1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format MIPS assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsAsmPrinter.h" 15 #include "MCTargetDesc/MipsABIInfo.h" 16 #include "MCTargetDesc/MipsBaseInfo.h" 17 #include "MCTargetDesc/MipsInstPrinter.h" 18 #include "MCTargetDesc/MipsMCNaCl.h" 19 #include "MCTargetDesc/MipsMCTargetDesc.h" 20 #include "Mips.h" 21 #include "MipsMCInstLower.h" 22 #include "MipsMachineFunction.h" 23 #include "MipsSubtarget.h" 24 #include "MipsTargetMachine.h" 25 #include "MipsTargetStreamer.h" 26 #include "TargetInfo/MipsTargetInfo.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/BinaryFormat/ELF.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/MC/MCContext.h" 48 #include "llvm/MC/MCExpr.h" 49 #include "llvm/MC/MCInst.h" 50 #include "llvm/MC/MCInstBuilder.h" 51 #include "llvm/MC/MCObjectFileInfo.h" 52 #include "llvm/MC/MCSectionELF.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/MC/MCSymbolELF.h" 55 #include "llvm/MC/TargetRegistry.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetLoweringObjectFile.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <cstdint> 63 #include <map> 64 #include <memory> 65 #include <string> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "mips-asm-printer" 71 72 extern cl::opt<bool> EmitJalrReloc; 73 74 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const { 75 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer()); 76 } 77 78 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 79 Subtarget = &MF.getSubtarget<MipsSubtarget>(); 80 81 MipsFI = MF.getInfo<MipsFunctionInfo>(); 82 if (Subtarget->inMips16Mode()) 83 for (const auto &I : MipsFI->StubsNeeded) { 84 const char *Symbol = I.first; 85 const Mips16HardFloatInfo::FuncSignature *Signature = I.second; 86 if (StubsNeeded.find(Symbol) == StubsNeeded.end()) 87 StubsNeeded[Symbol] = Signature; 88 } 89 MCP = MF.getConstantPool(); 90 91 // In NaCl, all indirect jump targets must be aligned to bundle size. 92 if (Subtarget->isTargetNaCl()) 93 NaClAlignIndirectJumpTargets(MF); 94 95 AsmPrinter::runOnMachineFunction(MF); 96 97 emitXRayTable(); 98 99 return true; 100 } 101 102 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) { 103 MCOp = MCInstLowering.LowerOperand(MO); 104 return MCOp.isValid(); 105 } 106 107 #include "MipsGenMCPseudoLowering.inc" 108 109 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM, 110 // JALR, or JALR64 as appropriate for the target. 111 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer, 112 const MachineInstr *MI) { 113 bool HasLinkReg = false; 114 bool InMicroMipsMode = Subtarget->inMicroMipsMode(); 115 MCInst TmpInst0; 116 117 if (Subtarget->hasMips64r6()) { 118 // MIPS64r6 should use (JALR64 ZERO_64, $rs) 119 TmpInst0.setOpcode(Mips::JALR64); 120 HasLinkReg = true; 121 } else if (Subtarget->hasMips32r6()) { 122 // MIPS32r6 should use (JALR ZERO, $rs) 123 if (InMicroMipsMode) 124 TmpInst0.setOpcode(Mips::JRC16_MMR6); 125 else { 126 TmpInst0.setOpcode(Mips::JALR); 127 HasLinkReg = true; 128 } 129 } else if (Subtarget->inMicroMipsMode()) 130 // microMIPS should use (JR_MM $rs) 131 TmpInst0.setOpcode(Mips::JR_MM); 132 else { 133 // Everything else should use (JR $rs) 134 TmpInst0.setOpcode(Mips::JR); 135 } 136 137 MCOperand MCOp; 138 139 if (HasLinkReg) { 140 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO; 141 TmpInst0.addOperand(MCOperand::createReg(ZeroReg)); 142 } 143 144 lowerOperand(MI->getOperand(0), MCOp); 145 TmpInst0.addOperand(MCOp); 146 147 EmitToStreamer(OutStreamer, TmpInst0); 148 } 149 150 // If there is an MO_JALR operand, insert: 151 // 152 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol 153 // tmplabel: 154 // 155 // This is an optimization hint for the linker which may then replace 156 // an indirect call with a direct branch. 157 static void emitDirectiveRelocJalr(const MachineInstr &MI, 158 MCContext &OutContext, 159 TargetMachine &TM, 160 MCStreamer &OutStreamer, 161 const MipsSubtarget &Subtarget) { 162 for (const MachineOperand &MO : 163 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) { 164 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) { 165 MCSymbol *Callee = MO.getMCSymbol(); 166 if (Callee && !Callee->getName().empty()) { 167 MCSymbol *OffsetLabel = OutContext.createTempSymbol(); 168 const MCExpr *OffsetExpr = 169 MCSymbolRefExpr::create(OffsetLabel, OutContext); 170 const MCExpr *CaleeExpr = 171 MCSymbolRefExpr::create(Callee, OutContext); 172 OutStreamer.emitRelocDirective( 173 *OffsetExpr, 174 Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR", 175 CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo()); 176 OutStreamer.emitLabel(OffsetLabel); 177 return; 178 } 179 } 180 } 181 } 182 183 void MipsAsmPrinter::emitInstruction(const MachineInstr *MI) { 184 MipsTargetStreamer &TS = getTargetStreamer(); 185 unsigned Opc = MI->getOpcode(); 186 TS.forbidModuleDirective(); 187 188 if (MI->isDebugValue()) { 189 SmallString<128> Str; 190 raw_svector_ostream OS(Str); 191 192 PrintDebugValueComment(MI, OS); 193 return; 194 } 195 if (MI->isDebugLabel()) 196 return; 197 198 // If we just ended a constant pool, mark it as such. 199 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) { 200 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 201 InConstantPool = false; 202 } 203 if (Opc == Mips::CONSTPOOL_ENTRY) { 204 // CONSTPOOL_ENTRY - This instruction represents a floating 205 // constant pool in the function. The first operand is the ID# 206 // for this instruction, the second is the index into the 207 // MachineConstantPool that this is, the third is the size in 208 // bytes of this constant pool entry. 209 // The required alignment is specified on the basic block holding this MI. 210 // 211 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 212 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 213 214 // If this is the first entry of the pool, mark it. 215 if (!InConstantPool) { 216 OutStreamer->emitDataRegion(MCDR_DataRegion); 217 InConstantPool = true; 218 } 219 220 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 221 222 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 223 if (MCPE.isMachineConstantPoolEntry()) 224 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 225 else 226 emitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal); 227 return; 228 } 229 230 switch (Opc) { 231 case Mips::PATCHABLE_FUNCTION_ENTER: 232 LowerPATCHABLE_FUNCTION_ENTER(*MI); 233 return; 234 case Mips::PATCHABLE_FUNCTION_EXIT: 235 LowerPATCHABLE_FUNCTION_EXIT(*MI); 236 return; 237 case Mips::PATCHABLE_TAIL_CALL: 238 LowerPATCHABLE_TAIL_CALL(*MI); 239 return; 240 } 241 242 if (EmitJalrReloc && 243 (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) { 244 emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget); 245 } 246 247 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 248 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 249 250 do { 251 // Do any auto-generated pseudo lowerings. 252 if (emitPseudoExpansionLowering(*OutStreamer, &*I)) 253 continue; 254 255 // Skip the BUNDLE pseudo instruction and lower the contents 256 if (I->isBundle()) 257 continue; 258 259 if (I->getOpcode() == Mips::PseudoReturn || 260 I->getOpcode() == Mips::PseudoReturn64 || 261 I->getOpcode() == Mips::PseudoIndirectBranch || 262 I->getOpcode() == Mips::PseudoIndirectBranch64 || 263 I->getOpcode() == Mips::TAILCALLREG || 264 I->getOpcode() == Mips::TAILCALLREG64) { 265 emitPseudoIndirectBranch(*OutStreamer, &*I); 266 continue; 267 } 268 269 // The inMips16Mode() test is not permanent. 270 // Some instructions are marked as pseudo right now which 271 // would make the test fail for the wrong reason but 272 // that will be fixed soon. We need this here because we are 273 // removing another test for this situation downstream in the 274 // callchain. 275 // 276 if (I->isPseudo() && !Subtarget->inMips16Mode() 277 && !isLongBranchPseudo(I->getOpcode())) 278 llvm_unreachable("Pseudo opcode found in emitInstruction()"); 279 280 MCInst TmpInst0; 281 MCInstLowering.Lower(&*I, TmpInst0); 282 EmitToStreamer(*OutStreamer, TmpInst0); 283 } while ((++I != E) && I->isInsideBundle()); // Delay slot check 284 } 285 286 //===----------------------------------------------------------------------===// 287 // 288 // Mips Asm Directives 289 // 290 // -- Frame directive "frame Stackpointer, Stacksize, RARegister" 291 // Describe the stack frame. 292 // 293 // -- Mask directives "(f)mask bitmask, offset" 294 // Tells the assembler which registers are saved and where. 295 // bitmask - contain a little endian bitset indicating which registers are 296 // saved on function prologue (e.g. with a 0x80000000 mask, the 297 // assembler knows the register 31 (RA) is saved at prologue. 298 // offset - the position before stack pointer subtraction indicating where 299 // the first saved register on prologue is located. (e.g. with a 300 // 301 // Consider the following function prologue: 302 // 303 // .frame $fp,48,$ra 304 // .mask 0xc0000000,-8 305 // addiu $sp, $sp, -48 306 // sw $ra, 40($sp) 307 // sw $fp, 36($sp) 308 // 309 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and 310 // 30 (FP) are saved at prologue. As the save order on prologue is from 311 // left to right, RA is saved first. A -8 offset means that after the 312 // stack pointer subtration, the first register in the mask (RA) will be 313 // saved at address 48-8=40. 314 // 315 //===----------------------------------------------------------------------===// 316 317 //===----------------------------------------------------------------------===// 318 // Mask directives 319 //===----------------------------------------------------------------------===// 320 321 // Create a bitmask with all callee saved registers for CPU or Floating Point 322 // registers. For CPU registers consider RA, GP and FP for saving if necessary. 323 void MipsAsmPrinter::printSavedRegsBitmask() { 324 // CPU and FPU Saved Registers Bitmasks 325 unsigned CPUBitmask = 0, FPUBitmask = 0; 326 int CPUTopSavedRegOff, FPUTopSavedRegOff; 327 328 // Set the CPU and FPU Bitmasks 329 const MachineFrameInfo &MFI = MF->getFrameInfo(); 330 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 331 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 332 // size of stack area to which FP callee-saved regs are saved. 333 unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8; 334 unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8; 335 unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8; 336 bool HasAFGR64Reg = false; 337 unsigned CSFPRegsSize = 0; 338 339 for (const auto &I : CSI) { 340 Register Reg = I.getReg(); 341 unsigned RegNum = TRI->getEncodingValue(Reg); 342 343 // If it's a floating point register, set the FPU Bitmask. 344 // If it's a general purpose register, set the CPU Bitmask. 345 if (Mips::FGR32RegClass.contains(Reg)) { 346 FPUBitmask |= (1 << RegNum); 347 CSFPRegsSize += FGR32RegSize; 348 } else if (Mips::AFGR64RegClass.contains(Reg)) { 349 FPUBitmask |= (3 << RegNum); 350 CSFPRegsSize += AFGR64RegSize; 351 HasAFGR64Reg = true; 352 } else if (Mips::GPR32RegClass.contains(Reg)) 353 CPUBitmask |= (1 << RegNum); 354 } 355 356 // FP Regs are saved right below where the virtual frame pointer points to. 357 FPUTopSavedRegOff = FPUBitmask ? 358 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0; 359 360 // CPU Regs are saved below FP Regs. 361 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0; 362 363 MipsTargetStreamer &TS = getTargetStreamer(); 364 // Print CPUBitmask 365 TS.emitMask(CPUBitmask, CPUTopSavedRegOff); 366 367 // Print FPUBitmask 368 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff); 369 } 370 371 //===----------------------------------------------------------------------===// 372 // Frame and Set directives 373 //===----------------------------------------------------------------------===// 374 375 /// Frame Directive 376 void MipsAsmPrinter::emitFrameDirective() { 377 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo(); 378 379 Register stackReg = RI.getFrameRegister(*MF); 380 unsigned returnReg = RI.getRARegister(); 381 unsigned stackSize = MF->getFrameInfo().getStackSize(); 382 383 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg); 384 } 385 386 /// Emit Set directives. 387 const char *MipsAsmPrinter::getCurrentABIString() const { 388 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) { 389 case MipsABIInfo::ABI::O32: return "abi32"; 390 case MipsABIInfo::ABI::N32: return "abiN32"; 391 case MipsABIInfo::ABI::N64: return "abi64"; 392 default: llvm_unreachable("Unknown Mips ABI"); 393 } 394 } 395 396 void MipsAsmPrinter::emitFunctionEntryLabel() { 397 MipsTargetStreamer &TS = getTargetStreamer(); 398 399 // NaCl sandboxing requires that indirect call instructions are masked. 400 // This means that function entry points should be bundle-aligned. 401 if (Subtarget->isTargetNaCl()) 402 emitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN)); 403 404 if (Subtarget->inMicroMipsMode()) { 405 TS.emitDirectiveSetMicroMips(); 406 TS.setUsesMicroMips(); 407 TS.updateABIInfo(*Subtarget); 408 } else 409 TS.emitDirectiveSetNoMicroMips(); 410 411 if (Subtarget->inMips16Mode()) 412 TS.emitDirectiveSetMips16(); 413 else 414 TS.emitDirectiveSetNoMips16(); 415 416 TS.emitDirectiveEnt(*CurrentFnSym); 417 OutStreamer->emitLabel(CurrentFnSym); 418 } 419 420 /// EmitFunctionBodyStart - Targets can override this to emit stuff before 421 /// the first basic block in the function. 422 void MipsAsmPrinter::emitFunctionBodyStart() { 423 MipsTargetStreamer &TS = getTargetStreamer(); 424 425 MCInstLowering.Initialize(&MF->getContext()); 426 427 bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked); 428 if (!IsNakedFunction) 429 emitFrameDirective(); 430 431 if (!IsNakedFunction) 432 printSavedRegsBitmask(); 433 434 if (!Subtarget->inMips16Mode()) { 435 TS.emitDirectiveSetNoReorder(); 436 TS.emitDirectiveSetNoMacro(); 437 TS.emitDirectiveSetNoAt(); 438 } 439 } 440 441 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after 442 /// the last basic block in the function. 443 void MipsAsmPrinter::emitFunctionBodyEnd() { 444 MipsTargetStreamer &TS = getTargetStreamer(); 445 446 // There are instruction for this macros, but they must 447 // always be at the function end, and we can't emit and 448 // break with BB logic. 449 if (!Subtarget->inMips16Mode()) { 450 TS.emitDirectiveSetAt(); 451 TS.emitDirectiveSetMacro(); 452 TS.emitDirectiveSetReorder(); 453 } 454 TS.emitDirectiveEnd(CurrentFnSym->getName()); 455 // Make sure to terminate any constant pools that were at the end 456 // of the function. 457 if (!InConstantPool) 458 return; 459 InConstantPool = false; 460 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 461 } 462 463 void MipsAsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 464 AsmPrinter::emitBasicBlockEnd(MBB); 465 MipsTargetStreamer &TS = getTargetStreamer(); 466 if (MBB.empty()) 467 TS.emitDirectiveInsn(); 468 } 469 470 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 471 /// exactly one predecessor and the control transfer mechanism between 472 /// the predecessor and this block is a fall-through. 473 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock* 474 MBB) const { 475 // The predecessor has to be immediately before this block. 476 const MachineBasicBlock *Pred = *MBB->pred_begin(); 477 478 // If the predecessor is a switch statement, assume a jump table 479 // implementation, so it is not a fall through. 480 if (const BasicBlock *bb = Pred->getBasicBlock()) 481 if (isa<SwitchInst>(bb->getTerminator())) 482 return false; 483 484 // If this is a landing pad, it isn't a fall through. If it has no preds, 485 // then nothing falls through to it. 486 if (MBB->isEHPad() || MBB->pred_empty()) 487 return false; 488 489 // If there isn't exactly one predecessor, it can't be a fall through. 490 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 491 ++PI2; 492 493 if (PI2 != MBB->pred_end()) 494 return false; 495 496 // The predecessor has to be immediately before this block. 497 if (!Pred->isLayoutSuccessor(MBB)) 498 return false; 499 500 // If the block is completely empty, then it definitely does fall through. 501 if (Pred->empty()) 502 return true; 503 504 // Otherwise, check the last instruction. 505 // Check if the last terminator is an unconditional branch. 506 MachineBasicBlock::const_iterator I = Pred->end(); 507 while (I != Pred->begin() && !(--I)->isTerminator()) ; 508 509 return !I->isBarrier(); 510 } 511 512 // Print out an operand for an inline asm expression. 513 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 514 const char *ExtraCode, raw_ostream &O) { 515 // Does this asm operand have a single letter operand modifier? 516 if (ExtraCode && ExtraCode[0]) { 517 if (ExtraCode[1] != 0) return true; // Unknown modifier. 518 519 const MachineOperand &MO = MI->getOperand(OpNum); 520 switch (ExtraCode[0]) { 521 default: 522 // See if this is a generic print operand 523 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 524 case 'X': // hex const int 525 if ((MO.getType()) != MachineOperand::MO_Immediate) 526 return true; 527 O << "0x" << Twine::utohexstr(MO.getImm()); 528 return false; 529 case 'x': // hex const int (low 16 bits) 530 if ((MO.getType()) != MachineOperand::MO_Immediate) 531 return true; 532 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff); 533 return false; 534 case 'd': // decimal const int 535 if ((MO.getType()) != MachineOperand::MO_Immediate) 536 return true; 537 O << MO.getImm(); 538 return false; 539 case 'm': // decimal const int minus 1 540 if ((MO.getType()) != MachineOperand::MO_Immediate) 541 return true; 542 O << MO.getImm() - 1; 543 return false; 544 case 'y': // exact log2 545 if ((MO.getType()) != MachineOperand::MO_Immediate) 546 return true; 547 if (!isPowerOf2_64(MO.getImm())) 548 return true; 549 O << Log2_64(MO.getImm()); 550 return false; 551 case 'z': 552 // $0 if zero, regular printing otherwise 553 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) { 554 O << "$0"; 555 return false; 556 } 557 // If not, call printOperand as normal. 558 break; 559 case 'D': // Second part of a double word register operand 560 case 'L': // Low order register of a double word register operand 561 case 'M': // High order register of a double word register operand 562 { 563 if (OpNum == 0) 564 return true; 565 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 566 if (!FlagsOP.isImm()) 567 return true; 568 unsigned Flags = FlagsOP.getImm(); 569 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 570 // Number of registers represented by this operand. We are looking 571 // for 2 for 32 bit mode and 1 for 64 bit mode. 572 if (NumVals != 2) { 573 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) { 574 Register Reg = MO.getReg(); 575 O << '$' << MipsInstPrinter::getRegisterName(Reg); 576 return false; 577 } 578 return true; 579 } 580 581 unsigned RegOp = OpNum; 582 if (!Subtarget->isGP64bit()){ 583 // Endianness reverses which register holds the high or low value 584 // between M and L. 585 switch(ExtraCode[0]) { 586 case 'M': 587 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum; 588 break; 589 case 'L': 590 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1; 591 break; 592 case 'D': // Always the second part 593 RegOp = OpNum + 1; 594 } 595 if (RegOp >= MI->getNumOperands()) 596 return true; 597 const MachineOperand &MO = MI->getOperand(RegOp); 598 if (!MO.isReg()) 599 return true; 600 Register Reg = MO.getReg(); 601 O << '$' << MipsInstPrinter::getRegisterName(Reg); 602 return false; 603 } 604 break; 605 } 606 case 'w': 607 // Print MSA registers for the 'f' constraint 608 // In LLVM, the 'w' modifier doesn't need to do anything. 609 // We can just call printOperand as normal. 610 break; 611 } 612 } 613 614 printOperand(MI, OpNum, O); 615 return false; 616 } 617 618 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 619 unsigned OpNum, 620 const char *ExtraCode, 621 raw_ostream &O) { 622 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands"); 623 const MachineOperand &BaseMO = MI->getOperand(OpNum); 624 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1); 625 assert(BaseMO.isReg() && 626 "Unexpected base pointer for inline asm memory operand."); 627 assert(OffsetMO.isImm() && 628 "Unexpected offset for inline asm memory operand."); 629 int Offset = OffsetMO.getImm(); 630 631 // Currently we are expecting either no ExtraCode or 'D','M','L'. 632 if (ExtraCode) { 633 switch (ExtraCode[0]) { 634 case 'D': 635 Offset += 4; 636 break; 637 case 'M': 638 if (Subtarget->isLittle()) 639 Offset += 4; 640 break; 641 case 'L': 642 if (!Subtarget->isLittle()) 643 Offset += 4; 644 break; 645 default: 646 return true; // Unknown modifier. 647 } 648 } 649 650 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) 651 << ")"; 652 653 return false; 654 } 655 656 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum, 657 raw_ostream &O) { 658 const MachineOperand &MO = MI->getOperand(opNum); 659 bool closeP = false; 660 661 if (MO.getTargetFlags()) 662 closeP = true; 663 664 switch(MO.getTargetFlags()) { 665 case MipsII::MO_GPREL: O << "%gp_rel("; break; 666 case MipsII::MO_GOT_CALL: O << "%call16("; break; 667 case MipsII::MO_GOT: O << "%got("; break; 668 case MipsII::MO_ABS_HI: O << "%hi("; break; 669 case MipsII::MO_ABS_LO: O << "%lo("; break; 670 case MipsII::MO_HIGHER: O << "%higher("; break; 671 case MipsII::MO_HIGHEST: O << "%highest(("; break; 672 case MipsII::MO_TLSGD: O << "%tlsgd("; break; 673 case MipsII::MO_GOTTPREL: O << "%gottprel("; break; 674 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break; 675 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break; 676 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break; 677 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break; 678 case MipsII::MO_GOT_DISP: O << "%got_disp("; break; 679 case MipsII::MO_GOT_PAGE: O << "%got_page("; break; 680 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break; 681 } 682 683 switch (MO.getType()) { 684 case MachineOperand::MO_Register: 685 O << '$' 686 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower(); 687 break; 688 689 case MachineOperand::MO_Immediate: 690 O << MO.getImm(); 691 break; 692 693 case MachineOperand::MO_MachineBasicBlock: 694 MO.getMBB()->getSymbol()->print(O, MAI); 695 return; 696 697 case MachineOperand::MO_GlobalAddress: 698 PrintSymbolOperand(MO, O); 699 break; 700 701 case MachineOperand::MO_BlockAddress: { 702 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress()); 703 O << BA->getName(); 704 break; 705 } 706 707 case MachineOperand::MO_ConstantPoolIndex: 708 O << getDataLayout().getPrivateGlobalPrefix() << "CPI" 709 << getFunctionNumber() << "_" << MO.getIndex(); 710 if (MO.getOffset()) 711 O << "+" << MO.getOffset(); 712 break; 713 714 default: 715 llvm_unreachable("<unknown operand type>"); 716 } 717 718 if (closeP) O << ")"; 719 } 720 721 void MipsAsmPrinter:: 722 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) { 723 // Load/Store memory operands -- imm($reg) 724 // If PIC target the target is loaded as the 725 // pattern lw $25,%call16($28) 726 727 // opNum can be invalid if instruction has reglist as operand. 728 // MemOperand is always last operand of instruction (base + offset). 729 switch (MI->getOpcode()) { 730 default: 731 break; 732 case Mips::SWM32_MM: 733 case Mips::LWM32_MM: 734 opNum = MI->getNumOperands() - 2; 735 break; 736 } 737 738 printOperand(MI, opNum+1, O); 739 O << "("; 740 printOperand(MI, opNum, O); 741 O << ")"; 742 } 743 744 void MipsAsmPrinter:: 745 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) { 746 // when using stack locations for not load/store instructions 747 // print the same way as all normal 3 operand instructions. 748 printOperand(MI, opNum, O); 749 O << ", "; 750 printOperand(MI, opNum+1, O); 751 } 752 753 void MipsAsmPrinter:: 754 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O, 755 const char *Modifier) { 756 const MachineOperand &MO = MI->getOperand(opNum); 757 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm()); 758 } 759 760 void MipsAsmPrinter:: 761 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) { 762 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) { 763 if (i != opNum) O << ", "; 764 printOperand(MI, i, O); 765 } 766 } 767 768 void MipsAsmPrinter::emitStartOfAsmFile(Module &M) { 769 MipsTargetStreamer &TS = getTargetStreamer(); 770 771 // MipsTargetStreamer has an initialization order problem when emitting an 772 // object file directly (see MipsTargetELFStreamer for full details). Work 773 // around it by re-initializing the PIC state here. 774 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent()); 775 776 // Compute MIPS architecture attributes based on the default subtarget 777 // that we'd have constructed. Module level directives aren't LTO 778 // clean anyhow. 779 // FIXME: For ifunc related functions we could iterate over and look 780 // for a feature string that doesn't match the default one. 781 const Triple &TT = TM.getTargetTriple(); 782 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU()); 783 StringRef FS = TM.getTargetFeatureString(); 784 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM); 785 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, None); 786 787 bool IsABICalls = STI.isABICalls(); 788 const MipsABIInfo &ABI = MTM.getABI(); 789 if (IsABICalls) { 790 TS.emitDirectiveAbiCalls(); 791 // FIXME: This condition should be a lot more complicated that it is here. 792 // Ideally it should test for properties of the ABI and not the ABI 793 // itself. 794 // For the moment, I'm only correcting enough to make MIPS-IV work. 795 if (!isPositionIndependent() && STI.hasSym32()) 796 TS.emitDirectiveOptionPic0(); 797 } 798 799 // Tell the assembler which ABI we are using 800 std::string SectionName = std::string(".mdebug.") + getCurrentABIString(); 801 OutStreamer->SwitchSection( 802 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0)); 803 804 // NaN: At the moment we only support: 805 // 1. .nan legacy (default) 806 // 2. .nan 2008 807 STI.isNaN2008() ? TS.emitDirectiveNaN2008() 808 : TS.emitDirectiveNaNLegacy(); 809 810 // TODO: handle O64 ABI 811 812 TS.updateABIInfo(STI); 813 814 // We should always emit a '.module fp=...' but binutils 2.24 does not accept 815 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or 816 // -mfp64) and omit it otherwise. 817 if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) || 818 STI.useSoftFloat()) 819 TS.emitDirectiveModuleFP(); 820 821 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not 822 // accept it. We therefore emit it when it contradicts the default or an 823 // option has changed the default (i.e. FPXX) and omit it otherwise. 824 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX())) 825 TS.emitDirectiveModuleOddSPReg(); 826 827 // Switch to the .text section. 828 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 829 } 830 831 void MipsAsmPrinter::emitInlineAsmStart() const { 832 MipsTargetStreamer &TS = getTargetStreamer(); 833 834 // GCC's choice of assembler options for inline assembly code ('at', 'macro' 835 // and 'reorder') is different from LLVM's choice for generated code ('noat', 836 // 'nomacro' and 'noreorder'). 837 // In order to maintain compatibility with inline assembly code which depends 838 // on GCC's assembler options being used, we have to switch to those options 839 // for the duration of the inline assembly block and then switch back. 840 TS.emitDirectiveSetPush(); 841 TS.emitDirectiveSetAt(); 842 TS.emitDirectiveSetMacro(); 843 TS.emitDirectiveSetReorder(); 844 OutStreamer->AddBlankLine(); 845 } 846 847 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 848 const MCSubtargetInfo *EndInfo) const { 849 OutStreamer->AddBlankLine(); 850 getTargetStreamer().emitDirectiveSetPop(); 851 } 852 853 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) { 854 MCInst I; 855 I.setOpcode(Mips::JAL); 856 I.addOperand( 857 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext))); 858 OutStreamer->emitInstruction(I, STI); 859 } 860 861 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode, 862 unsigned Reg) { 863 MCInst I; 864 I.setOpcode(Opcode); 865 I.addOperand(MCOperand::createReg(Reg)); 866 OutStreamer->emitInstruction(I, STI); 867 } 868 869 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI, 870 unsigned Opcode, unsigned Reg1, 871 unsigned Reg2) { 872 MCInst I; 873 // 874 // Because of the current td files for Mips32, the operands for MTC1 875 // appear backwards from their normal assembly order. It's not a trivial 876 // change to fix this in the td file so we adjust for it here. 877 // 878 if (Opcode == Mips::MTC1) { 879 unsigned Temp = Reg1; 880 Reg1 = Reg2; 881 Reg2 = Temp; 882 } 883 I.setOpcode(Opcode); 884 I.addOperand(MCOperand::createReg(Reg1)); 885 I.addOperand(MCOperand::createReg(Reg2)); 886 OutStreamer->emitInstruction(I, STI); 887 } 888 889 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI, 890 unsigned Opcode, unsigned Reg1, 891 unsigned Reg2, unsigned Reg3) { 892 MCInst I; 893 I.setOpcode(Opcode); 894 I.addOperand(MCOperand::createReg(Reg1)); 895 I.addOperand(MCOperand::createReg(Reg2)); 896 I.addOperand(MCOperand::createReg(Reg3)); 897 OutStreamer->emitInstruction(I, STI); 898 } 899 900 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI, 901 unsigned MovOpc, unsigned Reg1, 902 unsigned Reg2, unsigned FPReg1, 903 unsigned FPReg2, bool LE) { 904 if (!LE) { 905 unsigned temp = Reg1; 906 Reg1 = Reg2; 907 Reg2 = temp; 908 } 909 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1); 910 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2); 911 } 912 913 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI, 914 Mips16HardFloatInfo::FPParamVariant PV, 915 bool LE, bool ToFP) { 916 using namespace Mips16HardFloatInfo; 917 918 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1; 919 switch (PV) { 920 case FSig: 921 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 922 break; 923 case FFSig: 924 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE); 925 break; 926 case FDSig: 927 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 928 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 929 break; 930 case DSig: 931 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 932 break; 933 case DDSig: 934 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 935 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 936 break; 937 case DFSig: 938 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 939 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14); 940 break; 941 case NoSig: 942 return; 943 } 944 } 945 946 void MipsAsmPrinter::EmitSwapFPIntRetval( 947 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV, 948 bool LE) { 949 using namespace Mips16HardFloatInfo; 950 951 unsigned MovOpc = Mips::MFC1; 952 switch (RV) { 953 case FRet: 954 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0); 955 break; 956 case DRet: 957 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 958 break; 959 case CFRet: 960 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 961 break; 962 case CDRet: 963 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 964 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE); 965 break; 966 case NoFPRet: 967 break; 968 } 969 } 970 971 void MipsAsmPrinter::EmitFPCallStub( 972 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) { 973 using namespace Mips16HardFloatInfo; 974 975 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol)); 976 bool LE = getDataLayout().isLittleEndian(); 977 // Construct a local MCSubtargetInfo here. 978 // This is because the MachineFunction won't exist (but have not yet been 979 // freed) and since we're at the global level we can use the default 980 // constructed subtarget. 981 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 982 TM.getTargetTriple().str(), TM.getTargetCPU(), 983 TM.getTargetFeatureString())); 984 985 // 986 // .global xxxx 987 // 988 OutStreamer->emitSymbolAttribute(MSymbol, MCSA_Global); 989 const char *RetType; 990 // 991 // make the comment field identifying the return and parameter 992 // types of the floating point stub 993 // # Stub function to call rettype xxxx (params) 994 // 995 switch (Signature->RetSig) { 996 case FRet: 997 RetType = "float"; 998 break; 999 case DRet: 1000 RetType = "double"; 1001 break; 1002 case CFRet: 1003 RetType = "complex"; 1004 break; 1005 case CDRet: 1006 RetType = "double complex"; 1007 break; 1008 case NoFPRet: 1009 RetType = ""; 1010 break; 1011 } 1012 const char *Parms; 1013 switch (Signature->ParamSig) { 1014 case FSig: 1015 Parms = "float"; 1016 break; 1017 case FFSig: 1018 Parms = "float, float"; 1019 break; 1020 case FDSig: 1021 Parms = "float, double"; 1022 break; 1023 case DSig: 1024 Parms = "double"; 1025 break; 1026 case DDSig: 1027 Parms = "double, double"; 1028 break; 1029 case DFSig: 1030 Parms = "double, float"; 1031 break; 1032 case NoSig: 1033 Parms = ""; 1034 break; 1035 } 1036 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " + 1037 Twine(Symbol) + " (" + Twine(Parms) + ")"); 1038 // 1039 // probably not necessary but we save and restore the current section state 1040 // 1041 OutStreamer->PushSection(); 1042 // 1043 // .section mips16.call.fpxxxx,"ax",@progbits 1044 // 1045 MCSectionELF *M = OutContext.getELFSection( 1046 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS, 1047 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR); 1048 OutStreamer->SwitchSection(M, nullptr); 1049 // 1050 // .align 2 1051 // 1052 OutStreamer->emitValueToAlignment(4); 1053 MipsTargetStreamer &TS = getTargetStreamer(); 1054 // 1055 // .set nomips16 1056 // .set nomicromips 1057 // 1058 TS.emitDirectiveSetNoMips16(); 1059 TS.emitDirectiveSetNoMicroMips(); 1060 // 1061 // .ent __call_stub_fp_xxxx 1062 // .type __call_stub_fp_xxxx,@function 1063 // __call_stub_fp_xxxx: 1064 // 1065 std::string x = "__call_stub_fp_" + std::string(Symbol); 1066 MCSymbolELF *Stub = 1067 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x))); 1068 TS.emitDirectiveEnt(*Stub); 1069 MCSymbol *MType = 1070 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol)); 1071 OutStreamer->emitSymbolAttribute(MType, MCSA_ELF_TypeFunction); 1072 OutStreamer->emitLabel(Stub); 1073 1074 // Only handle non-pic for now. 1075 assert(!isPositionIndependent() && 1076 "should not be here if we are compiling pic"); 1077 TS.emitDirectiveSetReorder(); 1078 // 1079 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement 1080 // stubs without raw text but this current patch is for compiler generated 1081 // functions and they all return some value. 1082 // The calling sequence for non pic is different in that case and we need 1083 // to implement %lo and %hi in order to handle the case of no return value 1084 // See the corresponding method in Mips16HardFloat for details. 1085 // 1086 // mov the return address to S2. 1087 // we have no stack space to store it and we are about to make another call. 1088 // We need to make sure that the enclosing function knows to save S2 1089 // This should have already been handled. 1090 // 1091 // Mov $18, $31 1092 1093 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO); 1094 1095 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true); 1096 1097 // Jal xxxx 1098 // 1099 EmitJal(*STI, MSymbol); 1100 1101 // fix return values 1102 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE); 1103 // 1104 // do the return 1105 // if (Signature->RetSig == NoFPRet) 1106 // llvm_unreachable("should not be any stubs here with no return value"); 1107 // else 1108 EmitInstrReg(*STI, Mips::JR, Mips::S2); 1109 1110 MCSymbol *Tmp = OutContext.createTempSymbol(); 1111 OutStreamer->emitLabel(Tmp); 1112 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext); 1113 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext); 1114 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext); 1115 OutStreamer->emitELFSize(Stub, T_min_E); 1116 TS.emitDirectiveEnd(x); 1117 OutStreamer->PopSection(); 1118 } 1119 1120 void MipsAsmPrinter::emitEndOfAsmFile(Module &M) { 1121 // Emit needed stubs 1122 // 1123 for (std::map< 1124 const char *, 1125 const Mips16HardFloatInfo::FuncSignature *>::const_iterator 1126 it = StubsNeeded.begin(); 1127 it != StubsNeeded.end(); ++it) { 1128 const char *Symbol = it->first; 1129 const Mips16HardFloatInfo::FuncSignature *Signature = it->second; 1130 EmitFPCallStub(Symbol, Signature); 1131 } 1132 // return to the text section 1133 OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection()); 1134 } 1135 1136 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) { 1137 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11; 1138 // For mips32 we want to emit the following pattern: 1139 // 1140 // .Lxray_sled_N: 1141 // ALIGN 1142 // B .tmpN 1143 // 11 NOP instructions (44 bytes) 1144 // ADDIU T9, T9, 52 1145 // .tmpN 1146 // 1147 // We need the 44 bytes (11 instructions) because at runtime, we'd 1148 // be patching over the full 48 bytes (12 instructions) with the following 1149 // pattern: 1150 // 1151 // ADDIU SP, SP, -8 1152 // NOP 1153 // SW RA, 4(SP) 1154 // SW T9, 0(SP) 1155 // LUI T9, %hi(__xray_FunctionEntry/Exit) 1156 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1157 // LUI T0, %hi(function_id) 1158 // JALR T9 1159 // ORI T0, T0, %lo(function_id) 1160 // LW T9, 0(SP) 1161 // LW RA, 4(SP) 1162 // ADDIU SP, SP, 8 1163 // 1164 // We add 52 bytes to t9 because we want to adjust the function pointer to 1165 // the actual start of function i.e. the address just after the noop sled. 1166 // We do this because gp displacement relocation is emitted at the start of 1167 // of the function i.e after the nop sled and to correctly calculate the 1168 // global offset table address, t9 must hold the address of the instruction 1169 // containing the gp displacement relocation. 1170 // FIXME: Is this correct for the static relocation model? 1171 // 1172 // For mips64 we want to emit the following pattern: 1173 // 1174 // .Lxray_sled_N: 1175 // ALIGN 1176 // B .tmpN 1177 // 15 NOP instructions (60 bytes) 1178 // .tmpN 1179 // 1180 // We need the 60 bytes (15 instructions) because at runtime, we'd 1181 // be patching over the full 64 bytes (16 instructions) with the following 1182 // pattern: 1183 // 1184 // DADDIU SP, SP, -16 1185 // NOP 1186 // SD RA, 8(SP) 1187 // SD T9, 0(SP) 1188 // LUI T9, %highest(__xray_FunctionEntry/Exit) 1189 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit) 1190 // DSLL T9, T9, 16 1191 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit) 1192 // DSLL T9, T9, 16 1193 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1194 // LUI T0, %hi(function_id) 1195 // JALR T9 1196 // ADDIU T0, T0, %lo(function_id) 1197 // LD T9, 0(SP) 1198 // LD RA, 8(SP) 1199 // DADDIU SP, SP, 16 1200 // 1201 OutStreamer->emitCodeAlignment(4, &getSubtargetInfo()); 1202 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 1203 OutStreamer->emitLabel(CurSled); 1204 auto Target = OutContext.createTempSymbol(); 1205 1206 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual 1207 // start of function 1208 const MCExpr *TargetExpr = MCSymbolRefExpr::create( 1209 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext); 1210 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ) 1211 .addReg(Mips::ZERO) 1212 .addReg(Mips::ZERO) 1213 .addExpr(TargetExpr)); 1214 1215 for (int8_t I = 0; I < NoopsInSledCount; I++) 1216 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL) 1217 .addReg(Mips::ZERO) 1218 .addReg(Mips::ZERO) 1219 .addImm(0)); 1220 1221 OutStreamer->emitLabel(Target); 1222 1223 if (!Subtarget->isGP64bit()) { 1224 EmitToStreamer(*OutStreamer, 1225 MCInstBuilder(Mips::ADDiu) 1226 .addReg(Mips::T9) 1227 .addReg(Mips::T9) 1228 .addImm(0x34)); 1229 } 1230 1231 recordSled(CurSled, MI, Kind, 2); 1232 } 1233 1234 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) { 1235 EmitSled(MI, SledKind::FUNCTION_ENTER); 1236 } 1237 1238 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) { 1239 EmitSled(MI, SledKind::FUNCTION_EXIT); 1240 } 1241 1242 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) { 1243 EmitSled(MI, SledKind::TAIL_CALL); 1244 } 1245 1246 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI, 1247 raw_ostream &OS) { 1248 // TODO: implement 1249 } 1250 1251 // Emit .dtprelword or .dtpreldword directive 1252 // and value for debug thread local expression. 1253 void MipsAsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 1254 if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) { 1255 if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) { 1256 switch (Size) { 1257 case 4: 1258 OutStreamer->emitDTPRel32Value(MipsExpr->getSubExpr()); 1259 break; 1260 case 8: 1261 OutStreamer->emitDTPRel64Value(MipsExpr->getSubExpr()); 1262 break; 1263 default: 1264 llvm_unreachable("Unexpected size of expression value."); 1265 } 1266 return; 1267 } 1268 } 1269 AsmPrinter::emitDebugValue(Value, Size); 1270 } 1271 1272 // Align all targets of indirect branches on bundle size. Used only if target 1273 // is NaCl. 1274 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) { 1275 // Align all blocks that are jumped to through jump table. 1276 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) { 1277 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables(); 1278 for (const auto &I : JT) { 1279 const std::vector<MachineBasicBlock *> &MBBs = I.MBBs; 1280 1281 for (MachineBasicBlock *MBB : MBBs) 1282 MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1283 } 1284 } 1285 1286 // If basic block address is taken, block can be target of indirect branch. 1287 for (auto &MBB : MF) { 1288 if (MBB.hasAddressTaken()) 1289 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1290 } 1291 } 1292 1293 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const { 1294 return (Opcode == Mips::LONG_BRANCH_LUi 1295 || Opcode == Mips::LONG_BRANCH_LUi2Op 1296 || Opcode == Mips::LONG_BRANCH_LUi2Op_64 1297 || Opcode == Mips::LONG_BRANCH_ADDiu 1298 || Opcode == Mips::LONG_BRANCH_ADDiu2Op 1299 || Opcode == Mips::LONG_BRANCH_DADDiu 1300 || Opcode == Mips::LONG_BRANCH_DADDiu2Op); 1301 } 1302 1303 // Force static initialization. 1304 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeMipsAsmPrinter() { 1305 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget()); 1306 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget()); 1307 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target()); 1308 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget()); 1309 } 1310