1//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes Mips16 instructions. 10// 11//===----------------------------------------------------------------------===// 12// 13// 14// Mips Address 15// 16def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>; 17def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>; 18 19// 20// Address operand 21def mem16 : Operand<i32> { 22 let PrintMethod = "printMemOperand"; 23 let MIOperandInfo = (ops CPU16Regs, simm16); 24 let EncoderMethod = "getMemEncoding"; 25} 26 27def mem16sp : Operand<i32> { 28 let PrintMethod = "printMemOperand"; 29 // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at 30 // keeping the sp-relative load and the other varieties separate at the 31 // moment. This lie fixes the problem sufficiently well to fix the errors 32 // emitted by -verify-machineinstrs and the output ends up correct as long 33 // as we use an external assembler (which is already a requirement for MIPS16 34 // for several other reasons). 35 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 36 let EncoderMethod = "getMemEncoding"; 37} 38 39def mem16_ea : Operand<i32> { 40 let PrintMethod = "printMemOperandEA"; 41 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 42 let EncoderMethod = "getMemEncoding"; 43} 44 45def pcrel16 : Operand<i32>; 46 47// 48// I-type instruction format 49// 50// this is only used by bimm. the actual assembly value is a 12 bit signed 51// number 52// 53class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>: 54 FI16<op, (outs), (ins brtarget:$imm16), 55 !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>; 56 57// 58// 59// I8 instruction format 60// 61 62class FI816_ins_base<bits<3> _func, string asmstr, 63 string asmstr2, InstrItinClass itin>: 64 FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), 65 [], itin>; 66 67class FI816_ins<bits<3> _func, string asmstr, 68 InstrItinClass itin>: 69 FI816_ins_base<_func, asmstr, "\t$imm # 16 bit inst", itin>; 70 71class FI816_SP_ins<bits<3> _func, string asmstr, 72 InstrItinClass itin>: 73 FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>; 74 75// 76// RI instruction format 77// 78 79 80class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2, 81 InstrItinClass itin>: 82 FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm), 83 !strconcat(asmstr, asmstr2), [], itin>; 84 85class FRI16_ins<bits<5> op, string asmstr, 86 InstrItinClass itin>: 87 FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>; 88 89class FRI16_TCP_ins<bits<5> _op, string asmstr, 90 InstrItinClass itin>: 91 FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size), 92 !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>; 93 94class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2, 95 InstrItinClass itin>: 96 FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm), 97 !strconcat(asmstr, asmstr2), [], itin>; 98 99class FRI16R_ins<bits<5> op, string asmstr, 100 InstrItinClass itin>: 101 FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>; 102 103class F2RI16_ins<bits<5> _op, string asmstr, 104 InstrItinClass itin>: 105 FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), 106 !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> { 107 let Constraints = "$rx_ = $rx"; 108} 109 110class FRI16_B_ins<bits<5> _op, string asmstr, 111 InstrItinClass itin>: 112 FRI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), 113 !strconcat(asmstr, "\t$rx, $imm # 16 bit inst"), [], itin>; 114// 115// Compare a register and immediate and place result in CC 116// Implicit use of T8 117// 118// EXT-CCRR Instruction format 119// 120class FEXT_CCRXI16_ins<string asmstr>: 121 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm), 122 !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> { 123 let isCodeGenOnly=1; 124 let usesCustomInserter = 1; 125} 126 127// JAL and JALX instruction format 128// 129class FJAL16_ins<bits<1> _X, string asmstr, 130 InstrItinClass itin>: 131 FJAL16<_X, (outs), (ins uimm26:$imm), 132 !strconcat(asmstr, "\t$imm\n\tnop"),[], 133 itin> { 134 let isCodeGenOnly=1; 135 let Size=6; 136} 137 138class FJALB16_ins<bits<1> _X, string asmstr, 139 InstrItinClass itin>: 140 FJAL16<_X, (outs), (ins uimm26:$imm), 141 !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[], 142 itin> { 143 let isCodeGenOnly=1; 144 let Size=6; 145} 146 147// 148// EXT-I instruction format 149// 150class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> : 151 FEXT_I16<eop, (outs), (ins brtarget:$imm16), 152 !strconcat(asmstr, "\t$imm16"),[], itin>; 153 154// 155// EXT-I8 instruction format 156// 157 158class FEXT_I816_ins_base<bits<3> _func, string asmstr, 159 string asmstr2, InstrItinClass itin>: 160 FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), 161 [], itin>; 162 163class FEXT_I816_ins<bits<3> _func, string asmstr, 164 InstrItinClass itin>: 165 FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>; 166 167class FEXT_I816_SP_ins<bits<3> _func, string asmstr, 168 InstrItinClass itin>: 169 FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>; 170 171// 172// Assembler formats in alphabetical order. 173// Natural and pseudos are mixed together. 174// 175// Compare two registers and place result in CC 176// Implicit use of T8 177// 178// CC-RR Instruction format 179// 180class FCCRR16_ins<string asmstr> : 181 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry), 182 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> { 183 let isCodeGenOnly=1; 184 let usesCustomInserter = 1; 185} 186 187// 188// EXT-RI instruction format 189// 190 191class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2, 192 InstrItinClass itin>: 193 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm), 194 !strconcat(asmstr, asmstr2), [], itin>; 195 196class FEXT_RI16_ins<bits<5> _op, string asmstr, 197 InstrItinClass itin>: 198 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>; 199 200class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2, 201 InstrItinClass itin>: 202 FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm), 203 !strconcat(asmstr, asmstr2), [], itin>; 204 205class FEXT_RI16R_ins<bits<5> _op, string asmstr, 206 InstrItinClass itin>: 207 FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>; 208 209class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>: 210 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>; 211 212class FEXT_RI16_B_ins<bits<5> _op, string asmstr, 213 InstrItinClass itin>: 214 FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), 215 !strconcat(asmstr, "\t$rx, $imm"), [], itin>; 216 217class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr, 218 InstrItinClass itin>: 219 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size), 220 !strconcat(asmstr, "\t$rx, $imm"), [], itin>; 221 222class FEXT_2RI16_ins<bits<5> _op, string asmstr, 223 InstrItinClass itin>: 224 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), 225 !strconcat(asmstr, "\t$rx, $imm"), [], itin> { 226 let Constraints = "$rx_ = $rx"; 227} 228 229// 230// EXT-RRI instruction format 231// 232 233class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd, 234 InstrItinClass itin>: 235 FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr), 236 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 237 238class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd, 239 InstrItinClass itin>: 240 FEXT_RRI16<op, (outs ), (ins CPU16Regs:$ry, MemOpnd:$addr), 241 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 242 243// 244// 245// EXT-RRI-A instruction format 246// 247 248class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd, 249 InstrItinClass itin>: 250 FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr), 251 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 252 253// 254// EXT-SHIFT instruction format 255// 256class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>: 257 FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa), 258 !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>; 259 260// 261// EXT-T8I8 262// 263class FEXT_T8I816_ins<string asmstr, string asmstr2>: 264 MipsPseudo16<(outs), 265 (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm), 266 !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t", 267 !strconcat(asmstr, "\t$imm"))),[]> { 268 let isCodeGenOnly=1; 269 let usesCustomInserter = 1; 270} 271 272// 273// EXT-T8I8I 274// 275class FEXT_T8I8I16_ins<string asmstr, string asmstr2>: 276 MipsPseudo16<(outs), 277 (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ), 278 !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t", 279 !strconcat(asmstr, "\t$targ"))), []> { 280 let isCodeGenOnly=1; 281 let usesCustomInserter = 1; 282} 283// 284 285 286// 287// I8_MOVR32 instruction format (used only by the MOVR32 instructio 288// 289class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>: 290 FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32), 291 !strconcat(asmstr, "\t$rz, $r32"), [], itin>; 292 293// 294// I8_MOV32R instruction format (used only by MOV32R instruction) 295// 296 297class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>: 298 FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz), 299 !strconcat(asmstr, "\t$r32, $rz"), [], itin>; 300 301// 302// This are pseudo formats for multiply 303// This first one can be changed to non-pseudo now. 304// 305// MULT 306// 307class FMULT16_ins<string asmstr> : 308 MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 309 !strconcat(asmstr, "\t$rx, $ry"), []>; 310 311// 312// MULT-LO 313// 314class FMULT16_LO_ins<string asmstr> : 315 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 316 !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> { 317 let isCodeGenOnly=1; 318} 319 320// 321// RR-type instruction format 322// 323 324class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 325 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 326 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 327} 328 329class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> : 330 FRRBreak16<(outs), (ins), asmstr, [], itin> { 331 let Code=0; 332} 333 334class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> : 335 FRR16<f, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 336 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 337} 338 339class FRRTR16_ins<string asmstr> : 340 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 341 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ; 342 343// 344// maybe refactor but need a $zero as a dummy first parameter 345// 346class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> : 347 FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry), 348 !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ; 349 350class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 351 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 352 !strconcat(asmstr, "\t$rx, $ry"), [], itin> ; 353 354 355class FRR16_M_ins<bits<5> f, string asmstr, 356 InstrItinClass itin> : 357 FRR16<f, (outs CPU16Regs:$rx), (ins), 358 !strconcat(asmstr, "\t$rx"), [], itin>; 359 360class FRxRxRy16_ins<bits<5> f, string asmstr, 361 InstrItinClass itin> : 362 FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 363 !strconcat(asmstr, "\t$rz, $ry"), 364 [], itin> { 365 let Constraints = "$rx = $rz"; 366} 367 368let rx=0 in 369class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_, 370 string asmstr, InstrItinClass itin>: 371 FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t$$ra"), 372 [], itin> ; 373 374 375class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra, 376 string asmstr, InstrItinClass itin>: 377 FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx), 378 !strconcat(asmstr, "\t$rx"), [], itin> ; 379 380class FRR_SF16_ins 381 <bits<5> _funct, bits<3> _subfunc, 382 string asmstr, InstrItinClass itin>: 383 FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_), 384 !strconcat(asmstr, "\t $rx"), 385 [], itin> { 386 let Constraints = "$rx_ = $rx"; 387 } 388// 389// RRR-type instruction format 390// 391 392class FRRR16_ins<bits<2> _f, string asmstr, InstrItinClass itin> : 393 FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 394 !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>; 395 396// 397// These Sel patterns support the generation of conditional move 398// pseudo instructions. 399// 400// The nomenclature uses the components making up the pseudo and may 401// be a bit counter intuitive when compared with the end result we seek. 402// For example using a bqez in the example directly below results in the 403// conditional move being done if the tested register is not zero. 404// I considered in easier to check by keeping the pseudo consistent with 405// it's components but it could have been done differently. 406// 407// The simplest case is when can test and operand directly and do the 408// conditional move based on a simple mips16 conditional 409// branch instruction. 410// for example: 411// if $op == beqz or bnez: 412// 413// $op1 $rt, .+4 414// move $rd, $rs 415// 416// if $op == beqz, then if $rt != 0, then the conditional assignment 417// $rd = $rs is done. 418 419// if $op == bnez, then if $rt == 0, then the conditional assignment 420// $rd = $rs is done. 421// 422// So this pseudo class only has one operand, i.e. op 423// 424class Sel<string op>: 425 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 426 CPU16Regs:$rt), 427 !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> { 428 //let isCodeGenOnly=1; 429 let Constraints = "$rd = $rd_"; 430 let usesCustomInserter = 1; 431} 432 433// 434// The next two instruction classes allow for an operand which tests 435// two operands and returns a value in register T8 and 436//then does a conditional branch based on the value of T8 437// 438 439// op2 can be cmpi or slti/sltiu 440// op1 can bteqz or btnez 441// the operands for op2 are a register and a signed constant 442// 443// $op2 $t, $imm ;test register t and branch conditionally 444// $op1 .+4 ;op1 is a conditional branch 445// move $rd, $rs 446// 447// 448class SeliT<string op1, string op2>: 449 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 450 CPU16Regs:$rl, simm16:$imm), 451 !strconcat(op2, 452 !strconcat("\t$rl, $imm\n\t", 453 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 454 let isCodeGenOnly=1; 455 let Constraints = "$rd = $rd_"; 456 let usesCustomInserter = 1; 457} 458 459// 460// op2 can be cmp or slt/sltu 461// op1 can be bteqz or btnez 462// the operands for op2 are two registers 463// op1 is a conditional branch 464// 465// 466// $op2 $rl, $rr ;test registers rl,rr 467// $op1 .+4 ;op2 is a conditional branch 468// move $rd, $rs 469// 470// 471class SelT<string op1, string op2>: 472 MipsPseudo16<(outs CPU16Regs:$rd_), 473 (ins CPU16Regs:$rd, CPU16Regs:$rs, 474 CPU16Regs:$rl, CPU16Regs:$rr), 475 !strconcat(op2, 476 !strconcat("\t$rl, $rr\n\t", 477 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 478 let isCodeGenOnly=1; 479 let Constraints = "$rd = $rd_"; 480 let usesCustomInserter = 1; 481} 482 483// 484// 32 bit constant 485// 486def Constant32 : MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>; 487 488def LwConstant32 : 489 MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid), 490 "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>; 491 492// 493// Some general instruction class info 494// 495// 496 497class ArithLogic16Defs<bit isCom=0> { 498 bits<5> shamt = 0; 499 bit isCommutable = isCom; 500 bit isReMaterializable = 1; 501 bit hasSideEffects = 0; 502} 503 504class branch16 { 505 bit isBranch = 1; 506 bit isTerminator = 1; 507 bit isBarrier = 1; 508} 509 510class cbranch16 { 511 bit isBranch = 1; 512 bit isTerminator = 1; 513} 514 515class MayLoad { 516 bit mayLoad = 1; 517} 518 519class MayStore { 520 bit mayStore = 1; 521} 522// 523 524 525// Format: ADDIU rx, immediate MIPS16e 526// Purpose: Add Immediate Unsigned Word (2-Operand, Extended) 527// To add a constant to a 32-bit integer. 528// 529def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>; 530 531def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>, 532 ArithLogic16Defs<0> { 533 let AddedComplexity = 5; 534} 535def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>, 536 ArithLogic16Defs<0> { 537 let isCodeGenOnly = 1; 538} 539 540def AddiuRxRyOffMemX16: 541 FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>; 542 543// 544 545// Format: ADDIU rx, pc, immediate MIPS16e 546// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) 547// To add a constant to the program counter. 548// 549def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>; 550 551// 552// Format: ADDIU sp, immediate MIPS16e 553// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) 554// To add a constant to the stack pointer. 555// 556def AddiuSpImm16 557 : FI816_SP_ins<0b011, "addiu", IIM16Alu> { 558 let Defs = [SP]; 559 let Uses = [SP]; 560 let AddedComplexity = 5; 561} 562 563def AddiuSpImmX16 564 : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> { 565 let Defs = [SP]; 566 let Uses = [SP]; 567} 568 569// 570// Format: ADDU rz, rx, ry MIPS16e 571// Purpose: Add Unsigned Word (3-Operand) 572// To add 32-bit integers. 573// 574 575def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>; 576 577// 578// Format: AND rx, ry MIPS16e 579// Purpose: AND 580// To do a bitwise logical AND. 581 582def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>; 583 584 585// 586// Format: BEQZ rx, offset MIPS16e 587// Purpose: Branch on Equal to Zero 588// To test a GPR then do a PC-relative conditional branch. 589// 590def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 591 592 593// 594// Format: BEQZ rx, offset MIPS16e 595// Purpose: Branch on Equal to Zero (Extended) 596// To test a GPR then do a PC-relative conditional branch. 597// 598def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 599 600// 601// Format: B offset MIPS16e 602// Purpose: Unconditional Branch (Extended) 603// To do an unconditional PC-relative branch. 604// 605 606def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16; 607 608// Format: B offset MIPS16e 609// Purpose: Unconditional Branch 610// To do an unconditional PC-relative branch. 611// 612def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16; 613 614// 615// Format: BNEZ rx, offset MIPS16e 616// Purpose: Branch on Not Equal to Zero 617// To test a GPR then do a PC-relative conditional branch. 618// 619def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 620 621// 622// Format: BNEZ rx, offset MIPS16e 623// Purpose: Branch on Not Equal to Zero (Extended) 624// To test a GPR then do a PC-relative conditional branch. 625// 626def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 627 628 629// 630//Format: BREAK immediate 631// Purpose: Breakpoint 632// To cause a Breakpoint exception. 633 634def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>; 635// 636// Format: BTEQZ offset MIPS16e 637// Purpose: Branch on T Equal to Zero (Extended) 638// To test special register T then do a PC-relative conditional branch. 639// 640def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 641 let Uses = [T8]; 642} 643 644def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 645 let Uses = [T8]; 646} 647 648def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16; 649 650def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">, 651 cbranch16; 652 653def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16; 654 655def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16; 656 657def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16; 658 659def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">, 660 cbranch16; 661 662// 663// Format: BTNEZ offset MIPS16e 664// Purpose: Branch on T Not Equal to Zero (Extended) 665// To test special register T then do a PC-relative conditional branch. 666// 667 668def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 { 669 let Uses = [T8]; 670} 671 672def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 { 673 let Uses = [T8]; 674} 675 676def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16; 677 678def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16; 679 680def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16; 681 682def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16; 683 684def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16; 685 686def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">, 687 cbranch16; 688 689// 690// Format: CMP rx, ry MIPS16e 691// Purpose: Compare 692// To compare the contents of two GPRs. 693// 694def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> { 695 let Defs = [T8]; 696} 697 698// 699// Format: CMPI rx, immediate MIPS16e 700// Purpose: Compare Immediate 701// To compare a constant with the contents of a GPR. 702// 703def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> { 704 let Defs = [T8]; 705} 706 707// 708// Format: CMPI rx, immediate MIPS16e 709// Purpose: Compare Immediate (Extended) 710// To compare a constant with the contents of a GPR. 711// 712def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> { 713 let Defs = [T8]; 714} 715 716 717// 718// Format: DIV rx, ry MIPS16e 719// Purpose: Divide Word 720// To divide 32-bit signed integers. 721// 722def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> { 723 let Defs = [HI0, LO0]; 724} 725 726// 727// Format: DIVU rx, ry MIPS16e 728// Purpose: Divide Unsigned Word 729// To divide 32-bit unsigned integers. 730// 731def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> { 732 let Defs = [HI0, LO0]; 733} 734// 735// Format: JAL target MIPS16e 736// Purpose: Jump and Link 737// To execute a procedure call within the current 256 MB-aligned 738// region and preserve the current ISA. 739// 740 741def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> { 742 let hasDelaySlot = 0; // not true, but we add the nop for now 743 let isCall=1; 744 let Defs = [RA]; 745} 746 747def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 { 748 let hasDelaySlot = 0; // not true, but we add the nop for now 749 let isBranch=1; 750 let Defs = [RA]; 751} 752 753// 754// Format: JR ra MIPS16e 755// Purpose: Jump Register Through Register ra 756// To execute a branch to the instruction address in the return 757// address register. 758// 759 760def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> { 761 let isBranch = 1; 762 let isIndirectBranch = 1; 763 let hasDelaySlot = 1; 764 let isTerminator=1; 765 let isBarrier=1; 766 let isReturn=1; 767} 768 769def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> { 770 let isBranch = 1; 771 let isIndirectBranch = 1; 772 let isTerminator=1; 773 let isBarrier=1; 774 let isReturn=1; 775} 776 777def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> { 778 let isBranch = 1; 779 let isIndirectBranch = 1; 780 let isTerminator=1; 781 let isBarrier=1; 782} 783// 784// Format: LB ry, offset(rx) MIPS16e 785// Purpose: Load Byte (Extended) 786// To load a byte from memory as a signed value. 787// 788def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{ 789 let isCodeGenOnly = 1; 790} 791 792// 793// Format: LBU ry, offset(rx) MIPS16e 794// Purpose: Load Byte Unsigned (Extended) 795// To load a byte from memory as a unsigned value. 796// 797def LbuRxRyOffMemX16: 798 FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad { 799 let isCodeGenOnly = 1; 800} 801 802// 803// Format: LH ry, offset(rx) MIPS16e 804// Purpose: Load Halfword signed (Extended) 805// To load a halfword from memory as a signed value. 806// 807def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{ 808 let isCodeGenOnly = 1; 809} 810 811// 812// Format: LHU ry, offset(rx) MIPS16e 813// Purpose: Load Halfword unsigned (Extended) 814// To load a halfword from memory as an unsigned value. 815// 816def LhuRxRyOffMemX16: 817 FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad { 818 let isCodeGenOnly = 1; 819} 820 821// 822// Format: LI rx, immediate MIPS16e 823// Purpose: Load Immediate 824// To load a constant into a GPR. 825// 826def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>; 827 828// 829// Format: LI rx, immediate MIPS16e 830// Purpose: Load Immediate (Extended) 831// To load a constant into a GPR. 832// 833def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>; 834 835def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> { 836 let isCodeGenOnly = 1; 837} 838 839// 840// Format: LW ry, offset(rx) MIPS16e 841// Purpose: Load Word (Extended) 842// To load a word from memory as a signed value. 843// 844def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{ 845 let isCodeGenOnly = 1; 846} 847 848// Format: LW rx, offset(sp) MIPS16e 849// Purpose: Load Word (SP-Relative, Extended) 850// To load an SP-relative word from memory as a signed value. 851// 852def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad; 853 854def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 855 856def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 857// 858// Format: MOVE r32, rz MIPS16e 859// Purpose: Move 860// To move the contents of a GPR to a GPR. 861// 862def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>; 863 864// 865// Format: MOVE ry, r32 MIPS16e 866//Purpose: Move 867// To move the contents of a GPR to a GPR. 868// 869def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu> { 870 let isMoveReg = 1; 871} 872 873// 874// Format: MFHI rx MIPS16e 875// Purpose: Move From HI Register 876// To copy the special purpose HI register to a GPR. 877// 878def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> { 879 let Uses = [HI0]; 880 let hasSideEffects = 0; 881 let isMoveReg = 1; 882} 883 884// 885// Format: MFLO rx MIPS16e 886// Purpose: Move From LO Register 887// To copy the special purpose LO register to a GPR. 888// 889def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> { 890 let Uses = [LO0]; 891 let hasSideEffects = 0; 892 let isMoveReg = 0; 893} 894 895// 896// Pseudo Instruction for mult 897// 898def MultRxRy16: FMULT16_ins<"mult"> { 899 let isCommutable = 1; 900 let hasSideEffects = 0; 901 let Defs = [HI0, LO0]; 902} 903 904def MultuRxRy16: FMULT16_ins<"multu"> { 905 let isCommutable = 1; 906 let hasSideEffects = 0; 907 let Defs = [HI0, LO0]; 908} 909 910// 911// Format: MULT rx, ry MIPS16e 912// Purpose: Multiply Word 913// To multiply 32-bit signed integers. 914// 915def MultRxRyRz16: FMULT16_LO_ins<"mult"> { 916 let isCommutable = 1; 917 let hasSideEffects = 0; 918 let Defs = [HI0, LO0]; 919} 920 921// 922// Format: MULTU rx, ry MIPS16e 923// Purpose: Multiply Unsigned Word 924// To multiply 32-bit unsigned integers. 925// 926def MultuRxRyRz16: FMULT16_LO_ins<"multu"> { 927 let isCommutable = 1; 928 let hasSideEffects = 0; 929 let Defs = [HI0, LO0]; 930} 931 932// 933// Format: NEG rx, ry MIPS16e 934// Purpose: Negate 935// To negate an integer value. 936// 937def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>; 938 939// 940// Format: NOT rx, ry MIPS16e 941// Purpose: Not 942// To complement an integer value 943// 944def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>; 945 946// 947// Format: OR rx, ry MIPS16e 948// Purpose: Or 949// To do a bitwise logical OR. 950// 951def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>; 952 953// 954// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} 955// (All args are optional) MIPS16e 956// Purpose: Restore Registers and Deallocate Stack Frame 957// To deallocate a stack frame before exit from a subroutine, 958// restoring return address and static registers, and adjusting 959// stack 960// 961 962def Restore16: 963 FI8_SVRS16<0b1, (outs), (ins variable_ops), 964 "", [], II_RESTORE >, MayLoad { 965 let isCodeGenOnly = 1; 966 let Defs = [SP]; 967 let Uses = [SP]; 968} 969 970 971def RestoreX16: 972 FI8_SVRS16<0b1, (outs), (ins variable_ops), 973 "", [], II_RESTORE >, MayLoad { 974 let isCodeGenOnly = 1; 975 let Defs = [SP]; 976 let Uses = [SP]; 977} 978 979// 980// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) 981// MIPS16e 982// Purpose: Save Registers and Set Up Stack Frame 983// To set up a stack frame on entry to a subroutine, 984// saving return address and static registers, and adjusting stack 985// 986def Save16: 987 FI8_SVRS16<0b1, (outs), (ins variable_ops), 988 "", [], II_SAVE >, MayStore { 989 let isCodeGenOnly = 1; 990 let Uses = [SP]; 991 let Defs = [SP]; 992} 993 994def SaveX16: 995 FI8_SVRS16<0b1, (outs), (ins variable_ops), 996 "", [], II_SAVE >, MayStore { 997 let isCodeGenOnly = 1; 998 let Uses = [SP]; 999 let Defs = [SP]; 1000} 1001// 1002// Format: SB ry, offset(rx) MIPS16e 1003// Purpose: Store Byte (Extended) 1004// To store a byte to memory. 1005// 1006def SbRxRyOffMemX16: 1007 FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore; 1008 1009// 1010// Format: SEB rx MIPS16e 1011// Purpose: Sign-Extend Byte 1012// Sign-extend least significant byte in register rx. 1013// 1014def SebRx16 1015 : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>; 1016 1017// 1018// Format: SEH rx MIPS16e 1019// Purpose: Sign-Extend Halfword 1020// Sign-extend least significant word in register rx. 1021// 1022def SehRx16 1023 : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>; 1024 1025// 1026// The Sel(T) instructions are pseudos 1027// T means that they use T8 implicitly. 1028// 1029// 1030// Format: SelBeqZ rd, rs, rt 1031// Purpose: if rt==0, do nothing 1032// else rs = rt 1033// 1034def SelBeqZ: Sel<"beqz">; 1035 1036// 1037// Format: SelTBteqZCmp rd, rs, rl, rr 1038// Purpose: b = Cmp rl, rr. 1039// If b==0 then do nothing. 1040// if b!=0 then rd = rs 1041// 1042def SelTBteqZCmp: SelT<"bteqz", "cmp">; 1043 1044// 1045// Format: SelTBteqZCmpi rd, rs, rl, rr 1046// Purpose: b = Cmpi rl, imm. 1047// If b==0 then do nothing. 1048// if b!=0 then rd = rs 1049// 1050def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">; 1051 1052// 1053// Format: SelTBteqZSlt rd, rs, rl, rr 1054// Purpose: b = Slt rl, rr. 1055// If b==0 then do nothing. 1056// if b!=0 then rd = rs 1057// 1058def SelTBteqZSlt: SelT<"bteqz", "slt">; 1059 1060// 1061// Format: SelTBteqZSlti rd, rs, rl, rr 1062// Purpose: b = Slti rl, imm. 1063// If b==0 then do nothing. 1064// if b!=0 then rd = rs 1065// 1066def SelTBteqZSlti: SeliT<"bteqz", "slti">; 1067 1068// 1069// Format: SelTBteqZSltu rd, rs, rl, rr 1070// Purpose: b = Sltu rl, rr. 1071// If b==0 then do nothing. 1072// if b!=0 then rd = rs 1073// 1074def SelTBteqZSltu: SelT<"bteqz", "sltu">; 1075 1076// 1077// Format: SelTBteqZSltiu rd, rs, rl, rr 1078// Purpose: b = Sltiu rl, imm. 1079// If b==0 then do nothing. 1080// if b!=0 then rd = rs 1081// 1082def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">; 1083 1084// 1085// Format: SelBnez rd, rs, rt 1086// Purpose: if rt!=0, do nothing 1087// else rs = rt 1088// 1089def SelBneZ: Sel<"bnez">; 1090 1091// 1092// Format: SelTBtneZCmp rd, rs, rl, rr 1093// Purpose: b = Cmp rl, rr. 1094// If b!=0 then do nothing. 1095// if b0=0 then rd = rs 1096// 1097def SelTBtneZCmp: SelT<"btnez", "cmp">; 1098 1099// 1100// Format: SelTBtnezCmpi rd, rs, rl, rr 1101// Purpose: b = Cmpi rl, imm. 1102// If b!=0 then do nothing. 1103// if b==0 then rd = rs 1104// 1105def SelTBtneZCmpi: SeliT<"btnez", "cmpi">; 1106 1107// 1108// Format: SelTBtneZSlt rd, rs, rl, rr 1109// Purpose: b = Slt rl, rr. 1110// If b!=0 then do nothing. 1111// if b==0 then rd = rs 1112// 1113def SelTBtneZSlt: SelT<"btnez", "slt">; 1114 1115// 1116// Format: SelTBtneZSlti rd, rs, rl, rr 1117// Purpose: b = Slti rl, imm. 1118// If b!=0 then do nothing. 1119// if b==0 then rd = rs 1120// 1121def SelTBtneZSlti: SeliT<"btnez", "slti">; 1122 1123// 1124// Format: SelTBtneZSltu rd, rs, rl, rr 1125// Purpose: b = Sltu rl, rr. 1126// If b!=0 then do nothing. 1127// if b==0 then rd = rs 1128// 1129def SelTBtneZSltu: SelT<"btnez", "sltu">; 1130 1131// 1132// Format: SelTBtneZSltiu rd, rs, rl, rr 1133// Purpose: b = Slti rl, imm. 1134// If b!=0 then do nothing. 1135// if b==0 then rd = rs 1136// 1137def SelTBtneZSltiu: SeliT<"btnez", "sltiu">; 1138// 1139// 1140// Format: SH ry, offset(rx) MIPS16e 1141// Purpose: Store Halfword (Extended) 1142// To store a halfword to memory. 1143// 1144def ShRxRyOffMemX16: 1145 FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore; 1146 1147// 1148// Format: SLL rx, ry, sa MIPS16e 1149// Purpose: Shift Word Left Logical (Extended) 1150// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits. 1151// 1152def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>; 1153 1154// 1155// Format: SLLV ry, rx MIPS16e 1156// Purpose: Shift Word Left Logical Variable 1157// To execute a left-shift of a word by a variable number of bits. 1158// 1159def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>; 1160 1161// Format: SLTI rx, immediate MIPS16e 1162// Purpose: Set on Less Than Immediate 1163// To record the result of a less-than comparison with a constant. 1164// 1165// 1166def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> { 1167 let Defs = [T8]; 1168} 1169 1170// 1171// Format: SLTI rx, immediate MIPS16e 1172// Purpose: Set on Less Than Immediate (Extended) 1173// To record the result of a less-than comparison with a constant. 1174// 1175// 1176def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> { 1177 let Defs = [T8]; 1178} 1179 1180def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">; 1181 1182// Format: SLTIU rx, immediate MIPS16e 1183// Purpose: Set on Less Than Immediate Unsigned 1184// To record the result of a less-than comparison with a constant. 1185// 1186// 1187def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> { 1188 let Defs = [T8]; 1189} 1190 1191// 1192// Format: SLTI rx, immediate MIPS16e 1193// Purpose: Set on Less Than Immediate Unsigned (Extended) 1194// To record the result of a less-than comparison with a constant. 1195// 1196// 1197def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> { 1198 let Defs = [T8]; 1199} 1200// 1201// Format: SLTIU rx, immediate MIPS16e 1202// Purpose: Set on Less Than Immediate Unsigned (Extended) 1203// To record the result of a less-than comparison with a constant. 1204// 1205def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">; 1206 1207// 1208// Format: SLT rx, ry MIPS16e 1209// Purpose: Set on Less Than 1210// To record the result of a less-than comparison. 1211// 1212def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{ 1213 let Defs = [T8]; 1214} 1215 1216def SltCCRxRy16: FCCRR16_ins<"slt">; 1217 1218// Format: SLTU rx, ry MIPS16e 1219// Purpose: Set on Less Than Unsigned 1220// To record the result of an unsigned less-than comparison. 1221// 1222def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{ 1223 let Defs = [T8]; 1224} 1225 1226def SltuRxRyRz16: FRRTR16_ins<"sltu"> { 1227 let isCodeGenOnly=1; 1228 let Defs = [T8]; 1229} 1230 1231 1232def SltuCCRxRy16: FCCRR16_ins<"sltu">; 1233// 1234// Format: SRAV ry, rx MIPS16e 1235// Purpose: Shift Word Right Arithmetic Variable 1236// To execute an arithmetic right-shift of a word by a variable 1237// number of bits. 1238// 1239def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>; 1240 1241 1242// 1243// Format: SRA rx, ry, sa MIPS16e 1244// Purpose: Shift Word Right Arithmetic (Extended) 1245// To execute an arithmetic right-shift of a word by a fixed 1246// number of bits-1 to 8 bits. 1247// 1248def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>; 1249 1250 1251// 1252// Format: SRLV ry, rx MIPS16e 1253// Purpose: Shift Word Right Logical Variable 1254// To execute a logical right-shift of a word by a variable 1255// number of bits. 1256// 1257def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>; 1258 1259 1260// 1261// Format: SRL rx, ry, sa MIPS16e 1262// Purpose: Shift Word Right Logical (Extended) 1263// To execute a logical right-shift of a word by a fixed 1264// number of bits-1 to 31 bits. 1265// 1266def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>; 1267 1268// 1269// Format: SUBU rz, rx, ry MIPS16e 1270// Purpose: Subtract Unsigned Word 1271// To subtract 32-bit integers 1272// 1273def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>; 1274 1275// 1276// Format: SW ry, offset(rx) MIPS16e 1277// Purpose: Store Word (Extended) 1278// To store a word to memory. 1279// 1280def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore; 1281 1282// 1283// Format: SW rx, offset(sp) MIPS16e 1284// Purpose: Store Word rx (SP-Relative) 1285// To store an SP-relative word to memory. 1286// 1287def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore; 1288 1289// 1290// 1291// Format: XOR rx, ry MIPS16e 1292// Purpose: Xor 1293// To do a bitwise logical XOR. 1294// 1295def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>; 1296 1297class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> { 1298 let Predicates = [InMips16Mode]; 1299} 1300 1301// Unary Arith/Logic 1302// 1303class ArithLogicU_pat<PatFrag OpNode, Instruction I> : 1304 Mips16Pat<(OpNode CPU16Regs:$r), 1305 (I CPU16Regs:$r)>; 1306 1307def: ArithLogicU_pat<not, NotRxRy16>; 1308def: ArithLogicU_pat<ineg, NegRxRy16>; 1309 1310class ArithLogic16_pat<SDNode OpNode, Instruction I> : 1311 Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r), 1312 (I CPU16Regs:$l, CPU16Regs:$r)>; 1313 1314def: ArithLogic16_pat<add, AdduRxRyRz16>; 1315def: ArithLogic16_pat<and, AndRxRxRy16>; 1316def: ArithLogic16_pat<mul, MultRxRyRz16>; 1317def: ArithLogic16_pat<or, OrRxRxRy16>; 1318def: ArithLogic16_pat<sub, SubuRxRyRz16>; 1319def: ArithLogic16_pat<xor, XorRxRxRy16>; 1320 1321// Arithmetic and logical instructions with 2 register operands. 1322 1323class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> : 1324 Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm), 1325 (I CPU16Regs:$in, imm_type:$imm)>; 1326 1327def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>; 1328def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>; 1329def: ArithLogicI16_pat<shl, immZExt5, SllX16>; 1330def: ArithLogicI16_pat<srl, immZExt5, SrlX16>; 1331def: ArithLogicI16_pat<sra, immZExt5, SraX16>; 1332 1333class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> : 1334 Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra), 1335 (I CPU16Regs:$r, CPU16Regs:$ra)>; 1336 1337def: shift_rotate_reg16_pat<shl, SllvRxRy16>; 1338def: shift_rotate_reg16_pat<sra, SravRxRy16>; 1339def: shift_rotate_reg16_pat<srl, SrlvRxRy16>; 1340 1341class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> : 1342 Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>; 1343 1344def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>; 1345def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>; 1346def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>; 1347def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>; 1348def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>; 1349 1350class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> : 1351 Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>; 1352 1353def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>; 1354def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>; 1355def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>; 1356 1357// Unconditional branch 1358class UncondBranch16_pat<SDNode OpNode, Instruction I>: 1359 Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> { 1360 let Predicates = [InMips16Mode]; 1361 } 1362 1363def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), 1364 (Jal16 tglobaladdr:$dst)>; 1365 1366def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)), 1367 (Jal16 texternalsym:$dst)>; 1368 1369// Indirect branch 1370def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> { 1371 // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change 1372 // MIPS16's behaviour. 1373 let AddedComplexity = 1; 1374} 1375 1376// Jump and Link (Call) 1377let isCall=1, hasDelaySlot=0 in 1378def JumpLinkReg16: 1379 FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs), 1380 "jalrc\t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> { 1381 let Defs = [RA]; 1382} 1383 1384// Mips16 pseudos 1385let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, 1386 hasExtraSrcRegAllocReq = 1 in 1387def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>; 1388 1389 1390// setcc patterns 1391 1392class SetCC_R16<PatFrag cond_op, Instruction I>: 1393 Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry), 1394 (I CPU16Regs:$rx, CPU16Regs:$ry)>; 1395 1396class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>: 1397 Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16), 1398 (I CPU16Regs:$rx, imm_type:$imm16)>; 1399 1400 1401def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>; 1402 1403 1404// Large (>16 bit) immediate loads 1405def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>; 1406 1407// 1408// Some branch conditional patterns are not generated by llvm at this time. 1409// Some are for seemingly arbitrary reasons not used: i.e. with signed number 1410// comparison they are used and for unsigned a different pattern is used. 1411// I am pushing upstream from the full mips16 port and it seemed that I needed 1412// these earlier and the mips32 port has these but now I cannot create test 1413// cases that use these patterns. While I sort this all out I will leave these 1414// extra patterns commented out and if I can be sure they are really not used, 1415// I will delete the code. I don't want to check the code in uncommented without 1416// a valid test case. In some cases, the compiler is generating patterns with 1417// setcc instead and earlier I had implemented setcc first so may have masked 1418// the problem. The setcc variants are suboptimal for mips16 so I may wantto 1419// figure out how to enable the brcond patterns or else possibly new 1420// combinations of brcond and setcc. 1421// 1422// 1423// bcond-seteq 1424// 1425def: Mips16Pat 1426 <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1427 (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1428 >; 1429 1430 1431def: Mips16Pat 1432 <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1433 (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1434 >; 1435 1436def: Mips16Pat 1437 <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16), 1438 (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16) 1439 >; 1440 1441// 1442// bcond-setgt (do we need to have this pair of setlt, setgt??) 1443// 1444def: Mips16Pat 1445 <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1446 (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1447 >; 1448 1449// 1450// bcond-setge 1451// 1452def: Mips16Pat 1453 <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1454 (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1455 >; 1456 1457// 1458// never called because compiler transforms a >= k to a > (k-1) 1459def: Mips16Pat 1460 <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1461 (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1462 >; 1463 1464// 1465// bcond-setlt 1466// 1467def: Mips16Pat 1468 <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1469 (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1470 >; 1471 1472def: Mips16Pat 1473 <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1474 (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1475 >; 1476 1477// 1478// bcond-setle 1479// 1480def: Mips16Pat 1481 <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1482 (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1483 >; 1484 1485// 1486// bcond-setne 1487// 1488def: Mips16Pat 1489 <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1490 (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1491 >; 1492 1493def: Mips16Pat 1494 <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1495 (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1496 >; 1497 1498def: Mips16Pat 1499 <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16), 1500 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1501 >; 1502 1503// 1504// This needs to be there but I forget which code will generate it 1505// 1506def: Mips16Pat 1507 <(brcond CPU16Regs:$rx, bb:$targ16), 1508 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1509 >; 1510 1511// 1512 1513// 1514// bcond-setugt 1515// 1516//def: Mips16Pat 1517// <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1518// (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1519// >; 1520 1521// 1522// bcond-setuge 1523// 1524//def: Mips16Pat 1525// <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1526// (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1527// >; 1528 1529 1530// 1531// bcond-setult 1532// 1533//def: Mips16Pat 1534// <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1535// (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1536// >; 1537 1538def: UncondBranch16_pat<br, Bimm16>; 1539 1540// Small immediates 1541def: Mips16Pat<(i32 immSExt16:$in), 1542 (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>; 1543 1544def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>; 1545 1546// 1547// MipsDivRem 1548// 1549def: Mips16Pat 1550 <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry), 1551 (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1552 1553// 1554// MipsDivRemU 1555// 1556def: Mips16Pat 1557 <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry), 1558 (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1559 1560// signed a,b 1561// x = (a>=b)?x:y 1562// 1563// if !(a < b) x = y 1564// 1565def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)), 1566 CPU16Regs:$x, CPU16Regs:$y), 1567 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1568 CPU16Regs:$a, CPU16Regs:$b)>; 1569 1570// signed a,b 1571// x = (a>b)?x:y 1572// 1573// if (b < a) x = y 1574// 1575def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)), 1576 CPU16Regs:$x, CPU16Regs:$y), 1577 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y, 1578 CPU16Regs:$b, CPU16Regs:$a)>; 1579 1580// unsigned a,b 1581// x = (a>=b)?x:y 1582// 1583// if !(a < b) x = y; 1584// 1585def : Mips16Pat< 1586 (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)), 1587 CPU16Regs:$x, CPU16Regs:$y), 1588 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1589 CPU16Regs:$a, CPU16Regs:$b)>; 1590 1591// unsigned a,b 1592// x = (a>b)?x:y 1593// 1594// if (b < a) x = y 1595// 1596def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)), 1597 CPU16Regs:$x, CPU16Regs:$y), 1598 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y, 1599 CPU16Regs:$b, CPU16Regs:$a)>; 1600 1601// signed 1602// x = (a >= k)?x:y 1603// due to an llvm optimization, i don't think that this will ever 1604// be used. This is transformed into x = (a > k-1)?x:y 1605// 1606// 1607 1608//def : Mips16Pat< 1609// (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)), 1610// CPU16Regs:$T, CPU16Regs:$F), 1611// (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F, 1612// CPU16Regs:$lhs, immSExt16:$rhs)>; 1613 1614//def : Mips16Pat< 1615// (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)), 1616// CPU16Regs:$T, CPU16Regs:$F), 1617// (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F, 1618// CPU16Regs:$lhs, immSExt16:$rhs)>; 1619 1620// signed 1621// x = (a < k)?x:y 1622// 1623// if !(a < k) x = y; 1624// 1625def : Mips16Pat< 1626 (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)), 1627 CPU16Regs:$x, CPU16Regs:$y), 1628 (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y, 1629 CPU16Regs:$a, immSExt16:$b)>; 1630 1631 1632// 1633// 1634// signed 1635// x = (a <= b)? x : y 1636// 1637// if (b < a) x = y 1638// 1639def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)), 1640 CPU16Regs:$x, CPU16Regs:$y), 1641 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1642 CPU16Regs:$b, CPU16Regs:$a)>; 1643 1644// 1645// unsigned 1646// x = (a <= b)? x : y 1647// 1648// if (b < a) x = y 1649// 1650def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)), 1651 CPU16Regs:$x, CPU16Regs:$y), 1652 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1653 CPU16Regs:$b, CPU16Regs:$a)>; 1654 1655// 1656// signed/unsigned 1657// x = (a == b)? x : y 1658// 1659// if (a != b) x = y 1660// 1661def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)), 1662 CPU16Regs:$x, CPU16Regs:$y), 1663 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y, 1664 CPU16Regs:$b, CPU16Regs:$a)>; 1665 1666// 1667// signed/unsigned 1668// x = (a == 0)? x : y 1669// 1670// if (a != 0) x = y 1671// 1672def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)), 1673 CPU16Regs:$x, CPU16Regs:$y), 1674 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y, 1675 CPU16Regs:$a)>; 1676 1677 1678// 1679// signed/unsigned 1680// x = (a == k)? x : y 1681// 1682// if (a != k) x = y 1683// 1684def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)), 1685 CPU16Regs:$x, CPU16Regs:$y), 1686 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y, 1687 CPU16Regs:$a, immZExt16:$k)>; 1688 1689 1690// 1691// signed/unsigned 1692// x = (a != b)? x : y 1693// 1694// if (a == b) x = y 1695// 1696// 1697def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)), 1698 CPU16Regs:$x, CPU16Regs:$y), 1699 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y, 1700 CPU16Regs:$b, CPU16Regs:$a)>; 1701 1702// 1703// signed/unsigned 1704// x = (a != 0)? x : y 1705// 1706// if (a == 0) x = y 1707// 1708def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)), 1709 CPU16Regs:$x, CPU16Regs:$y), 1710 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1711 CPU16Regs:$a)>; 1712 1713// signed/unsigned 1714// x = (a)? x : y 1715// 1716// if (!a) x = y 1717// 1718def : Mips16Pat<(select CPU16Regs:$a, 1719 CPU16Regs:$x, CPU16Regs:$y), 1720 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1721 CPU16Regs:$a)>; 1722 1723 1724// 1725// signed/unsigned 1726// x = (a != k)? x : y 1727// 1728// if (a == k) x = y 1729// 1730def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)), 1731 CPU16Regs:$x, CPU16Regs:$y), 1732 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y, 1733 CPU16Regs:$a, immZExt16:$k)>; 1734 1735// 1736// When writing C code to test setxx these patterns, 1737// some will be transformed into 1738// other things. So we test using C code but using -O3 and -O0 1739// 1740// seteq 1741// 1742def : Mips16Pat 1743 <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs), 1744 (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>; 1745 1746def : Mips16Pat 1747 <(seteq CPU16Regs:$lhs, 0), 1748 (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>; 1749 1750 1751// 1752// setge 1753// 1754 1755def: Mips16Pat 1756 <(setge CPU16Regs:$lhs, CPU16Regs:$rhs), 1757 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1758 (LiRxImmX16 1))>; 1759 1760// 1761// For constants, llvm transforms this to: 1762// x > (k - 1) and then reverses the operands to use setlt. So this pattern 1763// is not used now by the compiler. (Presumably checking that k-1 does not 1764// overflow). The compiler never uses this at the current time, due to 1765// other optimizations. 1766// 1767//def: Mips16Pat 1768// <(setge CPU16Regs:$lhs, immSExt16:$rhs), 1769// (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs), 1770// (LiRxImmX16 1))>; 1771 1772// This catches the x >= -32768 case by transforming it to x > -32769 1773// 1774def: Mips16Pat 1775 <(setgt CPU16Regs:$lhs, -32769), 1776 (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768), 1777 (LiRxImmX16 1))>; 1778 1779// 1780// setgt 1781// 1782// 1783 1784def: Mips16Pat 1785 <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs), 1786 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1787 1788// 1789// setle 1790// 1791def: Mips16Pat 1792 <(setle CPU16Regs:$lhs, CPU16Regs:$rhs), 1793 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>; 1794 1795// 1796// setlt 1797// 1798def: SetCC_R16<setlt, SltCCRxRy16>; 1799 1800def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>; 1801 1802// 1803// setne 1804// 1805def : Mips16Pat 1806 <(setne CPU16Regs:$lhs,CPU16Regs:$rhs), 1807 (SltuCCRxRy16 (LiRxImmX16 0), 1808 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>; 1809 1810 1811// 1812// setuge 1813// 1814def: Mips16Pat 1815 <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs), 1816 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1817 (LiRxImmX16 1))>; 1818 1819// this pattern will never be used because the compiler will transform 1820// x >= k to x > (k - 1) and then use SLT 1821// 1822//def: Mips16Pat 1823// <(setuge CPU16Regs:$lhs, immZExt16:$rhs), 1824// (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs), 1825// (LiRxImmX16 1))>; 1826 1827// 1828// setugt 1829// 1830def: Mips16Pat 1831 <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs), 1832 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1833 1834// 1835// setule 1836// 1837def: Mips16Pat 1838 <(setule CPU16Regs:$lhs, CPU16Regs:$rhs), 1839 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>; 1840 1841// 1842// setult 1843// 1844def: SetCC_R16<setult, SltuCCRxRy16>; 1845 1846def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>; 1847 1848def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)), 1849 (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>; 1850 1851// hi/lo relocs 1852def : Mips16Pat<(MipsHi tblockaddress:$in), 1853 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>; 1854def : Mips16Pat<(MipsHi tglobaladdr:$in), 1855 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>; 1856def : Mips16Pat<(MipsHi tjumptable:$in), 1857 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>; 1858 1859def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>; 1860 1861def : Mips16Pat<(MipsTlsHi tglobaltlsaddr:$in), 1862 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>; 1863 1864// wrapper_pic 1865class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: 1866 Mips16Pat<(MipsWrapper RC:$gp, node:$in), 1867 (ADDiuOp RC:$gp, node:$in)>; 1868 1869 1870def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>; 1871def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>; 1872 1873def : Mips16Pat<(i32 (extloadi8 addr16:$src)), 1874 (LbuRxRyOffMemX16 addr16:$src)>; 1875def : Mips16Pat<(i32 (extloadi16 addr16:$src)), 1876 (LhuRxRyOffMemX16 addr16:$src)>; 1877 1878def: Mips16Pat<(trap), (Break16)>; 1879 1880def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8), 1881 (SebRx16 CPU16Regs:$val)>; 1882 1883def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16), 1884 (SehRx16 CPU16Regs:$val)>; 1885 1886def GotPrologue16: 1887 MipsPseudo16< 1888 (outs CPU16Regs:$rh, CPU16Regs:$rl), 1889 (ins simm16:$immHi, simm16:$immLo), 1890 "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ; 1891 1892// An operand for the CONSTPOOL_ENTRY pseudo-instruction. 1893def cpinst_operand : Operand<i32> { 1894 // let PrintMethod = "printCPInstOperand"; 1895} 1896 1897// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in 1898// the function. The first operand is the ID# for this instruction, the second 1899// is the index into the MachineConstantPool that this is, the third is the 1900// size in bytes of this constant pool entry. 1901// 1902let hasSideEffects = 0, isNotDuplicable = 1 in 1903def CONSTPOOL_ENTRY : 1904MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1905 i32imm:$size), "foo", []>; 1906 1907// Instruction Aliases 1908 1909let EncodingPredicates = [InMips16Mode] in 1910def : MipsInstAlias<"nop", (Move32R16 ZERO, S0)>; 1911