1//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes Mips16 instructions. 10// 11//===----------------------------------------------------------------------===// 12// 13// 14// Mips Address 15// 16def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>; 17def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>; 18 19// 20// Address operand 21def mem16 : Operand<i32> { 22 let PrintMethod = "printMemOperand"; 23 let MIOperandInfo = (ops CPU16Regs, simm16); 24 let EncoderMethod = "getMemEncoding"; 25} 26 27def mem16sp : Operand<i32> { 28 let PrintMethod = "printMemOperand"; 29 // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at 30 // keeping the sp-relative load and the other varieties separate at the 31 // moment. This lie fixes the problem sufficiently well to fix the errors 32 // emitted by -verify-machineinstrs and the output ends up correct as long 33 // as we use an external assembler (which is already a requirement for MIPS16 34 // for several other reasons). 35 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 36 let EncoderMethod = "getMemEncoding"; 37} 38 39def mem16_ea : Operand<i32> { 40 let PrintMethod = "printMemOperandEA"; 41 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 42 let EncoderMethod = "getMemEncoding"; 43} 44 45def pcrel16 : Operand<i32>; 46 47// 48// I-type instruction format 49// 50// this is only used by bimm. the actual assembly value is a 12 bit signed 51// number 52// 53class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>: 54 FI16<op, (outs), (ins brtarget:$imm11), 55 !strconcat(asmstr, "\t$imm11 # 16 bit inst"), [], itin>; 56 57// 58// 59// I8 instruction format 60// 61 62class FI816_ins_base<bits<3> _func, string asmstr, 63 string asmstr2, InstrItinClass itin>: 64 FI816<_func, (outs), (ins simm16:$imm8), !strconcat(asmstr, asmstr2), 65 [], itin>; 66 67class FI816_ins<bits<3> _func, string asmstr, 68 InstrItinClass itin>: 69 FI816_ins_base<_func, asmstr, "\t$imm8 # 16 bit inst", itin>; 70 71class FI816_SP_ins<bits<3> _func, string asmstr, 72 InstrItinClass itin>: 73 FI816_ins_base<_func, asmstr, "\t$$sp, $imm8 # 16 bit inst", itin>; 74 75// 76// RI instruction format 77// 78 79 80class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2, 81 InstrItinClass itin>: 82 FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm8), 83 !strconcat(asmstr, asmstr2), [], itin>; 84 85class FRI16_ins<bits<5> op, string asmstr, 86 InstrItinClass itin>: 87 FRI16_ins_base<op, asmstr, "\t$rx, $imm8 \t# 16 bit inst", itin>; 88 89class FRI16_TCP_ins<bits<5> _op, string asmstr, 90 InstrItinClass itin>: 91 FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm8, i32imm:$size), 92 !strconcat(asmstr, "\t$rx, $imm8\t# 16 bit inst"), [], itin>; 93 94class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2, 95 InstrItinClass itin>: 96 FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm8), 97 !strconcat(asmstr, asmstr2), [], itin>; 98 99class FRI16R_ins<bits<5> op, string asmstr, 100 InstrItinClass itin>: 101 FRI16R_ins_base<op, asmstr, "\t$rx, $imm8 \t# 16 bit inst", itin>; 102 103class F2RI16_ins<bits<5> _op, string asmstr, 104 InstrItinClass itin>: 105 FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm8), 106 !strconcat(asmstr, "\t$rx, $imm8\t# 16 bit inst"), [], itin> { 107 let Constraints = "$rx_ = $rx"; 108} 109 110class FRI16_B_ins<bits<5> _op, string asmstr, 111 InstrItinClass itin>: 112 FRI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm8), 113 !strconcat(asmstr, "\t$rx, $imm8 # 16 bit inst"), [], itin>; 114// 115// Compare a register and immediate and place result in CC 116// Implicit use of T8 117// 118// EXT-CCRR Instruction format 119// 120class FEXT_CCRXI16_ins<string asmstr>: 121 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm), 122 !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> { 123 let isCodeGenOnly=1; 124 let usesCustomInserter = 1; 125} 126 127// JAL and JALX instruction format 128// 129class FJAL16_ins<bits<1> _X, string asmstr, 130 InstrItinClass itin>: 131 FJAL16<_X, (outs), (ins uimm26:$imm26), 132 !strconcat(asmstr, "\t$imm26\n\tnop"),[], 133 itin> { 134 let isCodeGenOnly=1; 135 let Size=6; 136} 137 138class FJALB16_ins<bits<1> _X, string asmstr, 139 InstrItinClass itin>: 140 FJAL16<_X, (outs), (ins uimm26:$imm26), 141 !strconcat(asmstr, "\t$imm26\t# branch\n\tnop"),[], 142 itin> { 143 let isCodeGenOnly=1; 144 let Size=6; 145} 146 147// 148// EXT-I instruction format 149// 150class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> : 151 FEXT_I16<eop, (outs), (ins brtarget:$imm16), 152 !strconcat(asmstr, "\t$imm16"),[], itin>; 153 154// 155// EXT-I8 instruction format 156// 157 158class FEXT_I816_ins_base<bits<3> _func, string asmstr, 159 string asmstr2, InstrItinClass itin>: 160 FEXT_I816<_func, (outs), (ins simm16:$imm16), !strconcat(asmstr, asmstr2), 161 [], itin>; 162 163class FEXT_I816_ins<bits<3> _func, string asmstr, 164 InstrItinClass itin>: 165 FEXT_I816_ins_base<_func, asmstr, "\t$imm16", itin>; 166 167class FEXT_I816_SP_ins<bits<3> _func, string asmstr, 168 InstrItinClass itin>: 169 FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm16", itin>; 170 171// 172// Assembler formats in alphabetical order. 173// Natural and pseudos are mixed together. 174// 175// Compare two registers and place result in CC 176// Implicit use of T8 177// 178// CC-RR Instruction format 179// 180class FCCRR16_ins<string asmstr> : 181 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry), 182 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> { 183 let isCodeGenOnly=1; 184 let usesCustomInserter = 1; 185} 186 187// 188// EXT-RI instruction format 189// 190 191class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2, 192 InstrItinClass itin>: 193 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm16), 194 !strconcat(asmstr, asmstr2), [], itin>; 195 196class FEXT_RI16_ins<bits<5> _op, string asmstr, 197 InstrItinClass itin>: 198 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm16", itin>; 199 200class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2, 201 InstrItinClass itin>: 202 FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm16), 203 !strconcat(asmstr, asmstr2), [], itin>; 204 205class FEXT_RI16R_ins<bits<5> _op, string asmstr, 206 InstrItinClass itin>: 207 FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm16", itin>; 208 209class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>: 210 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm16", itin>; 211 212class FEXT_RI16_B_ins<bits<5> _op, string asmstr, 213 InstrItinClass itin>: 214 FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm16), 215 !strconcat(asmstr, "\t$rx, $imm16"), [], itin>; 216 217class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr, 218 InstrItinClass itin>: 219 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm16, i32imm:$size), 220 !strconcat(asmstr, "\t$rx, $imm16"), [], itin>; 221 222class FEXT_2RI16_ins<bits<5> _op, string asmstr, 223 InstrItinClass itin>: 224 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm16), 225 !strconcat(asmstr, "\t$rx, $imm16"), [], itin> { 226 let Constraints = "$rx_ = $rx"; 227} 228 229// 230// EXT-RRI instruction format 231// 232 233class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd, 234 InstrItinClass itin>: 235 FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins (MemOpnd $rx, $imm16):$addr), 236 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 237 238class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd, 239 InstrItinClass itin>: 240 FEXT_RRI16<op, (outs ), (ins CPU16Regs:$ry, (MemOpnd $rx, $imm16):$addr), 241 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 242 243// 244// 245// EXT-RRI-A instruction format 246// 247 248class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd, 249 InstrItinClass itin>: 250 FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins (MemOpnd $rx, $imm15):$addr), 251 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 252 253// 254// EXT-SHIFT instruction format 255// 256class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>: 257 FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa6), 258 !strconcat(asmstr, "\t$rx, $ry, $sa6"), [], itin>; 259 260// 261// EXT-T8I8 262// 263class FEXT_T8I816_ins<string asmstr, string asmstr2>: 264 MipsPseudo16<(outs), 265 (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm), 266 !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t", 267 !strconcat(asmstr, "\t$imm"))),[]> { 268 let isCodeGenOnly=1; 269 let usesCustomInserter = 1; 270} 271 272// 273// EXT-T8I8I 274// 275class FEXT_T8I8I16_ins<string asmstr, string asmstr2>: 276 MipsPseudo16<(outs), 277 (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ), 278 !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t", 279 !strconcat(asmstr, "\t$targ"))), []> { 280 let isCodeGenOnly=1; 281 let usesCustomInserter = 1; 282} 283// 284 285 286// 287// I8_MOVR32 instruction format (used only by the MOVR32 instructio 288// 289class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>: 290 FI8_MOVR3216<(outs CPU16Regs:$ry), (ins GPR32:$r32), 291 !strconcat(asmstr, "\t$ry, $r32"), [], itin>; 292 293// 294// I8_MOV32R instruction format (used only by MOV32R instruction) 295// 296 297class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>: 298 FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz), 299 !strconcat(asmstr, "\t$r32, $rz"), [], itin>; 300 301// 302// This are pseudo formats for multiply 303// This first one can be changed to non-pseudo now. 304// 305// MULT 306// 307class FMULT16_ins<string asmstr> : 308 MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 309 !strconcat(asmstr, "\t$rx, $ry"), []>; 310 311// 312// MULT-LO 313// 314class FMULT16_LO_ins<string asmstr> : 315 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 316 !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> { 317 let isCodeGenOnly=1; 318} 319 320// 321// RR-type instruction format 322// 323 324class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 325 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 326 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 327} 328 329class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> : 330 FRRBreak16<(outs), (ins), asmstr, [], itin> { 331 let Code=0; 332} 333 334class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> : 335 FRR16<f, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 336 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 337} 338 339class FRRTR16_ins<string asmstr> : 340 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 341 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ; 342 343// 344// maybe refactor but need a $zero as a dummy first parameter 345// 346class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> : 347 FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry), 348 !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ; 349 350class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 351 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 352 !strconcat(asmstr, "\t$rx, $ry"), [], itin> ; 353 354 355class FRR16_M_ins<bits<5> f, string asmstr, 356 InstrItinClass itin> : 357 FRR16<f, (outs CPU16Regs:$rx), (ins), 358 !strconcat(asmstr, "\t$rx"), [], itin>; 359 360class FRxRxRy16_ins<bits<5> f, string asmstr, 361 InstrItinClass itin> : 362 FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 363 !strconcat(asmstr, "\t$rz, $ry"), 364 [], itin> { 365 let Constraints = "$rx = $rz"; 366} 367 368let rx=0 in 369class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_, 370 string asmstr, InstrItinClass itin>: 371 FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t$$ra"), 372 [], itin> ; 373 374 375class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra, 376 string asmstr, InstrItinClass itin>: 377 FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rs), 378 !strconcat(asmstr, "\t$rs"), [], itin> ; 379 380class FRR_SF16_ins 381 <bits<5> _funct, bits<3> _subfunc, 382 string asmstr, InstrItinClass itin>: 383 FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_), 384 !strconcat(asmstr, "\t $rx"), 385 [], itin> { 386 let Constraints = "$rx_ = $rx"; 387 } 388// 389// RRR-type instruction format 390// 391 392class FRRR16_ins<bits<2> _f, string asmstr, InstrItinClass itin> : 393 FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 394 !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>; 395 396// 397// These Sel patterns support the generation of conditional move 398// pseudo instructions. 399// 400// The nomenclature uses the components making up the pseudo and may 401// be a bit counter intuitive when compared with the end result we seek. 402// For example using a bqez in the example directly below results in the 403// conditional move being done if the tested register is not zero. 404// I considered in easier to check by keeping the pseudo consistent with 405// it's components but it could have been done differently. 406// 407// The simplest case is when can test and operand directly and do the 408// conditional move based on a simple mips16 conditional 409// branch instruction. 410// for example: 411// if $op == beqz or bnez: 412// 413// $op1 $rt, .+4 414// move $rd, $rs 415// 416// if $op == beqz, then if $rt != 0, then the conditional assignment 417// $rd = $rs is done. 418 419// if $op == bnez, then if $rt == 0, then the conditional assignment 420// $rd = $rs is done. 421// 422// So this pseudo class only has one operand, i.e. op 423// 424class Sel<string op>: 425 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 426 CPU16Regs:$rt), 427 !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> { 428 //let isCodeGenOnly=1; 429 let Constraints = "$rd = $rd_"; 430 let usesCustomInserter = 1; 431} 432 433// 434// The next two instruction classes allow for an operand which tests 435// two operands and returns a value in register T8 and 436//then does a conditional branch based on the value of T8 437// 438 439// op2 can be cmpi or slti/sltiu 440// op1 can bteqz or btnez 441// the operands for op2 are a register and a signed constant 442// 443// $op2 $t, $imm ;test register t and branch conditionally 444// $op1 .+4 ;op1 is a conditional branch 445// move $rd, $rs 446// 447// 448class SeliT<string op1, string op2>: 449 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 450 CPU16Regs:$rl, simm16:$imm), 451 !strconcat(op2, 452 !strconcat("\t$rl, $imm\n\t", 453 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 454 let isCodeGenOnly=1; 455 let Constraints = "$rd = $rd_"; 456 let usesCustomInserter = 1; 457} 458 459// 460// op2 can be cmp or slt/sltu 461// op1 can be bteqz or btnez 462// the operands for op2 are two registers 463// op1 is a conditional branch 464// 465// 466// $op2 $rl, $rr ;test registers rl,rr 467// $op1 .+4 ;op2 is a conditional branch 468// move $rd, $rs 469// 470// 471class SelT<string op1, string op2>: 472 MipsPseudo16<(outs CPU16Regs:$rd_), 473 (ins CPU16Regs:$rd, CPU16Regs:$rs, 474 CPU16Regs:$rl, CPU16Regs:$rr), 475 !strconcat(op2, 476 !strconcat("\t$rl, $rr\n\t", 477 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 478 let isCodeGenOnly=1; 479 let Constraints = "$rd = $rd_"; 480 let usesCustomInserter = 1; 481} 482 483// 484// 32 bit constant 485// 486def Constant32 : MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>; 487 488def LwConstant32 : 489 MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid), 490 "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>; 491 492// 493// Some general instruction class info 494// 495// 496 497class ArithLogic16Defs<bit isCom=0> { 498 bits<5> shamt = 0; 499 bit isCommutable = isCom; 500 bit isReMaterializable = 1; 501 bit hasSideEffects = 0; 502} 503 504class branch16 { 505 bit isBranch = 1; 506 bit isTerminator = 1; 507 bit isBarrier = 1; 508} 509 510class cbranch16 { 511 bit isBranch = 1; 512 bit isTerminator = 1; 513} 514 515class MayLoad { 516 bit mayLoad = 1; 517} 518 519class MayStore { 520 bit mayStore = 1; 521} 522// 523 524 525// Format: ADDIU rx, immediate MIPS16e 526// Purpose: Add Immediate Unsigned Word (2-Operand, Extended) 527// To add a constant to a 32-bit integer. 528// 529def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>; 530 531def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>, 532 ArithLogic16Defs<0> { 533 let AddedComplexity = 5; 534} 535def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>, 536 ArithLogic16Defs<0> { 537 let isCodeGenOnly = 1; 538} 539 540let DecoderMethod = "DecodeFIXMEInstruction" in 541def AddiuRxRyOffMemX16: 542 FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>; 543 544// 545 546// Format: ADDIU rx, pc, immediate MIPS16e 547// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) 548// To add a constant to the program counter. 549// 550def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>; 551 552// 553// Format: ADDIU sp, immediate MIPS16e 554// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) 555// To add a constant to the stack pointer. 556// 557def AddiuSpImm16 558 : FI816_SP_ins<0b011, "addiu", IIM16Alu> { 559 let Defs = [SP]; 560 let Uses = [SP]; 561 let AddedComplexity = 5; 562} 563 564def AddiuSpImmX16 565 : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> { 566 let Defs = [SP]; 567 let Uses = [SP]; 568} 569 570// 571// Format: ADDU rz, rx, ry MIPS16e 572// Purpose: Add Unsigned Word (3-Operand) 573// To add 32-bit integers. 574// 575 576def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>; 577 578// 579// Format: AND rx, ry MIPS16e 580// Purpose: AND 581// To do a bitwise logical AND. 582 583def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>; 584 585 586// 587// Format: BEQZ rx, offset MIPS16e 588// Purpose: Branch on Equal to Zero 589// To test a GPR then do a PC-relative conditional branch. 590// 591def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 592 593 594// 595// Format: BEQZ rx, offset MIPS16e 596// Purpose: Branch on Equal to Zero (Extended) 597// To test a GPR then do a PC-relative conditional branch. 598// 599def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 600 601// 602// Format: B offset MIPS16e 603// Purpose: Unconditional Branch (Extended) 604// To do an unconditional PC-relative branch. 605// 606 607def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16; 608 609// Format: B offset MIPS16e 610// Purpose: Unconditional Branch 611// To do an unconditional PC-relative branch. 612// 613def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16; 614 615// 616// Format: BNEZ rx, offset MIPS16e 617// Purpose: Branch on Not Equal to Zero 618// To test a GPR then do a PC-relative conditional branch. 619// 620def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 621 622// 623// Format: BNEZ rx, offset MIPS16e 624// Purpose: Branch on Not Equal to Zero (Extended) 625// To test a GPR then do a PC-relative conditional branch. 626// 627def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 628 629 630// 631//Format: BREAK immediate 632// Purpose: Breakpoint 633// To cause a Breakpoint exception. 634 635def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>; 636// 637// Format: BTEQZ offset MIPS16e 638// Purpose: Branch on T Equal to Zero (Extended) 639// To test special register T then do a PC-relative conditional branch. 640// 641def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 642 let Uses = [T8]; 643} 644 645def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 646 let Uses = [T8]; 647} 648 649def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16; 650 651def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">, 652 cbranch16; 653 654def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16; 655 656def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16; 657 658def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16; 659 660def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">, 661 cbranch16; 662 663// 664// Format: BTNEZ offset MIPS16e 665// Purpose: Branch on T Not Equal to Zero (Extended) 666// To test special register T then do a PC-relative conditional branch. 667// 668 669def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 { 670 let Uses = [T8]; 671} 672 673def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 { 674 let Uses = [T8]; 675} 676 677def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16; 678 679def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16; 680 681def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16; 682 683def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16; 684 685def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16; 686 687def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">, 688 cbranch16; 689 690// 691// Format: CMP rx, ry MIPS16e 692// Purpose: Compare 693// To compare the contents of two GPRs. 694// 695def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> { 696 let Defs = [T8]; 697} 698 699// 700// Format: CMPI rx, immediate MIPS16e 701// Purpose: Compare Immediate 702// To compare a constant with the contents of a GPR. 703// 704def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> { 705 let Defs = [T8]; 706} 707 708// 709// Format: CMPI rx, immediate MIPS16e 710// Purpose: Compare Immediate (Extended) 711// To compare a constant with the contents of a GPR. 712// 713def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> { 714 let Defs = [T8]; 715} 716 717 718// 719// Format: DIV rx, ry MIPS16e 720// Purpose: Divide Word 721// To divide 32-bit signed integers. 722// 723def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> { 724 let Defs = [HI0, LO0]; 725} 726 727// 728// Format: DIVU rx, ry MIPS16e 729// Purpose: Divide Unsigned Word 730// To divide 32-bit unsigned integers. 731// 732def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> { 733 let Defs = [HI0, LO0]; 734} 735// 736// Format: JAL target MIPS16e 737// Purpose: Jump and Link 738// To execute a procedure call within the current 256 MB-aligned 739// region and preserve the current ISA. 740// 741 742def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> { 743 let hasDelaySlot = 0; // not true, but we add the nop for now 744 let isCall=1; 745 let Defs = [RA]; 746} 747 748def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 { 749 let hasDelaySlot = 0; // not true, but we add the nop for now 750 let isBranch=1; 751 let Defs = [RA]; 752} 753 754// 755// Format: JR ra MIPS16e 756// Purpose: Jump Register Through Register ra 757// To execute a branch to the instruction address in the return 758// address register. 759// 760 761def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> { 762 let isBranch = 1; 763 let isIndirectBranch = 1; 764 let hasDelaySlot = 1; 765 let isTerminator=1; 766 let isBarrier=1; 767 let isReturn=1; 768} 769 770def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> { 771 let isBranch = 1; 772 let isIndirectBranch = 1; 773 let isTerminator=1; 774 let isBarrier=1; 775 let isReturn=1; 776} 777 778def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> { 779 let rx = 0b000; 780 let isBranch = 1; 781 let isIndirectBranch = 1; 782 let isTerminator=1; 783 let isBarrier=1; 784} 785// 786// Format: LB ry, offset(rx) MIPS16e 787// Purpose: Load Byte (Extended) 788// To load a byte from memory as a signed value. 789// 790def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{ 791 let isCodeGenOnly = 1; 792} 793 794// 795// Format: LBU ry, offset(rx) MIPS16e 796// Purpose: Load Byte Unsigned (Extended) 797// To load a byte from memory as a unsigned value. 798// 799def LbuRxRyOffMemX16: 800 FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad { 801 let isCodeGenOnly = 1; 802} 803 804// 805// Format: LH ry, offset(rx) MIPS16e 806// Purpose: Load Halfword signed (Extended) 807// To load a halfword from memory as a signed value. 808// 809def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{ 810 let isCodeGenOnly = 1; 811} 812 813// 814// Format: LHU ry, offset(rx) MIPS16e 815// Purpose: Load Halfword unsigned (Extended) 816// To load a halfword from memory as an unsigned value. 817// 818def LhuRxRyOffMemX16: 819 FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad { 820 let isCodeGenOnly = 1; 821} 822 823// 824// Format: LI rx, immediate MIPS16e 825// Purpose: Load Immediate 826// To load a constant into a GPR. 827// 828def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>; 829 830// 831// Format: LI rx, immediate MIPS16e 832// Purpose: Load Immediate (Extended) 833// To load a constant into a GPR. 834// 835def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>; 836 837def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> { 838 let isCodeGenOnly = 1; 839} 840 841// 842// Format: LW ry, offset(rx) MIPS16e 843// Purpose: Load Word (Extended) 844// To load a word from memory as a signed value. 845// 846def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{ 847 let isCodeGenOnly = 1; 848} 849 850// Format: LW rx, offset(sp) MIPS16e 851// Purpose: Load Word (SP-Relative, Extended) 852// To load an SP-relative word from memory as a signed value. 853// 854let DecoderMethod = "DecodeFIXMEInstruction" in 855def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad; 856 857def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 858 859def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 860// 861// Format: MOVE r32, rz MIPS16e 862// Purpose: Move 863// To move the contents of a GPR to a GPR. 864// 865def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>; 866 867// 868// Format: MOVE ry, r32 MIPS16e 869//Purpose: Move 870// To move the contents of a GPR to a GPR. 871// 872def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu> { 873 let isMoveReg = 1; 874} 875 876// 877// Format: MFHI rx MIPS16e 878// Purpose: Move From HI Register 879// To copy the special purpose HI register to a GPR. 880// 881def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> { 882 let ry = 0b000; // no 'ry' field 883 let Uses = [HI0]; 884 let hasSideEffects = 0; 885 let isMoveReg = 1; 886} 887 888// 889// Format: MFLO rx MIPS16e 890// Purpose: Move From LO Register 891// To copy the special purpose LO register to a GPR. 892// 893def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> { 894 let ry = 0b000; // no 'ry' field 895 let Uses = [LO0]; 896 let hasSideEffects = 0; 897 let isMoveReg = 0; 898} 899 900// 901// Pseudo Instruction for mult 902// 903def MultRxRy16: FMULT16_ins<"mult"> { 904 let isCommutable = 1; 905 let hasSideEffects = 0; 906 let Defs = [HI0, LO0]; 907} 908 909def MultuRxRy16: FMULT16_ins<"multu"> { 910 let isCommutable = 1; 911 let hasSideEffects = 0; 912 let Defs = [HI0, LO0]; 913} 914 915// 916// Format: MULT rx, ry MIPS16e 917// Purpose: Multiply Word 918// To multiply 32-bit signed integers. 919// 920def MultRxRyRz16: FMULT16_LO_ins<"mult"> { 921 let isCommutable = 1; 922 let hasSideEffects = 0; 923 let Defs = [HI0, LO0]; 924} 925 926// 927// Format: MULTU rx, ry MIPS16e 928// Purpose: Multiply Unsigned Word 929// To multiply 32-bit unsigned integers. 930// 931def MultuRxRyRz16: FMULT16_LO_ins<"multu"> { 932 let isCommutable = 1; 933 let hasSideEffects = 0; 934 let Defs = [HI0, LO0]; 935} 936 937// 938// Format: NEG rx, ry MIPS16e 939// Purpose: Negate 940// To negate an integer value. 941// 942def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>; 943 944// 945// Format: NOT rx, ry MIPS16e 946// Purpose: Not 947// To complement an integer value 948// 949def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>; 950 951// 952// Format: OR rx, ry MIPS16e 953// Purpose: Or 954// To do a bitwise logical OR. 955// 956def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>; 957 958// 959// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} 960// (All args are optional) MIPS16e 961// Purpose: Restore Registers and Deallocate Stack Frame 962// To deallocate a stack frame before exit from a subroutine, 963// restoring return address and static registers, and adjusting 964// stack 965// 966 967def Restore16: 968 FI8_SVRS16<0b1, (outs), (ins variable_ops), 969 "", [], II_RESTORE >, MayLoad { 970 let isCodeGenOnly = 1; 971 let Defs = [SP]; 972 let Uses = [SP]; 973} 974 975 976def RestoreX16: 977 FI8_SVRS16<0b1, (outs), (ins variable_ops), 978 "", [], II_RESTORE >, MayLoad { 979 let isCodeGenOnly = 1; 980 let Defs = [SP]; 981 let Uses = [SP]; 982} 983 984// 985// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) 986// MIPS16e 987// Purpose: Save Registers and Set Up Stack Frame 988// To set up a stack frame on entry to a subroutine, 989// saving return address and static registers, and adjusting stack 990// 991def Save16: 992 FI8_SVRS16<0b1, (outs), (ins variable_ops), 993 "", [], II_SAVE >, MayStore { 994 let isCodeGenOnly = 1; 995 let Uses = [SP]; 996 let Defs = [SP]; 997} 998 999def SaveX16: 1000 FI8_SVRS16<0b1, (outs), (ins variable_ops), 1001 "", [], II_SAVE >, MayStore { 1002 let isCodeGenOnly = 1; 1003 let Uses = [SP]; 1004 let Defs = [SP]; 1005} 1006// 1007// Format: SB ry, offset(rx) MIPS16e 1008// Purpose: Store Byte (Extended) 1009// To store a byte to memory. 1010// 1011let DecoderMethod = "DecodeFIXMEInstruction" in 1012def SbRxRyOffMemX16: 1013 FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore; 1014 1015// 1016// Format: SEB rx MIPS16e 1017// Purpose: Sign-Extend Byte 1018// Sign-extend least significant byte in register rx. 1019// 1020def SebRx16 1021 : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>; 1022 1023// 1024// Format: SEH rx MIPS16e 1025// Purpose: Sign-Extend Halfword 1026// Sign-extend least significant word in register rx. 1027// 1028def SehRx16 1029 : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>; 1030 1031// 1032// The Sel(T) instructions are pseudos 1033// T means that they use T8 implicitly. 1034// 1035// 1036// Format: SelBeqZ rd, rs, rt 1037// Purpose: if rt==0, do nothing 1038// else rs = rt 1039// 1040def SelBeqZ: Sel<"beqz">; 1041 1042// 1043// Format: SelTBteqZCmp rd, rs, rl, rr 1044// Purpose: b = Cmp rl, rr. 1045// If b==0 then do nothing. 1046// if b!=0 then rd = rs 1047// 1048def SelTBteqZCmp: SelT<"bteqz", "cmp">; 1049 1050// 1051// Format: SelTBteqZCmpi rd, rs, rl, rr 1052// Purpose: b = Cmpi rl, imm. 1053// If b==0 then do nothing. 1054// if b!=0 then rd = rs 1055// 1056def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">; 1057 1058// 1059// Format: SelTBteqZSlt rd, rs, rl, rr 1060// Purpose: b = Slt rl, rr. 1061// If b==0 then do nothing. 1062// if b!=0 then rd = rs 1063// 1064def SelTBteqZSlt: SelT<"bteqz", "slt">; 1065 1066// 1067// Format: SelTBteqZSlti rd, rs, rl, rr 1068// Purpose: b = Slti rl, imm. 1069// If b==0 then do nothing. 1070// if b!=0 then rd = rs 1071// 1072def SelTBteqZSlti: SeliT<"bteqz", "slti">; 1073 1074// 1075// Format: SelTBteqZSltu rd, rs, rl, rr 1076// Purpose: b = Sltu rl, rr. 1077// If b==0 then do nothing. 1078// if b!=0 then rd = rs 1079// 1080def SelTBteqZSltu: SelT<"bteqz", "sltu">; 1081 1082// 1083// Format: SelTBteqZSltiu rd, rs, rl, rr 1084// Purpose: b = Sltiu rl, imm. 1085// If b==0 then do nothing. 1086// if b!=0 then rd = rs 1087// 1088def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">; 1089 1090// 1091// Format: SelBnez rd, rs, rt 1092// Purpose: if rt!=0, do nothing 1093// else rs = rt 1094// 1095def SelBneZ: Sel<"bnez">; 1096 1097// 1098// Format: SelTBtneZCmp rd, rs, rl, rr 1099// Purpose: b = Cmp rl, rr. 1100// If b!=0 then do nothing. 1101// if b0=0 then rd = rs 1102// 1103def SelTBtneZCmp: SelT<"btnez", "cmp">; 1104 1105// 1106// Format: SelTBtnezCmpi rd, rs, rl, rr 1107// Purpose: b = Cmpi rl, imm. 1108// If b!=0 then do nothing. 1109// if b==0 then rd = rs 1110// 1111def SelTBtneZCmpi: SeliT<"btnez", "cmpi">; 1112 1113// 1114// Format: SelTBtneZSlt rd, rs, rl, rr 1115// Purpose: b = Slt rl, rr. 1116// If b!=0 then do nothing. 1117// if b==0 then rd = rs 1118// 1119def SelTBtneZSlt: SelT<"btnez", "slt">; 1120 1121// 1122// Format: SelTBtneZSlti rd, rs, rl, rr 1123// Purpose: b = Slti rl, imm. 1124// If b!=0 then do nothing. 1125// if b==0 then rd = rs 1126// 1127def SelTBtneZSlti: SeliT<"btnez", "slti">; 1128 1129// 1130// Format: SelTBtneZSltu rd, rs, rl, rr 1131// Purpose: b = Sltu rl, rr. 1132// If b!=0 then do nothing. 1133// if b==0 then rd = rs 1134// 1135def SelTBtneZSltu: SelT<"btnez", "sltu">; 1136 1137// 1138// Format: SelTBtneZSltiu rd, rs, rl, rr 1139// Purpose: b = Slti rl, imm. 1140// If b!=0 then do nothing. 1141// if b==0 then rd = rs 1142// 1143def SelTBtneZSltiu: SeliT<"btnez", "sltiu">; 1144// 1145// 1146// Format: SH ry, offset(rx) MIPS16e 1147// Purpose: Store Halfword (Extended) 1148// To store a halfword to memory. 1149// 1150let DecoderMethod = "DecodeFIXMEInstruction" in 1151def ShRxRyOffMemX16: 1152 FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore; 1153 1154// 1155// Format: SLL rx, ry, sa MIPS16e 1156// Purpose: Shift Word Left Logical (Extended) 1157// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits. 1158// 1159def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>; 1160 1161// 1162// Format: SLLV ry, rx MIPS16e 1163// Purpose: Shift Word Left Logical Variable 1164// To execute a left-shift of a word by a variable number of bits. 1165// 1166def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>; 1167 1168// Format: SLTI rx, immediate MIPS16e 1169// Purpose: Set on Less Than Immediate 1170// To record the result of a less-than comparison with a constant. 1171// 1172// 1173def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> { 1174 let Defs = [T8]; 1175} 1176 1177// 1178// Format: SLTI rx, immediate MIPS16e 1179// Purpose: Set on Less Than Immediate (Extended) 1180// To record the result of a less-than comparison with a constant. 1181// 1182// 1183def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> { 1184 let Defs = [T8]; 1185} 1186 1187def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">; 1188 1189// Format: SLTIU rx, immediate MIPS16e 1190// Purpose: Set on Less Than Immediate Unsigned 1191// To record the result of a less-than comparison with a constant. 1192// 1193// 1194def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> { 1195 let Defs = [T8]; 1196} 1197 1198// 1199// Format: SLTI rx, immediate MIPS16e 1200// Purpose: Set on Less Than Immediate Unsigned (Extended) 1201// To record the result of a less-than comparison with a constant. 1202// 1203// 1204def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> { 1205 let Defs = [T8]; 1206} 1207// 1208// Format: SLTIU rx, immediate MIPS16e 1209// Purpose: Set on Less Than Immediate Unsigned (Extended) 1210// To record the result of a less-than comparison with a constant. 1211// 1212def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">; 1213 1214// 1215// Format: SLT rx, ry MIPS16e 1216// Purpose: Set on Less Than 1217// To record the result of a less-than comparison. 1218// 1219def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{ 1220 let Defs = [T8]; 1221} 1222 1223def SltCCRxRy16: FCCRR16_ins<"slt">; 1224 1225// Format: SLTU rx, ry MIPS16e 1226// Purpose: Set on Less Than Unsigned 1227// To record the result of an unsigned less-than comparison. 1228// 1229def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{ 1230 let Defs = [T8]; 1231} 1232 1233def SltuRxRyRz16: FRRTR16_ins<"sltu"> { 1234 let isCodeGenOnly=1; 1235 let Defs = [T8]; 1236} 1237 1238 1239def SltuCCRxRy16: FCCRR16_ins<"sltu">; 1240// 1241// Format: SRAV ry, rx MIPS16e 1242// Purpose: Shift Word Right Arithmetic Variable 1243// To execute an arithmetic right-shift of a word by a variable 1244// number of bits. 1245// 1246def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>; 1247 1248 1249// 1250// Format: SRA rx, ry, sa MIPS16e 1251// Purpose: Shift Word Right Arithmetic (Extended) 1252// To execute an arithmetic right-shift of a word by a fixed 1253// number of bits-1 to 8 bits. 1254// 1255def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>; 1256 1257 1258// 1259// Format: SRLV ry, rx MIPS16e 1260// Purpose: Shift Word Right Logical Variable 1261// To execute a logical right-shift of a word by a variable 1262// number of bits. 1263// 1264def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>; 1265 1266 1267// 1268// Format: SRL rx, ry, sa MIPS16e 1269// Purpose: Shift Word Right Logical (Extended) 1270// To execute a logical right-shift of a word by a fixed 1271// number of bits-1 to 31 bits. 1272// 1273def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>; 1274 1275// 1276// Format: SUBU rz, rx, ry MIPS16e 1277// Purpose: Subtract Unsigned Word 1278// To subtract 32-bit integers 1279// 1280def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>; 1281 1282// 1283// Format: SW ry, offset(rx) MIPS16e 1284// Purpose: Store Word (Extended) 1285// To store a word to memory. 1286// 1287let DecoderMethod = "DecodeFIXMEInstruction" in 1288def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore; 1289 1290// 1291// Format: SW rx, offset(sp) MIPS16e 1292// Purpose: Store Word rx (SP-Relative) 1293// To store an SP-relative word to memory. 1294// 1295let DecoderMethod = "DecodeFIXMEInstruction" in 1296def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore; 1297 1298// 1299// 1300// Format: XOR rx, ry MIPS16e 1301// Purpose: Xor 1302// To do a bitwise logical XOR. 1303// 1304def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>; 1305 1306class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> { 1307 let Predicates = [InMips16Mode]; 1308} 1309 1310// Unary Arith/Logic 1311// 1312class ArithLogicU_pat<PatFrag OpNode, Instruction I> : 1313 Mips16Pat<(OpNode CPU16Regs:$r), 1314 (I CPU16Regs:$r)>; 1315 1316def: ArithLogicU_pat<not, NotRxRy16>; 1317def: ArithLogicU_pat<ineg, NegRxRy16>; 1318 1319class ArithLogic16_pat<SDNode OpNode, Instruction I> : 1320 Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r), 1321 (I CPU16Regs:$l, CPU16Regs:$r)>; 1322 1323def: ArithLogic16_pat<add, AdduRxRyRz16>; 1324def: ArithLogic16_pat<and, AndRxRxRy16>; 1325def: ArithLogic16_pat<mul, MultRxRyRz16>; 1326def: ArithLogic16_pat<or, OrRxRxRy16>; 1327def: ArithLogic16_pat<sub, SubuRxRyRz16>; 1328def: ArithLogic16_pat<xor, XorRxRxRy16>; 1329 1330// Arithmetic and logical instructions with 2 register operands. 1331 1332class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> : 1333 Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm), 1334 (I CPU16Regs:$in, imm_type:$imm)>; 1335 1336def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>; 1337def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>; 1338def: ArithLogicI16_pat<shl, immZExt5, SllX16>; 1339def: ArithLogicI16_pat<srl, immZExt5, SrlX16>; 1340def: ArithLogicI16_pat<sra, immZExt5, SraX16>; 1341 1342class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> : 1343 Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra), 1344 (I CPU16Regs:$r, CPU16Regs:$ra)>; 1345 1346def: shift_rotate_reg16_pat<shl, SllvRxRy16>; 1347def: shift_rotate_reg16_pat<sra, SravRxRy16>; 1348def: shift_rotate_reg16_pat<srl, SrlvRxRy16>; 1349 1350class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> : 1351 Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>; 1352 1353def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>; 1354def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>; 1355def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>; 1356def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>; 1357def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>; 1358 1359class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> : 1360 Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>; 1361 1362def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>; 1363def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>; 1364def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>; 1365 1366// Unconditional branch 1367class UncondBranch16_pat<SDNode OpNode, Instruction I>: 1368 Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> { 1369 let Predicates = [InMips16Mode]; 1370 } 1371 1372def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), 1373 (Jal16 tglobaladdr:$dst)>; 1374 1375def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)), 1376 (Jal16 texternalsym:$dst)>; 1377 1378// Indirect branch 1379def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> { 1380 // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change 1381 // MIPS16's behaviour. 1382 let AddedComplexity = 1; 1383} 1384 1385// Jump and Link (Call) 1386let isCall=1, hasDelaySlot=0 in 1387def JumpLinkReg16: 1388 FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rx), 1389 "jalrc\t$rx", [(MipsJmpLink CPU16Regs:$rx)], II_JALRC> { 1390 let Defs = [RA]; 1391} 1392 1393// Mips16 pseudos 1394let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, 1395 hasExtraSrcRegAllocReq = 1 in 1396def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>; 1397 1398 1399// setcc patterns 1400 1401class SetCC_R16<PatFrag cond_op, Instruction I>: 1402 Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry), 1403 (I CPU16Regs:$rx, CPU16Regs:$ry)>; 1404 1405class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>: 1406 Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16), 1407 (I CPU16Regs:$rx, imm_type:$imm16)>; 1408 1409 1410def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>; 1411 1412 1413// Large (>16 bit) immediate loads 1414def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>; 1415 1416// 1417// Some branch conditional patterns are not generated by llvm at this time. 1418// Some are for seemingly arbitrary reasons not used: i.e. with signed number 1419// comparison they are used and for unsigned a different pattern is used. 1420// I am pushing upstream from the full mips16 port and it seemed that I needed 1421// these earlier and the mips32 port has these but now I cannot create test 1422// cases that use these patterns. While I sort this all out I will leave these 1423// extra patterns commented out and if I can be sure they are really not used, 1424// I will delete the code. I don't want to check the code in uncommented without 1425// a valid test case. In some cases, the compiler is generating patterns with 1426// setcc instead and earlier I had implemented setcc first so may have masked 1427// the problem. The setcc variants are suboptimal for mips16 so I may wantto 1428// figure out how to enable the brcond patterns or else possibly new 1429// combinations of brcond and setcc. 1430// 1431// 1432// bcond-seteq 1433// 1434def: Mips16Pat 1435 <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1436 (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1437 >; 1438 1439 1440def: Mips16Pat 1441 <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1442 (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1443 >; 1444 1445def: Mips16Pat 1446 <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16), 1447 (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16) 1448 >; 1449 1450// 1451// bcond-setgt (do we need to have this pair of setlt, setgt??) 1452// 1453def: Mips16Pat 1454 <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1455 (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1456 >; 1457 1458// 1459// bcond-setge 1460// 1461def: Mips16Pat 1462 <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1463 (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1464 >; 1465 1466// 1467// never called because compiler transforms a >= k to a > (k-1) 1468def: Mips16Pat 1469 <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1470 (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1471 >; 1472 1473// 1474// bcond-setlt 1475// 1476def: Mips16Pat 1477 <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1478 (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1479 >; 1480 1481def: Mips16Pat 1482 <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1483 (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1484 >; 1485 1486// 1487// bcond-setle 1488// 1489def: Mips16Pat 1490 <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1491 (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1492 >; 1493 1494// 1495// bcond-setne 1496// 1497def: Mips16Pat 1498 <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1499 (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1500 >; 1501 1502def: Mips16Pat 1503 <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1504 (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1505 >; 1506 1507def: Mips16Pat 1508 <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16), 1509 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1510 >; 1511 1512// 1513// This needs to be there but I forget which code will generate it 1514// 1515def: Mips16Pat 1516 <(brcond CPU16Regs:$rx, bb:$targ16), 1517 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1518 >; 1519 1520// 1521 1522// 1523// bcond-setugt 1524// 1525//def: Mips16Pat 1526// <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1527// (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1528// >; 1529 1530// 1531// bcond-setuge 1532// 1533//def: Mips16Pat 1534// <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1535// (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1536// >; 1537 1538 1539// 1540// bcond-setult 1541// 1542//def: Mips16Pat 1543// <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1544// (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1545// >; 1546 1547def: UncondBranch16_pat<br, Bimm16>; 1548 1549// Small immediates 1550def: Mips16Pat<(i32 immSExt16:$in), 1551 (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>; 1552 1553def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>; 1554 1555// 1556// MipsDivRem 1557// 1558def: Mips16Pat 1559 <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry), 1560 (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1561 1562// 1563// MipsDivRemU 1564// 1565def: Mips16Pat 1566 <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry), 1567 (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1568 1569// signed a,b 1570// x = (a>=b)?x:y 1571// 1572// if !(a < b) x = y 1573// 1574def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)), 1575 CPU16Regs:$x, CPU16Regs:$y), 1576 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1577 CPU16Regs:$a, CPU16Regs:$b)>; 1578 1579// signed a,b 1580// x = (a>b)?x:y 1581// 1582// if (b < a) x = y 1583// 1584def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)), 1585 CPU16Regs:$x, CPU16Regs:$y), 1586 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y, 1587 CPU16Regs:$b, CPU16Regs:$a)>; 1588 1589// unsigned a,b 1590// x = (a>=b)?x:y 1591// 1592// if !(a < b) x = y; 1593// 1594def : Mips16Pat< 1595 (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)), 1596 CPU16Regs:$x, CPU16Regs:$y), 1597 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1598 CPU16Regs:$a, CPU16Regs:$b)>; 1599 1600// unsigned a,b 1601// x = (a>b)?x:y 1602// 1603// if (b < a) x = y 1604// 1605def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)), 1606 CPU16Regs:$x, CPU16Regs:$y), 1607 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y, 1608 CPU16Regs:$b, CPU16Regs:$a)>; 1609 1610// signed 1611// x = (a >= k)?x:y 1612// due to an llvm optimization, i don't think that this will ever 1613// be used. This is transformed into x = (a > k-1)?x:y 1614// 1615// 1616 1617//def : Mips16Pat< 1618// (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)), 1619// CPU16Regs:$T, CPU16Regs:$F), 1620// (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F, 1621// CPU16Regs:$lhs, immSExt16:$rhs)>; 1622 1623//def : Mips16Pat< 1624// (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)), 1625// CPU16Regs:$T, CPU16Regs:$F), 1626// (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F, 1627// CPU16Regs:$lhs, immSExt16:$rhs)>; 1628 1629// signed 1630// x = (a < k)?x:y 1631// 1632// if !(a < k) x = y; 1633// 1634def : Mips16Pat< 1635 (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)), 1636 CPU16Regs:$x, CPU16Regs:$y), 1637 (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y, 1638 CPU16Regs:$a, immSExt16:$b)>; 1639 1640 1641// 1642// 1643// signed 1644// x = (a <= b)? x : y 1645// 1646// if (b < a) x = y 1647// 1648def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)), 1649 CPU16Regs:$x, CPU16Regs:$y), 1650 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1651 CPU16Regs:$b, CPU16Regs:$a)>; 1652 1653// 1654// unsigned 1655// x = (a <= b)? x : y 1656// 1657// if (b < a) x = y 1658// 1659def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)), 1660 CPU16Regs:$x, CPU16Regs:$y), 1661 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1662 CPU16Regs:$b, CPU16Regs:$a)>; 1663 1664// 1665// signed/unsigned 1666// x = (a == b)? x : y 1667// 1668// if (a != b) x = y 1669// 1670def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)), 1671 CPU16Regs:$x, CPU16Regs:$y), 1672 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y, 1673 CPU16Regs:$b, CPU16Regs:$a)>; 1674 1675// 1676// signed/unsigned 1677// x = (a == 0)? x : y 1678// 1679// if (a != 0) x = y 1680// 1681def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)), 1682 CPU16Regs:$x, CPU16Regs:$y), 1683 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y, 1684 CPU16Regs:$a)>; 1685 1686 1687// 1688// signed/unsigned 1689// x = (a == k)? x : y 1690// 1691// if (a != k) x = y 1692// 1693def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)), 1694 CPU16Regs:$x, CPU16Regs:$y), 1695 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y, 1696 CPU16Regs:$a, immZExt16:$k)>; 1697 1698 1699// 1700// signed/unsigned 1701// x = (a != b)? x : y 1702// 1703// if (a == b) x = y 1704// 1705// 1706def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)), 1707 CPU16Regs:$x, CPU16Regs:$y), 1708 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y, 1709 CPU16Regs:$b, CPU16Regs:$a)>; 1710 1711// 1712// signed/unsigned 1713// x = (a != 0)? x : y 1714// 1715// if (a == 0) x = y 1716// 1717def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)), 1718 CPU16Regs:$x, CPU16Regs:$y), 1719 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1720 CPU16Regs:$a)>; 1721 1722// signed/unsigned 1723// x = (a)? x : y 1724// 1725// if (!a) x = y 1726// 1727def : Mips16Pat<(select CPU16Regs:$a, 1728 CPU16Regs:$x, CPU16Regs:$y), 1729 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1730 CPU16Regs:$a)>; 1731 1732 1733// 1734// signed/unsigned 1735// x = (a != k)? x : y 1736// 1737// if (a == k) x = y 1738// 1739def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)), 1740 CPU16Regs:$x, CPU16Regs:$y), 1741 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y, 1742 CPU16Regs:$a, immZExt16:$k)>; 1743 1744// 1745// When writing C code to test setxx these patterns, 1746// some will be transformed into 1747// other things. So we test using C code but using -O3 and -O0 1748// 1749// seteq 1750// 1751def : Mips16Pat 1752 <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs), 1753 (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>; 1754 1755def : Mips16Pat 1756 <(seteq CPU16Regs:$lhs, 0), 1757 (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>; 1758 1759 1760// 1761// setge 1762// 1763 1764def: Mips16Pat 1765 <(setge CPU16Regs:$lhs, CPU16Regs:$rhs), 1766 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1767 (LiRxImmX16 1))>; 1768 1769// 1770// For constants, llvm transforms this to: 1771// x > (k - 1) and then reverses the operands to use setlt. So this pattern 1772// is not used now by the compiler. (Presumably checking that k-1 does not 1773// overflow). The compiler never uses this at the current time, due to 1774// other optimizations. 1775// 1776//def: Mips16Pat 1777// <(setge CPU16Regs:$lhs, immSExt16:$rhs), 1778// (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs), 1779// (LiRxImmX16 1))>; 1780 1781// This catches the x >= -32768 case by transforming it to x > -32769 1782// 1783def: Mips16Pat 1784 <(setgt CPU16Regs:$lhs, -32769), 1785 (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768), 1786 (LiRxImmX16 1))>; 1787 1788// 1789// setgt 1790// 1791// 1792 1793def: Mips16Pat 1794 <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs), 1795 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1796 1797// 1798// setle 1799// 1800def: Mips16Pat 1801 <(setle CPU16Regs:$lhs, CPU16Regs:$rhs), 1802 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>; 1803 1804// 1805// setlt 1806// 1807def: SetCC_R16<setlt, SltCCRxRy16>; 1808 1809def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>; 1810 1811// 1812// setne 1813// 1814def : Mips16Pat 1815 <(setne CPU16Regs:$lhs,CPU16Regs:$rhs), 1816 (SltuCCRxRy16 (LiRxImmX16 0), 1817 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>; 1818 1819 1820// 1821// setuge 1822// 1823def: Mips16Pat 1824 <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs), 1825 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1826 (LiRxImmX16 1))>; 1827 1828// this pattern will never be used because the compiler will transform 1829// x >= k to x > (k - 1) and then use SLT 1830// 1831//def: Mips16Pat 1832// <(setuge CPU16Regs:$lhs, immZExt16:$rhs), 1833// (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs), 1834// (LiRxImmX16 1))>; 1835 1836// 1837// setugt 1838// 1839def: Mips16Pat 1840 <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs), 1841 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1842 1843// 1844// setule 1845// 1846def: Mips16Pat 1847 <(setule CPU16Regs:$lhs, CPU16Regs:$rhs), 1848 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>; 1849 1850// 1851// setult 1852// 1853def: SetCC_R16<setult, SltuCCRxRy16>; 1854 1855def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>; 1856 1857def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)), 1858 (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>; 1859 1860// hi/lo relocs 1861def : Mips16Pat<(MipsHi tblockaddress:$in), 1862 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>; 1863def : Mips16Pat<(MipsHi tglobaladdr:$in), 1864 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>; 1865def : Mips16Pat<(MipsHi tjumptable:$in), 1866 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>; 1867 1868def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>; 1869 1870def : Mips16Pat<(MipsTlsHi tglobaltlsaddr:$in), 1871 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>; 1872 1873// wrapper_pic 1874class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: 1875 Mips16Pat<(MipsWrapper RC:$gp, node:$in), 1876 (ADDiuOp RC:$gp, node:$in)>; 1877 1878 1879def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>; 1880def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>; 1881 1882def : Mips16Pat<(i32 (extloadi8 addr16:$src)), 1883 (LbuRxRyOffMemX16 addr16:$src)>; 1884def : Mips16Pat<(i32 (extloadi16 addr16:$src)), 1885 (LhuRxRyOffMemX16 addr16:$src)>; 1886 1887def: Mips16Pat<(trap), (Break16)>; 1888 1889def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8), 1890 (SebRx16 CPU16Regs:$val)>; 1891 1892def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16), 1893 (SehRx16 CPU16Regs:$val)>; 1894 1895def GotPrologue16: 1896 MipsPseudo16< 1897 (outs CPU16Regs:$rh, CPU16Regs:$rl), 1898 (ins simm16:$immHi, simm16:$immLo), 1899 "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ; 1900 1901// An operand for the CONSTPOOL_ENTRY pseudo-instruction. 1902def cpinst_operand : Operand<i32> { 1903 // let PrintMethod = "printCPInstOperand"; 1904} 1905 1906// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in 1907// the function. The first operand is the ID# for this instruction, the second 1908// is the index into the MachineConstantPool that this is, the third is the 1909// size in bytes of this constant pool entry. 1910// 1911let hasSideEffects = 0, isNotDuplicable = 1 in 1912def CONSTPOOL_ENTRY : 1913MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1914 i32imm:$size), "foo", []>; 1915 1916// Instruction Aliases 1917 1918let EncodingPredicates = [InMips16Mode] in 1919def : MipsInstAlias<"nop", (Move32R16 ZERO, S0)>; 1920