've done is correct. 1517 // The basic block we are branching too much be longword aligned. 1518 // we know that RA is saved because we always save it right now. 1519 // this requirement will be relaxed later but we also have an alternate 1520 // way to implement this that I will implement that does not need jal. 1521 // We should have a way to back out this alignment restriction 1522 // if we "can" later. but it is not harmful. 1523 // 1524 DestBB->setAlignment(Align(4)); 1525 Br.MaxDisp = ((1<<24)-1) * 2; 1526 MI->setDesc(TII->get(Mips::JalB16)); 1527 } 1528 BBInfo[MBB->getNumber()].Size += 2; 1529 adjustBBOffsetsAfter(MBB); 1530 HasFarJump = true; 1531 ++NumUBrFixed; 1532 1533 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1534 1535 return true; 1536 } 1537 1538 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1539 /// far away to fit in its displacement field. It is converted to an inverse 1540 /// conditional branch + an unconditional branch to the destination. 1541 bool 1542 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1543 MachineInstr *MI = Br.MI; 1544 unsigned TargetOperand = branchTargetOperand(MI); 1545 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); 1546 unsigned Opcode = MI->getOpcode(); 1547 unsigned LongFormOpcode = longformBranchOpcode(Opcode); 1548 unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode); 1549 1550 // Check to see if the DestBB is already in-range. 1551 if (isBBInRange(MI, DestBB, LongFormMaxOff)) { 1552 Br.MaxDisp = LongFormMaxOff; 1553 MI->setDesc(TII->get(LongFormOpcode)); 1554 return true; 1555 } 1556 1557 // Add an unconditional branch to the destination and invert the branch 1558 // condition to jump over it: 1559 // bteqz L1 1560 // => 1561 // bnez L2 1562 // b L1 1563 // L2: 1564 1565 // If the branch is at the end of its MBB and that has a fall-through block, 1566 // direct the updated conditional branch to the fall-through block. Otherwise, 1567 // split the MBB before the next instruction. 1568 MachineBasicBlock *MBB = MI->getParent(); 1569 MachineInstr *BMI = &MBB->back(); 1570 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1571 unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode); 1572 1573 ++NumCBrFixed; 1574 if (BMI != MI) { 1575 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1576 BMI->isUnconditionalBranch()) { 1577 // Last MI in the BB is an unconditional branch. Can we simply invert the 1578 // condition and swap destinations: 1579 // beqz L1 1580 // b L2 1581 // => 1582 // bnez L2 1583 // b L1 1584 unsigned BMITargetOperand = branchTargetOperand(BMI); 1585 MachineBasicBlock *NewDest = 1586 BMI->getOperand(BMITargetOperand).getMBB(); 1587 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1588 LLVM_DEBUG( 1589 dbgs() << " Invert Bcc condition and swap its destination with " 1590 << *BMI); 1591 MI->setDesc(TII->get(OppositeBranchOpcode)); 1592 BMI->getOperand(BMITargetOperand).setMBB(DestBB); 1593 MI->getOperand(TargetOperand).setMBB(NewDest); 1594 return true; 1595 } 1596 } 1597 } 1598 1599 if (NeedSplit) { 1600 splitBlockBeforeInstr(*MI); 1601 // No need for the branch to the next block. We're adding an unconditional 1602 // branch to the destination. 1603 int delta = TII->getInstSizeInBytes(MBB->back()); 1604 BBInfo[MBB->getNumber()].Size -= delta; 1605 MBB->back().eraseFromParent(); 1606 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1607 } 1608 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1609 1610 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1611 << " also invert condition and change dest. to " 1612 << printMBBReference(*NextBB) << "\n"); 1613 1614 // Insert a new conditional branch and a new unconditional branch. 1615 // Also update the ImmBranch as well as adding a new entry for the new branch. 1616 if (MI->getNumExplicitOperands() == 2) { 1617 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) 1618 .addReg(MI->getOperand(0).getReg()) 1619 .addMBB(NextBB); 1620 } else { 1621 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) 1622 .addMBB(NextBB); 1623 } 1624 Br.MI = &MBB->back(); 1625 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1626 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1627 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1628 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1629 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1630 1631 // Remove the old conditional branch. It may or may not still be in MBB. 1632 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1633 MI->eraseFromParent(); 1634 adjustBBOffsetsAfter(MBB); 1635 return true; 1636 } 1637 1638 void MipsConstantIslands::prescanForConstants() { 1639 unsigned J = 0; 1640 (void)J; 1641 for (MachineFunction::iterator B = 1642 MF->begin(), E = MF->end(); B != E; ++B) { 1643 for (MachineBasicBlock::instr_iterator I = 1644 B->instr_begin(), EB = B->instr_end(); I != EB; ++I) { 1645 switch(I->getDesc().getOpcode()) { 1646 case Mips::LwConstant32: { 1647 PrescannedForConstants = true; 1648 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n"); 1649 J = I->getNumOperands(); 1650 LLVM_DEBUG(dbgs() << "num operands " << J << "\n"); 1651 MachineOperand& Literal = I->getOperand(1); 1652 if (Literal.isImm()) { 1653 int64_t V = Literal.getImm(); 1654 LLVM_DEBUG(dbgs() << "literal " << V << "\n"); 1655 Type *Int32Ty = 1656 Type::getInt32Ty(MF->getFunction().getContext()); 1657 const Constant *C = ConstantInt::get(Int32Ty, V); 1658 unsigned index = MCP->getConstantPoolIndex(C, Align(4)); 1659 I->getOperand(2).ChangeToImmediate(index); 1660 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n"); 1661 I->setDesc(TII->get(Mips::LwRxPcTcp16)); 1662 I->RemoveOperand(1); 1663 I->RemoveOperand(1); 1664 I->addOperand(MachineOperand::CreateCPI(index, 0)); 1665 I->addOperand(MachineOperand::CreateImm(4)); 1666 } 1667 break; 1668 } 1669 default: 1670 break; 1671 } 1672 } 1673 } 1674 } 1675 1676 /// Returns a pass that converts branches to long branches. 1677 FunctionPass *llvm::createMipsConstantIslandPass() { 1678 return new MipsConstantIslands(); 1679 } 1680