xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsAsmPrinter.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MipsAsmPrinter.h"
15 #include "MCTargetDesc/MipsABIInfo.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsInstPrinter.h"
18 #include "MCTargetDesc/MipsMCNaCl.h"
19 #include "MCTargetDesc/MipsMCTargetDesc.h"
20 #include "Mips.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetStreamer.h"
26 #include "TargetInfo/MipsTargetInfo.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCInst.h"
50 #include "llvm/MC/MCInstBuilder.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCSectionELF.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/MC/MCSymbolELF.h"
55 #include "llvm/MC/TargetRegistry.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetLoweringObjectFile.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <cstdint>
63 #include <map>
64 #include <memory>
65 #include <string>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "mips-asm-printer"
71 
72 extern cl::opt<bool> EmitJalrReloc;
73 
74 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
75   return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
76 }
77 
78 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
79   Subtarget = &MF.getSubtarget<MipsSubtarget>();
80 
81   MipsFI = MF.getInfo<MipsFunctionInfo>();
82   if (Subtarget->inMips16Mode())
83     for (const auto &I : MipsFI->StubsNeeded) {
84       const char *Symbol = I.first;
85       const Mips16HardFloatInfo::FuncSignature *Signature = I.second;
86       if (StubsNeeded.find(Symbol) == StubsNeeded.end())
87         StubsNeeded[Symbol] = Signature;
88     }
89   MCP = MF.getConstantPool();
90 
91   // In NaCl, all indirect jump targets must be aligned to bundle size.
92   if (Subtarget->isTargetNaCl())
93     NaClAlignIndirectJumpTargets(MF);
94 
95   AsmPrinter::runOnMachineFunction(MF);
96 
97   emitXRayTable();
98 
99   return true;
100 }
101 
102 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
103   MCOp = MCInstLowering.LowerOperand(MO);
104   return MCOp.isValid();
105 }
106 
107 #include "MipsGenMCPseudoLowering.inc"
108 
109 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
110 // JALR, or JALR64 as appropriate for the target.
111 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
112                                               const MachineInstr *MI) {
113   bool HasLinkReg = false;
114   bool InMicroMipsMode = Subtarget->inMicroMipsMode();
115   MCInst TmpInst0;
116 
117   if (Subtarget->hasMips64r6()) {
118     // MIPS64r6 should use (JALR64 ZERO_64, $rs)
119     TmpInst0.setOpcode(Mips::JALR64);
120     HasLinkReg = true;
121   } else if (Subtarget->hasMips32r6()) {
122     // MIPS32r6 should use (JALR ZERO, $rs)
123     if (InMicroMipsMode)
124       TmpInst0.setOpcode(Mips::JRC16_MMR6);
125     else {
126       TmpInst0.setOpcode(Mips::JALR);
127       HasLinkReg = true;
128     }
129   } else if (Subtarget->inMicroMipsMode())
130     // microMIPS should use (JR_MM $rs)
131     TmpInst0.setOpcode(Mips::JR_MM);
132   else {
133     // Everything else should use (JR $rs)
134     TmpInst0.setOpcode(Mips::JR);
135   }
136 
137   MCOperand MCOp;
138 
139   if (HasLinkReg) {
140     unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
141     TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
142   }
143 
144   lowerOperand(MI->getOperand(0), MCOp);
145   TmpInst0.addOperand(MCOp);
146 
147   EmitToStreamer(OutStreamer, TmpInst0);
148 }
149 
150 // If there is an MO_JALR operand, insert:
151 //
152 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
153 // tmplabel:
154 //
155 // This is an optimization hint for the linker which may then replace
156 // an indirect call with a direct branch.
157 static void emitDirectiveRelocJalr(const MachineInstr &MI,
158                                    MCContext &OutContext,
159                                    TargetMachine &TM,
160                                    MCStreamer &OutStreamer,
161                                    const MipsSubtarget &Subtarget) {
162   for (const MachineOperand &MO :
163        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) {
164     if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) {
165       MCSymbol *Callee = MO.getMCSymbol();
166       if (Callee && !Callee->getName().empty()) {
167         MCSymbol *OffsetLabel = OutContext.createTempSymbol();
168         const MCExpr *OffsetExpr =
169             MCSymbolRefExpr::create(OffsetLabel, OutContext);
170         const MCExpr *CaleeExpr =
171             MCSymbolRefExpr::create(Callee, OutContext);
172         OutStreamer.emitRelocDirective(
173             *OffsetExpr,
174             Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
175             CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo());
176         OutStreamer.emitLabel(OffsetLabel);
177         return;
178       }
179     }
180   }
181 }
182 
183 void MipsAsmPrinter::emitInstruction(const MachineInstr *MI) {
184   MipsTargetStreamer &TS = getTargetStreamer();
185   unsigned Opc = MI->getOpcode();
186   TS.forbidModuleDirective();
187 
188   if (MI->isDebugValue()) {
189     SmallString<128> Str;
190     raw_svector_ostream OS(Str);
191 
192     PrintDebugValueComment(MI, OS);
193     return;
194   }
195   if (MI->isDebugLabel())
196     return;
197 
198   // If we just ended a constant pool, mark it as such.
199   if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) {
200     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
201     InConstantPool = false;
202   }
203   if (Opc == Mips::CONSTPOOL_ENTRY) {
204     // CONSTPOOL_ENTRY - This instruction represents a floating
205     // constant pool in the function.  The first operand is the ID#
206     // for this instruction, the second is the index into the
207     // MachineConstantPool that this is, the third is the size in
208     // bytes of this constant pool entry.
209     // The required alignment is specified on the basic block holding this MI.
210     //
211     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
212     unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
213 
214     // If this is the first entry of the pool, mark it.
215     if (!InConstantPool) {
216       OutStreamer->emitDataRegion(MCDR_DataRegion);
217       InConstantPool = true;
218     }
219 
220     OutStreamer->emitLabel(GetCPISymbol(LabelId));
221 
222     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
223     if (MCPE.isMachineConstantPoolEntry())
224       emitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
225     else
226       emitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
227     return;
228   }
229 
230   switch (Opc) {
231   case Mips::PATCHABLE_FUNCTION_ENTER:
232     LowerPATCHABLE_FUNCTION_ENTER(*MI);
233     return;
234   case Mips::PATCHABLE_FUNCTION_EXIT:
235     LowerPATCHABLE_FUNCTION_EXIT(*MI);
236     return;
237   case Mips::PATCHABLE_TAIL_CALL:
238     LowerPATCHABLE_TAIL_CALL(*MI);
239     return;
240   }
241 
242   if (EmitJalrReloc &&
243       (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) {
244     emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget);
245   }
246 
247   MachineBasicBlock::const_instr_iterator I = MI->getIterator();
248   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
249 
250   do {
251     // Do any auto-generated pseudo lowerings.
252     if (emitPseudoExpansionLowering(*OutStreamer, &*I))
253       continue;
254 
255     // Skip the BUNDLE pseudo instruction and lower the contents
256     if (I->isBundle())
257       continue;
258 
259     if (I->getOpcode() == Mips::PseudoReturn ||
260         I->getOpcode() == Mips::PseudoReturn64 ||
261         I->getOpcode() == Mips::PseudoIndirectBranch ||
262         I->getOpcode() == Mips::PseudoIndirectBranch64 ||
263         I->getOpcode() == Mips::TAILCALLREG ||
264         I->getOpcode() == Mips::TAILCALLREG64) {
265       emitPseudoIndirectBranch(*OutStreamer, &*I);
266       continue;
267     }
268 
269     // The inMips16Mode() test is not permanent.
270     // Some instructions are marked as pseudo right now which
271     // would make the test fail for the wrong reason but
272     // that will be fixed soon. We need this here because we are
273     // removing another test for this situation downstream in the
274     // callchain.
275     //
276     if (I->isPseudo() && !Subtarget->inMips16Mode()
277         && !isLongBranchPseudo(I->getOpcode()))
278       llvm_unreachable("Pseudo opcode found in emitInstruction()");
279 
280     MCInst TmpInst0;
281     MCInstLowering.Lower(&*I, TmpInst0);
282     EmitToStreamer(*OutStreamer, TmpInst0);
283   } while ((++I != E) && I->isInsideBundle()); // Delay slot check
284 }
285 
286 //===----------------------------------------------------------------------===//
287 //
288 //  Mips Asm Directives
289 //
290 //  -- Frame directive "frame Stackpointer, Stacksize, RARegister"
291 //  Describe the stack frame.
292 //
293 //  -- Mask directives "(f)mask  bitmask, offset"
294 //  Tells the assembler which registers are saved and where.
295 //  bitmask - contain a little endian bitset indicating which registers are
296 //            saved on function prologue (e.g. with a 0x80000000 mask, the
297 //            assembler knows the register 31 (RA) is saved at prologue.
298 //  offset  - the position before stack pointer subtraction indicating where
299 //            the first saved register on prologue is located. (e.g. with a
300 //
301 //  Consider the following function prologue:
302 //
303 //    .frame  $fp,48,$ra
304 //    .mask   0xc0000000,-8
305 //       addiu $sp, $sp, -48
306 //       sw $ra, 40($sp)
307 //       sw $fp, 36($sp)
308 //
309 //    With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
310 //    30 (FP) are saved at prologue. As the save order on prologue is from
311 //    left to right, RA is saved first. A -8 offset means that after the
312 //    stack pointer subtration, the first register in the mask (RA) will be
313 //    saved at address 48-8=40.
314 //
315 //===----------------------------------------------------------------------===//
316 
317 //===----------------------------------------------------------------------===//
318 // Mask directives
319 //===----------------------------------------------------------------------===//
320 
321 // Create a bitmask with all callee saved registers for CPU or Floating Point
322 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
323 void MipsAsmPrinter::printSavedRegsBitmask() {
324   // CPU and FPU Saved Registers Bitmasks
325   unsigned CPUBitmask = 0, FPUBitmask = 0;
326   int CPUTopSavedRegOff, FPUTopSavedRegOff;
327 
328   // Set the CPU and FPU Bitmasks
329   const MachineFrameInfo &MFI = MF->getFrameInfo();
330   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
331   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
332   // size of stack area to which FP callee-saved regs are saved.
333   unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8;
334   unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8;
335   unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8;
336   bool HasAFGR64Reg = false;
337   unsigned CSFPRegsSize = 0;
338 
339   for (const auto &I : CSI) {
340     Register Reg = I.getReg();
341     unsigned RegNum = TRI->getEncodingValue(Reg);
342 
343     // If it's a floating point register, set the FPU Bitmask.
344     // If it's a general purpose register, set the CPU Bitmask.
345     if (Mips::FGR32RegClass.contains(Reg)) {
346       FPUBitmask |= (1 << RegNum);
347       CSFPRegsSize += FGR32RegSize;
348     } else if (Mips::AFGR64RegClass.contains(Reg)) {
349       FPUBitmask |= (3 << RegNum);
350       CSFPRegsSize += AFGR64RegSize;
351       HasAFGR64Reg = true;
352     } else if (Mips::GPR32RegClass.contains(Reg))
353       CPUBitmask |= (1 << RegNum);
354   }
355 
356   // FP Regs are saved right below where the virtual frame pointer points to.
357   FPUTopSavedRegOff = FPUBitmask ?
358     (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
359 
360   // CPU Regs are saved below FP Regs.
361   CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
362 
363   MipsTargetStreamer &TS = getTargetStreamer();
364   // Print CPUBitmask
365   TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
366 
367   // Print FPUBitmask
368   TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
369 }
370 
371 //===----------------------------------------------------------------------===//
372 // Frame and Set directives
373 //===----------------------------------------------------------------------===//
374 
375 /// Frame Directive
376 void MipsAsmPrinter::emitFrameDirective() {
377   const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
378 
379   Register stackReg = RI.getFrameRegister(*MF);
380   unsigned returnReg = RI.getRARegister();
381   unsigned stackSize = MF->getFrameInfo().getStackSize();
382 
383   getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
384 }
385 
386 /// Emit Set directives.
387 const char *MipsAsmPrinter::getCurrentABIString() const {
388   switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
389   case MipsABIInfo::ABI::O32:  return "abi32";
390   case MipsABIInfo::ABI::N32:  return "abiN32";
391   case MipsABIInfo::ABI::N64:  return "abi64";
392   default: llvm_unreachable("Unknown Mips ABI");
393   }
394 }
395 
396 void MipsAsmPrinter::emitFunctionEntryLabel() {
397   MipsTargetStreamer &TS = getTargetStreamer();
398 
399   // NaCl sandboxing requires that indirect call instructions are masked.
400   // This means that function entry points should be bundle-aligned.
401   if (Subtarget->isTargetNaCl())
402     emitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
403 
404   if (Subtarget->inMicroMipsMode()) {
405     TS.emitDirectiveSetMicroMips();
406     TS.setUsesMicroMips();
407     TS.updateABIInfo(*Subtarget);
408   } else
409     TS.emitDirectiveSetNoMicroMips();
410 
411   if (Subtarget->inMips16Mode())
412     TS.emitDirectiveSetMips16();
413   else
414     TS.emitDirectiveSetNoMips16();
415 
416   TS.emitDirectiveEnt(*CurrentFnSym);
417   OutStreamer->emitLabel(CurrentFnSym);
418 }
419 
420 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
421 /// the first basic block in the function.
422 void MipsAsmPrinter::emitFunctionBodyStart() {
423   MipsTargetStreamer &TS = getTargetStreamer();
424 
425   MCInstLowering.Initialize(&MF->getContext());
426 
427   bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked);
428   if (!IsNakedFunction)
429     emitFrameDirective();
430 
431   if (!IsNakedFunction)
432     printSavedRegsBitmask();
433 
434   if (!Subtarget->inMips16Mode()) {
435     TS.emitDirectiveSetNoReorder();
436     TS.emitDirectiveSetNoMacro();
437     TS.emitDirectiveSetNoAt();
438   }
439 }
440 
441 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
442 /// the last basic block in the function.
443 void MipsAsmPrinter::emitFunctionBodyEnd() {
444   MipsTargetStreamer &TS = getTargetStreamer();
445 
446   // There are instruction for this macros, but they must
447   // always be at the function end, and we can't emit and
448   // break with BB logic.
449   if (!Subtarget->inMips16Mode()) {
450     TS.emitDirectiveSetAt();
451     TS.emitDirectiveSetMacro();
452     TS.emitDirectiveSetReorder();
453   }
454   TS.emitDirectiveEnd(CurrentFnSym->getName());
455   // Make sure to terminate any constant pools that were at the end
456   // of the function.
457   if (!InConstantPool)
458     return;
459   InConstantPool = false;
460   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
461 }
462 
463 void MipsAsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
464   AsmPrinter::emitBasicBlockEnd(MBB);
465   MipsTargetStreamer &TS = getTargetStreamer();
466   if (MBB.empty())
467     TS.emitDirectiveInsn();
468 }
469 
470 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
471 /// exactly one predecessor and the control transfer mechanism between
472 /// the predecessor and this block is a fall-through.
473 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
474                                                        MBB) const {
475   // The predecessor has to be immediately before this block.
476   const MachineBasicBlock *Pred = *MBB->pred_begin();
477 
478   // If the predecessor is a switch statement, assume a jump table
479   // implementation, so it is not a fall through.
480   if (const BasicBlock *bb = Pred->getBasicBlock())
481     if (isa<SwitchInst>(bb->getTerminator()))
482       return false;
483 
484   // If this is a landing pad, it isn't a fall through.  If it has no preds,
485   // then nothing falls through to it.
486   if (MBB->isEHPad() || MBB->pred_empty())
487     return false;
488 
489   // If there isn't exactly one predecessor, it can't be a fall through.
490   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
491   ++PI2;
492 
493   if (PI2 != MBB->pred_end())
494     return false;
495 
496   // The predecessor has to be immediately before this block.
497   if (!Pred->isLayoutSuccessor(MBB))
498     return false;
499 
500   // If the block is completely empty, then it definitely does fall through.
501   if (Pred->empty())
502     return true;
503 
504   // Otherwise, check the last instruction.
505   // Check if the last terminator is an unconditional branch.
506   MachineBasicBlock::const_iterator I = Pred->end();
507   while (I != Pred->begin() && !(--I)->isTerminator()) ;
508 
509   return !I->isBarrier();
510 }
511 
512 // Print out an operand for an inline asm expression.
513 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
514                                      const char *ExtraCode, raw_ostream &O) {
515   // Does this asm operand have a single letter operand modifier?
516   if (ExtraCode && ExtraCode[0]) {
517     if (ExtraCode[1] != 0) return true; // Unknown modifier.
518 
519     const MachineOperand &MO = MI->getOperand(OpNum);
520     switch (ExtraCode[0]) {
521     default:
522       // See if this is a generic print operand
523       return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
524     case 'X': // hex const int
525       if ((MO.getType()) != MachineOperand::MO_Immediate)
526         return true;
527       O << "0x" << Twine::utohexstr(MO.getImm());
528       return false;
529     case 'x': // hex const int (low 16 bits)
530       if ((MO.getType()) != MachineOperand::MO_Immediate)
531         return true;
532       O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
533       return false;
534     case 'd': // decimal const int
535       if ((MO.getType()) != MachineOperand::MO_Immediate)
536         return true;
537       O << MO.getImm();
538       return false;
539     case 'm': // decimal const int minus 1
540       if ((MO.getType()) != MachineOperand::MO_Immediate)
541         return true;
542       O << MO.getImm() - 1;
543       return false;
544     case 'y': // exact log2
545       if ((MO.getType()) != MachineOperand::MO_Immediate)
546         return true;
547       if (!isPowerOf2_64(MO.getImm()))
548         return true;
549       O << Log2_64(MO.getImm());
550       return false;
551     case 'z':
552       // $0 if zero, regular printing otherwise
553       if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
554         O << "$0";
555         return false;
556       }
557       // If not, call printOperand as normal.
558       break;
559     case 'D': // Second part of a double word register operand
560     case 'L': // Low order register of a double word register operand
561     case 'M': // High order register of a double word register operand
562     {
563       if (OpNum == 0)
564         return true;
565       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
566       if (!FlagsOP.isImm())
567         return true;
568       unsigned Flags = FlagsOP.getImm();
569       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
570       // Number of registers represented by this operand. We are looking
571       // for 2 for 32 bit mode and 1 for 64 bit mode.
572       if (NumVals != 2) {
573         if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
574           Register Reg = MO.getReg();
575           O << '$' << MipsInstPrinter::getRegisterName(Reg);
576           return false;
577         }
578         return true;
579       }
580 
581       unsigned RegOp = OpNum;
582       if (!Subtarget->isGP64bit()){
583         // Endianness reverses which register holds the high or low value
584         // between M and L.
585         switch(ExtraCode[0]) {
586         case 'M':
587           RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
588           break;
589         case 'L':
590           RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
591           break;
592         case 'D': // Always the second part
593           RegOp = OpNum + 1;
594         }
595         if (RegOp >= MI->getNumOperands())
596           return true;
597         const MachineOperand &MO = MI->getOperand(RegOp);
598         if (!MO.isReg())
599           return true;
600         Register Reg = MO.getReg();
601         O << '$' << MipsInstPrinter::getRegisterName(Reg);
602         return false;
603       }
604       break;
605     }
606     case 'w':
607       // Print MSA registers for the 'f' constraint
608       // In LLVM, the 'w' modifier doesn't need to do anything.
609       // We can just call printOperand as normal.
610       break;
611     }
612   }
613 
614   printOperand(MI, OpNum, O);
615   return false;
616 }
617 
618 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
619                                            unsigned OpNum,
620                                            const char *ExtraCode,
621                                            raw_ostream &O) {
622   assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
623   const MachineOperand &BaseMO = MI->getOperand(OpNum);
624   const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
625   assert(BaseMO.isReg() &&
626          "Unexpected base pointer for inline asm memory operand.");
627   assert(OffsetMO.isImm() &&
628          "Unexpected offset for inline asm memory operand.");
629   int Offset = OffsetMO.getImm();
630 
631   // Currently we are expecting either no ExtraCode or 'D','M','L'.
632   if (ExtraCode) {
633     switch (ExtraCode[0]) {
634     case 'D':
635       Offset += 4;
636       break;
637     case 'M':
638       if (Subtarget->isLittle())
639         Offset += 4;
640       break;
641     case 'L':
642       if (!Subtarget->isLittle())
643         Offset += 4;
644       break;
645     default:
646       return true; // Unknown modifier.
647     }
648   }
649 
650   O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg())
651     << ")";
652 
653   return false;
654 }
655 
656 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
657                                   raw_ostream &O) {
658   const MachineOperand &MO = MI->getOperand(opNum);
659   bool closeP = false;
660 
661   if (MO.getTargetFlags())
662     closeP = true;
663 
664   switch(MO.getTargetFlags()) {
665   case MipsII::MO_GPREL:    O << "%gp_rel("; break;
666   case MipsII::MO_GOT_CALL: O << "%call16("; break;
667   case MipsII::MO_GOT:      O << "%got(";    break;
668   case MipsII::MO_ABS_HI:   O << "%hi(";     break;
669   case MipsII::MO_ABS_LO:   O << "%lo(";     break;
670   case MipsII::MO_HIGHER:   O << "%higher("; break;
671   case MipsII::MO_HIGHEST:  O << "%highest(("; break;
672   case MipsII::MO_TLSGD:    O << "%tlsgd(";  break;
673   case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
674   case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
675   case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
676   case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
677   case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
678   case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
679   case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
680   case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
681   }
682 
683   switch (MO.getType()) {
684     case MachineOperand::MO_Register:
685       O << '$'
686         << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
687       break;
688 
689     case MachineOperand::MO_Immediate:
690       O << MO.getImm();
691       break;
692 
693     case MachineOperand::MO_MachineBasicBlock:
694       MO.getMBB()->getSymbol()->print(O, MAI);
695       return;
696 
697     case MachineOperand::MO_GlobalAddress:
698       PrintSymbolOperand(MO, O);
699       break;
700 
701     case MachineOperand::MO_BlockAddress: {
702       MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
703       O << BA->getName();
704       break;
705     }
706 
707     case MachineOperand::MO_ConstantPoolIndex:
708       O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
709         << getFunctionNumber() << "_" << MO.getIndex();
710       if (MO.getOffset())
711         O << "+" << MO.getOffset();
712       break;
713 
714     default:
715       llvm_unreachable("<unknown operand type>");
716   }
717 
718   if (closeP) O << ")";
719 }
720 
721 void MipsAsmPrinter::
722 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
723   // Load/Store memory operands -- imm($reg)
724   // If PIC target the target is loaded as the
725   // pattern lw $25,%call16($28)
726 
727   // opNum can be invalid if instruction has reglist as operand.
728   // MemOperand is always last operand of instruction (base + offset).
729   switch (MI->getOpcode()) {
730   default:
731     break;
732   case Mips::SWM32_MM:
733   case Mips::LWM32_MM:
734     opNum = MI->getNumOperands() - 2;
735     break;
736   }
737 
738   printOperand(MI, opNum+1, O);
739   O << "(";
740   printOperand(MI, opNum, O);
741   O << ")";
742 }
743 
744 void MipsAsmPrinter::
745 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
746   // when using stack locations for not load/store instructions
747   // print the same way as all normal 3 operand instructions.
748   printOperand(MI, opNum, O);
749   O << ", ";
750   printOperand(MI, opNum+1, O);
751 }
752 
753 void MipsAsmPrinter::
754 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
755                 const char *Modifier) {
756   const MachineOperand &MO = MI->getOperand(opNum);
757   O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
758 }
759 
760 void MipsAsmPrinter::
761 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
762   for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
763     if (i != opNum) O << ", ";
764     printOperand(MI, i, O);
765   }
766 }
767 
768 void MipsAsmPrinter::emitStartOfAsmFile(Module &M) {
769   MipsTargetStreamer &TS = getTargetStreamer();
770 
771   // MipsTargetStreamer has an initialization order problem when emitting an
772   // object file directly (see MipsTargetELFStreamer for full details). Work
773   // around it by re-initializing the PIC state here.
774   TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());
775 
776   // Compute MIPS architecture attributes based on the default subtarget
777   // that we'd have constructed. Module level directives aren't LTO
778   // clean anyhow.
779   // FIXME: For ifunc related functions we could iterate over and look
780   // for a feature string that doesn't match the default one.
781   const Triple &TT = TM.getTargetTriple();
782   StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
783   StringRef FS = TM.getTargetFeatureString();
784   const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
785   const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, None);
786 
787   bool IsABICalls = STI.isABICalls();
788   const MipsABIInfo &ABI = MTM.getABI();
789   if (IsABICalls) {
790     TS.emitDirectiveAbiCalls();
791     // FIXME: This condition should be a lot more complicated that it is here.
792     //        Ideally it should test for properties of the ABI and not the ABI
793     //        itself.
794     //        For the moment, I'm only correcting enough to make MIPS-IV work.
795     if (!isPositionIndependent() && STI.hasSym32())
796       TS.emitDirectiveOptionPic0();
797   }
798 
799   // Tell the assembler which ABI we are using
800   std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
801   OutStreamer->SwitchSection(
802       OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
803 
804   // NaN: At the moment we only support:
805   // 1. .nan legacy (default)
806   // 2. .nan 2008
807   STI.isNaN2008() ? TS.emitDirectiveNaN2008()
808                   : TS.emitDirectiveNaNLegacy();
809 
810   // TODO: handle O64 ABI
811 
812   TS.updateABIInfo(STI);
813 
814   // We should always emit a '.module fp=...' but binutils 2.24 does not accept
815   // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
816   // -mfp64) and omit it otherwise.
817   if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) ||
818       STI.useSoftFloat())
819     TS.emitDirectiveModuleFP();
820 
821   // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
822   // accept it. We therefore emit it when it contradicts the default or an
823   // option has changed the default (i.e. FPXX) and omit it otherwise.
824   if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
825     TS.emitDirectiveModuleOddSPReg();
826 
827   // Switch to the .text section.
828   OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
829 }
830 
831 void MipsAsmPrinter::emitInlineAsmStart() const {
832   MipsTargetStreamer &TS = getTargetStreamer();
833 
834   // GCC's choice of assembler options for inline assembly code ('at', 'macro'
835   // and 'reorder') is different from LLVM's choice for generated code ('noat',
836   // 'nomacro' and 'noreorder').
837   // In order to maintain compatibility with inline assembly code which depends
838   // on GCC's assembler options being used, we have to switch to those options
839   // for the duration of the inline assembly block and then switch back.
840   TS.emitDirectiveSetPush();
841   TS.emitDirectiveSetAt();
842   TS.emitDirectiveSetMacro();
843   TS.emitDirectiveSetReorder();
844   OutStreamer->AddBlankLine();
845 }
846 
847 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
848                                       const MCSubtargetInfo *EndInfo) const {
849   OutStreamer->AddBlankLine();
850   getTargetStreamer().emitDirectiveSetPop();
851 }
852 
853 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
854   MCInst I;
855   I.setOpcode(Mips::JAL);
856   I.addOperand(
857       MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
858   OutStreamer->emitInstruction(I, STI);
859 }
860 
861 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
862                                   unsigned Reg) {
863   MCInst I;
864   I.setOpcode(Opcode);
865   I.addOperand(MCOperand::createReg(Reg));
866   OutStreamer->emitInstruction(I, STI);
867 }
868 
869 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
870                                      unsigned Opcode, unsigned Reg1,
871                                      unsigned Reg2) {
872   MCInst I;
873   //
874   // Because of the current td files for Mips32, the operands for MTC1
875   // appear backwards from their normal assembly order. It's not a trivial
876   // change to fix this in the td file so we adjust for it here.
877   //
878   if (Opcode == Mips::MTC1) {
879     unsigned Temp = Reg1;
880     Reg1 = Reg2;
881     Reg2 = Temp;
882   }
883   I.setOpcode(Opcode);
884   I.addOperand(MCOperand::createReg(Reg1));
885   I.addOperand(MCOperand::createReg(Reg2));
886   OutStreamer->emitInstruction(I, STI);
887 }
888 
889 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
890                                         unsigned Opcode, unsigned Reg1,
891                                         unsigned Reg2, unsigned Reg3) {
892   MCInst I;
893   I.setOpcode(Opcode);
894   I.addOperand(MCOperand::createReg(Reg1));
895   I.addOperand(MCOperand::createReg(Reg2));
896   I.addOperand(MCOperand::createReg(Reg3));
897   OutStreamer->emitInstruction(I, STI);
898 }
899 
900 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
901                                       unsigned MovOpc, unsigned Reg1,
902                                       unsigned Reg2, unsigned FPReg1,
903                                       unsigned FPReg2, bool LE) {
904   if (!LE) {
905     unsigned temp = Reg1;
906     Reg1 = Reg2;
907     Reg2 = temp;
908   }
909   EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
910   EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
911 }
912 
913 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
914                                          Mips16HardFloatInfo::FPParamVariant PV,
915                                          bool LE, bool ToFP) {
916   using namespace Mips16HardFloatInfo;
917 
918   unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
919   switch (PV) {
920   case FSig:
921     EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
922     break;
923   case FFSig:
924     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
925     break;
926   case FDSig:
927     EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
928     EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
929     break;
930   case DSig:
931     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
932     break;
933   case DDSig:
934     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
935     EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
936     break;
937   case DFSig:
938     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
939     EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
940     break;
941   case NoSig:
942     return;
943   }
944 }
945 
946 void MipsAsmPrinter::EmitSwapFPIntRetval(
947     const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
948     bool LE) {
949   using namespace Mips16HardFloatInfo;
950 
951   unsigned MovOpc = Mips::MFC1;
952   switch (RV) {
953   case FRet:
954     EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
955     break;
956   case DRet:
957     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
958     break;
959   case CFRet:
960     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
961     break;
962   case CDRet:
963     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
964     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
965     break;
966   case NoFPRet:
967     break;
968   }
969 }
970 
971 void MipsAsmPrinter::EmitFPCallStub(
972     const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
973   using namespace Mips16HardFloatInfo;
974 
975   MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
976   bool LE = getDataLayout().isLittleEndian();
977   // Construct a local MCSubtargetInfo here.
978   // This is because the MachineFunction won't exist (but have not yet been
979   // freed) and since we're at the global level we can use the default
980   // constructed subtarget.
981   std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
982       TM.getTargetTriple().str(), TM.getTargetCPU(),
983       TM.getTargetFeatureString()));
984 
985   //
986   // .global xxxx
987   //
988   OutStreamer->emitSymbolAttribute(MSymbol, MCSA_Global);
989   const char *RetType;
990   //
991   // make the comment field identifying the return and parameter
992   // types of the floating point stub
993   // # Stub function to call rettype xxxx (params)
994   //
995   switch (Signature->RetSig) {
996   case FRet:
997     RetType = "float";
998     break;
999   case DRet:
1000     RetType = "double";
1001     break;
1002   case CFRet:
1003     RetType = "complex";
1004     break;
1005   case CDRet:
1006     RetType = "double complex";
1007     break;
1008   case NoFPRet:
1009     RetType = "";
1010     break;
1011   }
1012   const char *Parms;
1013   switch (Signature->ParamSig) {
1014   case FSig:
1015     Parms = "float";
1016     break;
1017   case FFSig:
1018     Parms = "float, float";
1019     break;
1020   case FDSig:
1021     Parms = "float, double";
1022     break;
1023   case DSig:
1024     Parms = "double";
1025     break;
1026   case DDSig:
1027     Parms = "double, double";
1028     break;
1029   case DFSig:
1030     Parms = "double, float";
1031     break;
1032   case NoSig:
1033     Parms = "";
1034     break;
1035   }
1036   OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
1037                           Twine(Symbol) + " (" + Twine(Parms) + ")");
1038   //
1039   // probably not necessary but we save and restore the current section state
1040   //
1041   OutStreamer->PushSection();
1042   //
1043   // .section mips16.call.fpxxxx,"ax",@progbits
1044   //
1045   MCSectionELF *M = OutContext.getELFSection(
1046       ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
1047       ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
1048   OutStreamer->SwitchSection(M, nullptr);
1049   //
1050   // .align 2
1051   //
1052   OutStreamer->emitValueToAlignment(4);
1053   MipsTargetStreamer &TS = getTargetStreamer();
1054   //
1055   // .set nomips16
1056   // .set nomicromips
1057   //
1058   TS.emitDirectiveSetNoMips16();
1059   TS.emitDirectiveSetNoMicroMips();
1060   //
1061   // .ent __call_stub_fp_xxxx
1062   // .type  __call_stub_fp_xxxx,@function
1063   //  __call_stub_fp_xxxx:
1064   //
1065   std::string x = "__call_stub_fp_" + std::string(Symbol);
1066   MCSymbolELF *Stub =
1067       cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
1068   TS.emitDirectiveEnt(*Stub);
1069   MCSymbol *MType =
1070       OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
1071   OutStreamer->emitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
1072   OutStreamer->emitLabel(Stub);
1073 
1074   // Only handle non-pic for now.
1075   assert(!isPositionIndependent() &&
1076          "should not be here if we are compiling pic");
1077   TS.emitDirectiveSetReorder();
1078   //
1079   // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1080   // stubs without raw text but this current patch is for compiler generated
1081   // functions and they all return some value.
1082   // The calling sequence for non pic is different in that case and we need
1083   // to implement %lo and %hi in order to handle the case of no return value
1084   // See the corresponding method in Mips16HardFloat for details.
1085   //
1086   // mov the return address to S2.
1087   // we have no stack space to store it and we are about to make another call.
1088   // We need to make sure that the enclosing function knows to save S2
1089   // This should have already been handled.
1090   //
1091   // Mov $18, $31
1092 
1093   EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
1094 
1095   EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1096 
1097   // Jal xxxx
1098   //
1099   EmitJal(*STI, MSymbol);
1100 
1101   // fix return values
1102   EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1103   //
1104   // do the return
1105   // if (Signature->RetSig == NoFPRet)
1106   //  llvm_unreachable("should not be any stubs here with no return value");
1107   // else
1108   EmitInstrReg(*STI, Mips::JR, Mips::S2);
1109 
1110   MCSymbol *Tmp = OutContext.createTempSymbol();
1111   OutStreamer->emitLabel(Tmp);
1112   const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1113   const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1114   const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1115   OutStreamer->emitELFSize(Stub, T_min_E);
1116   TS.emitDirectiveEnd(x);
1117   OutStreamer->PopSection();
1118 }
1119 
1120 void MipsAsmPrinter::emitEndOfAsmFile(Module &M) {
1121   // Emit needed stubs
1122   //
1123   for (std::map<
1124            const char *,
1125            const Mips16HardFloatInfo::FuncSignature *>::const_iterator
1126            it = StubsNeeded.begin();
1127        it != StubsNeeded.end(); ++it) {
1128     const char *Symbol = it->first;
1129     const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1130     EmitFPCallStub(Symbol, Signature);
1131   }
1132   // return to the text section
1133   OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1134 }
1135 
1136 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) {
1137   const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11;
1138   // For mips32 we want to emit the following pattern:
1139   //
1140   // .Lxray_sled_N:
1141   //   ALIGN
1142   //   B .tmpN
1143   //   11 NOP instructions (44 bytes)
1144   //   ADDIU T9, T9, 52
1145   // .tmpN
1146   //
1147   // We need the 44 bytes (11 instructions) because at runtime, we'd
1148   // be patching over the full 48 bytes (12 instructions) with the following
1149   // pattern:
1150   //
1151   //   ADDIU    SP, SP, -8
1152   //   NOP
1153   //   SW       RA, 4(SP)
1154   //   SW       T9, 0(SP)
1155   //   LUI      T9, %hi(__xray_FunctionEntry/Exit)
1156   //   ORI      T9, T9, %lo(__xray_FunctionEntry/Exit)
1157   //   LUI      T0, %hi(function_id)
1158   //   JALR     T9
1159   //   ORI      T0, T0, %lo(function_id)
1160   //   LW       T9, 0(SP)
1161   //   LW       RA, 4(SP)
1162   //   ADDIU    SP, SP, 8
1163   //
1164   // We add 52 bytes to t9 because we want to adjust the function pointer to
1165   // the actual start of function i.e. the address just after the noop sled.
1166   // We do this because gp displacement relocation is emitted at the start of
1167   // of the function i.e after the nop sled and to correctly calculate the
1168   // global offset table address, t9 must hold the address of the instruction
1169   // containing the gp displacement relocation.
1170   // FIXME: Is this correct for the static relocation model?
1171   //
1172   // For mips64 we want to emit the following pattern:
1173   //
1174   // .Lxray_sled_N:
1175   //   ALIGN
1176   //   B .tmpN
1177   //   15 NOP instructions (60 bytes)
1178   // .tmpN
1179   //
1180   // We need the 60 bytes (15 instructions) because at runtime, we'd
1181   // be patching over the full 64 bytes (16 instructions) with the following
1182   // pattern:
1183   //
1184   //   DADDIU   SP, SP, -16
1185   //   NOP
1186   //   SD       RA, 8(SP)
1187   //   SD       T9, 0(SP)
1188   //   LUI      T9, %highest(__xray_FunctionEntry/Exit)
1189   //   ORI      T9, T9, %higher(__xray_FunctionEntry/Exit)
1190   //   DSLL     T9, T9, 16
1191   //   ORI      T9, T9, %hi(__xray_FunctionEntry/Exit)
1192   //   DSLL     T9, T9, 16
1193   //   ORI      T9, T9, %lo(__xray_FunctionEntry/Exit)
1194   //   LUI      T0, %hi(function_id)
1195   //   JALR     T9
1196   //   ADDIU    T0, T0, %lo(function_id)
1197   //   LD       T9, 0(SP)
1198   //   LD       RA, 8(SP)
1199   //   DADDIU   SP, SP, 16
1200   //
1201   OutStreamer->emitCodeAlignment(4, &getSubtargetInfo());
1202   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1203   OutStreamer->emitLabel(CurSled);
1204   auto Target = OutContext.createTempSymbol();
1205 
1206   // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1207   // start of function
1208   const MCExpr *TargetExpr = MCSymbolRefExpr::create(
1209       Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
1210   EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ)
1211                                    .addReg(Mips::ZERO)
1212                                    .addReg(Mips::ZERO)
1213                                    .addExpr(TargetExpr));
1214 
1215   for (int8_t I = 0; I < NoopsInSledCount; I++)
1216     EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL)
1217                                      .addReg(Mips::ZERO)
1218                                      .addReg(Mips::ZERO)
1219                                      .addImm(0));
1220 
1221   OutStreamer->emitLabel(Target);
1222 
1223   if (!Subtarget->isGP64bit()) {
1224     EmitToStreamer(*OutStreamer,
1225                    MCInstBuilder(Mips::ADDiu)
1226                        .addReg(Mips::T9)
1227                        .addReg(Mips::T9)
1228                        .addImm(0x34));
1229   }
1230 
1231   recordSled(CurSled, MI, Kind, 2);
1232 }
1233 
1234 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) {
1235   EmitSled(MI, SledKind::FUNCTION_ENTER);
1236 }
1237 
1238 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
1239   EmitSled(MI, SledKind::FUNCTION_EXIT);
1240 }
1241 
1242 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
1243   EmitSled(MI, SledKind::TAIL_CALL);
1244 }
1245 
1246 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1247                                            raw_ostream &OS) {
1248   // TODO: implement
1249 }
1250 
1251 // Emit .dtprelword or .dtpreldword directive
1252 // and value for debug thread local expression.
1253 void MipsAsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
1254   if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) {
1255     if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) {
1256       switch (Size) {
1257       case 4:
1258         OutStreamer->emitDTPRel32Value(MipsExpr->getSubExpr());
1259         break;
1260       case 8:
1261         OutStreamer->emitDTPRel64Value(MipsExpr->getSubExpr());
1262         break;
1263       default:
1264         llvm_unreachable("Unexpected size of expression value.");
1265       }
1266       return;
1267     }
1268   }
1269   AsmPrinter::emitDebugValue(Value, Size);
1270 }
1271 
1272 // Align all targets of indirect branches on bundle size.  Used only if target
1273 // is NaCl.
1274 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1275   // Align all blocks that are jumped to through jump table.
1276   if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1277     const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1278     for (const auto &I : JT) {
1279       const std::vector<MachineBasicBlock *> &MBBs = I.MBBs;
1280 
1281       for (MachineBasicBlock *MBB : MBBs)
1282         MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1283     }
1284   }
1285 
1286   // If basic block address is taken, block can be target of indirect branch.
1287   for (auto &MBB : MF) {
1288     if (MBB.hasAddressTaken())
1289       MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1290   }
1291 }
1292 
1293 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1294   return (Opcode == Mips::LONG_BRANCH_LUi
1295           || Opcode == Mips::LONG_BRANCH_LUi2Op
1296           || Opcode == Mips::LONG_BRANCH_LUi2Op_64
1297           || Opcode == Mips::LONG_BRANCH_ADDiu
1298           || Opcode == Mips::LONG_BRANCH_ADDiu2Op
1299           || Opcode == Mips::LONG_BRANCH_DADDiu
1300           || Opcode == Mips::LONG_BRANCH_DADDiu2Op);
1301 }
1302 
1303 // Force static initialization.
1304 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeMipsAsmPrinter() {
1305   RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget());
1306   RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget());
1307   RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target());
1308   RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget());
1309 }
1310