1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format MIPS assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsAsmPrinter.h" 15 #include "MCTargetDesc/MipsABIInfo.h" 16 #include "MCTargetDesc/MipsBaseInfo.h" 17 #include "MCTargetDesc/MipsInstPrinter.h" 18 #include "MCTargetDesc/MipsMCNaCl.h" 19 #include "MCTargetDesc/MipsMCTargetDesc.h" 20 #include "Mips.h" 21 #include "MipsMCInstLower.h" 22 #include "MipsMachineFunction.h" 23 #include "MipsSubtarget.h" 24 #include "MipsTargetMachine.h" 25 #include "MipsTargetStreamer.h" 26 #include "TargetInfo/MipsTargetInfo.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/BinaryFormat/ELF.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/MC/MCContext.h" 48 #include "llvm/MC/MCExpr.h" 49 #include "llvm/MC/MCInst.h" 50 #include "llvm/MC/MCInstBuilder.h" 51 #include "llvm/MC/MCObjectFileInfo.h" 52 #include "llvm/MC/MCSectionELF.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/MC/MCSymbolELF.h" 55 #include "llvm/MC/TargetRegistry.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetLoweringObjectFile.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <cstdint> 63 #include <map> 64 #include <memory> 65 #include <string> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "mips-asm-printer" 71 72 extern cl::opt<bool> EmitJalrReloc; 73 74 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const { 75 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer()); 76 } 77 78 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 79 Subtarget = &MF.getSubtarget<MipsSubtarget>(); 80 81 MipsFI = MF.getInfo<MipsFunctionInfo>(); 82 if (Subtarget->inMips16Mode()) 83 for (const auto &I : MipsFI->StubsNeeded) { 84 const char *Symbol = I.first; 85 const Mips16HardFloatInfo::FuncSignature *Signature = I.second; 86 if (StubsNeeded.find(Symbol) == StubsNeeded.end()) 87 StubsNeeded[Symbol] = Signature; 88 } 89 MCP = MF.getConstantPool(); 90 91 // In NaCl, all indirect jump targets must be aligned to bundle size. 92 if (Subtarget->isTargetNaCl()) 93 NaClAlignIndirectJumpTargets(MF); 94 95 AsmPrinter::runOnMachineFunction(MF); 96 97 emitXRayTable(); 98 99 return true; 100 } 101 102 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) { 103 MCOp = MCInstLowering.LowerOperand(MO); 104 return MCOp.isValid(); 105 } 106 107 #include "MipsGenMCPseudoLowering.inc" 108 109 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM, 110 // JALR, or JALR64 as appropriate for the target. 111 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer, 112 const MachineInstr *MI) { 113 bool HasLinkReg = false; 114 bool InMicroMipsMode = Subtarget->inMicroMipsMode(); 115 MCInst TmpInst0; 116 117 if (Subtarget->hasMips64r6()) { 118 // MIPS64r6 should use (JALR64 ZERO_64, $rs) 119 TmpInst0.setOpcode(Mips::JALR64); 120 HasLinkReg = true; 121 } else if (Subtarget->hasMips32r6()) { 122 // MIPS32r6 should use (JALR ZERO, $rs) 123 if (InMicroMipsMode) 124 TmpInst0.setOpcode(Mips::JRC16_MMR6); 125 else { 126 TmpInst0.setOpcode(Mips::JALR); 127 HasLinkReg = true; 128 } 129 } else if (Subtarget->inMicroMipsMode()) 130 // microMIPS should use (JR_MM $rs) 131 TmpInst0.setOpcode(Mips::JR_MM); 132 else { 133 // Everything else should use (JR $rs) 134 TmpInst0.setOpcode(Mips::JR); 135 } 136 137 MCOperand MCOp; 138 139 if (HasLinkReg) { 140 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO; 141 TmpInst0.addOperand(MCOperand::createReg(ZeroReg)); 142 } 143 144 lowerOperand(MI->getOperand(0), MCOp); 145 TmpInst0.addOperand(MCOp); 146 147 EmitToStreamer(OutStreamer, TmpInst0); 148 } 149 150 // If there is an MO_JALR operand, insert: 151 // 152 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol 153 // tmplabel: 154 // 155 // This is an optimization hint for the linker which may then replace 156 // an indirect call with a direct branch. 157 static void emitDirectiveRelocJalr(const MachineInstr &MI, 158 MCContext &OutContext, 159 TargetMachine &TM, 160 MCStreamer &OutStreamer, 161 const MipsSubtarget &Subtarget) { 162 for (const MachineOperand &MO : 163 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) { 164 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) { 165 MCSymbol *Callee = MO.getMCSymbol(); 166 if (Callee && !Callee->getName().empty()) { 167 MCSymbol *OffsetLabel = OutContext.createTempSymbol(); 168 const MCExpr *OffsetExpr = 169 MCSymbolRefExpr::create(OffsetLabel, OutContext); 170 const MCExpr *CaleeExpr = 171 MCSymbolRefExpr::create(Callee, OutContext); 172 OutStreamer.emitRelocDirective( 173 *OffsetExpr, 174 Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR", 175 CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo()); 176 OutStreamer.emitLabel(OffsetLabel); 177 return; 178 } 179 } 180 } 181 } 182 183 void MipsAsmPrinter::emitInstruction(const MachineInstr *MI) { 184 // FIXME: Enable feature predicate checks once all the test pass. 185 // Mips_MC::verifyInstructionPredicates(MI->getOpcode(), 186 // getSubtargetInfo().getFeatureBits()); 187 188 MipsTargetStreamer &TS = getTargetStreamer(); 189 unsigned Opc = MI->getOpcode(); 190 TS.forbidModuleDirective(); 191 192 if (MI->isDebugValue()) { 193 SmallString<128> Str; 194 raw_svector_ostream OS(Str); 195 196 PrintDebugValueComment(MI, OS); 197 return; 198 } 199 if (MI->isDebugLabel()) 200 return; 201 202 // If we just ended a constant pool, mark it as such. 203 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) { 204 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 205 InConstantPool = false; 206 } 207 if (Opc == Mips::CONSTPOOL_ENTRY) { 208 // CONSTPOOL_ENTRY - This instruction represents a floating 209 // constant pool in the function. The first operand is the ID# 210 // for this instruction, the second is the index into the 211 // MachineConstantPool that this is, the third is the size in 212 // bytes of this constant pool entry. 213 // The required alignment is specified on the basic block holding this MI. 214 // 215 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 216 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 217 218 // If this is the first entry of the pool, mark it. 219 if (!InConstantPool) { 220 OutStreamer->emitDataRegion(MCDR_DataRegion); 221 InConstantPool = true; 222 } 223 224 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 225 226 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 227 if (MCPE.isMachineConstantPoolEntry()) 228 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 229 else 230 emitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal); 231 return; 232 } 233 234 switch (Opc) { 235 case Mips::PATCHABLE_FUNCTION_ENTER: 236 LowerPATCHABLE_FUNCTION_ENTER(*MI); 237 return; 238 case Mips::PATCHABLE_FUNCTION_EXIT: 239 LowerPATCHABLE_FUNCTION_EXIT(*MI); 240 return; 241 case Mips::PATCHABLE_TAIL_CALL: 242 LowerPATCHABLE_TAIL_CALL(*MI); 243 return; 244 } 245 246 if (EmitJalrReloc && 247 (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) { 248 emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget); 249 } 250 251 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 252 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 253 254 do { 255 // Do any auto-generated pseudo lowerings. 256 if (emitPseudoExpansionLowering(*OutStreamer, &*I)) 257 continue; 258 259 // Skip the BUNDLE pseudo instruction and lower the contents 260 if (I->isBundle()) 261 continue; 262 263 if (I->getOpcode() == Mips::PseudoReturn || 264 I->getOpcode() == Mips::PseudoReturn64 || 265 I->getOpcode() == Mips::PseudoIndirectBranch || 266 I->getOpcode() == Mips::PseudoIndirectBranch64 || 267 I->getOpcode() == Mips::TAILCALLREG || 268 I->getOpcode() == Mips::TAILCALLREG64) { 269 emitPseudoIndirectBranch(*OutStreamer, &*I); 270 continue; 271 } 272 273 // The inMips16Mode() test is not permanent. 274 // Some instructions are marked as pseudo right now which 275 // would make the test fail for the wrong reason but 276 // that will be fixed soon. We need this here because we are 277 // removing another test for this situation downstream in the 278 // callchain. 279 // 280 if (I->isPseudo() && !Subtarget->inMips16Mode() 281 && !isLongBranchPseudo(I->getOpcode())) 282 llvm_unreachable("Pseudo opcode found in emitInstruction()"); 283 284 MCInst TmpInst0; 285 MCInstLowering.Lower(&*I, TmpInst0); 286 EmitToStreamer(*OutStreamer, TmpInst0); 287 } while ((++I != E) && I->isInsideBundle()); // Delay slot check 288 } 289 290 //===----------------------------------------------------------------------===// 291 // 292 // Mips Asm Directives 293 // 294 // -- Frame directive "frame Stackpointer, Stacksize, RARegister" 295 // Describe the stack frame. 296 // 297 // -- Mask directives "(f)mask bitmask, offset" 298 // Tells the assembler which registers are saved and where. 299 // bitmask - contain a little endian bitset indicating which registers are 300 // saved on function prologue (e.g. with a 0x80000000 mask, the 301 // assembler knows the register 31 (RA) is saved at prologue. 302 // offset - the position before stack pointer subtraction indicating where 303 // the first saved register on prologue is located. (e.g. with a 304 // 305 // Consider the following function prologue: 306 // 307 // .frame $fp,48,$ra 308 // .mask 0xc0000000,-8 309 // addiu $sp, $sp, -48 310 // sw $ra, 40($sp) 311 // sw $fp, 36($sp) 312 // 313 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and 314 // 30 (FP) are saved at prologue. As the save order on prologue is from 315 // left to right, RA is saved first. A -8 offset means that after the 316 // stack pointer subtration, the first register in the mask (RA) will be 317 // saved at address 48-8=40. 318 // 319 //===----------------------------------------------------------------------===// 320 321 //===----------------------------------------------------------------------===// 322 // Mask directives 323 //===----------------------------------------------------------------------===// 324 325 // Create a bitmask with all callee saved registers for CPU or Floating Point 326 // registers. For CPU registers consider RA, GP and FP for saving if necessary. 327 void MipsAsmPrinter::printSavedRegsBitmask() { 328 // CPU and FPU Saved Registers Bitmasks 329 unsigned CPUBitmask = 0, FPUBitmask = 0; 330 int CPUTopSavedRegOff, FPUTopSavedRegOff; 331 332 // Set the CPU and FPU Bitmasks 333 const MachineFrameInfo &MFI = MF->getFrameInfo(); 334 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 335 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 336 // size of stack area to which FP callee-saved regs are saved. 337 unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8; 338 unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8; 339 unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8; 340 bool HasAFGR64Reg = false; 341 unsigned CSFPRegsSize = 0; 342 343 for (const auto &I : CSI) { 344 Register Reg = I.getReg(); 345 unsigned RegNum = TRI->getEncodingValue(Reg); 346 347 // If it's a floating point register, set the FPU Bitmask. 348 // If it's a general purpose register, set the CPU Bitmask. 349 if (Mips::FGR32RegClass.contains(Reg)) { 350 FPUBitmask |= (1 << RegNum); 351 CSFPRegsSize += FGR32RegSize; 352 } else if (Mips::AFGR64RegClass.contains(Reg)) { 353 FPUBitmask |= (3 << RegNum); 354 CSFPRegsSize += AFGR64RegSize; 355 HasAFGR64Reg = true; 356 } else if (Mips::GPR32RegClass.contains(Reg)) 357 CPUBitmask |= (1 << RegNum); 358 } 359 360 // FP Regs are saved right below where the virtual frame pointer points to. 361 FPUTopSavedRegOff = FPUBitmask ? 362 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0; 363 364 // CPU Regs are saved below FP Regs. 365 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0; 366 367 MipsTargetStreamer &TS = getTargetStreamer(); 368 // Print CPUBitmask 369 TS.emitMask(CPUBitmask, CPUTopSavedRegOff); 370 371 // Print FPUBitmask 372 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff); 373 } 374 375 //===----------------------------------------------------------------------===// 376 // Frame and Set directives 377 //===----------------------------------------------------------------------===// 378 379 /// Frame Directive 380 void MipsAsmPrinter::emitFrameDirective() { 381 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo(); 382 383 Register stackReg = RI.getFrameRegister(*MF); 384 unsigned returnReg = RI.getRARegister(); 385 unsigned stackSize = MF->getFrameInfo().getStackSize(); 386 387 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg); 388 } 389 390 /// Emit Set directives. 391 const char *MipsAsmPrinter::getCurrentABIString() const { 392 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) { 393 case MipsABIInfo::ABI::O32: return "abi32"; 394 case MipsABIInfo::ABI::N32: return "abiN32"; 395 case MipsABIInfo::ABI::N64: return "abi64"; 396 default: llvm_unreachable("Unknown Mips ABI"); 397 } 398 } 399 400 void MipsAsmPrinter::emitFunctionEntryLabel() { 401 MipsTargetStreamer &TS = getTargetStreamer(); 402 403 // NaCl sandboxing requires that indirect call instructions are masked. 404 // This means that function entry points should be bundle-aligned. 405 if (Subtarget->isTargetNaCl()) 406 emitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN)); 407 408 if (Subtarget->inMicroMipsMode()) { 409 TS.emitDirectiveSetMicroMips(); 410 TS.setUsesMicroMips(); 411 TS.updateABIInfo(*Subtarget); 412 } else 413 TS.emitDirectiveSetNoMicroMips(); 414 415 if (Subtarget->inMips16Mode()) 416 TS.emitDirectiveSetMips16(); 417 else 418 TS.emitDirectiveSetNoMips16(); 419 420 TS.emitDirectiveEnt(*CurrentFnSym); 421 OutStreamer->emitLabel(CurrentFnSym); 422 } 423 424 /// EmitFunctionBodyStart - Targets can override this to emit stuff before 425 /// the first basic block in the function. 426 void MipsAsmPrinter::emitFunctionBodyStart() { 427 MipsTargetStreamer &TS = getTargetStreamer(); 428 429 MCInstLowering.Initialize(&MF->getContext()); 430 431 bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked); 432 if (!IsNakedFunction) 433 emitFrameDirective(); 434 435 if (!IsNakedFunction) 436 printSavedRegsBitmask(); 437 438 if (!Subtarget->inMips16Mode()) { 439 TS.emitDirectiveSetNoReorder(); 440 TS.emitDirectiveSetNoMacro(); 441 TS.emitDirectiveSetNoAt(); 442 } 443 } 444 445 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after 446 /// the last basic block in the function. 447 void MipsAsmPrinter::emitFunctionBodyEnd() { 448 MipsTargetStreamer &TS = getTargetStreamer(); 449 450 // There are instruction for this macros, but they must 451 // always be at the function end, and we can't emit and 452 // break with BB logic. 453 if (!Subtarget->inMips16Mode()) { 454 TS.emitDirectiveSetAt(); 455 TS.emitDirectiveSetMacro(); 456 TS.emitDirectiveSetReorder(); 457 } 458 TS.emitDirectiveEnd(CurrentFnSym->getName()); 459 // Make sure to terminate any constant pools that were at the end 460 // of the function. 461 if (!InConstantPool) 462 return; 463 InConstantPool = false; 464 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 465 } 466 467 void MipsAsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 468 AsmPrinter::emitBasicBlockEnd(MBB); 469 MipsTargetStreamer &TS = getTargetStreamer(); 470 if (MBB.empty()) 471 TS.emitDirectiveInsn(); 472 } 473 474 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 475 /// exactly one predecessor and the control transfer mechanism between 476 /// the predecessor and this block is a fall-through. 477 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock* 478 MBB) const { 479 // The predecessor has to be immediately before this block. 480 const MachineBasicBlock *Pred = *MBB->pred_begin(); 481 482 // If the predecessor is a switch statement, assume a jump table 483 // implementation, so it is not a fall through. 484 if (const BasicBlock *bb = Pred->getBasicBlock()) 485 if (isa<SwitchInst>(bb->getTerminator())) 486 return false; 487 488 // If this is a landing pad, it isn't a fall through. If it has no preds, 489 // then nothing falls through to it. 490 if (MBB->isEHPad() || MBB->pred_empty()) 491 return false; 492 493 // If there isn't exactly one predecessor, it can't be a fall through. 494 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 495 ++PI2; 496 497 if (PI2 != MBB->pred_end()) 498 return false; 499 500 // The predecessor has to be immediately before this block. 501 if (!Pred->isLayoutSuccessor(MBB)) 502 return false; 503 504 // If the block is completely empty, then it definitely does fall through. 505 if (Pred->empty()) 506 return true; 507 508 // Otherwise, check the last instruction. 509 // Check if the last terminator is an unconditional branch. 510 MachineBasicBlock::const_iterator I = Pred->end(); 511 while (I != Pred->begin() && !(--I)->isTerminator()) ; 512 513 return !I->isBarrier(); 514 } 515 516 // Print out an operand for an inline asm expression. 517 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 518 const char *ExtraCode, raw_ostream &O) { 519 // Does this asm operand have a single letter operand modifier? 520 if (ExtraCode && ExtraCode[0]) { 521 if (ExtraCode[1] != 0) return true; // Unknown modifier. 522 523 const MachineOperand &MO = MI->getOperand(OpNum); 524 switch (ExtraCode[0]) { 525 default: 526 // See if this is a generic print operand 527 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 528 case 'X': // hex const int 529 if (!MO.isImm()) 530 return true; 531 O << "0x" << Twine::utohexstr(MO.getImm()); 532 return false; 533 case 'x': // hex const int (low 16 bits) 534 if (!MO.isImm()) 535 return true; 536 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff); 537 return false; 538 case 'd': // decimal const int 539 if (!MO.isImm()) 540 return true; 541 O << MO.getImm(); 542 return false; 543 case 'm': // decimal const int minus 1 544 if (!MO.isImm()) 545 return true; 546 O << MO.getImm() - 1; 547 return false; 548 case 'y': // exact log2 549 if (!MO.isImm()) 550 return true; 551 if (!isPowerOf2_64(MO.getImm())) 552 return true; 553 O << Log2_64(MO.getImm()); 554 return false; 555 case 'z': 556 // $0 if zero, regular printing otherwise 557 if (MO.isImm() && MO.getImm() == 0) { 558 O << "$0"; 559 return false; 560 } 561 // If not, call printOperand as normal. 562 break; 563 case 'D': // Second part of a double word register operand 564 case 'L': // Low order register of a double word register operand 565 case 'M': // High order register of a double word register operand 566 { 567 if (OpNum == 0) 568 return true; 569 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 570 if (!FlagsOP.isImm()) 571 return true; 572 unsigned Flags = FlagsOP.getImm(); 573 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 574 // Number of registers represented by this operand. We are looking 575 // for 2 for 32 bit mode and 1 for 64 bit mode. 576 if (NumVals != 2) { 577 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) { 578 Register Reg = MO.getReg(); 579 O << '$' << MipsInstPrinter::getRegisterName(Reg); 580 return false; 581 } 582 return true; 583 } 584 585 unsigned RegOp = OpNum; 586 if (!Subtarget->isGP64bit()){ 587 // Endianness reverses which register holds the high or low value 588 // between M and L. 589 switch(ExtraCode[0]) { 590 case 'M': 591 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum; 592 break; 593 case 'L': 594 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1; 595 break; 596 case 'D': // Always the second part 597 RegOp = OpNum + 1; 598 } 599 if (RegOp >= MI->getNumOperands()) 600 return true; 601 const MachineOperand &MO = MI->getOperand(RegOp); 602 if (!MO.isReg()) 603 return true; 604 Register Reg = MO.getReg(); 605 O << '$' << MipsInstPrinter::getRegisterName(Reg); 606 return false; 607 } 608 break; 609 } 610 case 'w': 611 // Print MSA registers for the 'f' constraint 612 // In LLVM, the 'w' modifier doesn't need to do anything. 613 // We can just call printOperand as normal. 614 break; 615 } 616 } 617 618 printOperand(MI, OpNum, O); 619 return false; 620 } 621 622 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 623 unsigned OpNum, 624 const char *ExtraCode, 625 raw_ostream &O) { 626 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands"); 627 const MachineOperand &BaseMO = MI->getOperand(OpNum); 628 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1); 629 assert(BaseMO.isReg() && 630 "Unexpected base pointer for inline asm memory operand."); 631 assert(OffsetMO.isImm() && 632 "Unexpected offset for inline asm memory operand."); 633 int Offset = OffsetMO.getImm(); 634 635 // Currently we are expecting either no ExtraCode or 'D','M','L'. 636 if (ExtraCode) { 637 switch (ExtraCode[0]) { 638 case 'D': 639 Offset += 4; 640 break; 641 case 'M': 642 if (Subtarget->isLittle()) 643 Offset += 4; 644 break; 645 case 'L': 646 if (!Subtarget->isLittle()) 647 Offset += 4; 648 break; 649 default: 650 return true; // Unknown modifier. 651 } 652 } 653 654 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) 655 << ")"; 656 657 return false; 658 } 659 660 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum, 661 raw_ostream &O) { 662 const MachineOperand &MO = MI->getOperand(opNum); 663 bool closeP = false; 664 665 if (MO.getTargetFlags()) 666 closeP = true; 667 668 switch(MO.getTargetFlags()) { 669 case MipsII::MO_GPREL: O << "%gp_rel("; break; 670 case MipsII::MO_GOT_CALL: O << "%call16("; break; 671 case MipsII::MO_GOT: O << "%got("; break; 672 case MipsII::MO_ABS_HI: O << "%hi("; break; 673 case MipsII::MO_ABS_LO: O << "%lo("; break; 674 case MipsII::MO_HIGHER: O << "%higher("; break; 675 case MipsII::MO_HIGHEST: O << "%highest(("; break; 676 case MipsII::MO_TLSGD: O << "%tlsgd("; break; 677 case MipsII::MO_GOTTPREL: O << "%gottprel("; break; 678 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break; 679 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break; 680 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break; 681 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break; 682 case MipsII::MO_GOT_DISP: O << "%got_disp("; break; 683 case MipsII::MO_GOT_PAGE: O << "%got_page("; break; 684 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break; 685 } 686 687 switch (MO.getType()) { 688 case MachineOperand::MO_Register: 689 O << '$' 690 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower(); 691 break; 692 693 case MachineOperand::MO_Immediate: 694 O << MO.getImm(); 695 break; 696 697 case MachineOperand::MO_MachineBasicBlock: 698 MO.getMBB()->getSymbol()->print(O, MAI); 699 return; 700 701 case MachineOperand::MO_GlobalAddress: 702 PrintSymbolOperand(MO, O); 703 break; 704 705 case MachineOperand::MO_BlockAddress: { 706 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress()); 707 O << BA->getName(); 708 break; 709 } 710 711 case MachineOperand::MO_ConstantPoolIndex: 712 O << getDataLayout().getPrivateGlobalPrefix() << "CPI" 713 << getFunctionNumber() << "_" << MO.getIndex(); 714 if (MO.getOffset()) 715 O << "+" << MO.getOffset(); 716 break; 717 718 default: 719 llvm_unreachable("<unknown operand type>"); 720 } 721 722 if (closeP) O << ")"; 723 } 724 725 void MipsAsmPrinter:: 726 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) { 727 // Load/Store memory operands -- imm($reg) 728 // If PIC target the target is loaded as the 729 // pattern lw $25,%call16($28) 730 731 // opNum can be invalid if instruction has reglist as operand. 732 // MemOperand is always last operand of instruction (base + offset). 733 switch (MI->getOpcode()) { 734 default: 735 break; 736 case Mips::SWM32_MM: 737 case Mips::LWM32_MM: 738 opNum = MI->getNumOperands() - 2; 739 break; 740 } 741 742 printOperand(MI, opNum+1, O); 743 O << "("; 744 printOperand(MI, opNum, O); 745 O << ")"; 746 } 747 748 void MipsAsmPrinter:: 749 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) { 750 // when using stack locations for not load/store instructions 751 // print the same way as all normal 3 operand instructions. 752 printOperand(MI, opNum, O); 753 O << ", "; 754 printOperand(MI, opNum+1, O); 755 } 756 757 void MipsAsmPrinter:: 758 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O, 759 const char *Modifier) { 760 const MachineOperand &MO = MI->getOperand(opNum); 761 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm()); 762 } 763 764 void MipsAsmPrinter:: 765 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) { 766 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) { 767 if (i != opNum) O << ", "; 768 printOperand(MI, i, O); 769 } 770 } 771 772 void MipsAsmPrinter::emitStartOfAsmFile(Module &M) { 773 MipsTargetStreamer &TS = getTargetStreamer(); 774 775 // MipsTargetStreamer has an initialization order problem when emitting an 776 // object file directly (see MipsTargetELFStreamer for full details). Work 777 // around it by re-initializing the PIC state here. 778 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent()); 779 780 // Compute MIPS architecture attributes based on the default subtarget 781 // that we'd have constructed. Module level directives aren't LTO 782 // clean anyhow. 783 // FIXME: For ifunc related functions we could iterate over and look 784 // for a feature string that doesn't match the default one. 785 const Triple &TT = TM.getTargetTriple(); 786 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU()); 787 StringRef FS = TM.getTargetFeatureString(); 788 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM); 789 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, None); 790 791 bool IsABICalls = STI.isABICalls(); 792 const MipsABIInfo &ABI = MTM.getABI(); 793 if (IsABICalls) { 794 TS.emitDirectiveAbiCalls(); 795 // FIXME: This condition should be a lot more complicated that it is here. 796 // Ideally it should test for properties of the ABI and not the ABI 797 // itself. 798 // For the moment, I'm only correcting enough to make MIPS-IV work. 799 if (!isPositionIndependent() && STI.hasSym32()) 800 TS.emitDirectiveOptionPic0(); 801 } 802 803 // Tell the assembler which ABI we are using 804 std::string SectionName = std::string(".mdebug.") + getCurrentABIString(); 805 OutStreamer->switchSection( 806 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0)); 807 808 // NaN: At the moment we only support: 809 // 1. .nan legacy (default) 810 // 2. .nan 2008 811 STI.isNaN2008() ? TS.emitDirectiveNaN2008() 812 : TS.emitDirectiveNaNLegacy(); 813 814 // TODO: handle O64 ABI 815 816 TS.updateABIInfo(STI); 817 818 // We should always emit a '.module fp=...' but binutils 2.24 does not accept 819 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or 820 // -mfp64) and omit it otherwise. 821 if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) || 822 STI.useSoftFloat()) 823 TS.emitDirectiveModuleFP(); 824 825 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not 826 // accept it. We therefore emit it when it contradicts the default or an 827 // option has changed the default (i.e. FPXX) and omit it otherwise. 828 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX())) 829 TS.emitDirectiveModuleOddSPReg(); 830 831 // Switch to the .text section. 832 OutStreamer->switchSection(getObjFileLowering().getTextSection()); 833 } 834 835 void MipsAsmPrinter::emitInlineAsmStart() const { 836 MipsTargetStreamer &TS = getTargetStreamer(); 837 838 // GCC's choice of assembler options for inline assembly code ('at', 'macro' 839 // and 'reorder') is different from LLVM's choice for generated code ('noat', 840 // 'nomacro' and 'noreorder'). 841 // In order to maintain compatibility with inline assembly code which depends 842 // on GCC's assembler options being used, we have to switch to those options 843 // for the duration of the inline assembly block and then switch back. 844 TS.emitDirectiveSetPush(); 845 TS.emitDirectiveSetAt(); 846 TS.emitDirectiveSetMacro(); 847 TS.emitDirectiveSetReorder(); 848 OutStreamer->addBlankLine(); 849 } 850 851 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 852 const MCSubtargetInfo *EndInfo) const { 853 OutStreamer->addBlankLine(); 854 getTargetStreamer().emitDirectiveSetPop(); 855 } 856 857 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) { 858 MCInst I; 859 I.setOpcode(Mips::JAL); 860 I.addOperand( 861 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext))); 862 OutStreamer->emitInstruction(I, STI); 863 } 864 865 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode, 866 unsigned Reg) { 867 MCInst I; 868 I.setOpcode(Opcode); 869 I.addOperand(MCOperand::createReg(Reg)); 870 OutStreamer->emitInstruction(I, STI); 871 } 872 873 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI, 874 unsigned Opcode, unsigned Reg1, 875 unsigned Reg2) { 876 MCInst I; 877 // 878 // Because of the current td files for Mips32, the operands for MTC1 879 // appear backwards from their normal assembly order. It's not a trivial 880 // change to fix this in the td file so we adjust for it here. 881 // 882 if (Opcode == Mips::MTC1) { 883 unsigned Temp = Reg1; 884 Reg1 = Reg2; 885 Reg2 = Temp; 886 } 887 I.setOpcode(Opcode); 888 I.addOperand(MCOperand::createReg(Reg1)); 889 I.addOperand(MCOperand::createReg(Reg2)); 890 OutStreamer->emitInstruction(I, STI); 891 } 892 893 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI, 894 unsigned Opcode, unsigned Reg1, 895 unsigned Reg2, unsigned Reg3) { 896 MCInst I; 897 I.setOpcode(Opcode); 898 I.addOperand(MCOperand::createReg(Reg1)); 899 I.addOperand(MCOperand::createReg(Reg2)); 900 I.addOperand(MCOperand::createReg(Reg3)); 901 OutStreamer->emitInstruction(I, STI); 902 } 903 904 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI, 905 unsigned MovOpc, unsigned Reg1, 906 unsigned Reg2, unsigned FPReg1, 907 unsigned FPReg2, bool LE) { 908 if (!LE) { 909 unsigned temp = Reg1; 910 Reg1 = Reg2; 911 Reg2 = temp; 912 } 913 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1); 914 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2); 915 } 916 917 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI, 918 Mips16HardFloatInfo::FPParamVariant PV, 919 bool LE, bool ToFP) { 920 using namespace Mips16HardFloatInfo; 921 922 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1; 923 switch (PV) { 924 case FSig: 925 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 926 break; 927 case FFSig: 928 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE); 929 break; 930 case FDSig: 931 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 932 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 933 break; 934 case DSig: 935 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 936 break; 937 case DDSig: 938 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 939 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 940 break; 941 case DFSig: 942 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 943 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14); 944 break; 945 case NoSig: 946 return; 947 } 948 } 949 950 void MipsAsmPrinter::EmitSwapFPIntRetval( 951 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV, 952 bool LE) { 953 using namespace Mips16HardFloatInfo; 954 955 unsigned MovOpc = Mips::MFC1; 956 switch (RV) { 957 case FRet: 958 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0); 959 break; 960 case DRet: 961 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 962 break; 963 case CFRet: 964 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 965 break; 966 case CDRet: 967 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 968 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE); 969 break; 970 case NoFPRet: 971 break; 972 } 973 } 974 975 void MipsAsmPrinter::EmitFPCallStub( 976 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) { 977 using namespace Mips16HardFloatInfo; 978 979 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol)); 980 bool LE = getDataLayout().isLittleEndian(); 981 // Construct a local MCSubtargetInfo here. 982 // This is because the MachineFunction won't exist (but have not yet been 983 // freed) and since we're at the global level we can use the default 984 // constructed subtarget. 985 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 986 TM.getTargetTriple().str(), TM.getTargetCPU(), 987 TM.getTargetFeatureString())); 988 989 // 990 // .global xxxx 991 // 992 OutStreamer->emitSymbolAttribute(MSymbol, MCSA_Global); 993 const char *RetType; 994 // 995 // make the comment field identifying the return and parameter 996 // types of the floating point stub 997 // # Stub function to call rettype xxxx (params) 998 // 999 switch (Signature->RetSig) { 1000 case FRet: 1001 RetType = "float"; 1002 break; 1003 case DRet: 1004 RetType = "double"; 1005 break; 1006 case CFRet: 1007 RetType = "complex"; 1008 break; 1009 case CDRet: 1010 RetType = "double complex"; 1011 break; 1012 case NoFPRet: 1013 RetType = ""; 1014 break; 1015 } 1016 const char *Parms; 1017 switch (Signature->ParamSig) { 1018 case FSig: 1019 Parms = "float"; 1020 break; 1021 case FFSig: 1022 Parms = "float, float"; 1023 break; 1024 case FDSig: 1025 Parms = "float, double"; 1026 break; 1027 case DSig: 1028 Parms = "double"; 1029 break; 1030 case DDSig: 1031 Parms = "double, double"; 1032 break; 1033 case DFSig: 1034 Parms = "double, float"; 1035 break; 1036 case NoSig: 1037 Parms = ""; 1038 break; 1039 } 1040 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " + 1041 Twine(Symbol) + " (" + Twine(Parms) + ")"); 1042 // 1043 // probably not necessary but we save and restore the current section state 1044 // 1045 OutStreamer->pushSection(); 1046 // 1047 // .section mips16.call.fpxxxx,"ax",@progbits 1048 // 1049 MCSectionELF *M = OutContext.getELFSection( 1050 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS, 1051 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR); 1052 OutStreamer->switchSection(M, nullptr); 1053 // 1054 // .align 2 1055 // 1056 OutStreamer->emitValueToAlignment(4); 1057 MipsTargetStreamer &TS = getTargetStreamer(); 1058 // 1059 // .set nomips16 1060 // .set nomicromips 1061 // 1062 TS.emitDirectiveSetNoMips16(); 1063 TS.emitDirectiveSetNoMicroMips(); 1064 // 1065 // .ent __call_stub_fp_xxxx 1066 // .type __call_stub_fp_xxxx,@function 1067 // __call_stub_fp_xxxx: 1068 // 1069 std::string x = "__call_stub_fp_" + std::string(Symbol); 1070 MCSymbolELF *Stub = 1071 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x))); 1072 TS.emitDirectiveEnt(*Stub); 1073 MCSymbol *MType = 1074 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol)); 1075 OutStreamer->emitSymbolAttribute(MType, MCSA_ELF_TypeFunction); 1076 OutStreamer->emitLabel(Stub); 1077 1078 // Only handle non-pic for now. 1079 assert(!isPositionIndependent() && 1080 "should not be here if we are compiling pic"); 1081 TS.emitDirectiveSetReorder(); 1082 // 1083 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement 1084 // stubs without raw text but this current patch is for compiler generated 1085 // functions and they all return some value. 1086 // The calling sequence for non pic is different in that case and we need 1087 // to implement %lo and %hi in order to handle the case of no return value 1088 // See the corresponding method in Mips16HardFloat for details. 1089 // 1090 // mov the return address to S2. 1091 // we have no stack space to store it and we are about to make another call. 1092 // We need to make sure that the enclosing function knows to save S2 1093 // This should have already been handled. 1094 // 1095 // Mov $18, $31 1096 1097 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO); 1098 1099 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true); 1100 1101 // Jal xxxx 1102 // 1103 EmitJal(*STI, MSymbol); 1104 1105 // fix return values 1106 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE); 1107 // 1108 // do the return 1109 // if (Signature->RetSig == NoFPRet) 1110 // llvm_unreachable("should not be any stubs here with no return value"); 1111 // else 1112 EmitInstrReg(*STI, Mips::JR, Mips::S2); 1113 1114 MCSymbol *Tmp = OutContext.createTempSymbol(); 1115 OutStreamer->emitLabel(Tmp); 1116 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext); 1117 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext); 1118 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext); 1119 OutStreamer->emitELFSize(Stub, T_min_E); 1120 TS.emitDirectiveEnd(x); 1121 OutStreamer->popSection(); 1122 } 1123 1124 void MipsAsmPrinter::emitEndOfAsmFile(Module &M) { 1125 // Emit needed stubs 1126 // 1127 for (std::map< 1128 const char *, 1129 const Mips16HardFloatInfo::FuncSignature *>::const_iterator 1130 it = StubsNeeded.begin(); 1131 it != StubsNeeded.end(); ++it) { 1132 const char *Symbol = it->first; 1133 const Mips16HardFloatInfo::FuncSignature *Signature = it->second; 1134 EmitFPCallStub(Symbol, Signature); 1135 } 1136 // return to the text section 1137 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection()); 1138 } 1139 1140 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) { 1141 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11; 1142 // For mips32 we want to emit the following pattern: 1143 // 1144 // .Lxray_sled_N: 1145 // ALIGN 1146 // B .tmpN 1147 // 11 NOP instructions (44 bytes) 1148 // ADDIU T9, T9, 52 1149 // .tmpN 1150 // 1151 // We need the 44 bytes (11 instructions) because at runtime, we'd 1152 // be patching over the full 48 bytes (12 instructions) with the following 1153 // pattern: 1154 // 1155 // ADDIU SP, SP, -8 1156 // NOP 1157 // SW RA, 4(SP) 1158 // SW T9, 0(SP) 1159 // LUI T9, %hi(__xray_FunctionEntry/Exit) 1160 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1161 // LUI T0, %hi(function_id) 1162 // JALR T9 1163 // ORI T0, T0, %lo(function_id) 1164 // LW T9, 0(SP) 1165 // LW RA, 4(SP) 1166 // ADDIU SP, SP, 8 1167 // 1168 // We add 52 bytes to t9 because we want to adjust the function pointer to 1169 // the actual start of function i.e. the address just after the noop sled. 1170 // We do this because gp displacement relocation is emitted at the start of 1171 // of the function i.e after the nop sled and to correctly calculate the 1172 // global offset table address, t9 must hold the address of the instruction 1173 // containing the gp displacement relocation. 1174 // FIXME: Is this correct for the static relocation model? 1175 // 1176 // For mips64 we want to emit the following pattern: 1177 // 1178 // .Lxray_sled_N: 1179 // ALIGN 1180 // B .tmpN 1181 // 15 NOP instructions (60 bytes) 1182 // .tmpN 1183 // 1184 // We need the 60 bytes (15 instructions) because at runtime, we'd 1185 // be patching over the full 64 bytes (16 instructions) with the following 1186 // pattern: 1187 // 1188 // DADDIU SP, SP, -16 1189 // NOP 1190 // SD RA, 8(SP) 1191 // SD T9, 0(SP) 1192 // LUI T9, %highest(__xray_FunctionEntry/Exit) 1193 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit) 1194 // DSLL T9, T9, 16 1195 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit) 1196 // DSLL T9, T9, 16 1197 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1198 // LUI T0, %hi(function_id) 1199 // JALR T9 1200 // ADDIU T0, T0, %lo(function_id) 1201 // LD T9, 0(SP) 1202 // LD RA, 8(SP) 1203 // DADDIU SP, SP, 16 1204 // 1205 OutStreamer->emitCodeAlignment(4, &getSubtargetInfo()); 1206 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 1207 OutStreamer->emitLabel(CurSled); 1208 auto Target = OutContext.createTempSymbol(); 1209 1210 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual 1211 // start of function 1212 const MCExpr *TargetExpr = MCSymbolRefExpr::create( 1213 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext); 1214 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ) 1215 .addReg(Mips::ZERO) 1216 .addReg(Mips::ZERO) 1217 .addExpr(TargetExpr)); 1218 1219 for (int8_t I = 0; I < NoopsInSledCount; I++) 1220 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL) 1221 .addReg(Mips::ZERO) 1222 .addReg(Mips::ZERO) 1223 .addImm(0)); 1224 1225 OutStreamer->emitLabel(Target); 1226 1227 if (!Subtarget->isGP64bit()) { 1228 EmitToStreamer(*OutStreamer, 1229 MCInstBuilder(Mips::ADDiu) 1230 .addReg(Mips::T9) 1231 .addReg(Mips::T9) 1232 .addImm(0x34)); 1233 } 1234 1235 recordSled(CurSled, MI, Kind, 2); 1236 } 1237 1238 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) { 1239 EmitSled(MI, SledKind::FUNCTION_ENTER); 1240 } 1241 1242 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) { 1243 EmitSled(MI, SledKind::FUNCTION_EXIT); 1244 } 1245 1246 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) { 1247 EmitSled(MI, SledKind::TAIL_CALL); 1248 } 1249 1250 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI, 1251 raw_ostream &OS) { 1252 // TODO: implement 1253 } 1254 1255 // Emit .dtprelword or .dtpreldword directive 1256 // and value for debug thread local expression. 1257 void MipsAsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 1258 if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) { 1259 if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) { 1260 switch (Size) { 1261 case 4: 1262 OutStreamer->emitDTPRel32Value(MipsExpr->getSubExpr()); 1263 break; 1264 case 8: 1265 OutStreamer->emitDTPRel64Value(MipsExpr->getSubExpr()); 1266 break; 1267 default: 1268 llvm_unreachable("Unexpected size of expression value."); 1269 } 1270 return; 1271 } 1272 } 1273 AsmPrinter::emitDebugValue(Value, Size); 1274 } 1275 1276 // Align all targets of indirect branches on bundle size. Used only if target 1277 // is NaCl. 1278 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) { 1279 // Align all blocks that are jumped to through jump table. 1280 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) { 1281 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables(); 1282 for (const auto &I : JT) { 1283 const std::vector<MachineBasicBlock *> &MBBs = I.MBBs; 1284 1285 for (MachineBasicBlock *MBB : MBBs) 1286 MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1287 } 1288 } 1289 1290 // If basic block address is taken, block can be target of indirect branch. 1291 for (auto &MBB : MF) { 1292 if (MBB.hasAddressTaken()) 1293 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1294 } 1295 } 1296 1297 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const { 1298 return (Opcode == Mips::LONG_BRANCH_LUi 1299 || Opcode == Mips::LONG_BRANCH_LUi2Op 1300 || Opcode == Mips::LONG_BRANCH_LUi2Op_64 1301 || Opcode == Mips::LONG_BRANCH_ADDiu 1302 || Opcode == Mips::LONG_BRANCH_ADDiu2Op 1303 || Opcode == Mips::LONG_BRANCH_DADDiu 1304 || Opcode == Mips::LONG_BRANCH_DADDiu2Op); 1305 } 1306 1307 // Force static initialization. 1308 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeMipsAsmPrinter() { 1309 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget()); 1310 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget()); 1311 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target()); 1312 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget()); 1313 } 1314