1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MSP430TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MSP430ISelLowering.h" 14 #include "MSP430.h" 15 #include "MSP430MachineFunctionInfo.h" 16 #include "MSP430Subtarget.h" 17 #include "MSP430TargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAGISel.h" 24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/CallingConv.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "msp430-lower" 39 40 static cl::opt<bool>MSP430NoLegalImmediate( 41 "msp430-no-legal-immediate", cl::Hidden, 42 cl::desc("Enable non legal immediates (for testing purposes only)"), 43 cl::init(false)); 44 45 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM, 46 const MSP430Subtarget &STI) 47 : TargetLowering(TM) { 48 49 // Set up the register classes. 50 addRegisterClass(MVT::i8, &MSP430::GR8RegClass); 51 addRegisterClass(MVT::i16, &MSP430::GR16RegClass); 52 53 // Compute derived properties from the register classes 54 computeRegisterProperties(STI.getRegisterInfo()); 55 56 // Provide all sorts of operation actions 57 setStackPointerRegisterToSaveRestore(MSP430::SP); 58 setBooleanContents(ZeroOrOneBooleanContent); 59 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 60 61 // We have post-incremented loads / stores. 62 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); 63 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); 64 65 for (MVT VT : MVT::integer_valuetypes()) { 66 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 67 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 68 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 69 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 70 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand); 71 } 72 73 // We don't have any truncstores 74 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 75 76 setOperationAction(ISD::SRA, MVT::i8, Custom); 77 setOperationAction(ISD::SHL, MVT::i8, Custom); 78 setOperationAction(ISD::SRL, MVT::i8, Custom); 79 setOperationAction(ISD::SRA, MVT::i16, Custom); 80 setOperationAction(ISD::SHL, MVT::i16, Custom); 81 setOperationAction(ISD::SRL, MVT::i16, Custom); 82 setOperationAction(ISD::ROTL, MVT::i8, Expand); 83 setOperationAction(ISD::ROTR, MVT::i8, Expand); 84 setOperationAction(ISD::ROTL, MVT::i16, Expand); 85 setOperationAction(ISD::ROTR, MVT::i16, Expand); 86 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); 87 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom); 88 setOperationAction(ISD::BlockAddress, MVT::i16, Custom); 89 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 90 setOperationAction(ISD::BR_CC, MVT::i8, Custom); 91 setOperationAction(ISD::BR_CC, MVT::i16, Custom); 92 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 93 setOperationAction(ISD::SETCC, MVT::i8, Custom); 94 setOperationAction(ISD::SETCC, MVT::i16, Custom); 95 setOperationAction(ISD::SELECT, MVT::i8, Expand); 96 setOperationAction(ISD::SELECT, MVT::i16, Expand); 97 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); 98 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); 99 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom); 100 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); 101 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); 102 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 103 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 104 105 setOperationAction(ISD::CTTZ, MVT::i8, Expand); 106 setOperationAction(ISD::CTTZ, MVT::i16, Expand); 107 setOperationAction(ISD::CTLZ, MVT::i8, Expand); 108 setOperationAction(ISD::CTLZ, MVT::i16, Expand); 109 setOperationAction(ISD::CTPOP, MVT::i8, Expand); 110 setOperationAction(ISD::CTPOP, MVT::i16, Expand); 111 112 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand); 113 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); 114 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand); 115 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); 116 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand); 117 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); 118 119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 120 121 // FIXME: Implement efficiently multiplication by a constant 122 setOperationAction(ISD::MUL, MVT::i8, Promote); 123 setOperationAction(ISD::MULHS, MVT::i8, Promote); 124 setOperationAction(ISD::MULHU, MVT::i8, Promote); 125 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Promote); 126 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Promote); 127 setOperationAction(ISD::MUL, MVT::i16, LibCall); 128 setOperationAction(ISD::MULHS, MVT::i16, Expand); 129 setOperationAction(ISD::MULHU, MVT::i16, Expand); 130 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); 131 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); 132 133 setOperationAction(ISD::UDIV, MVT::i8, Promote); 134 setOperationAction(ISD::UDIVREM, MVT::i8, Promote); 135 setOperationAction(ISD::UREM, MVT::i8, Promote); 136 setOperationAction(ISD::SDIV, MVT::i8, Promote); 137 setOperationAction(ISD::SDIVREM, MVT::i8, Promote); 138 setOperationAction(ISD::SREM, MVT::i8, Promote); 139 setOperationAction(ISD::UDIV, MVT::i16, LibCall); 140 setOperationAction(ISD::UDIVREM, MVT::i16, Expand); 141 setOperationAction(ISD::UREM, MVT::i16, LibCall); 142 setOperationAction(ISD::SDIV, MVT::i16, LibCall); 143 setOperationAction(ISD::SDIVREM, MVT::i16, Expand); 144 setOperationAction(ISD::SREM, MVT::i16, LibCall); 145 146 // varargs support 147 setOperationAction(ISD::VASTART, MVT::Other, Custom); 148 setOperationAction(ISD::VAARG, MVT::Other, Expand); 149 setOperationAction(ISD::VAEND, MVT::Other, Expand); 150 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 151 setOperationAction(ISD::JumpTable, MVT::i16, Custom); 152 153 // EABI Libcalls - EABI Section 6.2 154 const struct { 155 const RTLIB::Libcall Op; 156 const char * const Name; 157 const ISD::CondCode Cond; 158 } LibraryCalls[] = { 159 // Floating point conversions - EABI Table 6 160 { RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID }, 161 { RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID }, 162 // The following is NOT implemented in libgcc 163 //{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID }, 164 { RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID }, 165 { RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID }, 166 // The following is NOT implemented in libgcc 167 //{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID }, 168 { RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID }, 169 { RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID }, 170 // The following is NOT implemented in libgcc 171 //{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID }, 172 { RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID }, 173 { RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID }, 174 // The following is NOT implemented in libgcc 175 //{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID }, 176 { RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID }, 177 { RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID }, 178 // TODO The following IS implemented in libgcc 179 //{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID }, 180 { RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID }, 181 // TODO The following IS implemented in libgcc but is not in the EABI 182 { RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID }, 183 // TODO The following IS implemented in libgcc 184 //{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID }, 185 { RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID }, 186 // The following IS implemented in libgcc but is not in the EABI 187 { RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID }, 188 // TODO The following IS implemented in libgcc 189 //{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID }, 190 { RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID }, 191 // TODO The following IS implemented in libgcc but is not in the EABI 192 { RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID }, 193 // TODO The following IS implemented in libgcc 194 //{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID }, 195 { RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID }, 196 // The following IS implemented in libgcc but is not in the EABI 197 { RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID }, 198 199 // Floating point comparisons - EABI Table 7 200 { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ }, 201 { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE }, 202 { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE }, 203 { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT }, 204 { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE }, 205 { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT }, 206 { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ }, 207 { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE }, 208 { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE }, 209 { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT }, 210 { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE }, 211 { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT }, 212 213 // Floating point arithmetic - EABI Table 8 214 { RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID }, 215 { RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID }, 216 { RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID }, 217 { RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID }, 218 { RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID }, 219 { RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID }, 220 { RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID }, 221 { RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID }, 222 // The following are NOT implemented in libgcc 223 // { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID }, 224 // { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID }, 225 226 // Universal Integer Operations - EABI Table 9 227 { RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID }, 228 { RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID }, 229 { RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID }, 230 { RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID }, 231 { RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID }, 232 { RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID }, 233 { RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID }, 234 { RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID }, 235 { RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID }, 236 { RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID }, 237 { RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID }, 238 { RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID }, 239 240 // Bitwise Operations - EABI Table 10 241 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc 242 { RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID }, 243 { RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID }, 244 { RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID }, 245 // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc 246 247 }; 248 249 for (const auto &LC : LibraryCalls) { 250 setLibcallName(LC.Op, LC.Name); 251 if (LC.Cond != ISD::SETCC_INVALID) 252 setCmpLibcallCC(LC.Op, LC.Cond); 253 } 254 255 if (STI.hasHWMult16()) { 256 const struct { 257 const RTLIB::Libcall Op; 258 const char * const Name; 259 } LibraryCalls[] = { 260 // Integer Multiply - EABI Table 9 261 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" }, 262 { RTLIB::MUL_I32, "__mspabi_mpyl_hw" }, 263 { RTLIB::MUL_I64, "__mspabi_mpyll_hw" }, 264 // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc 265 // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc 266 }; 267 for (const auto &LC : LibraryCalls) { 268 setLibcallName(LC.Op, LC.Name); 269 } 270 } else if (STI.hasHWMult32()) { 271 const struct { 272 const RTLIB::Libcall Op; 273 const char * const Name; 274 } LibraryCalls[] = { 275 // Integer Multiply - EABI Table 9 276 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" }, 277 { RTLIB::MUL_I32, "__mspabi_mpyl_hw32" }, 278 { RTLIB::MUL_I64, "__mspabi_mpyll_hw32" }, 279 // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc 280 // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc 281 }; 282 for (const auto &LC : LibraryCalls) { 283 setLibcallName(LC.Op, LC.Name); 284 } 285 } else if (STI.hasHWMultF5()) { 286 const struct { 287 const RTLIB::Libcall Op; 288 const char * const Name; 289 } LibraryCalls[] = { 290 // Integer Multiply - EABI Table 9 291 { RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" }, 292 { RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" }, 293 { RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" }, 294 // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc 295 // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc 296 }; 297 for (const auto &LC : LibraryCalls) { 298 setLibcallName(LC.Op, LC.Name); 299 } 300 } else { // NoHWMult 301 const struct { 302 const RTLIB::Libcall Op; 303 const char * const Name; 304 } LibraryCalls[] = { 305 // Integer Multiply - EABI Table 9 306 { RTLIB::MUL_I16, "__mspabi_mpyi" }, 307 { RTLIB::MUL_I32, "__mspabi_mpyl" }, 308 { RTLIB::MUL_I64, "__mspabi_mpyll" }, 309 // The __mspabi_mpysl* functions are NOT implemented in libgcc 310 // The __mspabi_mpyul* functions are NOT implemented in libgcc 311 }; 312 for (const auto &LC : LibraryCalls) { 313 setLibcallName(LC.Op, LC.Name); 314 } 315 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN); 316 } 317 318 // Several of the runtime library functions use a special calling conv 319 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN); 320 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN); 321 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN); 322 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN); 323 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN); 324 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN); 325 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN); 326 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN); 327 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN); 328 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN); 329 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN); 330 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN); 331 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN); 332 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN); 333 // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll 334 335 setMinFunctionAlignment(Align(2)); 336 setPrefFunctionAlignment(Align(2)); 337 } 338 339 SDValue MSP430TargetLowering::LowerOperation(SDValue Op, 340 SelectionDAG &DAG) const { 341 switch (Op.getOpcode()) { 342 case ISD::SHL: // FALLTHROUGH 343 case ISD::SRL: 344 case ISD::SRA: return LowerShifts(Op, DAG); 345 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 346 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 347 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 348 case ISD::SETCC: return LowerSETCC(Op, DAG); 349 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 350 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 351 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG); 352 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 353 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 354 case ISD::VASTART: return LowerVASTART(Op, DAG); 355 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 356 default: 357 llvm_unreachable("unimplemented operand"); 358 } 359 } 360 361 // Define non profitable transforms into shifts 362 bool MSP430TargetLowering::shouldAvoidTransformToShift(EVT VT, 363 unsigned Amount) const { 364 return !(Amount == 8 || Amount == 9 || Amount<=2); 365 } 366 367 // Implemented to verify test case assertions in 368 // tests/codegen/msp430/shift-amount-threshold-b.ll 369 bool MSP430TargetLowering::isLegalICmpImmediate(int64_t Immed) const { 370 if (MSP430NoLegalImmediate) 371 return Immed >= -32 && Immed < 32; 372 return TargetLowering::isLegalICmpImmediate(Immed); 373 } 374 375 //===----------------------------------------------------------------------===// 376 // MSP430 Inline Assembly Support 377 //===----------------------------------------------------------------------===// 378 379 /// getConstraintType - Given a constraint letter, return the type of 380 /// constraint it is for this target. 381 TargetLowering::ConstraintType 382 MSP430TargetLowering::getConstraintType(StringRef Constraint) const { 383 if (Constraint.size() == 1) { 384 switch (Constraint[0]) { 385 case 'r': 386 return C_RegisterClass; 387 default: 388 break; 389 } 390 } 391 return TargetLowering::getConstraintType(Constraint); 392 } 393 394 std::pair<unsigned, const TargetRegisterClass *> 395 MSP430TargetLowering::getRegForInlineAsmConstraint( 396 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 397 if (Constraint.size() == 1) { 398 // GCC Constraint Letters 399 switch (Constraint[0]) { 400 default: break; 401 case 'r': // GENERAL_REGS 402 if (VT == MVT::i8) 403 return std::make_pair(0U, &MSP430::GR8RegClass); 404 405 return std::make_pair(0U, &MSP430::GR16RegClass); 406 } 407 } 408 409 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 410 } 411 412 //===----------------------------------------------------------------------===// 413 // Calling Convention Implementation 414 //===----------------------------------------------------------------------===// 415 416 #include "MSP430GenCallingConv.inc" 417 418 /// For each argument in a function store the number of pieces it is composed 419 /// of. 420 template<typename ArgT> 421 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args, 422 SmallVectorImpl<unsigned> &Out) { 423 unsigned CurrentArgIndex; 424 425 if (Args.empty()) 426 return; 427 428 CurrentArgIndex = Args[0].OrigArgIndex; 429 Out.push_back(0); 430 431 for (auto &Arg : Args) { 432 if (CurrentArgIndex == Arg.OrigArgIndex) { 433 Out.back() += 1; 434 } else { 435 Out.push_back(1); 436 CurrentArgIndex = Arg.OrigArgIndex; 437 } 438 } 439 } 440 441 static void AnalyzeVarArgs(CCState &State, 442 const SmallVectorImpl<ISD::OutputArg> &Outs) { 443 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack); 444 } 445 446 static void AnalyzeVarArgs(CCState &State, 447 const SmallVectorImpl<ISD::InputArg> &Ins) { 448 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack); 449 } 450 451 /// Analyze incoming and outgoing function arguments. We need custom C++ code 452 /// to handle special constraints in the ABI like reversing the order of the 453 /// pieces of splitted arguments. In addition, all pieces of a certain argument 454 /// have to be passed either using registers or the stack but never mixing both. 455 template<typename ArgT> 456 static void AnalyzeArguments(CCState &State, 457 SmallVectorImpl<CCValAssign> &ArgLocs, 458 const SmallVectorImpl<ArgT> &Args) { 459 static const MCPhysReg CRegList[] = { 460 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15 461 }; 462 static const unsigned CNbRegs = array_lengthof(CRegList); 463 static const MCPhysReg BuiltinRegList[] = { 464 MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11, 465 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15 466 }; 467 static const unsigned BuiltinNbRegs = array_lengthof(BuiltinRegList); 468 469 ArrayRef<MCPhysReg> RegList; 470 unsigned NbRegs; 471 472 bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN); 473 if (Builtin) { 474 RegList = BuiltinRegList; 475 NbRegs = BuiltinNbRegs; 476 } else { 477 RegList = CRegList; 478 NbRegs = CNbRegs; 479 } 480 481 if (State.isVarArg()) { 482 AnalyzeVarArgs(State, Args); 483 return; 484 } 485 486 SmallVector<unsigned, 4> ArgsParts; 487 ParseFunctionArgs(Args, ArgsParts); 488 489 if (Builtin) { 490 assert(ArgsParts.size() == 2 && 491 "Builtin calling convention requires two arguments"); 492 } 493 494 unsigned RegsLeft = NbRegs; 495 bool UsedStack = false; 496 unsigned ValNo = 0; 497 498 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) { 499 MVT ArgVT = Args[ValNo].VT; 500 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags; 501 MVT LocVT = ArgVT; 502 CCValAssign::LocInfo LocInfo = CCValAssign::Full; 503 504 // Promote i8 to i16 505 if (LocVT == MVT::i8) { 506 LocVT = MVT::i16; 507 if (ArgFlags.isSExt()) 508 LocInfo = CCValAssign::SExt; 509 else if (ArgFlags.isZExt()) 510 LocInfo = CCValAssign::ZExt; 511 else 512 LocInfo = CCValAssign::AExt; 513 } 514 515 // Handle byval arguments 516 if (ArgFlags.isByVal()) { 517 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags); 518 continue; 519 } 520 521 unsigned Parts = ArgsParts[i]; 522 523 if (Builtin) { 524 assert(Parts == 4 && 525 "Builtin calling convention requires 64-bit arguments"); 526 } 527 528 if (!UsedStack && Parts == 2 && RegsLeft == 1) { 529 // Special case for 32-bit register split, see EABI section 3.3.3 530 unsigned Reg = State.AllocateReg(RegList); 531 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo)); 532 RegsLeft -= 1; 533 534 UsedStack = true; 535 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State); 536 } else if (Parts <= RegsLeft) { 537 for (unsigned j = 0; j < Parts; j++) { 538 unsigned Reg = State.AllocateReg(RegList); 539 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo)); 540 RegsLeft--; 541 } 542 } else { 543 UsedStack = true; 544 for (unsigned j = 0; j < Parts; j++) 545 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State); 546 } 547 } 548 } 549 550 static void AnalyzeRetResult(CCState &State, 551 const SmallVectorImpl<ISD::InputArg> &Ins) { 552 State.AnalyzeCallResult(Ins, RetCC_MSP430); 553 } 554 555 static void AnalyzeRetResult(CCState &State, 556 const SmallVectorImpl<ISD::OutputArg> &Outs) { 557 State.AnalyzeReturn(Outs, RetCC_MSP430); 558 } 559 560 template<typename ArgT> 561 static void AnalyzeReturnValues(CCState &State, 562 SmallVectorImpl<CCValAssign> &RVLocs, 563 const SmallVectorImpl<ArgT> &Args) { 564 AnalyzeRetResult(State, Args); 565 } 566 567 SDValue MSP430TargetLowering::LowerFormalArguments( 568 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 569 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 570 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 571 572 switch (CallConv) { 573 default: 574 report_fatal_error("Unsupported calling convention"); 575 case CallingConv::C: 576 case CallingConv::Fast: 577 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); 578 case CallingConv::MSP430_INTR: 579 if (Ins.empty()) 580 return Chain; 581 report_fatal_error("ISRs cannot have arguments"); 582 } 583 } 584 585 SDValue 586 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 587 SmallVectorImpl<SDValue> &InVals) const { 588 SelectionDAG &DAG = CLI.DAG; 589 SDLoc &dl = CLI.DL; 590 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 591 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 592 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 593 SDValue Chain = CLI.Chain; 594 SDValue Callee = CLI.Callee; 595 bool &isTailCall = CLI.IsTailCall; 596 CallingConv::ID CallConv = CLI.CallConv; 597 bool isVarArg = CLI.IsVarArg; 598 599 // MSP430 target does not yet support tail call optimization. 600 isTailCall = false; 601 602 switch (CallConv) { 603 default: 604 report_fatal_error("Unsupported calling convention"); 605 case CallingConv::MSP430_BUILTIN: 606 case CallingConv::Fast: 607 case CallingConv::C: 608 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 609 Outs, OutVals, Ins, dl, DAG, InVals); 610 case CallingConv::MSP430_INTR: 611 report_fatal_error("ISRs cannot be called directly"); 612 } 613 } 614 615 /// LowerCCCArguments - transform physical registers into virtual registers and 616 /// generate load operations for arguments places on the stack. 617 // FIXME: struct return stuff 618 SDValue MSP430TargetLowering::LowerCCCArguments( 619 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 620 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 621 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 622 MachineFunction &MF = DAG.getMachineFunction(); 623 MachineFrameInfo &MFI = MF.getFrameInfo(); 624 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 625 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 626 627 // Assign locations to all of the incoming arguments. 628 SmallVector<CCValAssign, 16> ArgLocs; 629 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 630 *DAG.getContext()); 631 AnalyzeArguments(CCInfo, ArgLocs, Ins); 632 633 // Create frame index for the start of the first vararg value 634 if (isVarArg) { 635 unsigned Offset = CCInfo.getNextStackOffset(); 636 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true)); 637 } 638 639 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 640 CCValAssign &VA = ArgLocs[i]; 641 if (VA.isRegLoc()) { 642 // Arguments passed in registers 643 EVT RegVT = VA.getLocVT(); 644 switch (RegVT.getSimpleVT().SimpleTy) { 645 default: 646 { 647 #ifndef NDEBUG 648 errs() << "LowerFormalArguments Unhandled argument type: " 649 << RegVT.getEVTString() << "\n"; 650 #endif 651 llvm_unreachable(nullptr); 652 } 653 case MVT::i16: 654 Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass); 655 RegInfo.addLiveIn(VA.getLocReg(), VReg); 656 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 657 658 // If this is an 8-bit value, it is really passed promoted to 16 659 // bits. Insert an assert[sz]ext to capture this, then truncate to the 660 // right size. 661 if (VA.getLocInfo() == CCValAssign::SExt) 662 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 663 DAG.getValueType(VA.getValVT())); 664 else if (VA.getLocInfo() == CCValAssign::ZExt) 665 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 666 DAG.getValueType(VA.getValVT())); 667 668 if (VA.getLocInfo() != CCValAssign::Full) 669 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 670 671 InVals.push_back(ArgValue); 672 } 673 } else { 674 // Sanity check 675 assert(VA.isMemLoc()); 676 677 SDValue InVal; 678 ISD::ArgFlagsTy Flags = Ins[i].Flags; 679 680 if (Flags.isByVal()) { 681 int FI = MFI.CreateFixedObject(Flags.getByValSize(), 682 VA.getLocMemOffset(), true); 683 InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 684 } else { 685 // Load the argument to a virtual register 686 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 687 if (ObjSize > 2) { 688 errs() << "LowerFormalArguments Unhandled argument type: " 689 << EVT(VA.getLocVT()).getEVTString() 690 << "\n"; 691 } 692 // Create the frame index object for this incoming parameter... 693 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 694 695 // Create the SelectionDAG nodes corresponding to a load 696 //from this parameter 697 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16); 698 InVal = DAG.getLoad( 699 VA.getLocVT(), dl, Chain, FIN, 700 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 701 } 702 703 InVals.push_back(InVal); 704 } 705 } 706 707 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 708 if (Ins[i].Flags.isSRet()) { 709 unsigned Reg = FuncInfo->getSRetReturnReg(); 710 if (!Reg) { 711 Reg = MF.getRegInfo().createVirtualRegister( 712 getRegClassFor(MVT::i16)); 713 FuncInfo->setSRetReturnReg(Reg); 714 } 715 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]); 716 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 717 } 718 } 719 720 return Chain; 721 } 722 723 bool 724 MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv, 725 MachineFunction &MF, 726 bool IsVarArg, 727 const SmallVectorImpl<ISD::OutputArg> &Outs, 728 LLVMContext &Context) const { 729 SmallVector<CCValAssign, 16> RVLocs; 730 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 731 return CCInfo.CheckReturn(Outs, RetCC_MSP430); 732 } 733 734 SDValue 735 MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 736 bool isVarArg, 737 const SmallVectorImpl<ISD::OutputArg> &Outs, 738 const SmallVectorImpl<SDValue> &OutVals, 739 const SDLoc &dl, SelectionDAG &DAG) const { 740 741 MachineFunction &MF = DAG.getMachineFunction(); 742 743 // CCValAssign - represent the assignment of the return value to a location 744 SmallVector<CCValAssign, 16> RVLocs; 745 746 // ISRs cannot return any value. 747 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty()) 748 report_fatal_error("ISRs cannot return any value"); 749 750 // CCState - Info about the registers and stack slot. 751 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 752 *DAG.getContext()); 753 754 // Analize return values. 755 AnalyzeReturnValues(CCInfo, RVLocs, Outs); 756 757 SDValue Flag; 758 SmallVector<SDValue, 4> RetOps(1, Chain); 759 760 // Copy the result values into the output registers. 761 for (unsigned i = 0; i != RVLocs.size(); ++i) { 762 CCValAssign &VA = RVLocs[i]; 763 assert(VA.isRegLoc() && "Can only return in registers!"); 764 765 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 766 OutVals[i], Flag); 767 768 // Guarantee that all emitted copies are stuck together, 769 // avoiding something bad. 770 Flag = Chain.getValue(1); 771 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 772 } 773 774 if (MF.getFunction().hasStructRetAttr()) { 775 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 776 unsigned Reg = FuncInfo->getSRetReturnReg(); 777 778 if (!Reg) 779 llvm_unreachable("sret virtual register not created in entry block"); 780 781 SDValue Val = 782 DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy(DAG.getDataLayout())); 783 unsigned R12 = MSP430::R12; 784 785 Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Flag); 786 Flag = Chain.getValue(1); 787 RetOps.push_back(DAG.getRegister(R12, getPointerTy(DAG.getDataLayout()))); 788 } 789 790 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ? 791 MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG); 792 793 RetOps[0] = Chain; // Update chain. 794 795 // Add the flag if we have it. 796 if (Flag.getNode()) 797 RetOps.push_back(Flag); 798 799 return DAG.getNode(Opc, dl, MVT::Other, RetOps); 800 } 801 802 /// LowerCCCCallTo - functions arguments are copied from virtual regs to 803 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 804 SDValue MSP430TargetLowering::LowerCCCCallTo( 805 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 806 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, 807 const SmallVectorImpl<SDValue> &OutVals, 808 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 809 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 810 // Analyze operands of the call, assigning locations to each operand. 811 SmallVector<CCValAssign, 16> ArgLocs; 812 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 813 *DAG.getContext()); 814 AnalyzeArguments(CCInfo, ArgLocs, Outs); 815 816 // Get a count of how many bytes are to be pushed on the stack. 817 unsigned NumBytes = CCInfo.getNextStackOffset(); 818 auto PtrVT = getPointerTy(DAG.getDataLayout()); 819 820 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 821 822 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 823 SmallVector<SDValue, 12> MemOpChains; 824 SDValue StackPtr; 825 826 // Walk the register/memloc assignments, inserting copies/loads. 827 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 828 CCValAssign &VA = ArgLocs[i]; 829 830 SDValue Arg = OutVals[i]; 831 832 // Promote the value if needed. 833 switch (VA.getLocInfo()) { 834 default: llvm_unreachable("Unknown loc info!"); 835 case CCValAssign::Full: break; 836 case CCValAssign::SExt: 837 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 838 break; 839 case CCValAssign::ZExt: 840 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 841 break; 842 case CCValAssign::AExt: 843 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 844 break; 845 } 846 847 // Arguments that can be passed on register must be kept at RegsToPass 848 // vector 849 if (VA.isRegLoc()) { 850 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 851 } else { 852 assert(VA.isMemLoc()); 853 854 if (!StackPtr.getNode()) 855 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT); 856 857 SDValue PtrOff = 858 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 859 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl)); 860 861 SDValue MemOp; 862 ISD::ArgFlagsTy Flags = Outs[i].Flags; 863 864 if (Flags.isByVal()) { 865 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16); 866 MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode, 867 Flags.getByValAlign(), 868 /*isVolatile*/false, 869 /*AlwaysInline=*/true, 870 /*isTailCall=*/false, 871 MachinePointerInfo(), 872 MachinePointerInfo()); 873 } else { 874 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 875 } 876 877 MemOpChains.push_back(MemOp); 878 } 879 } 880 881 // Transform all store nodes into one single node because all store nodes are 882 // independent of each other. 883 if (!MemOpChains.empty()) 884 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 885 886 // Build a sequence of copy-to-reg nodes chained together with token chain and 887 // flag operands which copy the outgoing args into registers. The InFlag in 888 // necessary since all emitted instructions must be stuck together. 889 SDValue InFlag; 890 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 891 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 892 RegsToPass[i].second, InFlag); 893 InFlag = Chain.getValue(1); 894 } 895 896 // If the callee is a GlobalAddress node (quite common, every direct call is) 897 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 898 // Likewise ExternalSymbol -> TargetExternalSymbol. 899 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 900 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16); 901 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 902 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16); 903 904 // Returns a chain & a flag for retval copy to use. 905 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 906 SmallVector<SDValue, 8> Ops; 907 Ops.push_back(Chain); 908 Ops.push_back(Callee); 909 910 // Add argument registers to the end of the list so that they are 911 // known live into the call. 912 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 913 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 914 RegsToPass[i].second.getValueType())); 915 916 if (InFlag.getNode()) 917 Ops.push_back(InFlag); 918 919 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops); 920 InFlag = Chain.getValue(1); 921 922 // Create the CALLSEQ_END node. 923 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true), 924 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl); 925 InFlag = Chain.getValue(1); 926 927 // Handle result values, copying them out of physregs into vregs that we 928 // return. 929 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, 930 DAG, InVals); 931 } 932 933 /// LowerCallResult - Lower the result values of a call into the 934 /// appropriate copies out of appropriate physical registers. 935 /// 936 SDValue MSP430TargetLowering::LowerCallResult( 937 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 938 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 939 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 940 941 // Assign locations to each value returned by this call. 942 SmallVector<CCValAssign, 16> RVLocs; 943 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 944 *DAG.getContext()); 945 946 AnalyzeReturnValues(CCInfo, RVLocs, Ins); 947 948 // Copy all of the result registers out of their specified physreg. 949 for (unsigned i = 0; i != RVLocs.size(); ++i) { 950 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 951 RVLocs[i].getValVT(), InFlag).getValue(1); 952 InFlag = Chain.getValue(2); 953 InVals.push_back(Chain.getValue(0)); 954 } 955 956 return Chain; 957 } 958 959 SDValue MSP430TargetLowering::LowerShifts(SDValue Op, 960 SelectionDAG &DAG) const { 961 unsigned Opc = Op.getOpcode(); 962 SDNode* N = Op.getNode(); 963 EVT VT = Op.getValueType(); 964 SDLoc dl(N); 965 966 // Expand non-constant shifts to loops: 967 if (!isa<ConstantSDNode>(N->getOperand(1))) 968 return Op; 969 970 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 971 972 // Expand the stuff into sequence of shifts. 973 SDValue Victim = N->getOperand(0); 974 975 if (ShiftAmount >= 8) { 976 assert(VT == MVT::i16 && "Can not shift i8 by 8 and more"); 977 switch(Opc) { 978 default: 979 llvm_unreachable("Unknown shift"); 980 case ISD::SHL: 981 // foo << (8 + N) => swpb(zext(foo)) << N 982 Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8); 983 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim); 984 break; 985 case ISD::SRA: 986 case ISD::SRL: 987 // foo >> (8 + N) => sxt(swpb(foo)) >> N 988 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim); 989 Victim = (Opc == ISD::SRA) 990 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim, 991 DAG.getValueType(MVT::i8)) 992 : DAG.getZeroExtendInReg(Victim, dl, MVT::i8); 993 break; 994 } 995 ShiftAmount -= 8; 996 } 997 998 if (Opc == ISD::SRL && ShiftAmount) { 999 // Emit a special goodness here: 1000 // srl A, 1 => clrc; rrc A 1001 Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim); 1002 ShiftAmount -= 1; 1003 } 1004 1005 while (ShiftAmount--) 1006 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA), 1007 dl, VT, Victim); 1008 1009 return Victim; 1010 } 1011 1012 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op, 1013 SelectionDAG &DAG) const { 1014 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 1015 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 1016 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1017 1018 // Create the TargetGlobalAddress node, folding in the constant offset. 1019 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset); 1020 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result); 1021 } 1022 1023 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op, 1024 SelectionDAG &DAG) const { 1025 SDLoc dl(Op); 1026 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 1027 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1028 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT); 1029 1030 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result); 1031 } 1032 1033 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op, 1034 SelectionDAG &DAG) const { 1035 SDLoc dl(Op); 1036 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1037 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1038 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT); 1039 1040 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result); 1041 } 1042 1043 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC, 1044 ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) { 1045 // FIXME: Handle bittests someday 1046 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet"); 1047 1048 // FIXME: Handle jump negative someday 1049 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID; 1050 switch (CC) { 1051 default: llvm_unreachable("Invalid integer condition!"); 1052 case ISD::SETEQ: 1053 TCC = MSP430CC::COND_E; // aka COND_Z 1054 // Minor optimization: if LHS is a constant, swap operands, then the 1055 // constant can be folded into comparison. 1056 if (LHS.getOpcode() == ISD::Constant) 1057 std::swap(LHS, RHS); 1058 break; 1059 case ISD::SETNE: 1060 TCC = MSP430CC::COND_NE; // aka COND_NZ 1061 // Minor optimization: if LHS is a constant, swap operands, then the 1062 // constant can be folded into comparison. 1063 if (LHS.getOpcode() == ISD::Constant) 1064 std::swap(LHS, RHS); 1065 break; 1066 case ISD::SETULE: 1067 std::swap(LHS, RHS); 1068 LLVM_FALLTHROUGH; 1069 case ISD::SETUGE: 1070 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to 1071 // fold constant into instruction. 1072 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 1073 LHS = RHS; 1074 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 1075 TCC = MSP430CC::COND_LO; 1076 break; 1077 } 1078 TCC = MSP430CC::COND_HS; // aka COND_C 1079 break; 1080 case ISD::SETUGT: 1081 std::swap(LHS, RHS); 1082 LLVM_FALLTHROUGH; 1083 case ISD::SETULT: 1084 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to 1085 // fold constant into instruction. 1086 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 1087 LHS = RHS; 1088 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 1089 TCC = MSP430CC::COND_HS; 1090 break; 1091 } 1092 TCC = MSP430CC::COND_LO; // aka COND_NC 1093 break; 1094 case ISD::SETLE: 1095 std::swap(LHS, RHS); 1096 LLVM_FALLTHROUGH; 1097 case ISD::SETGE: 1098 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to 1099 // fold constant into instruction. 1100 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 1101 LHS = RHS; 1102 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 1103 TCC = MSP430CC::COND_L; 1104 break; 1105 } 1106 TCC = MSP430CC::COND_GE; 1107 break; 1108 case ISD::SETGT: 1109 std::swap(LHS, RHS); 1110 LLVM_FALLTHROUGH; 1111 case ISD::SETLT: 1112 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to 1113 // fold constant into instruction. 1114 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 1115 LHS = RHS; 1116 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 1117 TCC = MSP430CC::COND_GE; 1118 break; 1119 } 1120 TCC = MSP430CC::COND_L; 1121 break; 1122 } 1123 1124 TargetCC = DAG.getConstant(TCC, dl, MVT::i8); 1125 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS); 1126 } 1127 1128 1129 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 1130 SDValue Chain = Op.getOperand(0); 1131 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 1132 SDValue LHS = Op.getOperand(2); 1133 SDValue RHS = Op.getOperand(3); 1134 SDValue Dest = Op.getOperand(4); 1135 SDLoc dl (Op); 1136 1137 SDValue TargetCC; 1138 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 1139 1140 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(), 1141 Chain, Dest, TargetCC, Flag); 1142 } 1143 1144 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1145 SDValue LHS = Op.getOperand(0); 1146 SDValue RHS = Op.getOperand(1); 1147 SDLoc dl (Op); 1148 1149 // If we are doing an AND and testing against zero, then the CMP 1150 // will not be generated. The AND (or BIT) will generate the condition codes, 1151 // but they are different from CMP. 1152 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so 1153 // lowering & isel wouldn't diverge. 1154 bool andCC = false; 1155 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 1156 if (RHSC->isNullValue() && LHS.hasOneUse() && 1157 (LHS.getOpcode() == ISD::AND || 1158 (LHS.getOpcode() == ISD::TRUNCATE && 1159 LHS.getOperand(0).getOpcode() == ISD::AND))) { 1160 andCC = true; 1161 } 1162 } 1163 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1164 SDValue TargetCC; 1165 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 1166 1167 // Get the condition codes directly from the status register, if its easy. 1168 // Otherwise a branch will be generated. Note that the AND and BIT 1169 // instructions generate different flags than CMP, the carry bit can be used 1170 // for NE/EQ. 1171 bool Invert = false; 1172 bool Shift = false; 1173 bool Convert = true; 1174 switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) { 1175 default: 1176 Convert = false; 1177 break; 1178 case MSP430CC::COND_HS: 1179 // Res = SR & 1, no processing is required 1180 break; 1181 case MSP430CC::COND_LO: 1182 // Res = ~(SR & 1) 1183 Invert = true; 1184 break; 1185 case MSP430CC::COND_NE: 1186 if (andCC) { 1187 // C = ~Z, thus Res = SR & 1, no processing is required 1188 } else { 1189 // Res = ~((SR >> 1) & 1) 1190 Shift = true; 1191 Invert = true; 1192 } 1193 break; 1194 case MSP430CC::COND_E: 1195 Shift = true; 1196 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however, 1197 // Res = (SR >> 1) & 1 is 1 word shorter. 1198 break; 1199 } 1200 EVT VT = Op.getValueType(); 1201 SDValue One = DAG.getConstant(1, dl, VT); 1202 if (Convert) { 1203 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR, 1204 MVT::i16, Flag); 1205 if (Shift) 1206 // FIXME: somewhere this is turned into a SRL, lower it MSP specific? 1207 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One); 1208 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One); 1209 if (Invert) 1210 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One); 1211 return SR; 1212 } else { 1213 SDValue Zero = DAG.getConstant(0, dl, VT); 1214 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1215 SDValue Ops[] = {One, Zero, TargetCC, Flag}; 1216 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops); 1217 } 1218 } 1219 1220 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op, 1221 SelectionDAG &DAG) const { 1222 SDValue LHS = Op.getOperand(0); 1223 SDValue RHS = Op.getOperand(1); 1224 SDValue TrueV = Op.getOperand(2); 1225 SDValue FalseV = Op.getOperand(3); 1226 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 1227 SDLoc dl (Op); 1228 1229 SDValue TargetCC; 1230 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 1231 1232 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1233 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag}; 1234 1235 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops); 1236 } 1237 1238 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op, 1239 SelectionDAG &DAG) const { 1240 SDValue Val = Op.getOperand(0); 1241 EVT VT = Op.getValueType(); 1242 SDLoc dl(Op); 1243 1244 assert(VT == MVT::i16 && "Only support i16 for now!"); 1245 1246 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 1247 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val), 1248 DAG.getValueType(Val.getValueType())); 1249 } 1250 1251 SDValue 1252 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { 1253 MachineFunction &MF = DAG.getMachineFunction(); 1254 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1255 int ReturnAddrIndex = FuncInfo->getRAIndex(); 1256 auto PtrVT = getPointerTy(MF.getDataLayout()); 1257 1258 if (ReturnAddrIndex == 0) { 1259 // Set up a frame object for the return address. 1260 uint64_t SlotSize = MF.getDataLayout().getPointerSize(); 1261 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize, 1262 true); 1263 FuncInfo->setRAIndex(ReturnAddrIndex); 1264 } 1265 1266 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT); 1267 } 1268 1269 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op, 1270 SelectionDAG &DAG) const { 1271 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1272 MFI.setReturnAddressIsTaken(true); 1273 1274 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1275 return SDValue(); 1276 1277 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1278 SDLoc dl(Op); 1279 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1280 1281 if (Depth > 0) { 1282 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1283 SDValue Offset = 1284 DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16); 1285 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 1286 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 1287 MachinePointerInfo()); 1288 } 1289 1290 // Just load the return address. 1291 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 1292 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 1293 MachinePointerInfo()); 1294 } 1295 1296 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op, 1297 SelectionDAG &DAG) const { 1298 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1299 MFI.setFrameAddressIsTaken(true); 1300 1301 EVT VT = Op.getValueType(); 1302 SDLoc dl(Op); // FIXME probably not meaningful 1303 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1304 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 1305 MSP430::FP, VT); 1306 while (Depth--) 1307 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 1308 MachinePointerInfo()); 1309 return FrameAddr; 1310 } 1311 1312 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op, 1313 SelectionDAG &DAG) const { 1314 MachineFunction &MF = DAG.getMachineFunction(); 1315 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1316 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1317 1318 // Frame index of first vararg argument 1319 SDValue FrameIndex = 1320 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1321 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1322 1323 // Create a store of the frame index to the location operand 1324 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Op.getOperand(1), 1325 MachinePointerInfo(SV)); 1326 } 1327 1328 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op, 1329 SelectionDAG &DAG) const { 1330 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1331 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1332 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1333 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result); 1334 } 1335 1336 /// getPostIndexedAddressParts - returns true by value, base pointer and 1337 /// offset pointer and addressing mode by reference if this node can be 1338 /// combined with a load / store to form a post-indexed load / store. 1339 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 1340 SDValue &Base, 1341 SDValue &Offset, 1342 ISD::MemIndexedMode &AM, 1343 SelectionDAG &DAG) const { 1344 1345 LoadSDNode *LD = cast<LoadSDNode>(N); 1346 if (LD->getExtensionType() != ISD::NON_EXTLOAD) 1347 return false; 1348 1349 EVT VT = LD->getMemoryVT(); 1350 if (VT != MVT::i8 && VT != MVT::i16) 1351 return false; 1352 1353 if (Op->getOpcode() != ISD::ADD) 1354 return false; 1355 1356 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 1357 uint64_t RHSC = RHS->getZExtValue(); 1358 if ((VT == MVT::i16 && RHSC != 2) || 1359 (VT == MVT::i8 && RHSC != 1)) 1360 return false; 1361 1362 Base = Op->getOperand(0); 1363 Offset = DAG.getConstant(RHSC, SDLoc(N), VT); 1364 AM = ISD::POST_INC; 1365 return true; 1366 } 1367 1368 return false; 1369 } 1370 1371 1372 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const { 1373 switch ((MSP430ISD::NodeType)Opcode) { 1374 case MSP430ISD::FIRST_NUMBER: break; 1375 case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG"; 1376 case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG"; 1377 case MSP430ISD::RRA: return "MSP430ISD::RRA"; 1378 case MSP430ISD::RLA: return "MSP430ISD::RLA"; 1379 case MSP430ISD::RRC: return "MSP430ISD::RRC"; 1380 case MSP430ISD::RRCL: return "MSP430ISD::RRCL"; 1381 case MSP430ISD::CALL: return "MSP430ISD::CALL"; 1382 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper"; 1383 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC"; 1384 case MSP430ISD::CMP: return "MSP430ISD::CMP"; 1385 case MSP430ISD::SETCC: return "MSP430ISD::SETCC"; 1386 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC"; 1387 case MSP430ISD::DADD: return "MSP430ISD::DADD"; 1388 } 1389 return nullptr; 1390 } 1391 1392 bool MSP430TargetLowering::isTruncateFree(Type *Ty1, 1393 Type *Ty2) const { 1394 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 1395 return false; 1396 1397 return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits()); 1398 } 1399 1400 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 1401 if (!VT1.isInteger() || !VT2.isInteger()) 1402 return false; 1403 1404 return (VT1.getSizeInBits() > VT2.getSizeInBits()); 1405 } 1406 1407 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 1408 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1409 return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16); 1410 } 1411 1412 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 1413 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1414 return 0 && VT1 == MVT::i8 && VT2 == MVT::i16; 1415 } 1416 1417 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1418 return isZExtFree(Val.getValueType(), VT2); 1419 } 1420 1421 //===----------------------------------------------------------------------===// 1422 // Other Lowering Code 1423 //===----------------------------------------------------------------------===// 1424 1425 MachineBasicBlock * 1426 MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI, 1427 MachineBasicBlock *BB) const { 1428 MachineFunction *F = BB->getParent(); 1429 MachineRegisterInfo &RI = F->getRegInfo(); 1430 DebugLoc dl = MI.getDebugLoc(); 1431 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo(); 1432 1433 unsigned Opc; 1434 bool ClearCarry = false; 1435 const TargetRegisterClass * RC; 1436 switch (MI.getOpcode()) { 1437 default: llvm_unreachable("Invalid shift opcode!"); 1438 case MSP430::Shl8: 1439 Opc = MSP430::ADD8rr; 1440 RC = &MSP430::GR8RegClass; 1441 break; 1442 case MSP430::Shl16: 1443 Opc = MSP430::ADD16rr; 1444 RC = &MSP430::GR16RegClass; 1445 break; 1446 case MSP430::Sra8: 1447 Opc = MSP430::RRA8r; 1448 RC = &MSP430::GR8RegClass; 1449 break; 1450 case MSP430::Sra16: 1451 Opc = MSP430::RRA16r; 1452 RC = &MSP430::GR16RegClass; 1453 break; 1454 case MSP430::Srl8: 1455 ClearCarry = true; 1456 Opc = MSP430::RRC8r; 1457 RC = &MSP430::GR8RegClass; 1458 break; 1459 case MSP430::Srl16: 1460 ClearCarry = true; 1461 Opc = MSP430::RRC16r; 1462 RC = &MSP430::GR16RegClass; 1463 break; 1464 case MSP430::Rrcl8: 1465 case MSP430::Rrcl16: { 1466 BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR) 1467 .addReg(MSP430::SR).addImm(1); 1468 Register SrcReg = MI.getOperand(1).getReg(); 1469 Register DstReg = MI.getOperand(0).getReg(); 1470 unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16 1471 ? MSP430::RRC16r : MSP430::RRC8r; 1472 BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg) 1473 .addReg(SrcReg); 1474 MI.eraseFromParent(); // The pseudo instruction is gone now. 1475 return BB; 1476 } 1477 } 1478 1479 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1480 MachineFunction::iterator I = ++BB->getIterator(); 1481 1482 // Create loop block 1483 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); 1484 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); 1485 1486 F->insert(I, LoopBB); 1487 F->insert(I, RemBB); 1488 1489 // Update machine-CFG edges by transferring all successors of the current 1490 // block to the block containing instructions after shift. 1491 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), 1492 BB->end()); 1493 RemBB->transferSuccessorsAndUpdatePHIs(BB); 1494 1495 // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB 1496 BB->addSuccessor(LoopBB); 1497 BB->addSuccessor(RemBB); 1498 LoopBB->addSuccessor(RemBB); 1499 LoopBB->addSuccessor(LoopBB); 1500 1501 Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass); 1502 Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass); 1503 Register ShiftReg = RI.createVirtualRegister(RC); 1504 Register ShiftReg2 = RI.createVirtualRegister(RC); 1505 Register ShiftAmtSrcReg = MI.getOperand(2).getReg(); 1506 Register SrcReg = MI.getOperand(1).getReg(); 1507 Register DstReg = MI.getOperand(0).getReg(); 1508 1509 // BB: 1510 // cmp 0, N 1511 // je RemBB 1512 BuildMI(BB, dl, TII.get(MSP430::CMP8ri)) 1513 .addReg(ShiftAmtSrcReg).addImm(0); 1514 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1515 .addMBB(RemBB) 1516 .addImm(MSP430CC::COND_E); 1517 1518 // LoopBB: 1519 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] 1520 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] 1521 // ShiftReg2 = shift ShiftReg 1522 // ShiftAmt2 = ShiftAmt - 1; 1523 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg) 1524 .addReg(SrcReg).addMBB(BB) 1525 .addReg(ShiftReg2).addMBB(LoopBB); 1526 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg) 1527 .addReg(ShiftAmtSrcReg).addMBB(BB) 1528 .addReg(ShiftAmtReg2).addMBB(LoopBB); 1529 if (ClearCarry) 1530 BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR) 1531 .addReg(MSP430::SR).addImm(1); 1532 if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr) 1533 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2) 1534 .addReg(ShiftReg) 1535 .addReg(ShiftReg); 1536 else 1537 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2) 1538 .addReg(ShiftReg); 1539 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2) 1540 .addReg(ShiftAmtReg).addImm(1); 1541 BuildMI(LoopBB, dl, TII.get(MSP430::JCC)) 1542 .addMBB(LoopBB) 1543 .addImm(MSP430CC::COND_NE); 1544 1545 // RemBB: 1546 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] 1547 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg) 1548 .addReg(SrcReg).addMBB(BB) 1549 .addReg(ShiftReg2).addMBB(LoopBB); 1550 1551 MI.eraseFromParent(); // The pseudo instruction is gone now. 1552 return RemBB; 1553 } 1554 1555 MachineBasicBlock * 1556 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1557 MachineBasicBlock *BB) const { 1558 unsigned Opc = MI.getOpcode(); 1559 1560 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 || 1561 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 || 1562 Opc == MSP430::Srl8 || Opc == MSP430::Srl16 || 1563 Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16) 1564 return EmitShiftInstr(MI, BB); 1565 1566 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1567 DebugLoc dl = MI.getDebugLoc(); 1568 1569 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) && 1570 "Unexpected instr type to insert"); 1571 1572 // To "insert" a SELECT instruction, we actually have to insert the diamond 1573 // control-flow pattern. The incoming instruction knows the destination vreg 1574 // to set, the condition code register to branch on, the true/false values to 1575 // select between, and a branch opcode to use. 1576 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1577 MachineFunction::iterator I = ++BB->getIterator(); 1578 1579 // thisMBB: 1580 // ... 1581 // TrueVal = ... 1582 // cmpTY ccX, r1, r2 1583 // jCC copy1MBB 1584 // fallthrough --> copy0MBB 1585 MachineBasicBlock *thisMBB = BB; 1586 MachineFunction *F = BB->getParent(); 1587 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1588 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); 1589 F->insert(I, copy0MBB); 1590 F->insert(I, copy1MBB); 1591 // Update machine-CFG edges by transferring all successors of the current 1592 // block to the new block which will contain the Phi node for the select. 1593 copy1MBB->splice(copy1MBB->begin(), BB, 1594 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1595 copy1MBB->transferSuccessorsAndUpdatePHIs(BB); 1596 // Next, add the true and fallthrough blocks as its successors. 1597 BB->addSuccessor(copy0MBB); 1598 BB->addSuccessor(copy1MBB); 1599 1600 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1601 .addMBB(copy1MBB) 1602 .addImm(MI.getOperand(3).getImm()); 1603 1604 // copy0MBB: 1605 // %FalseValue = ... 1606 // # fallthrough to copy1MBB 1607 BB = copy0MBB; 1608 1609 // Update machine-CFG edges 1610 BB->addSuccessor(copy1MBB); 1611 1612 // copy1MBB: 1613 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1614 // ... 1615 BB = copy1MBB; 1616 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg()) 1617 .addReg(MI.getOperand(2).getReg()) 1618 .addMBB(copy0MBB) 1619 .addReg(MI.getOperand(1).getReg()) 1620 .addMBB(thisMBB); 1621 1622 MI.eraseFromParent(); // The pseudo instruction is gone now. 1623 return BB; 1624 } 1625