1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Subclass of MipsTargetLowering specialized for mips16. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "Mips16ISelLowering.h" 13 #include "MCTargetDesc/MipsBaseInfo.h" 14 #include "Mips16HardFloatInfo.h" 15 #include "MipsMachineFunction.h" 16 #include "MipsRegisterInfo.h" 17 #include "MipsTargetMachine.h" 18 #include "llvm/CodeGen/MachineInstrBuilder.h" 19 #include "llvm/CodeGen/TargetInstrInfo.h" 20 #include "llvm/Support/CommandLine.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "mips-lower" 25 26 static cl::opt<bool> DontExpandCondPseudos16( 27 "mips16-dont-expand-cond-pseudo", 28 cl::init(false), 29 cl::desc("Don't expand conditional move related " 30 "pseudos for Mips 16"), 31 cl::Hidden); 32 33 namespace { 34 struct Mips16Libcall { 35 RTLIB::Libcall Libcall; 36 const char *Name; 37 38 bool operator<(const Mips16Libcall &RHS) const { 39 return std::strcmp(Name, RHS.Name) < 0; 40 } 41 }; 42 43 struct Mips16IntrinsicHelperType{ 44 const char* Name; 45 const char* Helper; 46 47 bool operator<(const Mips16IntrinsicHelperType &RHS) const { 48 return std::strcmp(Name, RHS.Name) < 0; 49 } 50 bool operator==(const Mips16IntrinsicHelperType &RHS) const { 51 return std::strcmp(Name, RHS.Name) == 0; 52 } 53 }; 54 } 55 56 // Libcalls for which no helper is generated. Sorted by name for binary search. 57 static const Mips16Libcall HardFloatLibCalls[] = { 58 { RTLIB::ADD_F64, "__mips16_adddf3" }, 59 { RTLIB::ADD_F32, "__mips16_addsf3" }, 60 { RTLIB::DIV_F64, "__mips16_divdf3" }, 61 { RTLIB::DIV_F32, "__mips16_divsf3" }, 62 { RTLIB::OEQ_F64, "__mips16_eqdf2" }, 63 { RTLIB::OEQ_F32, "__mips16_eqsf2" }, 64 { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" }, 65 { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" }, 66 { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" }, 67 { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" }, 68 { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" }, 69 { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" }, 70 { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" }, 71 { RTLIB::OGE_F64, "__mips16_gedf2" }, 72 { RTLIB::OGE_F32, "__mips16_gesf2" }, 73 { RTLIB::OGT_F64, "__mips16_gtdf2" }, 74 { RTLIB::OGT_F32, "__mips16_gtsf2" }, 75 { RTLIB::OLE_F64, "__mips16_ledf2" }, 76 { RTLIB::OLE_F32, "__mips16_lesf2" }, 77 { RTLIB::OLT_F64, "__mips16_ltdf2" }, 78 { RTLIB::OLT_F32, "__mips16_ltsf2" }, 79 { RTLIB::MUL_F64, "__mips16_muldf3" }, 80 { RTLIB::MUL_F32, "__mips16_mulsf3" }, 81 { RTLIB::UNE_F64, "__mips16_nedf2" }, 82 { RTLIB::UNE_F32, "__mips16_nesf2" }, 83 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall. 84 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall. 85 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall. 86 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall. 87 { RTLIB::SUB_F64, "__mips16_subdf3" }, 88 { RTLIB::SUB_F32, "__mips16_subsf3" }, 89 { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" }, 90 { RTLIB::UO_F64, "__mips16_unorddf2" }, 91 { RTLIB::UO_F32, "__mips16_unordsf2" } 92 }; 93 94 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = { 95 {"__fixunsdfsi", "__mips16_call_stub_2" }, 96 {"ceil", "__mips16_call_stub_df_2"}, 97 {"ceilf", "__mips16_call_stub_sf_1"}, 98 {"copysign", "__mips16_call_stub_df_10"}, 99 {"copysignf", "__mips16_call_stub_sf_5"}, 100 {"cos", "__mips16_call_stub_df_2"}, 101 {"cosf", "__mips16_call_stub_sf_1"}, 102 {"exp2", "__mips16_call_stub_df_2"}, 103 {"exp2f", "__mips16_call_stub_sf_1"}, 104 {"floor", "__mips16_call_stub_df_2"}, 105 {"floorf", "__mips16_call_stub_sf_1"}, 106 {"log2", "__mips16_call_stub_df_2"}, 107 {"log2f", "__mips16_call_stub_sf_1"}, 108 {"nearbyint", "__mips16_call_stub_df_2"}, 109 {"nearbyintf", "__mips16_call_stub_sf_1"}, 110 {"rint", "__mips16_call_stub_df_2"}, 111 {"rintf", "__mips16_call_stub_sf_1"}, 112 {"sin", "__mips16_call_stub_df_2"}, 113 {"sinf", "__mips16_call_stub_sf_1"}, 114 {"sqrt", "__mips16_call_stub_df_2"}, 115 {"sqrtf", "__mips16_call_stub_sf_1"}, 116 {"trunc", "__mips16_call_stub_df_2"}, 117 {"truncf", "__mips16_call_stub_sf_1"}, 118 }; 119 120 Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM, 121 const MipsSubtarget &STI) 122 : MipsTargetLowering(TM, STI) { 123 124 // Set up the register classes 125 addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass); 126 127 if (!Subtarget.useSoftFloat()) 128 setMips16HardFloatLibCalls(); 129 130 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); 131 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); 132 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); 133 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); 134 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); 135 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); 136 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); 137 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); 138 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); 139 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); 140 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); 141 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); 142 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); 143 144 setOperationAction(ISD::ROTR, MVT::i32, Expand); 145 setOperationAction(ISD::ROTR, MVT::i64, Expand); 146 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 147 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 148 149 computeRegisterProperties(STI.getRegisterInfo()); 150 } 151 152 const MipsTargetLowering * 153 llvm::createMips16TargetLowering(const MipsTargetMachine &TM, 154 const MipsSubtarget &STI) { 155 return new Mips16TargetLowering(TM, STI); 156 } 157 158 bool Mips16TargetLowering::allowsMisalignedMemoryAccesses( 159 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 160 return false; 161 } 162 163 MachineBasicBlock * 164 Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 165 MachineBasicBlock *BB) const { 166 switch (MI.getOpcode()) { 167 default: 168 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB); 169 case Mips::SelBeqZ: 170 return emitSel16(Mips::BeqzRxImm16, MI, BB); 171 case Mips::SelBneZ: 172 return emitSel16(Mips::BnezRxImm16, MI, BB); 173 case Mips::SelTBteqZCmpi: 174 return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB); 175 case Mips::SelTBteqZSlti: 176 return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB); 177 case Mips::SelTBteqZSltiu: 178 return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB); 179 case Mips::SelTBtneZCmpi: 180 return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB); 181 case Mips::SelTBtneZSlti: 182 return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB); 183 case Mips::SelTBtneZSltiu: 184 return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB); 185 case Mips::SelTBteqZCmp: 186 return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB); 187 case Mips::SelTBteqZSlt: 188 return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB); 189 case Mips::SelTBteqZSltu: 190 return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB); 191 case Mips::SelTBtneZCmp: 192 return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB); 193 case Mips::SelTBtneZSlt: 194 return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB); 195 case Mips::SelTBtneZSltu: 196 return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB); 197 case Mips::BteqzT8CmpX16: 198 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB); 199 case Mips::BteqzT8SltX16: 200 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB); 201 case Mips::BteqzT8SltuX16: 202 // TBD: figure out a way to get this or remove the instruction 203 // altogether. 204 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB); 205 case Mips::BtnezT8CmpX16: 206 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB); 207 case Mips::BtnezT8SltX16: 208 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB); 209 case Mips::BtnezT8SltuX16: 210 // TBD: figure out a way to get this or remove the instruction 211 // altogether. 212 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB); 213 case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins( 214 Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB); 215 case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins( 216 Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB); 217 case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins( 218 Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB); 219 case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins( 220 Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB); 221 case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins( 222 Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB); 223 case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins( 224 Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB); 225 break; 226 case Mips::SltCCRxRy16: 227 return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB); 228 break; 229 case Mips::SltiCCRxImmX16: 230 return emitFEXT_CCRXI16_ins 231 (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB); 232 case Mips::SltiuCCRxImmX16: 233 return emitFEXT_CCRXI16_ins 234 (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB); 235 case Mips::SltuCCRxRy16: 236 return emitFEXT_CCRX16_ins 237 (Mips::SltuRxRy16, MI, BB); 238 } 239 } 240 241 bool Mips16TargetLowering::isEligibleForTailCallOptimization( 242 const CCState &CCInfo, unsigned NextStackOffset, 243 const MipsFunctionInfo &FI) const { 244 // No tail call optimization for mips16. 245 return false; 246 } 247 248 void Mips16TargetLowering::setMips16HardFloatLibCalls() { 249 for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) { 250 assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) && 251 "Array not sorted!"); 252 if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL) 253 setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name); 254 } 255 } 256 257 // 258 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much 259 // cleaner way to do all of this but it will have to wait until the traditional 260 // gcc mechanism is completed. 261 // 262 // For Pic, in order for Mips16 code to call Mips32 code which according the abi 263 // have either arguments or returned values placed in floating point registers, 264 // we use a set of helper functions. (This includes functions which return type 265 // complex which on Mips are returned in a pair of floating point registers). 266 // 267 // This is an encoding that we inherited from gcc. 268 // In Mips traditional O32, N32 ABI, floating point numbers are passed in 269 // floating point argument registers 1,2 only when the first and optionally 270 // the second arguments are float (sf) or double (df). 271 // For Mips16 we are only concerned with the situations where floating point 272 // arguments are being passed in floating point registers by the ABI, because 273 // Mips16 mode code cannot execute floating point instructions to load those 274 // values and hence helper functions are needed. 275 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df) 276 // the helper function suffixs for these are: 277 // 0, 1, 5, 9, 2, 6, 10 278 // this suffix can then be calculated as follows: 279 // for a given argument Arg: 280 // Arg1x, Arg2x = 1 : Arg is sf 281 // 2 : Arg is df 282 // 0: Arg is neither sf or df 283 // So this stub is the string for number Arg1x + Arg2x*4. 284 // However not all numbers between 0 and 10 are possible, we check anyway and 285 // assert if the impossible exists. 286 // 287 288 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber 289 (ArgListTy &Args) const { 290 unsigned int resultNum = 0; 291 if (Args.size() >= 1) { 292 Type *t = Args[0].Ty; 293 if (t->isFloatTy()) { 294 resultNum = 1; 295 } 296 else if (t->isDoubleTy()) { 297 resultNum = 2; 298 } 299 } 300 if (resultNum) { 301 if (Args.size() >=2) { 302 Type *t = Args[1].Ty; 303 if (t->isFloatTy()) { 304 resultNum += 4; 305 } 306 else if (t->isDoubleTy()) { 307 resultNum += 8; 308 } 309 } 310 } 311 return resultNum; 312 } 313 314 // 315 // Prefixes are attached to stub numbers depending on the return type. 316 // return type: float sf_ 317 // double df_ 318 // single complex sc_ 319 // double complext dc_ 320 // others NO PREFIX 321 // 322 // 323 // The full name of a helper function is__mips16_call_stub + 324 // return type dependent prefix + stub number 325 // 326 // FIXME: This is something that probably should be in a different source file 327 // and perhaps done differently but my main purpose is to not waste runtime 328 // on something that we can enumerate in the source. Another possibility is 329 // to have a python script to generate these mapping tables. This will do 330 // for now. There are a whole series of helper function mapping arrays, one 331 // for each return type class as outlined above. There there are 11 possible 332 // entries. Ones with 0 are ones which should never be selected. 333 // 334 // All the arrays are similar except for ones which return neither 335 // sf, df, sc, dc, in which we only care about ones which have sf or df as a 336 // first parameter. 337 // 338 #define P_ "__mips16_call_stub_" 339 #define MAX_STUB_NUMBER 10 340 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10" 341 #define T P "0" , T1 342 #define P P_ 343 static char const * vMips16Helper[MAX_STUB_NUMBER+1] = 344 {nullptr, T1 }; 345 #undef P 346 #define P P_ "sf_" 347 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] = 348 { T }; 349 #undef P 350 #define P P_ "df_" 351 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] = 352 { T }; 353 #undef P 354 #define P P_ "sc_" 355 static char const * scMips16Helper[MAX_STUB_NUMBER+1] = 356 { T }; 357 #undef P 358 #define P P_ "dc_" 359 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] = 360 { T }; 361 #undef P 362 #undef P_ 363 364 365 const char* Mips16TargetLowering:: 366 getMips16HelperFunction 367 (Type* RetTy, ArgListTy &Args, bool &needHelper) const { 368 const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args); 369 #ifndef NDEBUG 370 const unsigned int maxStubNum = 10; 371 assert(stubNum <= maxStubNum); 372 const bool validStubNum[maxStubNum+1] = 373 {true, true, true, false, false, true, true, false, false, true, true}; 374 assert(validStubNum[stubNum]); 375 #endif 376 const char *result; 377 if (RetTy->isFloatTy()) { 378 result = sfMips16Helper[stubNum]; 379 } 380 else if (RetTy ->isDoubleTy()) { 381 result = dfMips16Helper[stubNum]; 382 } else if (StructType *SRetTy = dyn_cast<StructType>(RetTy)) { 383 // check if it's complex 384 if (SRetTy->getNumElements() == 2) { 385 if ((SRetTy->getElementType(0)->isFloatTy()) && 386 (SRetTy->getElementType(1)->isFloatTy())) { 387 result = scMips16Helper[stubNum]; 388 } else if ((SRetTy->getElementType(0)->isDoubleTy()) && 389 (SRetTy->getElementType(1)->isDoubleTy())) { 390 result = dcMips16Helper[stubNum]; 391 } else { 392 llvm_unreachable("Uncovered condition"); 393 } 394 } else { 395 llvm_unreachable("Uncovered condition"); 396 } 397 } else { 398 if (stubNum == 0) { 399 needHelper = false; 400 return ""; 401 } 402 result = vMips16Helper[stubNum]; 403 } 404 needHelper = true; 405 return result; 406 } 407 408 void Mips16TargetLowering:: 409 getOpndList(SmallVectorImpl<SDValue> &Ops, 410 std::deque< std::pair<unsigned, SDValue> > &RegsToPass, 411 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, 412 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, 413 SDValue Chain) const { 414 SelectionDAG &DAG = CLI.DAG; 415 MachineFunction &MF = DAG.getMachineFunction(); 416 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 417 const char* Mips16HelperFunction = nullptr; 418 bool NeedMips16Helper = false; 419 420 if (Subtarget.inMips16HardFloat()) { 421 // 422 // currently we don't have symbols tagged with the mips16 or mips32 423 // qualifier so we will assume that we don't know what kind it is. 424 // and generate the helper 425 // 426 bool LookupHelper = true; 427 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) { 428 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() }; 429 430 if (std::binary_search(std::begin(HardFloatLibCalls), 431 std::end(HardFloatLibCalls), Find)) 432 LookupHelper = false; 433 else { 434 const char *Symbol = S->getSymbol(); 435 Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" }; 436 const Mips16HardFloatInfo::FuncSignature *Signature = 437 Mips16HardFloatInfo::findFuncSignature(Symbol); 438 if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) == 439 FuncInfo->StubsNeeded.end()))) { 440 FuncInfo->StubsNeeded[Symbol] = Signature; 441 // 442 // S2 is normally saved if the stub is for a function which 443 // returns a float or double value and is not otherwise. This is 444 // because more work is required after the function the stub 445 // is calling completes, and so the stub cannot directly return 446 // and the stub has no stack space to store the return address so 447 // S2 is used for that purpose. 448 // In order to take advantage of not saving S2, we need to also 449 // optimize the call in the stub and this requires some further 450 // functionality in MipsAsmPrinter which we don't have yet. 451 // So for now we always save S2. The optimization will be done 452 // in a follow-on patch. 453 // 454 if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet)) 455 FuncInfo->setSaveS2(); 456 } 457 // one more look at list of intrinsics 458 const Mips16IntrinsicHelperType *Helper = 459 llvm::lower_bound(Mips16IntrinsicHelper, IntrinsicFind); 460 if (Helper != std::end(Mips16IntrinsicHelper) && 461 *Helper == IntrinsicFind) { 462 Mips16HelperFunction = Helper->Helper; 463 NeedMips16Helper = true; 464 LookupHelper = false; 465 } 466 467 } 468 } else if (GlobalAddressSDNode *G = 469 dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { 470 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, 471 G->getGlobal()->getName().data() }; 472 473 if (std::binary_search(std::begin(HardFloatLibCalls), 474 std::end(HardFloatLibCalls), Find)) 475 LookupHelper = false; 476 } 477 if (LookupHelper) 478 Mips16HelperFunction = 479 getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper); 480 } 481 482 SDValue JumpTarget = Callee; 483 484 // T9 should contain the address of the callee function if 485 // -relocation-model=pic or it is an indirect call. 486 if (IsPICCall || !GlobalOrExternal) { 487 unsigned V0Reg = Mips::V0; 488 if (NeedMips16Helper) { 489 RegsToPass.push_front(std::make_pair(V0Reg, Callee)); 490 JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, 491 getPointerTy(DAG.getDataLayout())); 492 ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget); 493 JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG, 494 MipsII::MO_GOT, Chain, 495 FuncInfo->callPtrInfo(MF, S->getSymbol())); 496 } else 497 RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee)); 498 } 499 500 Ops.push_back(JumpTarget); 501 502 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, 503 InternalLinkage, IsCallReloc, CLI, Callee, 504 Chain); 505 } 506 507 MachineBasicBlock * 508 Mips16TargetLowering::emitSel16(unsigned Opc, MachineInstr &MI, 509 MachineBasicBlock *BB) const { 510 if (DontExpandCondPseudos16) 511 return BB; 512 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 513 DebugLoc DL = MI.getDebugLoc(); 514 // To "insert" a SELECT_CC instruction, we actually have to insert the 515 // diamond control-flow pattern. The incoming instruction knows the 516 // destination vreg to set, the condition code register to branch on, the 517 // true/false values to select between, and a branch opcode to use. 518 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 519 MachineFunction::iterator It = ++BB->getIterator(); 520 521 // thisMBB: 522 // ... 523 // TrueVal = ... 524 // setcc r1, r2, r3 525 // bNE r1, r0, copy1MBB 526 // fallthrough --> copy0MBB 527 MachineBasicBlock *thisMBB = BB; 528 MachineFunction *F = BB->getParent(); 529 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 530 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 531 F->insert(It, copy0MBB); 532 F->insert(It, sinkMBB); 533 534 // Transfer the remainder of BB and its successor edges to sinkMBB. 535 sinkMBB->splice(sinkMBB->begin(), BB, 536 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 537 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 538 539 // Next, add the true and fallthrough blocks as its successors. 540 BB->addSuccessor(copy0MBB); 541 BB->addSuccessor(sinkMBB); 542 543 BuildMI(BB, DL, TII->get(Opc)) 544 .addReg(MI.getOperand(3).getReg()) 545 .addMBB(sinkMBB); 546 547 // copy0MBB: 548 // %FalseValue = ... 549 // # fallthrough to sinkMBB 550 BB = copy0MBB; 551 552 // Update machine-CFG edges 553 BB->addSuccessor(sinkMBB); 554 555 // sinkMBB: 556 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 557 // ... 558 BB = sinkMBB; 559 560 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) 561 .addReg(MI.getOperand(1).getReg()) 562 .addMBB(thisMBB) 563 .addReg(MI.getOperand(2).getReg()) 564 .addMBB(copy0MBB); 565 566 MI.eraseFromParent(); // The pseudo instruction is gone now. 567 return BB; 568 } 569 570 MachineBasicBlock * 571 Mips16TargetLowering::emitSelT16(unsigned Opc1, unsigned Opc2, MachineInstr &MI, 572 MachineBasicBlock *BB) const { 573 if (DontExpandCondPseudos16) 574 return BB; 575 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 576 DebugLoc DL = MI.getDebugLoc(); 577 // To "insert" a SELECT_CC instruction, we actually have to insert the 578 // diamond control-flow pattern. The incoming instruction knows the 579 // destination vreg to set, the condition code register to branch on, the 580 // true/false values to select between, and a branch opcode to use. 581 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 582 MachineFunction::iterator It = ++BB->getIterator(); 583 584 // thisMBB: 585 // ... 586 // TrueVal = ... 587 // setcc r1, r2, r3 588 // bNE r1, r0, copy1MBB 589 // fallthrough --> copy0MBB 590 MachineBasicBlock *thisMBB = BB; 591 MachineFunction *F = BB->getParent(); 592 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 593 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 594 F->insert(It, copy0MBB); 595 F->insert(It, sinkMBB); 596 597 // Transfer the remainder of BB and its successor edges to sinkMBB. 598 sinkMBB->splice(sinkMBB->begin(), BB, 599 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 600 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 601 602 // Next, add the true and fallthrough blocks as its successors. 603 BB->addSuccessor(copy0MBB); 604 BB->addSuccessor(sinkMBB); 605 606 BuildMI(BB, DL, TII->get(Opc2)) 607 .addReg(MI.getOperand(3).getReg()) 608 .addReg(MI.getOperand(4).getReg()); 609 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB); 610 611 // copy0MBB: 612 // %FalseValue = ... 613 // # fallthrough to sinkMBB 614 BB = copy0MBB; 615 616 // Update machine-CFG edges 617 BB->addSuccessor(sinkMBB); 618 619 // sinkMBB: 620 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 621 // ... 622 BB = sinkMBB; 623 624 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) 625 .addReg(MI.getOperand(1).getReg()) 626 .addMBB(thisMBB) 627 .addReg(MI.getOperand(2).getReg()) 628 .addMBB(copy0MBB); 629 630 MI.eraseFromParent(); // The pseudo instruction is gone now. 631 return BB; 632 633 } 634 635 MachineBasicBlock * 636 Mips16TargetLowering::emitSeliT16(unsigned Opc1, unsigned Opc2, 637 MachineInstr &MI, 638 MachineBasicBlock *BB) const { 639 if (DontExpandCondPseudos16) 640 return BB; 641 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 642 DebugLoc DL = MI.getDebugLoc(); 643 // To "insert" a SELECT_CC instruction, we actually have to insert the 644 // diamond control-flow pattern. The incoming instruction knows the 645 // destination vreg to set, the condition code register to branch on, the 646 // true/false values to select between, and a branch opcode to use. 647 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 648 MachineFunction::iterator It = ++BB->getIterator(); 649 650 // thisMBB: 651 // ... 652 // TrueVal = ... 653 // setcc r1, r2, r3 654 // bNE r1, r0, copy1MBB 655 // fallthrough --> copy0MBB 656 MachineBasicBlock *thisMBB = BB; 657 MachineFunction *F = BB->getParent(); 658 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 659 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 660 F->insert(It, copy0MBB); 661 F->insert(It, sinkMBB); 662 663 // Transfer the remainder of BB and its successor edges to sinkMBB. 664 sinkMBB->splice(sinkMBB->begin(), BB, 665 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 666 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 667 668 // Next, add the true and fallthrough blocks as its successors. 669 BB->addSuccessor(copy0MBB); 670 BB->addSuccessor(sinkMBB); 671 672 BuildMI(BB, DL, TII->get(Opc2)) 673 .addReg(MI.getOperand(3).getReg()) 674 .addImm(MI.getOperand(4).getImm()); 675 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB); 676 677 // copy0MBB: 678 // %FalseValue = ... 679 // # fallthrough to sinkMBB 680 BB = copy0MBB; 681 682 // Update machine-CFG edges 683 BB->addSuccessor(sinkMBB); 684 685 // sinkMBB: 686 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 687 // ... 688 BB = sinkMBB; 689 690 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) 691 .addReg(MI.getOperand(1).getReg()) 692 .addMBB(thisMBB) 693 .addReg(MI.getOperand(2).getReg()) 694 .addMBB(copy0MBB); 695 696 MI.eraseFromParent(); // The pseudo instruction is gone now. 697 return BB; 698 699 } 700 701 MachineBasicBlock * 702 Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc, 703 MachineInstr &MI, 704 MachineBasicBlock *BB) const { 705 if (DontExpandCondPseudos16) 706 return BB; 707 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 708 Register regX = MI.getOperand(0).getReg(); 709 Register regY = MI.getOperand(1).getReg(); 710 MachineBasicBlock *target = MI.getOperand(2).getMBB(); 711 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc)) 712 .addReg(regX) 713 .addReg(regY); 714 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target); 715 MI.eraseFromParent(); // The pseudo instruction is gone now. 716 return BB; 717 } 718 719 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins( 720 unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned, 721 MachineInstr &MI, MachineBasicBlock *BB) const { 722 if (DontExpandCondPseudos16) 723 return BB; 724 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 725 Register regX = MI.getOperand(0).getReg(); 726 int64_t imm = MI.getOperand(1).getImm(); 727 MachineBasicBlock *target = MI.getOperand(2).getMBB(); 728 unsigned CmpOpc; 729 if (isUInt<8>(imm)) 730 CmpOpc = CmpiOpc; 731 else if ((!ImmSigned && isUInt<16>(imm)) || 732 (ImmSigned && isInt<16>(imm))) 733 CmpOpc = CmpiXOpc; 734 else 735 llvm_unreachable("immediate field not usable"); 736 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addImm(imm); 737 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target); 738 MI.eraseFromParent(); // The pseudo instruction is gone now. 739 return BB; 740 } 741 742 static unsigned Mips16WhichOp8uOr16simm 743 (unsigned shortOp, unsigned longOp, int64_t Imm) { 744 if (isUInt<8>(Imm)) 745 return shortOp; 746 else if (isInt<16>(Imm)) 747 return longOp; 748 else 749 llvm_unreachable("immediate field not usable"); 750 } 751 752 MachineBasicBlock * 753 Mips16TargetLowering::emitFEXT_CCRX16_ins(unsigned SltOpc, MachineInstr &MI, 754 MachineBasicBlock *BB) const { 755 if (DontExpandCondPseudos16) 756 return BB; 757 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 758 Register CC = MI.getOperand(0).getReg(); 759 Register regX = MI.getOperand(1).getReg(); 760 Register regY = MI.getOperand(2).getReg(); 761 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc)) 762 .addReg(regX) 763 .addReg(regY); 764 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC) 765 .addReg(Mips::T8); 766 MI.eraseFromParent(); // The pseudo instruction is gone now. 767 return BB; 768 } 769 770 MachineBasicBlock * 771 Mips16TargetLowering::emitFEXT_CCRXI16_ins(unsigned SltiOpc, unsigned SltiXOpc, 772 MachineInstr &MI, 773 MachineBasicBlock *BB) const { 774 if (DontExpandCondPseudos16) 775 return BB; 776 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 777 Register CC = MI.getOperand(0).getReg(); 778 Register regX = MI.getOperand(1).getReg(); 779 int64_t Imm = MI.getOperand(2).getImm(); 780 unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm); 781 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc)).addReg(regX).addImm(Imm); 782 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC) 783 .addReg(Mips::T8); 784 MI.eraseFromParent(); // The pseudo instruction is gone now. 785 return BB; 786 787 } 788