xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsAsmPrinter.cpp (revision 02e9120893770924227138ba49df1edb3896112a)
1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MipsAsmPrinter.h"
15 #include "MCTargetDesc/MipsABIInfo.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsInstPrinter.h"
18 #include "MCTargetDesc/MipsMCNaCl.h"
19 #include "MCTargetDesc/MipsMCTargetDesc.h"
20 #include "Mips.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetStreamer.h"
26 #include "TargetInfo/MipsTargetInfo.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/ELF.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCInst.h"
49 #include "llvm/MC/MCInstBuilder.h"
50 #include "llvm/MC/MCObjectFileInfo.h"
51 #include "llvm/MC/MCSectionELF.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/MC/MCSymbolELF.h"
54 #include "llvm/MC/TargetRegistry.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetLoweringObjectFile.h"
59 #include "llvm/Target/TargetMachine.h"
60 #include "llvm/TargetParser/Triple.h"
61 #include <cassert>
62 #include <cstdint>
63 #include <map>
64 #include <memory>
65 #include <string>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "mips-asm-printer"
71 
72 extern cl::opt<bool> EmitJalrReloc;
73 
74 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
75   return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
76 }
77 
78 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
79   Subtarget = &MF.getSubtarget<MipsSubtarget>();
80 
81   MipsFI = MF.getInfo<MipsFunctionInfo>();
82   if (Subtarget->inMips16Mode())
83     for (const auto &I : MipsFI->StubsNeeded) {
84       const char *Symbol = I.first;
85       const Mips16HardFloatInfo::FuncSignature *Signature = I.second;
86       if (StubsNeeded.find(Symbol) == StubsNeeded.end())
87         StubsNeeded[Symbol] = Signature;
88     }
89   MCP = MF.getConstantPool();
90 
91   // In NaCl, all indirect jump targets must be aligned to bundle size.
92   if (Subtarget->isTargetNaCl())
93     NaClAlignIndirectJumpTargets(MF);
94 
95   AsmPrinter::runOnMachineFunction(MF);
96 
97   emitXRayTable();
98 
99   return true;
100 }
101 
102 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
103   MCOp = MCInstLowering.LowerOperand(MO);
104   return MCOp.isValid();
105 }
106 
107 #include "MipsGenMCPseudoLowering.inc"
108 
109 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
110 // JALR, or JALR64 as appropriate for the target.
111 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
112                                               const MachineInstr *MI) {
113   bool HasLinkReg = false;
114   bool InMicroMipsMode = Subtarget->inMicroMipsMode();
115   MCInst TmpInst0;
116 
117   if (Subtarget->hasMips64r6()) {
118     // MIPS64r6 should use (JALR64 ZERO_64, $rs)
119     TmpInst0.setOpcode(Mips::JALR64);
120     HasLinkReg = true;
121   } else if (Subtarget->hasMips32r6()) {
122     // MIPS32r6 should use (JALR ZERO, $rs)
123     if (InMicroMipsMode)
124       TmpInst0.setOpcode(Mips::JRC16_MMR6);
125     else {
126       TmpInst0.setOpcode(Mips::JALR);
127       HasLinkReg = true;
128     }
129   } else if (Subtarget->inMicroMipsMode())
130     // microMIPS should use (JR_MM $rs)
131     TmpInst0.setOpcode(Mips::JR_MM);
132   else {
133     // Everything else should use (JR $rs)
134     TmpInst0.setOpcode(Mips::JR);
135   }
136 
137   MCOperand MCOp;
138 
139   if (HasLinkReg) {
140     unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
141     TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
142   }
143 
144   lowerOperand(MI->getOperand(0), MCOp);
145   TmpInst0.addOperand(MCOp);
146 
147   EmitToStreamer(OutStreamer, TmpInst0);
148 }
149 
150 // If there is an MO_JALR operand, insert:
151 //
152 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
153 // tmplabel:
154 //
155 // This is an optimization hint for the linker which may then replace
156 // an indirect call with a direct branch.
157 static void emitDirectiveRelocJalr(const MachineInstr &MI,
158                                    MCContext &OutContext,
159                                    TargetMachine &TM,
160                                    MCStreamer &OutStreamer,
161                                    const MipsSubtarget &Subtarget) {
162   for (const MachineOperand &MO :
163        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) {
164     if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) {
165       MCSymbol *Callee = MO.getMCSymbol();
166       if (Callee && !Callee->getName().empty()) {
167         MCSymbol *OffsetLabel = OutContext.createTempSymbol();
168         const MCExpr *OffsetExpr =
169             MCSymbolRefExpr::create(OffsetLabel, OutContext);
170         const MCExpr *CaleeExpr =
171             MCSymbolRefExpr::create(Callee, OutContext);
172         OutStreamer.emitRelocDirective(
173             *OffsetExpr,
174             Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
175             CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo());
176         OutStreamer.emitLabel(OffsetLabel);
177         return;
178       }
179     }
180   }
181 }
182 
183 void MipsAsmPrinter::emitInstruction(const MachineInstr *MI) {
184   // FIXME: Enable feature predicate checks once all the test pass.
185   // Mips_MC::verifyInstructionPredicates(MI->getOpcode(),
186   //                                      getSubtargetInfo().getFeatureBits());
187 
188   MipsTargetStreamer &TS = getTargetStreamer();
189   unsigned Opc = MI->getOpcode();
190   TS.forbidModuleDirective();
191 
192   if (MI->isDebugValue()) {
193     SmallString<128> Str;
194     raw_svector_ostream OS(Str);
195 
196     PrintDebugValueComment(MI, OS);
197     return;
198   }
199   if (MI->isDebugLabel())
200     return;
201 
202   // If we just ended a constant pool, mark it as such.
203   if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) {
204     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
205     InConstantPool = false;
206   }
207   if (Opc == Mips::CONSTPOOL_ENTRY) {
208     // CONSTPOOL_ENTRY - This instruction represents a floating
209     // constant pool in the function.  The first operand is the ID#
210     // for this instruction, the second is the index into the
211     // MachineConstantPool that this is, the third is the size in
212     // bytes of this constant pool entry.
213     // The required alignment is specified on the basic block holding this MI.
214     //
215     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
216     unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
217 
218     // If this is the first entry of the pool, mark it.
219     if (!InConstantPool) {
220       OutStreamer->emitDataRegion(MCDR_DataRegion);
221       InConstantPool = true;
222     }
223 
224     OutStreamer->emitLabel(GetCPISymbol(LabelId));
225 
226     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
227     if (MCPE.isMachineConstantPoolEntry())
228       emitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
229     else
230       emitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
231     return;
232   }
233 
234   switch (Opc) {
235   case Mips::PATCHABLE_FUNCTION_ENTER:
236     LowerPATCHABLE_FUNCTION_ENTER(*MI);
237     return;
238   case Mips::PATCHABLE_FUNCTION_EXIT:
239     LowerPATCHABLE_FUNCTION_EXIT(*MI);
240     return;
241   case Mips::PATCHABLE_TAIL_CALL:
242     LowerPATCHABLE_TAIL_CALL(*MI);
243     return;
244   }
245 
246   if (EmitJalrReloc &&
247       (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) {
248     emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget);
249   }
250 
251   MachineBasicBlock::const_instr_iterator I = MI->getIterator();
252   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
253 
254   do {
255     // Do any auto-generated pseudo lowerings.
256     if (emitPseudoExpansionLowering(*OutStreamer, &*I))
257       continue;
258 
259     // Skip the BUNDLE pseudo instruction and lower the contents
260     if (I->isBundle())
261       continue;
262 
263     if (I->getOpcode() == Mips::PseudoReturn ||
264         I->getOpcode() == Mips::PseudoReturn64 ||
265         I->getOpcode() == Mips::PseudoIndirectBranch ||
266         I->getOpcode() == Mips::PseudoIndirectBranch64 ||
267         I->getOpcode() == Mips::TAILCALLREG ||
268         I->getOpcode() == Mips::TAILCALLREG64) {
269       emitPseudoIndirectBranch(*OutStreamer, &*I);
270       continue;
271     }
272 
273     // The inMips16Mode() test is not permanent.
274     // Some instructions are marked as pseudo right now which
275     // would make the test fail for the wrong reason but
276     // that will be fixed soon. We need this here because we are
277     // removing another test for this situation downstream in the
278     // callchain.
279     //
280     if (I->isPseudo() && !Subtarget->inMips16Mode()
281         && !isLongBranchPseudo(I->getOpcode()))
282       llvm_unreachable("Pseudo opcode found in emitInstruction()");
283 
284     MCInst TmpInst0;
285     MCInstLowering.Lower(&*I, TmpInst0);
286     EmitToStreamer(*OutStreamer, TmpInst0);
287   } while ((++I != E) && I->isInsideBundle()); // Delay slot check
288 }
289 
290 //===----------------------------------------------------------------------===//
291 //
292 //  Mips Asm Directives
293 //
294 //  -- Frame directive "frame Stackpointer, Stacksize, RARegister"
295 //  Describe the stack frame.
296 //
297 //  -- Mask directives "(f)mask  bitmask, offset"
298 //  Tells the assembler which registers are saved and where.
299 //  bitmask - contain a little endian bitset indicating which registers are
300 //            saved on function prologue (e.g. with a 0x80000000 mask, the
301 //            assembler knows the register 31 (RA) is saved at prologue.
302 //  offset  - the position before stack pointer subtraction indicating where
303 //            the first saved register on prologue is located. (e.g. with a
304 //
305 //  Consider the following function prologue:
306 //
307 //    .frame  $fp,48,$ra
308 //    .mask   0xc0000000,-8
309 //       addiu $sp, $sp, -48
310 //       sw $ra, 40($sp)
311 //       sw $fp, 36($sp)
312 //
313 //    With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
314 //    30 (FP) are saved at prologue. As the save order on prologue is from
315 //    left to right, RA is saved first. A -8 offset means that after the
316 //    stack pointer subtration, the first register in the mask (RA) will be
317 //    saved at address 48-8=40.
318 //
319 //===----------------------------------------------------------------------===//
320 
321 //===----------------------------------------------------------------------===//
322 // Mask directives
323 //===----------------------------------------------------------------------===//
324 
325 // Create a bitmask with all callee saved registers for CPU or Floating Point
326 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
327 void MipsAsmPrinter::printSavedRegsBitmask() {
328   // CPU and FPU Saved Registers Bitmasks
329   unsigned CPUBitmask = 0, FPUBitmask = 0;
330   int CPUTopSavedRegOff, FPUTopSavedRegOff;
331 
332   // Set the CPU and FPU Bitmasks
333   const MachineFrameInfo &MFI = MF->getFrameInfo();
334   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
335   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
336   // size of stack area to which FP callee-saved regs are saved.
337   unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8;
338   unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8;
339   unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8;
340   bool HasAFGR64Reg = false;
341   unsigned CSFPRegsSize = 0;
342 
343   for (const auto &I : CSI) {
344     Register Reg = I.getReg();
345     unsigned RegNum = TRI->getEncodingValue(Reg);
346 
347     // If it's a floating point register, set the FPU Bitmask.
348     // If it's a general purpose register, set the CPU Bitmask.
349     if (Mips::FGR32RegClass.contains(Reg)) {
350       FPUBitmask |= (1 << RegNum);
351       CSFPRegsSize += FGR32RegSize;
352     } else if (Mips::AFGR64RegClass.contains(Reg)) {
353       FPUBitmask |= (3 << RegNum);
354       CSFPRegsSize += AFGR64RegSize;
355       HasAFGR64Reg = true;
356     } else if (Mips::GPR32RegClass.contains(Reg))
357       CPUBitmask |= (1 << RegNum);
358   }
359 
360   // FP Regs are saved right below where the virtual frame pointer points to.
361   FPUTopSavedRegOff = FPUBitmask ?
362     (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
363 
364   // CPU Regs are saved below FP Regs.
365   CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
366 
367   MipsTargetStreamer &TS = getTargetStreamer();
368   // Print CPUBitmask
369   TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
370 
371   // Print FPUBitmask
372   TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
373 }
374 
375 //===----------------------------------------------------------------------===//
376 // Frame and Set directives
377 //===----------------------------------------------------------------------===//
378 
379 /// Frame Directive
380 void MipsAsmPrinter::emitFrameDirective() {
381   const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
382 
383   Register stackReg = RI.getFrameRegister(*MF);
384   unsigned returnReg = RI.getRARegister();
385   unsigned stackSize = MF->getFrameInfo().getStackSize();
386 
387   getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
388 }
389 
390 /// Emit Set directives.
391 const char *MipsAsmPrinter::getCurrentABIString() const {
392   switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
393   case MipsABIInfo::ABI::O32:  return "abi32";
394   case MipsABIInfo::ABI::N32:  return "abiN32";
395   case MipsABIInfo::ABI::N64:  return "abi64";
396   default: llvm_unreachable("Unknown Mips ABI");
397   }
398 }
399 
400 void MipsAsmPrinter::emitFunctionEntryLabel() {
401   MipsTargetStreamer &TS = getTargetStreamer();
402 
403   // NaCl sandboxing requires that indirect call instructions are masked.
404   // This means that function entry points should be bundle-aligned.
405   if (Subtarget->isTargetNaCl())
406     emitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
407 
408   if (Subtarget->inMicroMipsMode()) {
409     TS.emitDirectiveSetMicroMips();
410     TS.setUsesMicroMips();
411     TS.updateABIInfo(*Subtarget);
412   } else
413     TS.emitDirectiveSetNoMicroMips();
414 
415   if (Subtarget->inMips16Mode())
416     TS.emitDirectiveSetMips16();
417   else
418     TS.emitDirectiveSetNoMips16();
419 
420   TS.emitDirectiveEnt(*CurrentFnSym);
421   OutStreamer->emitLabel(CurrentFnSym);
422 }
423 
424 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
425 /// the first basic block in the function.
426 void MipsAsmPrinter::emitFunctionBodyStart() {
427   MipsTargetStreamer &TS = getTargetStreamer();
428 
429   MCInstLowering.Initialize(&MF->getContext());
430 
431   bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked);
432   if (!IsNakedFunction)
433     emitFrameDirective();
434 
435   if (!IsNakedFunction)
436     printSavedRegsBitmask();
437 
438   if (!Subtarget->inMips16Mode()) {
439     TS.emitDirectiveSetNoReorder();
440     TS.emitDirectiveSetNoMacro();
441     TS.emitDirectiveSetNoAt();
442   }
443 }
444 
445 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
446 /// the last basic block in the function.
447 void MipsAsmPrinter::emitFunctionBodyEnd() {
448   MipsTargetStreamer &TS = getTargetStreamer();
449 
450   // There are instruction for this macros, but they must
451   // always be at the function end, and we can't emit and
452   // break with BB logic.
453   if (!Subtarget->inMips16Mode()) {
454     TS.emitDirectiveSetAt();
455     TS.emitDirectiveSetMacro();
456     TS.emitDirectiveSetReorder();
457   }
458   TS.emitDirectiveEnd(CurrentFnSym->getName());
459   // Make sure to terminate any constant pools that were at the end
460   // of the function.
461   if (!InConstantPool)
462     return;
463   InConstantPool = false;
464   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
465 }
466 
467 void MipsAsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
468   AsmPrinter::emitBasicBlockEnd(MBB);
469   MipsTargetStreamer &TS = getTargetStreamer();
470   if (MBB.empty())
471     TS.emitDirectiveInsn();
472 }
473 
474 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
475 /// exactly one predecessor and the control transfer mechanism between
476 /// the predecessor and this block is a fall-through.
477 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
478                                                        MBB) const {
479   // The predecessor has to be immediately before this block.
480   const MachineBasicBlock *Pred = *MBB->pred_begin();
481 
482   // If the predecessor is a switch statement, assume a jump table
483   // implementation, so it is not a fall through.
484   if (const BasicBlock *bb = Pred->getBasicBlock())
485     if (isa<SwitchInst>(bb->getTerminator()))
486       return false;
487 
488   // If this is a landing pad, it isn't a fall through.  If it has no preds,
489   // then nothing falls through to it.
490   if (MBB->isEHPad() || MBB->pred_empty())
491     return false;
492 
493   // If there isn't exactly one predecessor, it can't be a fall through.
494   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
495   ++PI2;
496 
497   if (PI2 != MBB->pred_end())
498     return false;
499 
500   // The predecessor has to be immediately before this block.
501   if (!Pred->isLayoutSuccessor(MBB))
502     return false;
503 
504   // If the block is completely empty, then it definitely does fall through.
505   if (Pred->empty())
506     return true;
507 
508   // Otherwise, check the last instruction.
509   // Check if the last terminator is an unconditional branch.
510   MachineBasicBlock::const_iterator I = Pred->end();
511   while (I != Pred->begin() && !(--I)->isTerminator()) ;
512 
513   return !I->isBarrier();
514 }
515 
516 // Print out an operand for an inline asm expression.
517 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
518                                      const char *ExtraCode, raw_ostream &O) {
519   // Does this asm operand have a single letter operand modifier?
520   if (ExtraCode && ExtraCode[0]) {
521     if (ExtraCode[1] != 0) return true; // Unknown modifier.
522 
523     const MachineOperand &MO = MI->getOperand(OpNum);
524     switch (ExtraCode[0]) {
525     default:
526       // See if this is a generic print operand
527       return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
528     case 'X': // hex const int
529       if (!MO.isImm())
530         return true;
531       O << "0x" << Twine::utohexstr(MO.getImm());
532       return false;
533     case 'x': // hex const int (low 16 bits)
534       if (!MO.isImm())
535         return true;
536       O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
537       return false;
538     case 'd': // decimal const int
539       if (!MO.isImm())
540         return true;
541       O << MO.getImm();
542       return false;
543     case 'm': // decimal const int minus 1
544       if (!MO.isImm())
545         return true;
546       O << MO.getImm() - 1;
547       return false;
548     case 'y': // exact log2
549       if (!MO.isImm())
550         return true;
551       if (!isPowerOf2_64(MO.getImm()))
552         return true;
553       O << Log2_64(MO.getImm());
554       return false;
555     case 'z':
556       // $0 if zero, regular printing otherwise
557       if (MO.isImm() && MO.getImm() == 0) {
558         O << "$0";
559         return false;
560       }
561       // If not, call printOperand as normal.
562       break;
563     case 'D': // Second part of a double word register operand
564     case 'L': // Low order register of a double word register operand
565     case 'M': // High order register of a double word register operand
566     {
567       if (OpNum == 0)
568         return true;
569       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
570       if (!FlagsOP.isImm())
571         return true;
572       unsigned Flags = FlagsOP.getImm();
573       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
574       // Number of registers represented by this operand. We are looking
575       // for 2 for 32 bit mode and 1 for 64 bit mode.
576       if (NumVals != 2) {
577         if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
578           Register Reg = MO.getReg();
579           O << '$' << MipsInstPrinter::getRegisterName(Reg);
580           return false;
581         }
582         return true;
583       }
584 
585       unsigned RegOp = OpNum;
586       if (!Subtarget->isGP64bit()){
587         // Endianness reverses which register holds the high or low value
588         // between M and L.
589         switch(ExtraCode[0]) {
590         case 'M':
591           RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
592           break;
593         case 'L':
594           RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
595           break;
596         case 'D': // Always the second part
597           RegOp = OpNum + 1;
598         }
599         if (RegOp >= MI->getNumOperands())
600           return true;
601         const MachineOperand &MO = MI->getOperand(RegOp);
602         if (!MO.isReg())
603           return true;
604         Register Reg = MO.getReg();
605         O << '$' << MipsInstPrinter::getRegisterName(Reg);
606         return false;
607       }
608       break;
609     }
610     case 'w':
611       // Print MSA registers for the 'f' constraint
612       // In LLVM, the 'w' modifier doesn't need to do anything.
613       // We can just call printOperand as normal.
614       break;
615     }
616   }
617 
618   printOperand(MI, OpNum, O);
619   return false;
620 }
621 
622 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
623                                            unsigned OpNum,
624                                            const char *ExtraCode,
625                                            raw_ostream &O) {
626   assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
627   const MachineOperand &BaseMO = MI->getOperand(OpNum);
628   const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
629   assert(BaseMO.isReg() &&
630          "Unexpected base pointer for inline asm memory operand.");
631   assert(OffsetMO.isImm() &&
632          "Unexpected offset for inline asm memory operand.");
633   int Offset = OffsetMO.getImm();
634 
635   // Currently we are expecting either no ExtraCode or 'D','M','L'.
636   if (ExtraCode) {
637     switch (ExtraCode[0]) {
638     case 'D':
639       Offset += 4;
640       break;
641     case 'M':
642       if (Subtarget->isLittle())
643         Offset += 4;
644       break;
645     case 'L':
646       if (!Subtarget->isLittle())
647         Offset += 4;
648       break;
649     default:
650       return true; // Unknown modifier.
651     }
652   }
653 
654   O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg())
655     << ")";
656 
657   return false;
658 }
659 
660 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
661                                   raw_ostream &O) {
662   const MachineOperand &MO = MI->getOperand(opNum);
663   bool closeP = false;
664 
665   if (MO.getTargetFlags())
666     closeP = true;
667 
668   switch(MO.getTargetFlags()) {
669   case MipsII::MO_GPREL:    O << "%gp_rel("; break;
670   case MipsII::MO_GOT_CALL: O << "%call16("; break;
671   case MipsII::MO_GOT:      O << "%got(";    break;
672   case MipsII::MO_ABS_HI:   O << "%hi(";     break;
673   case MipsII::MO_ABS_LO:   O << "%lo(";     break;
674   case MipsII::MO_HIGHER:   O << "%higher("; break;
675   case MipsII::MO_HIGHEST:  O << "%highest(("; break;
676   case MipsII::MO_TLSGD:    O << "%tlsgd(";  break;
677   case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
678   case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
679   case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
680   case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
681   case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
682   case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
683   case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
684   case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
685   }
686 
687   switch (MO.getType()) {
688     case MachineOperand::MO_Register:
689       O << '$'
690         << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
691       break;
692 
693     case MachineOperand::MO_Immediate:
694       O << MO.getImm();
695       break;
696 
697     case MachineOperand::MO_MachineBasicBlock:
698       MO.getMBB()->getSymbol()->print(O, MAI);
699       return;
700 
701     case MachineOperand::MO_GlobalAddress:
702       PrintSymbolOperand(MO, O);
703       break;
704 
705     case MachineOperand::MO_BlockAddress: {
706       MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
707       O << BA->getName();
708       break;
709     }
710 
711     case MachineOperand::MO_ConstantPoolIndex:
712       O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
713         << getFunctionNumber() << "_" << MO.getIndex();
714       if (MO.getOffset())
715         O << "+" << MO.getOffset();
716       break;
717 
718     default:
719       llvm_unreachable("<unknown operand type>");
720   }
721 
722   if (closeP) O << ")";
723 }
724 
725 void MipsAsmPrinter::
726 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
727   // Load/Store memory operands -- imm($reg)
728   // If PIC target the target is loaded as the
729   // pattern lw $25,%call16($28)
730 
731   // opNum can be invalid if instruction has reglist as operand.
732   // MemOperand is always last operand of instruction (base + offset).
733   switch (MI->getOpcode()) {
734   default:
735     break;
736   case Mips::SWM32_MM:
737   case Mips::LWM32_MM:
738     opNum = MI->getNumOperands() - 2;
739     break;
740   }
741 
742   printOperand(MI, opNum+1, O);
743   O << "(";
744   printOperand(MI, opNum, O);
745   O << ")";
746 }
747 
748 void MipsAsmPrinter::
749 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
750   // when using stack locations for not load/store instructions
751   // print the same way as all normal 3 operand instructions.
752   printOperand(MI, opNum, O);
753   O << ", ";
754   printOperand(MI, opNum+1, O);
755 }
756 
757 void MipsAsmPrinter::
758 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
759                 const char *Modifier) {
760   const MachineOperand &MO = MI->getOperand(opNum);
761   O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
762 }
763 
764 void MipsAsmPrinter::
765 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
766   for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
767     if (i != opNum) O << ", ";
768     printOperand(MI, i, O);
769   }
770 }
771 
772 void MipsAsmPrinter::emitStartOfAsmFile(Module &M) {
773   MipsTargetStreamer &TS = getTargetStreamer();
774 
775   // MipsTargetStreamer has an initialization order problem when emitting an
776   // object file directly (see MipsTargetELFStreamer for full details). Work
777   // around it by re-initializing the PIC state here.
778   TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());
779 
780   // Try to get target-features from the first function.
781   StringRef FS = TM.getTargetFeatureString();
782   Module::iterator F = M.begin();
783   if (FS.empty() && M.size() && F->hasFnAttribute("target-features"))
784     FS = F->getFnAttribute("target-features").getValueAsString();
785 
786   // Compute MIPS architecture attributes based on the default subtarget
787   // that we'd have constructed.
788   // FIXME: For ifunc related functions we could iterate over and look
789   // for a feature string that doesn't match the default one.
790   const Triple &TT = TM.getTargetTriple();
791   StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
792   const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
793   const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, std::nullopt);
794 
795   bool IsABICalls = STI.isABICalls();
796   const MipsABIInfo &ABI = MTM.getABI();
797   if (IsABICalls) {
798     TS.emitDirectiveAbiCalls();
799     // FIXME: This condition should be a lot more complicated that it is here.
800     //        Ideally it should test for properties of the ABI and not the ABI
801     //        itself.
802     //        For the moment, I'm only correcting enough to make MIPS-IV work.
803     if (!isPositionIndependent() && STI.hasSym32())
804       TS.emitDirectiveOptionPic0();
805   }
806 
807   // Tell the assembler which ABI we are using
808   std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
809   OutStreamer->switchSection(
810       OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
811 
812   // NaN: At the moment we only support:
813   // 1. .nan legacy (default)
814   // 2. .nan 2008
815   STI.isNaN2008() ? TS.emitDirectiveNaN2008()
816                   : TS.emitDirectiveNaNLegacy();
817 
818   // TODO: handle O64 ABI
819 
820   TS.updateABIInfo(STI);
821 
822   // We should always emit a '.module fp=...' but binutils 2.24 does not accept
823   // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
824   // -mfp64) and omit it otherwise.
825   if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) ||
826       STI.useSoftFloat())
827     TS.emitDirectiveModuleFP();
828 
829   // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
830   // accept it. We therefore emit it when it contradicts the default or an
831   // option has changed the default (i.e. FPXX) and omit it otherwise.
832   if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
833     TS.emitDirectiveModuleOddSPReg();
834 
835   // Switch to the .text section.
836   OutStreamer->switchSection(getObjFileLowering().getTextSection());
837 }
838 
839 void MipsAsmPrinter::emitInlineAsmStart() const {
840   MipsTargetStreamer &TS = getTargetStreamer();
841 
842   // GCC's choice of assembler options for inline assembly code ('at', 'macro'
843   // and 'reorder') is different from LLVM's choice for generated code ('noat',
844   // 'nomacro' and 'noreorder').
845   // In order to maintain compatibility with inline assembly code which depends
846   // on GCC's assembler options being used, we have to switch to those options
847   // for the duration of the inline assembly block and then switch back.
848   TS.emitDirectiveSetPush();
849   TS.emitDirectiveSetAt();
850   TS.emitDirectiveSetMacro();
851   TS.emitDirectiveSetReorder();
852   OutStreamer->addBlankLine();
853 }
854 
855 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
856                                       const MCSubtargetInfo *EndInfo) const {
857   OutStreamer->addBlankLine();
858   getTargetStreamer().emitDirectiveSetPop();
859 }
860 
861 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
862   MCInst I;
863   I.setOpcode(Mips::JAL);
864   I.addOperand(
865       MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
866   OutStreamer->emitInstruction(I, STI);
867 }
868 
869 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
870                                   unsigned Reg) {
871   MCInst I;
872   I.setOpcode(Opcode);
873   I.addOperand(MCOperand::createReg(Reg));
874   OutStreamer->emitInstruction(I, STI);
875 }
876 
877 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
878                                      unsigned Opcode, unsigned Reg1,
879                                      unsigned Reg2) {
880   MCInst I;
881   //
882   // Because of the current td files for Mips32, the operands for MTC1
883   // appear backwards from their normal assembly order. It's not a trivial
884   // change to fix this in the td file so we adjust for it here.
885   //
886   if (Opcode == Mips::MTC1) {
887     unsigned Temp = Reg1;
888     Reg1 = Reg2;
889     Reg2 = Temp;
890   }
891   I.setOpcode(Opcode);
892   I.addOperand(MCOperand::createReg(Reg1));
893   I.addOperand(MCOperand::createReg(Reg2));
894   OutStreamer->emitInstruction(I, STI);
895 }
896 
897 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
898                                         unsigned Opcode, unsigned Reg1,
899                                         unsigned Reg2, unsigned Reg3) {
900   MCInst I;
901   I.setOpcode(Opcode);
902   I.addOperand(MCOperand::createReg(Reg1));
903   I.addOperand(MCOperand::createReg(Reg2));
904   I.addOperand(MCOperand::createReg(Reg3));
905   OutStreamer->emitInstruction(I, STI);
906 }
907 
908 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
909                                       unsigned MovOpc, unsigned Reg1,
910                                       unsigned Reg2, unsigned FPReg1,
911                                       unsigned FPReg2, bool LE) {
912   if (!LE) {
913     unsigned temp = Reg1;
914     Reg1 = Reg2;
915     Reg2 = temp;
916   }
917   EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
918   EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
919 }
920 
921 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
922                                          Mips16HardFloatInfo::FPParamVariant PV,
923                                          bool LE, bool ToFP) {
924   using namespace Mips16HardFloatInfo;
925 
926   unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
927   switch (PV) {
928   case FSig:
929     EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
930     break;
931   case FFSig:
932     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
933     break;
934   case FDSig:
935     EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
936     EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
937     break;
938   case DSig:
939     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
940     break;
941   case DDSig:
942     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
943     EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
944     break;
945   case DFSig:
946     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
947     EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
948     break;
949   case NoSig:
950     return;
951   }
952 }
953 
954 void MipsAsmPrinter::EmitSwapFPIntRetval(
955     const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
956     bool LE) {
957   using namespace Mips16HardFloatInfo;
958 
959   unsigned MovOpc = Mips::MFC1;
960   switch (RV) {
961   case FRet:
962     EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
963     break;
964   case DRet:
965     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
966     break;
967   case CFRet:
968     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
969     break;
970   case CDRet:
971     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
972     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
973     break;
974   case NoFPRet:
975     break;
976   }
977 }
978 
979 void MipsAsmPrinter::EmitFPCallStub(
980     const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
981   using namespace Mips16HardFloatInfo;
982 
983   MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
984   bool LE = getDataLayout().isLittleEndian();
985   // Construct a local MCSubtargetInfo here.
986   // This is because the MachineFunction won't exist (but have not yet been
987   // freed) and since we're at the global level we can use the default
988   // constructed subtarget.
989   std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
990       TM.getTargetTriple().str(), TM.getTargetCPU(),
991       TM.getTargetFeatureString()));
992 
993   //
994   // .global xxxx
995   //
996   OutStreamer->emitSymbolAttribute(MSymbol, MCSA_Global);
997   const char *RetType;
998   //
999   // make the comment field identifying the return and parameter
1000   // types of the floating point stub
1001   // # Stub function to call rettype xxxx (params)
1002   //
1003   switch (Signature->RetSig) {
1004   case FRet:
1005     RetType = "float";
1006     break;
1007   case DRet:
1008     RetType = "double";
1009     break;
1010   case CFRet:
1011     RetType = "complex";
1012     break;
1013   case CDRet:
1014     RetType = "double complex";
1015     break;
1016   case NoFPRet:
1017     RetType = "";
1018     break;
1019   }
1020   const char *Parms;
1021   switch (Signature->ParamSig) {
1022   case FSig:
1023     Parms = "float";
1024     break;
1025   case FFSig:
1026     Parms = "float, float";
1027     break;
1028   case FDSig:
1029     Parms = "float, double";
1030     break;
1031   case DSig:
1032     Parms = "double";
1033     break;
1034   case DDSig:
1035     Parms = "double, double";
1036     break;
1037   case DFSig:
1038     Parms = "double, float";
1039     break;
1040   case NoSig:
1041     Parms = "";
1042     break;
1043   }
1044   OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
1045                           Twine(Symbol) + " (" + Twine(Parms) + ")");
1046   //
1047   // probably not necessary but we save and restore the current section state
1048   //
1049   OutStreamer->pushSection();
1050   //
1051   // .section mips16.call.fpxxxx,"ax",@progbits
1052   //
1053   MCSectionELF *M = OutContext.getELFSection(
1054       ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
1055       ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
1056   OutStreamer->switchSection(M, nullptr);
1057   //
1058   // .align 2
1059   //
1060   OutStreamer->emitValueToAlignment(Align(4));
1061   MipsTargetStreamer &TS = getTargetStreamer();
1062   //
1063   // .set nomips16
1064   // .set nomicromips
1065   //
1066   TS.emitDirectiveSetNoMips16();
1067   TS.emitDirectiveSetNoMicroMips();
1068   //
1069   // .ent __call_stub_fp_xxxx
1070   // .type  __call_stub_fp_xxxx,@function
1071   //  __call_stub_fp_xxxx:
1072   //
1073   std::string x = "__call_stub_fp_" + std::string(Symbol);
1074   MCSymbolELF *Stub =
1075       cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
1076   TS.emitDirectiveEnt(*Stub);
1077   MCSymbol *MType =
1078       OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
1079   OutStreamer->emitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
1080   OutStreamer->emitLabel(Stub);
1081 
1082   // Only handle non-pic for now.
1083   assert(!isPositionIndependent() &&
1084          "should not be here if we are compiling pic");
1085   TS.emitDirectiveSetReorder();
1086   //
1087   // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1088   // stubs without raw text but this current patch is for compiler generated
1089   // functions and they all return some value.
1090   // The calling sequence for non pic is different in that case and we need
1091   // to implement %lo and %hi in order to handle the case of no return value
1092   // See the corresponding method in Mips16HardFloat for details.
1093   //
1094   // mov the return address to S2.
1095   // we have no stack space to store it and we are about to make another call.
1096   // We need to make sure that the enclosing function knows to save S2
1097   // This should have already been handled.
1098   //
1099   // Mov $18, $31
1100 
1101   EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
1102 
1103   EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1104 
1105   // Jal xxxx
1106   //
1107   EmitJal(*STI, MSymbol);
1108 
1109   // fix return values
1110   EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1111   //
1112   // do the return
1113   // if (Signature->RetSig == NoFPRet)
1114   //  llvm_unreachable("should not be any stubs here with no return value");
1115   // else
1116   EmitInstrReg(*STI, Mips::JR, Mips::S2);
1117 
1118   MCSymbol *Tmp = OutContext.createTempSymbol();
1119   OutStreamer->emitLabel(Tmp);
1120   const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1121   const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1122   const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1123   OutStreamer->emitELFSize(Stub, T_min_E);
1124   TS.emitDirectiveEnd(x);
1125   OutStreamer->popSection();
1126 }
1127 
1128 void MipsAsmPrinter::emitEndOfAsmFile(Module &M) {
1129   // Emit needed stubs
1130   //
1131   for (std::map<
1132            const char *,
1133            const Mips16HardFloatInfo::FuncSignature *>::const_iterator
1134            it = StubsNeeded.begin();
1135        it != StubsNeeded.end(); ++it) {
1136     const char *Symbol = it->first;
1137     const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1138     EmitFPCallStub(Symbol, Signature);
1139   }
1140   // return to the text section
1141   OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection());
1142 }
1143 
1144 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) {
1145   const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11;
1146   // For mips32 we want to emit the following pattern:
1147   //
1148   // .Lxray_sled_N:
1149   //   ALIGN
1150   //   B .tmpN
1151   //   11 NOP instructions (44 bytes)
1152   //   ADDIU T9, T9, 52
1153   // .tmpN
1154   //
1155   // We need the 44 bytes (11 instructions) because at runtime, we'd
1156   // be patching over the full 48 bytes (12 instructions) with the following
1157   // pattern:
1158   //
1159   //   ADDIU    SP, SP, -8
1160   //   NOP
1161   //   SW       RA, 4(SP)
1162   //   SW       T9, 0(SP)
1163   //   LUI      T9, %hi(__xray_FunctionEntry/Exit)
1164   //   ORI      T9, T9, %lo(__xray_FunctionEntry/Exit)
1165   //   LUI      T0, %hi(function_id)
1166   //   JALR     T9
1167   //   ORI      T0, T0, %lo(function_id)
1168   //   LW       T9, 0(SP)
1169   //   LW       RA, 4(SP)
1170   //   ADDIU    SP, SP, 8
1171   //
1172   // We add 52 bytes to t9 because we want to adjust the function pointer to
1173   // the actual start of function i.e. the address just after the noop sled.
1174   // We do this because gp displacement relocation is emitted at the start of
1175   // of the function i.e after the nop sled and to correctly calculate the
1176   // global offset table address, t9 must hold the address of the instruction
1177   // containing the gp displacement relocation.
1178   // FIXME: Is this correct for the static relocation model?
1179   //
1180   // For mips64 we want to emit the following pattern:
1181   //
1182   // .Lxray_sled_N:
1183   //   ALIGN
1184   //   B .tmpN
1185   //   15 NOP instructions (60 bytes)
1186   // .tmpN
1187   //
1188   // We need the 60 bytes (15 instructions) because at runtime, we'd
1189   // be patching over the full 64 bytes (16 instructions) with the following
1190   // pattern:
1191   //
1192   //   DADDIU   SP, SP, -16
1193   //   NOP
1194   //   SD       RA, 8(SP)
1195   //   SD       T9, 0(SP)
1196   //   LUI      T9, %highest(__xray_FunctionEntry/Exit)
1197   //   ORI      T9, T9, %higher(__xray_FunctionEntry/Exit)
1198   //   DSLL     T9, T9, 16
1199   //   ORI      T9, T9, %hi(__xray_FunctionEntry/Exit)
1200   //   DSLL     T9, T9, 16
1201   //   ORI      T9, T9, %lo(__xray_FunctionEntry/Exit)
1202   //   LUI      T0, %hi(function_id)
1203   //   JALR     T9
1204   //   ADDIU    T0, T0, %lo(function_id)
1205   //   LD       T9, 0(SP)
1206   //   LD       RA, 8(SP)
1207   //   DADDIU   SP, SP, 16
1208   //
1209   OutStreamer->emitCodeAlignment(Align(4), &getSubtargetInfo());
1210   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1211   OutStreamer->emitLabel(CurSled);
1212   auto Target = OutContext.createTempSymbol();
1213 
1214   // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1215   // start of function
1216   const MCExpr *TargetExpr = MCSymbolRefExpr::create(
1217       Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
1218   EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ)
1219                                    .addReg(Mips::ZERO)
1220                                    .addReg(Mips::ZERO)
1221                                    .addExpr(TargetExpr));
1222 
1223   for (int8_t I = 0; I < NoopsInSledCount; I++)
1224     EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL)
1225                                      .addReg(Mips::ZERO)
1226                                      .addReg(Mips::ZERO)
1227                                      .addImm(0));
1228 
1229   OutStreamer->emitLabel(Target);
1230 
1231   if (!Subtarget->isGP64bit()) {
1232     EmitToStreamer(*OutStreamer,
1233                    MCInstBuilder(Mips::ADDiu)
1234                        .addReg(Mips::T9)
1235                        .addReg(Mips::T9)
1236                        .addImm(0x34));
1237   }
1238 
1239   recordSled(CurSled, MI, Kind, 2);
1240 }
1241 
1242 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) {
1243   EmitSled(MI, SledKind::FUNCTION_ENTER);
1244 }
1245 
1246 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
1247   EmitSled(MI, SledKind::FUNCTION_EXIT);
1248 }
1249 
1250 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
1251   EmitSled(MI, SledKind::TAIL_CALL);
1252 }
1253 
1254 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1255                                            raw_ostream &OS) {
1256   // TODO: implement
1257 }
1258 
1259 // Emit .dtprelword or .dtpreldword directive
1260 // and value for debug thread local expression.
1261 void MipsAsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
1262   if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) {
1263     if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) {
1264       switch (Size) {
1265       case 4:
1266         OutStreamer->emitDTPRel32Value(MipsExpr->getSubExpr());
1267         break;
1268       case 8:
1269         OutStreamer->emitDTPRel64Value(MipsExpr->getSubExpr());
1270         break;
1271       default:
1272         llvm_unreachable("Unexpected size of expression value.");
1273       }
1274       return;
1275     }
1276   }
1277   AsmPrinter::emitDebugValue(Value, Size);
1278 }
1279 
1280 // Align all targets of indirect branches on bundle size.  Used only if target
1281 // is NaCl.
1282 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1283   // Align all blocks that are jumped to through jump table.
1284   if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1285     const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1286     for (const auto &I : JT) {
1287       const std::vector<MachineBasicBlock *> &MBBs = I.MBBs;
1288 
1289       for (MachineBasicBlock *MBB : MBBs)
1290         MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1291     }
1292   }
1293 
1294   // If basic block address is taken, block can be target of indirect branch.
1295   for (auto &MBB : MF) {
1296     if (MBB.hasAddressTaken())
1297       MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1298   }
1299 }
1300 
1301 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1302   return (Opcode == Mips::LONG_BRANCH_LUi
1303           || Opcode == Mips::LONG_BRANCH_LUi2Op
1304           || Opcode == Mips::LONG_BRANCH_LUi2Op_64
1305           || Opcode == Mips::LONG_BRANCH_ADDiu
1306           || Opcode == Mips::LONG_BRANCH_ADDiu2Op
1307           || Opcode == Mips::LONG_BRANCH_DADDiu
1308           || Opcode == Mips::LONG_BRANCH_DADDiu2Op);
1309 }
1310 
1311 // Force static initialization.
1312 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeMipsAsmPrinter() {
1313   RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget());
1314   RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget());
1315   RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target());
1316   RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget());
1317 }
1318