xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsAsmPrinter.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MipsAsmPrinter.h"
15 #include "MCTargetDesc/MipsABIInfo.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsInstPrinter.h"
18 #include "MCTargetDesc/MipsMCNaCl.h"
19 #include "MCTargetDesc/MipsMCTargetDesc.h"
20 #include "Mips.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetStreamer.h"
26 #include "TargetInfo/MipsTargetInfo.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCInst.h"
50 #include "llvm/MC/MCInstBuilder.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCSectionELF.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/MC/MCSymbolELF.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetLoweringObjectFile.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <cstdint>
63 #include <map>
64 #include <memory>
65 #include <string>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "mips-asm-printer"
71 
72 extern cl::opt<bool> EmitJalrReloc;
73 
74 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
75   return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
76 }
77 
78 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
79   Subtarget = &MF.getSubtarget<MipsSubtarget>();
80 
81   MipsFI = MF.getInfo<MipsFunctionInfo>();
82   if (Subtarget->inMips16Mode())
83     for (std::map<
84              const char *,
85              const Mips16HardFloatInfo::FuncSignature *>::const_iterator
86              it = MipsFI->StubsNeeded.begin();
87          it != MipsFI->StubsNeeded.end(); ++it) {
88       const char *Symbol = it->first;
89       const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
90       if (StubsNeeded.find(Symbol) == StubsNeeded.end())
91         StubsNeeded[Symbol] = Signature;
92     }
93   MCP = MF.getConstantPool();
94 
95   // In NaCl, all indirect jump targets must be aligned to bundle size.
96   if (Subtarget->isTargetNaCl())
97     NaClAlignIndirectJumpTargets(MF);
98 
99   AsmPrinter::runOnMachineFunction(MF);
100 
101   emitXRayTable();
102 
103   return true;
104 }
105 
106 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
107   MCOp = MCInstLowering.LowerOperand(MO);
108   return MCOp.isValid();
109 }
110 
111 #include "MipsGenMCPseudoLowering.inc"
112 
113 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
114 // JALR, or JALR64 as appropriate for the target.
115 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
116                                               const MachineInstr *MI) {
117   bool HasLinkReg = false;
118   bool InMicroMipsMode = Subtarget->inMicroMipsMode();
119   MCInst TmpInst0;
120 
121   if (Subtarget->hasMips64r6()) {
122     // MIPS64r6 should use (JALR64 ZERO_64, $rs)
123     TmpInst0.setOpcode(Mips::JALR64);
124     HasLinkReg = true;
125   } else if (Subtarget->hasMips32r6()) {
126     // MIPS32r6 should use (JALR ZERO, $rs)
127     if (InMicroMipsMode)
128       TmpInst0.setOpcode(Mips::JRC16_MMR6);
129     else {
130       TmpInst0.setOpcode(Mips::JALR);
131       HasLinkReg = true;
132     }
133   } else if (Subtarget->inMicroMipsMode())
134     // microMIPS should use (JR_MM $rs)
135     TmpInst0.setOpcode(Mips::JR_MM);
136   else {
137     // Everything else should use (JR $rs)
138     TmpInst0.setOpcode(Mips::JR);
139   }
140 
141   MCOperand MCOp;
142 
143   if (HasLinkReg) {
144     unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
145     TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
146   }
147 
148   lowerOperand(MI->getOperand(0), MCOp);
149   TmpInst0.addOperand(MCOp);
150 
151   EmitToStreamer(OutStreamer, TmpInst0);
152 }
153 
154 // If there is an MO_JALR operand, insert:
155 //
156 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
157 // tmplabel:
158 //
159 // This is an optimization hint for the linker which may then replace
160 // an indirect call with a direct branch.
161 static void emitDirectiveRelocJalr(const MachineInstr &MI,
162                                    MCContext &OutContext,
163                                    TargetMachine &TM,
164                                    MCStreamer &OutStreamer,
165                                    const MipsSubtarget &Subtarget) {
166   for (unsigned int I = MI.getDesc().getNumOperands(), E = MI.getNumOperands();
167        I < E; ++I) {
168     MachineOperand MO = MI.getOperand(I);
169     if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) {
170       MCSymbol *Callee = MO.getMCSymbol();
171       if (Callee && !Callee->getName().empty()) {
172         MCSymbol *OffsetLabel = OutContext.createTempSymbol();
173         const MCExpr *OffsetExpr =
174             MCSymbolRefExpr::create(OffsetLabel, OutContext);
175         const MCExpr *CaleeExpr =
176             MCSymbolRefExpr::create(Callee, OutContext);
177         OutStreamer.EmitRelocDirective
178             (*OffsetExpr,
179              Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
180              CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo());
181         OutStreamer.EmitLabel(OffsetLabel);
182         return;
183       }
184     }
185   }
186 }
187 
188 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
189   MipsTargetStreamer &TS = getTargetStreamer();
190   unsigned Opc = MI->getOpcode();
191   TS.forbidModuleDirective();
192 
193   if (MI->isDebugValue()) {
194     SmallString<128> Str;
195     raw_svector_ostream OS(Str);
196 
197     PrintDebugValueComment(MI, OS);
198     return;
199   }
200   if (MI->isDebugLabel())
201     return;
202 
203   // If we just ended a constant pool, mark it as such.
204   if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) {
205     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
206     InConstantPool = false;
207   }
208   if (Opc == Mips::CONSTPOOL_ENTRY) {
209     // CONSTPOOL_ENTRY - This instruction represents a floating
210     // constant pool in the function.  The first operand is the ID#
211     // for this instruction, the second is the index into the
212     // MachineConstantPool that this is, the third is the size in
213     // bytes of this constant pool entry.
214     // The required alignment is specified on the basic block holding this MI.
215     //
216     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
217     unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
218 
219     // If this is the first entry of the pool, mark it.
220     if (!InConstantPool) {
221       OutStreamer->EmitDataRegion(MCDR_DataRegion);
222       InConstantPool = true;
223     }
224 
225     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
226 
227     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
228     if (MCPE.isMachineConstantPoolEntry())
229       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
230     else
231       EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
232     return;
233   }
234 
235   switch (Opc) {
236   case Mips::PATCHABLE_FUNCTION_ENTER:
237     LowerPATCHABLE_FUNCTION_ENTER(*MI);
238     return;
239   case Mips::PATCHABLE_FUNCTION_EXIT:
240     LowerPATCHABLE_FUNCTION_EXIT(*MI);
241     return;
242   case Mips::PATCHABLE_TAIL_CALL:
243     LowerPATCHABLE_TAIL_CALL(*MI);
244     return;
245   }
246 
247   if (EmitJalrReloc &&
248       (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) {
249     emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget);
250   }
251 
252   MachineBasicBlock::const_instr_iterator I = MI->getIterator();
253   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
254 
255   do {
256     // Do any auto-generated pseudo lowerings.
257     if (emitPseudoExpansionLowering(*OutStreamer, &*I))
258       continue;
259 
260     if (I->getOpcode() == Mips::PseudoReturn ||
261         I->getOpcode() == Mips::PseudoReturn64 ||
262         I->getOpcode() == Mips::PseudoIndirectBranch ||
263         I->getOpcode() == Mips::PseudoIndirectBranch64 ||
264         I->getOpcode() == Mips::TAILCALLREG ||
265         I->getOpcode() == Mips::TAILCALLREG64) {
266       emitPseudoIndirectBranch(*OutStreamer, &*I);
267       continue;
268     }
269 
270     // The inMips16Mode() test is not permanent.
271     // Some instructions are marked as pseudo right now which
272     // would make the test fail for the wrong reason but
273     // that will be fixed soon. We need this here because we are
274     // removing another test for this situation downstream in the
275     // callchain.
276     //
277     if (I->isPseudo() && !Subtarget->inMips16Mode()
278         && !isLongBranchPseudo(I->getOpcode()))
279       llvm_unreachable("Pseudo opcode found in EmitInstruction()");
280 
281     MCInst TmpInst0;
282     MCInstLowering.Lower(&*I, TmpInst0);
283     EmitToStreamer(*OutStreamer, TmpInst0);
284   } while ((++I != E) && I->isInsideBundle()); // Delay slot check
285 }
286 
287 //===----------------------------------------------------------------------===//
288 //
289 //  Mips Asm Directives
290 //
291 //  -- Frame directive "frame Stackpointer, Stacksize, RARegister"
292 //  Describe the stack frame.
293 //
294 //  -- Mask directives "(f)mask  bitmask, offset"
295 //  Tells the assembler which registers are saved and where.
296 //  bitmask - contain a little endian bitset indicating which registers are
297 //            saved on function prologue (e.g. with a 0x80000000 mask, the
298 //            assembler knows the register 31 (RA) is saved at prologue.
299 //  offset  - the position before stack pointer subtraction indicating where
300 //            the first saved register on prologue is located. (e.g. with a
301 //
302 //  Consider the following function prologue:
303 //
304 //    .frame  $fp,48,$ra
305 //    .mask   0xc0000000,-8
306 //       addiu $sp, $sp, -48
307 //       sw $ra, 40($sp)
308 //       sw $fp, 36($sp)
309 //
310 //    With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
311 //    30 (FP) are saved at prologue. As the save order on prologue is from
312 //    left to right, RA is saved first. A -8 offset means that after the
313 //    stack pointer subtration, the first register in the mask (RA) will be
314 //    saved at address 48-8=40.
315 //
316 //===----------------------------------------------------------------------===//
317 
318 //===----------------------------------------------------------------------===//
319 // Mask directives
320 //===----------------------------------------------------------------------===//
321 
322 // Create a bitmask with all callee saved registers for CPU or Floating Point
323 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
324 void MipsAsmPrinter::printSavedRegsBitmask() {
325   // CPU and FPU Saved Registers Bitmasks
326   unsigned CPUBitmask = 0, FPUBitmask = 0;
327   int CPUTopSavedRegOff, FPUTopSavedRegOff;
328 
329   // Set the CPU and FPU Bitmasks
330   const MachineFrameInfo &MFI = MF->getFrameInfo();
331   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
332   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
333   // size of stack area to which FP callee-saved regs are saved.
334   unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8;
335   unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8;
336   unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8;
337   bool HasAFGR64Reg = false;
338   unsigned CSFPRegsSize = 0;
339 
340   for (const auto &I : CSI) {
341     unsigned Reg = I.getReg();
342     unsigned RegNum = TRI->getEncodingValue(Reg);
343 
344     // If it's a floating point register, set the FPU Bitmask.
345     // If it's a general purpose register, set the CPU Bitmask.
346     if (Mips::FGR32RegClass.contains(Reg)) {
347       FPUBitmask |= (1 << RegNum);
348       CSFPRegsSize += FGR32RegSize;
349     } else if (Mips::AFGR64RegClass.contains(Reg)) {
350       FPUBitmask |= (3 << RegNum);
351       CSFPRegsSize += AFGR64RegSize;
352       HasAFGR64Reg = true;
353     } else if (Mips::GPR32RegClass.contains(Reg))
354       CPUBitmask |= (1 << RegNum);
355   }
356 
357   // FP Regs are saved right below where the virtual frame pointer points to.
358   FPUTopSavedRegOff = FPUBitmask ?
359     (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
360 
361   // CPU Regs are saved below FP Regs.
362   CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
363 
364   MipsTargetStreamer &TS = getTargetStreamer();
365   // Print CPUBitmask
366   TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
367 
368   // Print FPUBitmask
369   TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
370 }
371 
372 //===----------------------------------------------------------------------===//
373 // Frame and Set directives
374 //===----------------------------------------------------------------------===//
375 
376 /// Frame Directive
377 void MipsAsmPrinter::emitFrameDirective() {
378   const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
379 
380   Register stackReg = RI.getFrameRegister(*MF);
381   unsigned returnReg = RI.getRARegister();
382   unsigned stackSize = MF->getFrameInfo().getStackSize();
383 
384   getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
385 }
386 
387 /// Emit Set directives.
388 const char *MipsAsmPrinter::getCurrentABIString() const {
389   switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
390   case MipsABIInfo::ABI::O32:  return "abi32";
391   case MipsABIInfo::ABI::N32:  return "abiN32";
392   case MipsABIInfo::ABI::N64:  return "abi64";
393   default: llvm_unreachable("Unknown Mips ABI");
394   }
395 }
396 
397 void MipsAsmPrinter::EmitFunctionEntryLabel() {
398   MipsTargetStreamer &TS = getTargetStreamer();
399 
400   // NaCl sandboxing requires that indirect call instructions are masked.
401   // This means that function entry points should be bundle-aligned.
402   if (Subtarget->isTargetNaCl())
403     EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
404 
405   if (Subtarget->inMicroMipsMode()) {
406     TS.emitDirectiveSetMicroMips();
407     TS.setUsesMicroMips();
408     TS.updateABIInfo(*Subtarget);
409   } else
410     TS.emitDirectiveSetNoMicroMips();
411 
412   if (Subtarget->inMips16Mode())
413     TS.emitDirectiveSetMips16();
414   else
415     TS.emitDirectiveSetNoMips16();
416 
417   TS.emitDirectiveEnt(*CurrentFnSym);
418   OutStreamer->EmitLabel(CurrentFnSym);
419 }
420 
421 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
422 /// the first basic block in the function.
423 void MipsAsmPrinter::EmitFunctionBodyStart() {
424   MipsTargetStreamer &TS = getTargetStreamer();
425 
426   MCInstLowering.Initialize(&MF->getContext());
427 
428   bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked);
429   if (!IsNakedFunction)
430     emitFrameDirective();
431 
432   if (!IsNakedFunction)
433     printSavedRegsBitmask();
434 
435   if (!Subtarget->inMips16Mode()) {
436     TS.emitDirectiveSetNoReorder();
437     TS.emitDirectiveSetNoMacro();
438     TS.emitDirectiveSetNoAt();
439   }
440 }
441 
442 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
443 /// the last basic block in the function.
444 void MipsAsmPrinter::EmitFunctionBodyEnd() {
445   MipsTargetStreamer &TS = getTargetStreamer();
446 
447   // There are instruction for this macros, but they must
448   // always be at the function end, and we can't emit and
449   // break with BB logic.
450   if (!Subtarget->inMips16Mode()) {
451     TS.emitDirectiveSetAt();
452     TS.emitDirectiveSetMacro();
453     TS.emitDirectiveSetReorder();
454   }
455   TS.emitDirectiveEnd(CurrentFnSym->getName());
456   // Make sure to terminate any constant pools that were at the end
457   // of the function.
458   if (!InConstantPool)
459     return;
460   InConstantPool = false;
461   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
462 }
463 
464 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
465   AsmPrinter::EmitBasicBlockEnd(MBB);
466   MipsTargetStreamer &TS = getTargetStreamer();
467   if (MBB.empty())
468     TS.emitDirectiveInsn();
469 }
470 
471 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
472 /// exactly one predecessor and the control transfer mechanism between
473 /// the predecessor and this block is a fall-through.
474 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
475                                                        MBB) const {
476   // The predecessor has to be immediately before this block.
477   const MachineBasicBlock *Pred = *MBB->pred_begin();
478 
479   // If the predecessor is a switch statement, assume a jump table
480   // implementation, so it is not a fall through.
481   if (const BasicBlock *bb = Pred->getBasicBlock())
482     if (isa<SwitchInst>(bb->getTerminator()))
483       return false;
484 
485   // If this is a landing pad, it isn't a fall through.  If it has no preds,
486   // then nothing falls through to it.
487   if (MBB->isEHPad() || MBB->pred_empty())
488     return false;
489 
490   // If there isn't exactly one predecessor, it can't be a fall through.
491   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
492   ++PI2;
493 
494   if (PI2 != MBB->pred_end())
495     return false;
496 
497   // The predecessor has to be immediately before this block.
498   if (!Pred->isLayoutSuccessor(MBB))
499     return false;
500 
501   // If the block is completely empty, then it definitely does fall through.
502   if (Pred->empty())
503     return true;
504 
505   // Otherwise, check the last instruction.
506   // Check if the last terminator is an unconditional branch.
507   MachineBasicBlock::const_iterator I = Pred->end();
508   while (I != Pred->begin() && !(--I)->isTerminator()) ;
509 
510   return !I->isBarrier();
511 }
512 
513 // Print out an operand for an inline asm expression.
514 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
515                                      const char *ExtraCode, raw_ostream &O) {
516   // Does this asm operand have a single letter operand modifier?
517   if (ExtraCode && ExtraCode[0]) {
518     if (ExtraCode[1] != 0) return true; // Unknown modifier.
519 
520     const MachineOperand &MO = MI->getOperand(OpNum);
521     switch (ExtraCode[0]) {
522     default:
523       // See if this is a generic print operand
524       return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
525     case 'X': // hex const int
526       if ((MO.getType()) != MachineOperand::MO_Immediate)
527         return true;
528       O << "0x" << Twine::utohexstr(MO.getImm());
529       return false;
530     case 'x': // hex const int (low 16 bits)
531       if ((MO.getType()) != MachineOperand::MO_Immediate)
532         return true;
533       O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
534       return false;
535     case 'd': // decimal const int
536       if ((MO.getType()) != MachineOperand::MO_Immediate)
537         return true;
538       O << MO.getImm();
539       return false;
540     case 'm': // decimal const int minus 1
541       if ((MO.getType()) != MachineOperand::MO_Immediate)
542         return true;
543       O << MO.getImm() - 1;
544       return false;
545     case 'y': // exact log2
546       if ((MO.getType()) != MachineOperand::MO_Immediate)
547         return true;
548       if (!isPowerOf2_64(MO.getImm()))
549         return true;
550       O << Log2_64(MO.getImm());
551       return false;
552     case 'z':
553       // $0 if zero, regular printing otherwise
554       if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
555         O << "$0";
556         return false;
557       }
558       // If not, call printOperand as normal.
559       break;
560     case 'D': // Second part of a double word register operand
561     case 'L': // Low order register of a double word register operand
562     case 'M': // High order register of a double word register operand
563     {
564       if (OpNum == 0)
565         return true;
566       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
567       if (!FlagsOP.isImm())
568         return true;
569       unsigned Flags = FlagsOP.getImm();
570       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
571       // Number of registers represented by this operand. We are looking
572       // for 2 for 32 bit mode and 1 for 64 bit mode.
573       if (NumVals != 2) {
574         if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
575           Register Reg = MO.getReg();
576           O << '$' << MipsInstPrinter::getRegisterName(Reg);
577           return false;
578         }
579         return true;
580       }
581 
582       unsigned RegOp = OpNum;
583       if (!Subtarget->isGP64bit()){
584         // Endianness reverses which register holds the high or low value
585         // between M and L.
586         switch(ExtraCode[0]) {
587         case 'M':
588           RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
589           break;
590         case 'L':
591           RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
592           break;
593         case 'D': // Always the second part
594           RegOp = OpNum + 1;
595         }
596         if (RegOp >= MI->getNumOperands())
597           return true;
598         const MachineOperand &MO = MI->getOperand(RegOp);
599         if (!MO.isReg())
600           return true;
601         Register Reg = MO.getReg();
602         O << '$' << MipsInstPrinter::getRegisterName(Reg);
603         return false;
604       }
605       break;
606     }
607     case 'w':
608       // Print MSA registers for the 'f' constraint
609       // In LLVM, the 'w' modifier doesn't need to do anything.
610       // We can just call printOperand as normal.
611       break;
612     }
613   }
614 
615   printOperand(MI, OpNum, O);
616   return false;
617 }
618 
619 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
620                                            unsigned OpNum,
621                                            const char *ExtraCode,
622                                            raw_ostream &O) {
623   assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
624   const MachineOperand &BaseMO = MI->getOperand(OpNum);
625   const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
626   assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand.");
627   assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand.");
628   int Offset = OffsetMO.getImm();
629 
630   // Currently we are expecting either no ExtraCode or 'D','M','L'.
631   if (ExtraCode) {
632     switch (ExtraCode[0]) {
633     case 'D':
634       Offset += 4;
635       break;
636     case 'M':
637       if (Subtarget->isLittle())
638         Offset += 4;
639       break;
640     case 'L':
641       if (!Subtarget->isLittle())
642         Offset += 4;
643       break;
644     default:
645       return true; // Unknown modifier.
646     }
647   }
648 
649   O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg())
650     << ")";
651 
652   return false;
653 }
654 
655 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
656                                   raw_ostream &O) {
657   const MachineOperand &MO = MI->getOperand(opNum);
658   bool closeP = false;
659 
660   if (MO.getTargetFlags())
661     closeP = true;
662 
663   switch(MO.getTargetFlags()) {
664   case MipsII::MO_GPREL:    O << "%gp_rel("; break;
665   case MipsII::MO_GOT_CALL: O << "%call16("; break;
666   case MipsII::MO_GOT:      O << "%got(";    break;
667   case MipsII::MO_ABS_HI:   O << "%hi(";     break;
668   case MipsII::MO_ABS_LO:   O << "%lo(";     break;
669   case MipsII::MO_HIGHER:   O << "%higher("; break;
670   case MipsII::MO_HIGHEST:  O << "%highest(("; break;
671   case MipsII::MO_TLSGD:    O << "%tlsgd(";  break;
672   case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
673   case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
674   case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
675   case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
676   case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
677   case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
678   case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
679   case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
680   }
681 
682   switch (MO.getType()) {
683     case MachineOperand::MO_Register:
684       O << '$'
685         << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
686       break;
687 
688     case MachineOperand::MO_Immediate:
689       O << MO.getImm();
690       break;
691 
692     case MachineOperand::MO_MachineBasicBlock:
693       MO.getMBB()->getSymbol()->print(O, MAI);
694       return;
695 
696     case MachineOperand::MO_GlobalAddress:
697       PrintSymbolOperand(MO, O);
698       break;
699 
700     case MachineOperand::MO_BlockAddress: {
701       MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
702       O << BA->getName();
703       break;
704     }
705 
706     case MachineOperand::MO_ConstantPoolIndex:
707       O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
708         << getFunctionNumber() << "_" << MO.getIndex();
709       if (MO.getOffset())
710         O << "+" << MO.getOffset();
711       break;
712 
713     default:
714       llvm_unreachable("<unknown operand type>");
715   }
716 
717   if (closeP) O << ")";
718 }
719 
720 void MipsAsmPrinter::
721 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
722   // Load/Store memory operands -- imm($reg)
723   // If PIC target the target is loaded as the
724   // pattern lw $25,%call16($28)
725 
726   // opNum can be invalid if instruction has reglist as operand.
727   // MemOperand is always last operand of instruction (base + offset).
728   switch (MI->getOpcode()) {
729   default:
730     break;
731   case Mips::SWM32_MM:
732   case Mips::LWM32_MM:
733     opNum = MI->getNumOperands() - 2;
734     break;
735   }
736 
737   printOperand(MI, opNum+1, O);
738   O << "(";
739   printOperand(MI, opNum, O);
740   O << ")";
741 }
742 
743 void MipsAsmPrinter::
744 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
745   // when using stack locations for not load/store instructions
746   // print the same way as all normal 3 operand instructions.
747   printOperand(MI, opNum, O);
748   O << ", ";
749   printOperand(MI, opNum+1, O);
750 }
751 
752 void MipsAsmPrinter::
753 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
754                 const char *Modifier) {
755   const MachineOperand &MO = MI->getOperand(opNum);
756   O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
757 }
758 
759 void MipsAsmPrinter::
760 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
761   for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
762     if (i != opNum) O << ", ";
763     printOperand(MI, i, O);
764   }
765 }
766 
767 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
768   MipsTargetStreamer &TS = getTargetStreamer();
769 
770   // MipsTargetStreamer has an initialization order problem when emitting an
771   // object file directly (see MipsTargetELFStreamer for full details). Work
772   // around it by re-initializing the PIC state here.
773   TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());
774 
775   // Compute MIPS architecture attributes based on the default subtarget
776   // that we'd have constructed. Module level directives aren't LTO
777   // clean anyhow.
778   // FIXME: For ifunc related functions we could iterate over and look
779   // for a feature string that doesn't match the default one.
780   const Triple &TT = TM.getTargetTriple();
781   StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
782   StringRef FS = TM.getTargetFeatureString();
783   const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
784   const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, None);
785 
786   bool IsABICalls = STI.isABICalls();
787   const MipsABIInfo &ABI = MTM.getABI();
788   if (IsABICalls) {
789     TS.emitDirectiveAbiCalls();
790     // FIXME: This condition should be a lot more complicated that it is here.
791     //        Ideally it should test for properties of the ABI and not the ABI
792     //        itself.
793     //        For the moment, I'm only correcting enough to make MIPS-IV work.
794     if (!isPositionIndependent() && STI.hasSym32())
795       TS.emitDirectiveOptionPic0();
796   }
797 
798   // Tell the assembler which ABI we are using
799   std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
800   OutStreamer->SwitchSection(
801       OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
802 
803   // NaN: At the moment we only support:
804   // 1. .nan legacy (default)
805   // 2. .nan 2008
806   STI.isNaN2008() ? TS.emitDirectiveNaN2008()
807                   : TS.emitDirectiveNaNLegacy();
808 
809   // TODO: handle O64 ABI
810 
811   TS.updateABIInfo(STI);
812 
813   // We should always emit a '.module fp=...' but binutils 2.24 does not accept
814   // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
815   // -mfp64) and omit it otherwise.
816   if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) ||
817       STI.useSoftFloat())
818     TS.emitDirectiveModuleFP();
819 
820   // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
821   // accept it. We therefore emit it when it contradicts the default or an
822   // option has changed the default (i.e. FPXX) and omit it otherwise.
823   if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
824     TS.emitDirectiveModuleOddSPReg();
825 
826   // Switch to the .text section.
827   OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
828 }
829 
830 void MipsAsmPrinter::emitInlineAsmStart() const {
831   MipsTargetStreamer &TS = getTargetStreamer();
832 
833   // GCC's choice of assembler options for inline assembly code ('at', 'macro'
834   // and 'reorder') is different from LLVM's choice for generated code ('noat',
835   // 'nomacro' and 'noreorder').
836   // In order to maintain compatibility with inline assembly code which depends
837   // on GCC's assembler options being used, we have to switch to those options
838   // for the duration of the inline assembly block and then switch back.
839   TS.emitDirectiveSetPush();
840   TS.emitDirectiveSetAt();
841   TS.emitDirectiveSetMacro();
842   TS.emitDirectiveSetReorder();
843   OutStreamer->AddBlankLine();
844 }
845 
846 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
847                                       const MCSubtargetInfo *EndInfo) const {
848   OutStreamer->AddBlankLine();
849   getTargetStreamer().emitDirectiveSetPop();
850 }
851 
852 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
853   MCInst I;
854   I.setOpcode(Mips::JAL);
855   I.addOperand(
856       MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
857   OutStreamer->EmitInstruction(I, STI);
858 }
859 
860 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
861                                   unsigned Reg) {
862   MCInst I;
863   I.setOpcode(Opcode);
864   I.addOperand(MCOperand::createReg(Reg));
865   OutStreamer->EmitInstruction(I, STI);
866 }
867 
868 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
869                                      unsigned Opcode, unsigned Reg1,
870                                      unsigned Reg2) {
871   MCInst I;
872   //
873   // Because of the current td files for Mips32, the operands for MTC1
874   // appear backwards from their normal assembly order. It's not a trivial
875   // change to fix this in the td file so we adjust for it here.
876   //
877   if (Opcode == Mips::MTC1) {
878     unsigned Temp = Reg1;
879     Reg1 = Reg2;
880     Reg2 = Temp;
881   }
882   I.setOpcode(Opcode);
883   I.addOperand(MCOperand::createReg(Reg1));
884   I.addOperand(MCOperand::createReg(Reg2));
885   OutStreamer->EmitInstruction(I, STI);
886 }
887 
888 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
889                                         unsigned Opcode, unsigned Reg1,
890                                         unsigned Reg2, unsigned Reg3) {
891   MCInst I;
892   I.setOpcode(Opcode);
893   I.addOperand(MCOperand::createReg(Reg1));
894   I.addOperand(MCOperand::createReg(Reg2));
895   I.addOperand(MCOperand::createReg(Reg3));
896   OutStreamer->EmitInstruction(I, STI);
897 }
898 
899 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
900                                       unsigned MovOpc, unsigned Reg1,
901                                       unsigned Reg2, unsigned FPReg1,
902                                       unsigned FPReg2, bool LE) {
903   if (!LE) {
904     unsigned temp = Reg1;
905     Reg1 = Reg2;
906     Reg2 = temp;
907   }
908   EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
909   EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
910 }
911 
912 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
913                                          Mips16HardFloatInfo::FPParamVariant PV,
914                                          bool LE, bool ToFP) {
915   using namespace Mips16HardFloatInfo;
916 
917   unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
918   switch (PV) {
919   case FSig:
920     EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
921     break;
922   case FFSig:
923     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
924     break;
925   case FDSig:
926     EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
927     EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
928     break;
929   case DSig:
930     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
931     break;
932   case DDSig:
933     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
934     EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
935     break;
936   case DFSig:
937     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
938     EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
939     break;
940   case NoSig:
941     return;
942   }
943 }
944 
945 void MipsAsmPrinter::EmitSwapFPIntRetval(
946     const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
947     bool LE) {
948   using namespace Mips16HardFloatInfo;
949 
950   unsigned MovOpc = Mips::MFC1;
951   switch (RV) {
952   case FRet:
953     EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
954     break;
955   case DRet:
956     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
957     break;
958   case CFRet:
959     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
960     break;
961   case CDRet:
962     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
963     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
964     break;
965   case NoFPRet:
966     break;
967   }
968 }
969 
970 void MipsAsmPrinter::EmitFPCallStub(
971     const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
972   using namespace Mips16HardFloatInfo;
973 
974   MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
975   bool LE = getDataLayout().isLittleEndian();
976   // Construct a local MCSubtargetInfo here.
977   // This is because the MachineFunction won't exist (but have not yet been
978   // freed) and since we're at the global level we can use the default
979   // constructed subtarget.
980   std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
981       TM.getTargetTriple().str(), TM.getTargetCPU(),
982       TM.getTargetFeatureString()));
983 
984   //
985   // .global xxxx
986   //
987   OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global);
988   const char *RetType;
989   //
990   // make the comment field identifying the return and parameter
991   // types of the floating point stub
992   // # Stub function to call rettype xxxx (params)
993   //
994   switch (Signature->RetSig) {
995   case FRet:
996     RetType = "float";
997     break;
998   case DRet:
999     RetType = "double";
1000     break;
1001   case CFRet:
1002     RetType = "complex";
1003     break;
1004   case CDRet:
1005     RetType = "double complex";
1006     break;
1007   case NoFPRet:
1008     RetType = "";
1009     break;
1010   }
1011   const char *Parms;
1012   switch (Signature->ParamSig) {
1013   case FSig:
1014     Parms = "float";
1015     break;
1016   case FFSig:
1017     Parms = "float, float";
1018     break;
1019   case FDSig:
1020     Parms = "float, double";
1021     break;
1022   case DSig:
1023     Parms = "double";
1024     break;
1025   case DDSig:
1026     Parms = "double, double";
1027     break;
1028   case DFSig:
1029     Parms = "double, float";
1030     break;
1031   case NoSig:
1032     Parms = "";
1033     break;
1034   }
1035   OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
1036                           Twine(Symbol) + " (" + Twine(Parms) + ")");
1037   //
1038   // probably not necessary but we save and restore the current section state
1039   //
1040   OutStreamer->PushSection();
1041   //
1042   // .section mips16.call.fpxxxx,"ax",@progbits
1043   //
1044   MCSectionELF *M = OutContext.getELFSection(
1045       ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
1046       ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
1047   OutStreamer->SwitchSection(M, nullptr);
1048   //
1049   // .align 2
1050   //
1051   OutStreamer->EmitValueToAlignment(4);
1052   MipsTargetStreamer &TS = getTargetStreamer();
1053   //
1054   // .set nomips16
1055   // .set nomicromips
1056   //
1057   TS.emitDirectiveSetNoMips16();
1058   TS.emitDirectiveSetNoMicroMips();
1059   //
1060   // .ent __call_stub_fp_xxxx
1061   // .type  __call_stub_fp_xxxx,@function
1062   //  __call_stub_fp_xxxx:
1063   //
1064   std::string x = "__call_stub_fp_" + std::string(Symbol);
1065   MCSymbolELF *Stub =
1066       cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
1067   TS.emitDirectiveEnt(*Stub);
1068   MCSymbol *MType =
1069       OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
1070   OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
1071   OutStreamer->EmitLabel(Stub);
1072 
1073   // Only handle non-pic for now.
1074   assert(!isPositionIndependent() &&
1075          "should not be here if we are compiling pic");
1076   TS.emitDirectiveSetReorder();
1077   //
1078   // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1079   // stubs without raw text but this current patch is for compiler generated
1080   // functions and they all return some value.
1081   // The calling sequence for non pic is different in that case and we need
1082   // to implement %lo and %hi in order to handle the case of no return value
1083   // See the corresponding method in Mips16HardFloat for details.
1084   //
1085   // mov the return address to S2.
1086   // we have no stack space to store it and we are about to make another call.
1087   // We need to make sure that the enclosing function knows to save S2
1088   // This should have already been handled.
1089   //
1090   // Mov $18, $31
1091 
1092   EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
1093 
1094   EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1095 
1096   // Jal xxxx
1097   //
1098   EmitJal(*STI, MSymbol);
1099 
1100   // fix return values
1101   EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1102   //
1103   // do the return
1104   // if (Signature->RetSig == NoFPRet)
1105   //  llvm_unreachable("should not be any stubs here with no return value");
1106   // else
1107   EmitInstrReg(*STI, Mips::JR, Mips::S2);
1108 
1109   MCSymbol *Tmp = OutContext.createTempSymbol();
1110   OutStreamer->EmitLabel(Tmp);
1111   const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1112   const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1113   const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1114   OutStreamer->emitELFSize(Stub, T_min_E);
1115   TS.emitDirectiveEnd(x);
1116   OutStreamer->PopSection();
1117 }
1118 
1119 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
1120   // Emit needed stubs
1121   //
1122   for (std::map<
1123            const char *,
1124            const Mips16HardFloatInfo::FuncSignature *>::const_iterator
1125            it = StubsNeeded.begin();
1126        it != StubsNeeded.end(); ++it) {
1127     const char *Symbol = it->first;
1128     const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1129     EmitFPCallStub(Symbol, Signature);
1130   }
1131   // return to the text section
1132   OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1133 }
1134 
1135 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) {
1136   const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11;
1137   // For mips32 we want to emit the following pattern:
1138   //
1139   // .Lxray_sled_N:
1140   //   ALIGN
1141   //   B .tmpN
1142   //   11 NOP instructions (44 bytes)
1143   //   ADDIU T9, T9, 52
1144   // .tmpN
1145   //
1146   // We need the 44 bytes (11 instructions) because at runtime, we'd
1147   // be patching over the full 48 bytes (12 instructions) with the following
1148   // pattern:
1149   //
1150   //   ADDIU    SP, SP, -8
1151   //   NOP
1152   //   SW       RA, 4(SP)
1153   //   SW       T9, 0(SP)
1154   //   LUI      T9, %hi(__xray_FunctionEntry/Exit)
1155   //   ORI      T9, T9, %lo(__xray_FunctionEntry/Exit)
1156   //   LUI      T0, %hi(function_id)
1157   //   JALR     T9
1158   //   ORI      T0, T0, %lo(function_id)
1159   //   LW       T9, 0(SP)
1160   //   LW       RA, 4(SP)
1161   //   ADDIU    SP, SP, 8
1162   //
1163   // We add 52 bytes to t9 because we want to adjust the function pointer to
1164   // the actual start of function i.e. the address just after the noop sled.
1165   // We do this because gp displacement relocation is emitted at the start of
1166   // of the function i.e after the nop sled and to correctly calculate the
1167   // global offset table address, t9 must hold the address of the instruction
1168   // containing the gp displacement relocation.
1169   // FIXME: Is this correct for the static relocation model?
1170   //
1171   // For mips64 we want to emit the following pattern:
1172   //
1173   // .Lxray_sled_N:
1174   //   ALIGN
1175   //   B .tmpN
1176   //   15 NOP instructions (60 bytes)
1177   // .tmpN
1178   //
1179   // We need the 60 bytes (15 instructions) because at runtime, we'd
1180   // be patching over the full 64 bytes (16 instructions) with the following
1181   // pattern:
1182   //
1183   //   DADDIU   SP, SP, -16
1184   //   NOP
1185   //   SD       RA, 8(SP)
1186   //   SD       T9, 0(SP)
1187   //   LUI      T9, %highest(__xray_FunctionEntry/Exit)
1188   //   ORI      T9, T9, %higher(__xray_FunctionEntry/Exit)
1189   //   DSLL     T9, T9, 16
1190   //   ORI      T9, T9, %hi(__xray_FunctionEntry/Exit)
1191   //   DSLL     T9, T9, 16
1192   //   ORI      T9, T9, %lo(__xray_FunctionEntry/Exit)
1193   //   LUI      T0, %hi(function_id)
1194   //   JALR     T9
1195   //   ADDIU    T0, T0, %lo(function_id)
1196   //   LD       T9, 0(SP)
1197   //   LD       RA, 8(SP)
1198   //   DADDIU   SP, SP, 16
1199   //
1200   OutStreamer->EmitCodeAlignment(4);
1201   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1202   OutStreamer->EmitLabel(CurSled);
1203   auto Target = OutContext.createTempSymbol();
1204 
1205   // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1206   // start of function
1207   const MCExpr *TargetExpr = MCSymbolRefExpr::create(
1208       Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
1209   EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ)
1210                                    .addReg(Mips::ZERO)
1211                                    .addReg(Mips::ZERO)
1212                                    .addExpr(TargetExpr));
1213 
1214   for (int8_t I = 0; I < NoopsInSledCount; I++)
1215     EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL)
1216                                      .addReg(Mips::ZERO)
1217                                      .addReg(Mips::ZERO)
1218                                      .addImm(0));
1219 
1220   OutStreamer->EmitLabel(Target);
1221 
1222   if (!Subtarget->isGP64bit()) {
1223     EmitToStreamer(*OutStreamer,
1224                    MCInstBuilder(Mips::ADDiu)
1225                        .addReg(Mips::T9)
1226                        .addReg(Mips::T9)
1227                        .addImm(0x34));
1228   }
1229 
1230   recordSled(CurSled, MI, Kind);
1231 }
1232 
1233 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) {
1234   EmitSled(MI, SledKind::FUNCTION_ENTER);
1235 }
1236 
1237 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
1238   EmitSled(MI, SledKind::FUNCTION_EXIT);
1239 }
1240 
1241 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
1242   EmitSled(MI, SledKind::TAIL_CALL);
1243 }
1244 
1245 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1246                                            raw_ostream &OS) {
1247   // TODO: implement
1248 }
1249 
1250 // Emit .dtprelword or .dtpreldword directive
1251 // and value for debug thread local expression.
1252 void MipsAsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
1253   if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) {
1254     if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) {
1255       switch (Size) {
1256       case 4:
1257         OutStreamer->EmitDTPRel32Value(MipsExpr->getSubExpr());
1258         break;
1259       case 8:
1260         OutStreamer->EmitDTPRel64Value(MipsExpr->getSubExpr());
1261         break;
1262       default:
1263         llvm_unreachable("Unexpected size of expression value.");
1264       }
1265       return;
1266     }
1267   }
1268   AsmPrinter::EmitDebugValue(Value, Size);
1269 }
1270 
1271 // Align all targets of indirect branches on bundle size.  Used only if target
1272 // is NaCl.
1273 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1274   // Align all blocks that are jumped to through jump table.
1275   if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1276     const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1277     for (unsigned I = 0; I < JT.size(); ++I) {
1278       const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
1279 
1280       for (unsigned J = 0; J < MBBs.size(); ++J)
1281         MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1282     }
1283   }
1284 
1285   // If basic block address is taken, block can be target of indirect branch.
1286   for (auto &MBB : MF) {
1287     if (MBB.hasAddressTaken())
1288       MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1289   }
1290 }
1291 
1292 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1293   return (Opcode == Mips::LONG_BRANCH_LUi
1294           || Opcode == Mips::LONG_BRANCH_LUi2Op
1295           || Opcode == Mips::LONG_BRANCH_LUi2Op_64
1296           || Opcode == Mips::LONG_BRANCH_ADDiu
1297           || Opcode == Mips::LONG_BRANCH_ADDiu2Op
1298           || Opcode == Mips::LONG_BRANCH_DADDiu
1299           || Opcode == Mips::LONG_BRANCH_DADDiu2Op);
1300 }
1301 
1302 // Force static initialization.
1303 extern "C" void LLVMInitializeMipsAsmPrinter() {
1304   RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget());
1305   RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget());
1306   RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target());
1307   RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget());
1308 }
1309