1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MSP430TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MSP430ISelLowering.h" 14 #include "MSP430.h" 15 #include "MSP430MachineFunctionInfo.h" 16 #include "MSP430Subtarget.h" 17 #include "MSP430TargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 24 #include "llvm/CodeGen/ValueTypes.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "msp430-lower" 38 39 static cl::opt<bool>MSP430NoLegalImmediate( 40 "msp430-no-legal-immediate", cl::Hidden, 41 cl::desc("Enable non legal immediates (for testing purposes only)"), 42 cl::init(false)); 43 44 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM, 45 const MSP430Subtarget &STI) 46 : TargetLowering(TM) { 47 48 // Set up the register classes. 49 addRegisterClass(MVT::i8, &MSP430::GR8RegClass); 50 addRegisterClass(MVT::i16, &MSP430::GR16RegClass); 51 52 // Compute derived properties from the register classes 53 computeRegisterProperties(STI.getRegisterInfo()); 54 55 // Provide all sorts of operation actions 56 setStackPointerRegisterToSaveRestore(MSP430::SP); 57 setBooleanContents(ZeroOrOneBooleanContent); 58 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 59 60 // We have post-incremented loads / stores. 61 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); 62 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); 63 64 for (MVT VT : MVT::integer_valuetypes()) { 65 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 66 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 67 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 68 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 69 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand); 70 } 71 72 // We don't have any truncstores 73 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 74 75 setOperationAction(ISD::SRA, MVT::i8, Custom); 76 setOperationAction(ISD::SHL, MVT::i8, Custom); 77 setOperationAction(ISD::SRL, MVT::i8, Custom); 78 setOperationAction(ISD::SRA, MVT::i16, Custom); 79 setOperationAction(ISD::SHL, MVT::i16, Custom); 80 setOperationAction(ISD::SRL, MVT::i16, Custom); 81 setOperationAction(ISD::ROTL, MVT::i8, Expand); 82 setOperationAction(ISD::ROTR, MVT::i8, Expand); 83 setOperationAction(ISD::ROTL, MVT::i16, Expand); 84 setOperationAction(ISD::ROTR, MVT::i16, Expand); 85 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); 86 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom); 87 setOperationAction(ISD::BlockAddress, MVT::i16, Custom); 88 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 89 setOperationAction(ISD::BR_CC, MVT::i8, Custom); 90 setOperationAction(ISD::BR_CC, MVT::i16, Custom); 91 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 92 setOperationAction(ISD::SETCC, MVT::i8, Custom); 93 setOperationAction(ISD::SETCC, MVT::i16, Custom); 94 setOperationAction(ISD::SELECT, MVT::i8, Expand); 95 setOperationAction(ISD::SELECT, MVT::i16, Expand); 96 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); 97 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); 98 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom); 99 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); 100 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); 101 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 102 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 103 104 setOperationAction(ISD::CTTZ, MVT::i8, Expand); 105 setOperationAction(ISD::CTTZ, MVT::i16, Expand); 106 setOperationAction(ISD::CTLZ, MVT::i8, Expand); 107 setOperationAction(ISD::CTLZ, MVT::i16, Expand); 108 setOperationAction(ISD::CTPOP, MVT::i8, Expand); 109 setOperationAction(ISD::CTPOP, MVT::i16, Expand); 110 111 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand); 112 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); 113 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand); 114 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); 115 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand); 116 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); 117 118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 119 120 // FIXME: Implement efficiently multiplication by a constant 121 setOperationAction(ISD::MUL, MVT::i8, Promote); 122 setOperationAction(ISD::MULHS, MVT::i8, Promote); 123 setOperationAction(ISD::MULHU, MVT::i8, Promote); 124 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Promote); 125 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Promote); 126 setOperationAction(ISD::MUL, MVT::i16, LibCall); 127 setOperationAction(ISD::MULHS, MVT::i16, Expand); 128 setOperationAction(ISD::MULHU, MVT::i16, Expand); 129 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); 130 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); 131 132 setOperationAction(ISD::UDIV, MVT::i8, Promote); 133 setOperationAction(ISD::UDIVREM, MVT::i8, Promote); 134 setOperationAction(ISD::UREM, MVT::i8, Promote); 135 setOperationAction(ISD::SDIV, MVT::i8, Promote); 136 setOperationAction(ISD::SDIVREM, MVT::i8, Promote); 137 setOperationAction(ISD::SREM, MVT::i8, Promote); 138 setOperationAction(ISD::UDIV, MVT::i16, LibCall); 139 setOperationAction(ISD::UDIVREM, MVT::i16, Expand); 140 setOperationAction(ISD::UREM, MVT::i16, LibCall); 141 setOperationAction(ISD::SDIV, MVT::i16, LibCall); 142 setOperationAction(ISD::SDIVREM, MVT::i16, Expand); 143 setOperationAction(ISD::SREM, MVT::i16, LibCall); 144 145 // varargs support 146 setOperationAction(ISD::VASTART, MVT::Other, Custom); 147 setOperationAction(ISD::VAARG, MVT::Other, Expand); 148 setOperationAction(ISD::VAEND, MVT::Other, Expand); 149 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 150 setOperationAction(ISD::JumpTable, MVT::i16, Custom); 151 152 // EABI Libcalls - EABI Section 6.2 153 const struct { 154 const RTLIB::Libcall Op; 155 const char * const Name; 156 const ISD::CondCode Cond; 157 } LibraryCalls[] = { 158 // Floating point conversions - EABI Table 6 159 { RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID }, 160 { RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID }, 161 // The following is NOT implemented in libgcc 162 //{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID }, 163 { RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID }, 164 { RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID }, 165 // The following is NOT implemented in libgcc 166 //{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID }, 167 { RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID }, 168 { RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID }, 169 // The following is NOT implemented in libgcc 170 //{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID }, 171 { RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID }, 172 { RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID }, 173 // The following is NOT implemented in libgcc 174 //{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID }, 175 { RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID }, 176 { RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID }, 177 // TODO The following IS implemented in libgcc 178 //{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID }, 179 { RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID }, 180 // TODO The following IS implemented in libgcc but is not in the EABI 181 { RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID }, 182 // TODO The following IS implemented in libgcc 183 //{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID }, 184 { RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID }, 185 // The following IS implemented in libgcc but is not in the EABI 186 { RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID }, 187 // TODO The following IS implemented in libgcc 188 //{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID }, 189 { RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID }, 190 // TODO The following IS implemented in libgcc but is not in the EABI 191 { RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID }, 192 // TODO The following IS implemented in libgcc 193 //{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID }, 194 { RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID }, 195 // The following IS implemented in libgcc but is not in the EABI 196 { RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID }, 197 198 // Floating point comparisons - EABI Table 7 199 { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ }, 200 { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE }, 201 { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE }, 202 { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT }, 203 { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE }, 204 { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT }, 205 { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ }, 206 { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE }, 207 { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE }, 208 { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT }, 209 { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE }, 210 { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT }, 211 212 // Floating point arithmetic - EABI Table 8 213 { RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID }, 214 { RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID }, 215 { RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID }, 216 { RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID }, 217 { RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID }, 218 { RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID }, 219 { RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID }, 220 { RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID }, 221 // The following are NOT implemented in libgcc 222 // { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID }, 223 // { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID }, 224 225 // Universal Integer Operations - EABI Table 9 226 { RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID }, 227 { RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID }, 228 { RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID }, 229 { RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID }, 230 { RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID }, 231 { RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID }, 232 { RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID }, 233 { RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID }, 234 { RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID }, 235 { RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID }, 236 { RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID }, 237 { RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID }, 238 239 // Bitwise Operations - EABI Table 10 240 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc 241 { RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID }, 242 { RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID }, 243 { RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID }, 244 // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc 245 246 }; 247 248 for (const auto &LC : LibraryCalls) { 249 setLibcallName(LC.Op, LC.Name); 250 if (LC.Cond != ISD::SETCC_INVALID) 251 setCmpLibcallCC(LC.Op, LC.Cond); 252 } 253 254 if (STI.hasHWMult16()) { 255 const struct { 256 const RTLIB::Libcall Op; 257 const char * const Name; 258 } LibraryCalls[] = { 259 // Integer Multiply - EABI Table 9 260 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" }, 261 { RTLIB::MUL_I32, "__mspabi_mpyl_hw" }, 262 { RTLIB::MUL_I64, "__mspabi_mpyll_hw" }, 263 // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc 264 // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc 265 }; 266 for (const auto &LC : LibraryCalls) { 267 setLibcallName(LC.Op, LC.Name); 268 } 269 } else if (STI.hasHWMult32()) { 270 const struct { 271 const RTLIB::Libcall Op; 272 const char * const Name; 273 } LibraryCalls[] = { 274 // Integer Multiply - EABI Table 9 275 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" }, 276 { RTLIB::MUL_I32, "__mspabi_mpyl_hw32" }, 277 { RTLIB::MUL_I64, "__mspabi_mpyll_hw32" }, 278 // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc 279 // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc 280 }; 281 for (const auto &LC : LibraryCalls) { 282 setLibcallName(LC.Op, LC.Name); 283 } 284 } else if (STI.hasHWMultF5()) { 285 const struct { 286 const RTLIB::Libcall Op; 287 const char * const Name; 288 } LibraryCalls[] = { 289 // Integer Multiply - EABI Table 9 290 { RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" }, 291 { RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" }, 292 { RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" }, 293 // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc 294 // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc 295 }; 296 for (const auto &LC : LibraryCalls) { 297 setLibcallName(LC.Op, LC.Name); 298 } 299 } else { // NoHWMult 300 const struct { 301 const RTLIB::Libcall Op; 302 const char * const Name; 303 } LibraryCalls[] = { 304 // Integer Multiply - EABI Table 9 305 { RTLIB::MUL_I16, "__mspabi_mpyi" }, 306 { RTLIB::MUL_I32, "__mspabi_mpyl" }, 307 { RTLIB::MUL_I64, "__mspabi_mpyll" }, 308 // The __mspabi_mpysl* functions are NOT implemented in libgcc 309 // The __mspabi_mpyul* functions are NOT implemented in libgcc 310 }; 311 for (const auto &LC : LibraryCalls) { 312 setLibcallName(LC.Op, LC.Name); 313 } 314 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN); 315 } 316 317 // Several of the runtime library functions use a special calling conv 318 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN); 319 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN); 320 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN); 321 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN); 322 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN); 323 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN); 324 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN); 325 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN); 326 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN); 327 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN); 328 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN); 329 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN); 330 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN); 331 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN); 332 // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll 333 334 setMinFunctionAlignment(Align(2)); 335 setPrefFunctionAlignment(Align(2)); 336 } 337 338 SDValue MSP430TargetLowering::LowerOperation(SDValue Op, 339 SelectionDAG &DAG) const { 340 switch (Op.getOpcode()) { 341 case ISD::SHL: // FALLTHROUGH 342 case ISD::SRL: 343 case ISD::SRA: return LowerShifts(Op, DAG); 344 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 345 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 346 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 347 case ISD::SETCC: return LowerSETCC(Op, DAG); 348 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 349 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 350 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG); 351 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 352 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 353 case ISD::VASTART: return LowerVASTART(Op, DAG); 354 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 355 default: 356 llvm_unreachable("unimplemented operand"); 357 } 358 } 359 360 // Define non profitable transforms into shifts 361 bool MSP430TargetLowering::shouldAvoidTransformToShift(EVT VT, 362 unsigned Amount) const { 363 return !(Amount == 8 || Amount == 9 || Amount<=2); 364 } 365 366 // Implemented to verify test case assertions in 367 // tests/codegen/msp430/shift-amount-threshold-b.ll 368 bool MSP430TargetLowering::isLegalICmpImmediate(int64_t Immed) const { 369 if (MSP430NoLegalImmediate) 370 return Immed >= -32 && Immed < 32; 371 return TargetLowering::isLegalICmpImmediate(Immed); 372 } 373 374 //===----------------------------------------------------------------------===// 375 // MSP430 Inline Assembly Support 376 //===----------------------------------------------------------------------===// 377 378 /// getConstraintType - Given a constraint letter, return the type of 379 /// constraint it is for this target. 380 TargetLowering::ConstraintType 381 MSP430TargetLowering::getConstraintType(StringRef Constraint) const { 382 if (Constraint.size() == 1) { 383 switch (Constraint[0]) { 384 case 'r': 385 return C_RegisterClass; 386 default: 387 break; 388 } 389 } 390 return TargetLowering::getConstraintType(Constraint); 391 } 392 393 std::pair<unsigned, const TargetRegisterClass *> 394 MSP430TargetLowering::getRegForInlineAsmConstraint( 395 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 396 if (Constraint.size() == 1) { 397 // GCC Constraint Letters 398 switch (Constraint[0]) { 399 default: break; 400 case 'r': // GENERAL_REGS 401 if (VT == MVT::i8) 402 return std::make_pair(0U, &MSP430::GR8RegClass); 403 404 return std::make_pair(0U, &MSP430::GR16RegClass); 405 } 406 } 407 408 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 409 } 410 411 //===----------------------------------------------------------------------===// 412 // Calling Convention Implementation 413 //===----------------------------------------------------------------------===// 414 415 #include "MSP430GenCallingConv.inc" 416 417 /// For each argument in a function store the number of pieces it is composed 418 /// of. 419 template<typename ArgT> 420 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args, 421 SmallVectorImpl<unsigned> &Out) { 422 unsigned CurrentArgIndex; 423 424 if (Args.empty()) 425 return; 426 427 CurrentArgIndex = Args[0].OrigArgIndex; 428 Out.push_back(0); 429 430 for (auto &Arg : Args) { 431 if (CurrentArgIndex == Arg.OrigArgIndex) { 432 Out.back() += 1; 433 } else { 434 Out.push_back(1); 435 CurrentArgIndex = Arg.OrigArgIndex; 436 } 437 } 438 } 439 440 static void AnalyzeVarArgs(CCState &State, 441 const SmallVectorImpl<ISD::OutputArg> &Outs) { 442 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack); 443 } 444 445 static void AnalyzeVarArgs(CCState &State, 446 const SmallVectorImpl<ISD::InputArg> &Ins) { 447 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack); 448 } 449 450 /// Analyze incoming and outgoing function arguments. We need custom C++ code 451 /// to handle special constraints in the ABI like reversing the order of the 452 /// pieces of splitted arguments. In addition, all pieces of a certain argument 453 /// have to be passed either using registers or the stack but never mixing both. 454 template<typename ArgT> 455 static void AnalyzeArguments(CCState &State, 456 SmallVectorImpl<CCValAssign> &ArgLocs, 457 const SmallVectorImpl<ArgT> &Args) { 458 static const MCPhysReg CRegList[] = { 459 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15 460 }; 461 static const unsigned CNbRegs = std::size(CRegList); 462 static const MCPhysReg BuiltinRegList[] = { 463 MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11, 464 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15 465 }; 466 static const unsigned BuiltinNbRegs = std::size(BuiltinRegList); 467 468 ArrayRef<MCPhysReg> RegList; 469 unsigned NbRegs; 470 471 bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN); 472 if (Builtin) { 473 RegList = BuiltinRegList; 474 NbRegs = BuiltinNbRegs; 475 } else { 476 RegList = CRegList; 477 NbRegs = CNbRegs; 478 } 479 480 if (State.isVarArg()) { 481 AnalyzeVarArgs(State, Args); 482 return; 483 } 484 485 SmallVector<unsigned, 4> ArgsParts; 486 ParseFunctionArgs(Args, ArgsParts); 487 488 if (Builtin) { 489 assert(ArgsParts.size() == 2 && 490 "Builtin calling convention requires two arguments"); 491 } 492 493 unsigned RegsLeft = NbRegs; 494 bool UsedStack = false; 495 unsigned ValNo = 0; 496 497 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) { 498 MVT ArgVT = Args[ValNo].VT; 499 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags; 500 MVT LocVT = ArgVT; 501 CCValAssign::LocInfo LocInfo = CCValAssign::Full; 502 503 // Promote i8 to i16 504 if (LocVT == MVT::i8) { 505 LocVT = MVT::i16; 506 if (ArgFlags.isSExt()) 507 LocInfo = CCValAssign::SExt; 508 else if (ArgFlags.isZExt()) 509 LocInfo = CCValAssign::ZExt; 510 else 511 LocInfo = CCValAssign::AExt; 512 } 513 514 // Handle byval arguments 515 if (ArgFlags.isByVal()) { 516 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, Align(2), ArgFlags); 517 continue; 518 } 519 520 unsigned Parts = ArgsParts[i]; 521 522 if (Builtin) { 523 assert(Parts == 4 && 524 "Builtin calling convention requires 64-bit arguments"); 525 } 526 527 if (!UsedStack && Parts == 2 && RegsLeft == 1) { 528 // Special case for 32-bit register split, see EABI section 3.3.3 529 unsigned Reg = State.AllocateReg(RegList); 530 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo)); 531 RegsLeft -= 1; 532 533 UsedStack = true; 534 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State); 535 } else if (Parts <= RegsLeft) { 536 for (unsigned j = 0; j < Parts; j++) { 537 unsigned Reg = State.AllocateReg(RegList); 538 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo)); 539 RegsLeft--; 540 } 541 } else { 542 UsedStack = true; 543 for (unsigned j = 0; j < Parts; j++) 544 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State); 545 } 546 } 547 } 548 549 static void AnalyzeRetResult(CCState &State, 550 const SmallVectorImpl<ISD::InputArg> &Ins) { 551 State.AnalyzeCallResult(Ins, RetCC_MSP430); 552 } 553 554 static void AnalyzeRetResult(CCState &State, 555 const SmallVectorImpl<ISD::OutputArg> &Outs) { 556 State.AnalyzeReturn(Outs, RetCC_MSP430); 557 } 558 559 template<typename ArgT> 560 static void AnalyzeReturnValues(CCState &State, 561 SmallVectorImpl<CCValAssign> &RVLocs, 562 const SmallVectorImpl<ArgT> &Args) { 563 AnalyzeRetResult(State, Args); 564 } 565 566 SDValue MSP430TargetLowering::LowerFormalArguments( 567 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 568 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 569 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 570 571 switch (CallConv) { 572 default: 573 report_fatal_error("Unsupported calling convention"); 574 case CallingConv::C: 575 case CallingConv::Fast: 576 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); 577 case CallingConv::MSP430_INTR: 578 if (Ins.empty()) 579 return Chain; 580 report_fatal_error("ISRs cannot have arguments"); 581 } 582 } 583 584 SDValue 585 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 586 SmallVectorImpl<SDValue> &InVals) const { 587 SelectionDAG &DAG = CLI.DAG; 588 SDLoc &dl = CLI.DL; 589 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 590 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 591 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 592 SDValue Chain = CLI.Chain; 593 SDValue Callee = CLI.Callee; 594 bool &isTailCall = CLI.IsTailCall; 595 CallingConv::ID CallConv = CLI.CallConv; 596 bool isVarArg = CLI.IsVarArg; 597 598 // MSP430 target does not yet support tail call optimization. 599 isTailCall = false; 600 601 switch (CallConv) { 602 default: 603 report_fatal_error("Unsupported calling convention"); 604 case CallingConv::MSP430_BUILTIN: 605 case CallingConv::Fast: 606 case CallingConv::C: 607 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 608 Outs, OutVals, Ins, dl, DAG, InVals); 609 case CallingConv::MSP430_INTR: 610 report_fatal_error("ISRs cannot be called directly"); 611 } 612 } 613 614 /// LowerCCCArguments - transform physical registers into virtual registers and 615 /// generate load operations for arguments places on the stack. 616 // FIXME: struct return stuff 617 SDValue MSP430TargetLowering::LowerCCCArguments( 618 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 619 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 620 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 621 MachineFunction &MF = DAG.getMachineFunction(); 622 MachineFrameInfo &MFI = MF.getFrameInfo(); 623 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 624 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 625 626 // Assign locations to all of the incoming arguments. 627 SmallVector<CCValAssign, 16> ArgLocs; 628 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 629 *DAG.getContext()); 630 AnalyzeArguments(CCInfo, ArgLocs, Ins); 631 632 // Create frame index for the start of the first vararg value 633 if (isVarArg) { 634 unsigned Offset = CCInfo.getNextStackOffset(); 635 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true)); 636 } 637 638 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 639 CCValAssign &VA = ArgLocs[i]; 640 if (VA.isRegLoc()) { 641 // Arguments passed in registers 642 EVT RegVT = VA.getLocVT(); 643 switch (RegVT.getSimpleVT().SimpleTy) { 644 default: 645 { 646 #ifndef NDEBUG 647 errs() << "LowerFormalArguments Unhandled argument type: " 648 << RegVT.getEVTString() << "\n"; 649 #endif 650 llvm_unreachable(nullptr); 651 } 652 case MVT::i16: 653 Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass); 654 RegInfo.addLiveIn(VA.getLocReg(), VReg); 655 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 656 657 // If this is an 8-bit value, it is really passed promoted to 16 658 // bits. Insert an assert[sz]ext to capture this, then truncate to the 659 // right size. 660 if (VA.getLocInfo() == CCValAssign::SExt) 661 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 662 DAG.getValueType(VA.getValVT())); 663 else if (VA.getLocInfo() == CCValAssign::ZExt) 664 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 665 DAG.getValueType(VA.getValVT())); 666 667 if (VA.getLocInfo() != CCValAssign::Full) 668 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 669 670 InVals.push_back(ArgValue); 671 } 672 } else { 673 // Only arguments passed on the stack should make it here. 674 assert(VA.isMemLoc()); 675 676 SDValue InVal; 677 ISD::ArgFlagsTy Flags = Ins[i].Flags; 678 679 if (Flags.isByVal()) { 680 MVT PtrVT = VA.getLocVT(); 681 int FI = MFI.CreateFixedObject(Flags.getByValSize(), 682 VA.getLocMemOffset(), true); 683 InVal = DAG.getFrameIndex(FI, PtrVT); 684 } else { 685 // Load the argument to a virtual register 686 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 687 if (ObjSize > 2) { 688 errs() << "LowerFormalArguments Unhandled argument type: " 689 << EVT(VA.getLocVT()).getEVTString() 690 << "\n"; 691 } 692 // Create the frame index object for this incoming parameter... 693 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 694 695 // Create the SelectionDAG nodes corresponding to a load 696 //from this parameter 697 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16); 698 InVal = DAG.getLoad( 699 VA.getLocVT(), dl, Chain, FIN, 700 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 701 } 702 703 InVals.push_back(InVal); 704 } 705 } 706 707 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 708 if (Ins[i].Flags.isSRet()) { 709 Register Reg = FuncInfo->getSRetReturnReg(); 710 if (!Reg) { 711 Reg = MF.getRegInfo().createVirtualRegister( 712 getRegClassFor(MVT::i16)); 713 FuncInfo->setSRetReturnReg(Reg); 714 } 715 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]); 716 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 717 } 718 } 719 720 return Chain; 721 } 722 723 bool 724 MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv, 725 MachineFunction &MF, 726 bool IsVarArg, 727 const SmallVectorImpl<ISD::OutputArg> &Outs, 728 LLVMContext &Context) const { 729 SmallVector<CCValAssign, 16> RVLocs; 730 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 731 return CCInfo.CheckReturn(Outs, RetCC_MSP430); 732 } 733 734 SDValue 735 MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 736 bool isVarArg, 737 const SmallVectorImpl<ISD::OutputArg> &Outs, 738 const SmallVectorImpl<SDValue> &OutVals, 739 const SDLoc &dl, SelectionDAG &DAG) const { 740 741 MachineFunction &MF = DAG.getMachineFunction(); 742 743 // CCValAssign - represent the assignment of the return value to a location 744 SmallVector<CCValAssign, 16> RVLocs; 745 746 // ISRs cannot return any value. 747 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty()) 748 report_fatal_error("ISRs cannot return any value"); 749 750 // CCState - Info about the registers and stack slot. 751 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 752 *DAG.getContext()); 753 754 // Analize return values. 755 AnalyzeReturnValues(CCInfo, RVLocs, Outs); 756 757 SDValue Flag; 758 SmallVector<SDValue, 4> RetOps(1, Chain); 759 760 // Copy the result values into the output registers. 761 for (unsigned i = 0; i != RVLocs.size(); ++i) { 762 CCValAssign &VA = RVLocs[i]; 763 assert(VA.isRegLoc() && "Can only return in registers!"); 764 765 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 766 OutVals[i], Flag); 767 768 // Guarantee that all emitted copies are stuck together, 769 // avoiding something bad. 770 Flag = Chain.getValue(1); 771 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 772 } 773 774 if (MF.getFunction().hasStructRetAttr()) { 775 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 776 Register Reg = FuncInfo->getSRetReturnReg(); 777 778 if (!Reg) 779 llvm_unreachable("sret virtual register not created in entry block"); 780 781 MVT PtrVT = getFrameIndexTy(DAG.getDataLayout()); 782 SDValue Val = 783 DAG.getCopyFromReg(Chain, dl, Reg, PtrVT); 784 unsigned R12 = MSP430::R12; 785 786 Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Flag); 787 Flag = Chain.getValue(1); 788 RetOps.push_back(DAG.getRegister(R12, PtrVT)); 789 } 790 791 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ? 792 MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG); 793 794 RetOps[0] = Chain; // Update chain. 795 796 // Add the flag if we have it. 797 if (Flag.getNode()) 798 RetOps.push_back(Flag); 799 800 return DAG.getNode(Opc, dl, MVT::Other, RetOps); 801 } 802 803 /// LowerCCCCallTo - functions arguments are copied from virtual regs to 804 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 805 SDValue MSP430TargetLowering::LowerCCCCallTo( 806 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 807 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, 808 const SmallVectorImpl<SDValue> &OutVals, 809 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 810 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 811 // Analyze operands of the call, assigning locations to each operand. 812 SmallVector<CCValAssign, 16> ArgLocs; 813 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 814 *DAG.getContext()); 815 AnalyzeArguments(CCInfo, ArgLocs, Outs); 816 817 // Get a count of how many bytes are to be pushed on the stack. 818 unsigned NumBytes = CCInfo.getNextStackOffset(); 819 MVT PtrVT = getFrameIndexTy(DAG.getDataLayout()); 820 821 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 822 823 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 824 SmallVector<SDValue, 12> MemOpChains; 825 SDValue StackPtr; 826 827 // Walk the register/memloc assignments, inserting copies/loads. 828 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 829 CCValAssign &VA = ArgLocs[i]; 830 831 SDValue Arg = OutVals[i]; 832 833 // Promote the value if needed. 834 switch (VA.getLocInfo()) { 835 default: llvm_unreachable("Unknown loc info!"); 836 case CCValAssign::Full: break; 837 case CCValAssign::SExt: 838 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 839 break; 840 case CCValAssign::ZExt: 841 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 842 break; 843 case CCValAssign::AExt: 844 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 845 break; 846 } 847 848 // Arguments that can be passed on register must be kept at RegsToPass 849 // vector 850 if (VA.isRegLoc()) { 851 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 852 } else { 853 assert(VA.isMemLoc()); 854 855 if (!StackPtr.getNode()) 856 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT); 857 858 SDValue PtrOff = 859 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 860 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl)); 861 862 SDValue MemOp; 863 ISD::ArgFlagsTy Flags = Outs[i].Flags; 864 865 if (Flags.isByVal()) { 866 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16); 867 MemOp = DAG.getMemcpy( 868 Chain, dl, PtrOff, Arg, SizeNode, Flags.getNonZeroByValAlign(), 869 /*isVolatile*/ false, 870 /*AlwaysInline=*/true, 871 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo()); 872 } else { 873 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 874 } 875 876 MemOpChains.push_back(MemOp); 877 } 878 } 879 880 // Transform all store nodes into one single node because all store nodes are 881 // independent of each other. 882 if (!MemOpChains.empty()) 883 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 884 885 // Build a sequence of copy-to-reg nodes chained together with token chain and 886 // flag operands which copy the outgoing args into registers. The InFlag in 887 // necessary since all emitted instructions must be stuck together. 888 SDValue InFlag; 889 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 890 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 891 RegsToPass[i].second, InFlag); 892 InFlag = Chain.getValue(1); 893 } 894 895 // If the callee is a GlobalAddress node (quite common, every direct call is) 896 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 897 // Likewise ExternalSymbol -> TargetExternalSymbol. 898 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 899 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16); 900 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 901 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16); 902 903 // Returns a chain & a flag for retval copy to use. 904 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 905 SmallVector<SDValue, 8> Ops; 906 Ops.push_back(Chain); 907 Ops.push_back(Callee); 908 909 // Add argument registers to the end of the list so that they are 910 // known live into the call. 911 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 912 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 913 RegsToPass[i].second.getValueType())); 914 915 if (InFlag.getNode()) 916 Ops.push_back(InFlag); 917 918 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops); 919 InFlag = Chain.getValue(1); 920 921 // Create the CALLSEQ_END node. 922 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, dl); 923 InFlag = Chain.getValue(1); 924 925 // Handle result values, copying them out of physregs into vregs that we 926 // return. 927 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, 928 DAG, InVals); 929 } 930 931 /// LowerCallResult - Lower the result values of a call into the 932 /// appropriate copies out of appropriate physical registers. 933 /// 934 SDValue MSP430TargetLowering::LowerCallResult( 935 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 936 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 937 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 938 939 // Assign locations to each value returned by this call. 940 SmallVector<CCValAssign, 16> RVLocs; 941 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 942 *DAG.getContext()); 943 944 AnalyzeReturnValues(CCInfo, RVLocs, Ins); 945 946 // Copy all of the result registers out of their specified physreg. 947 for (unsigned i = 0; i != RVLocs.size(); ++i) { 948 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 949 RVLocs[i].getValVT(), InFlag).getValue(1); 950 InFlag = Chain.getValue(2); 951 InVals.push_back(Chain.getValue(0)); 952 } 953 954 return Chain; 955 } 956 957 SDValue MSP430TargetLowering::LowerShifts(SDValue Op, 958 SelectionDAG &DAG) const { 959 unsigned Opc = Op.getOpcode(); 960 SDNode* N = Op.getNode(); 961 EVT VT = Op.getValueType(); 962 SDLoc dl(N); 963 964 // Expand non-constant shifts to loops: 965 if (!isa<ConstantSDNode>(N->getOperand(1))) 966 return Op; 967 968 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 969 970 // Expand the stuff into sequence of shifts. 971 SDValue Victim = N->getOperand(0); 972 973 if (ShiftAmount >= 8) { 974 assert(VT == MVT::i16 && "Can not shift i8 by 8 and more"); 975 switch(Opc) { 976 default: 977 llvm_unreachable("Unknown shift"); 978 case ISD::SHL: 979 // foo << (8 + N) => swpb(zext(foo)) << N 980 Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8); 981 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim); 982 break; 983 case ISD::SRA: 984 case ISD::SRL: 985 // foo >> (8 + N) => sxt(swpb(foo)) >> N 986 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim); 987 Victim = (Opc == ISD::SRA) 988 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim, 989 DAG.getValueType(MVT::i8)) 990 : DAG.getZeroExtendInReg(Victim, dl, MVT::i8); 991 break; 992 } 993 ShiftAmount -= 8; 994 } 995 996 if (Opc == ISD::SRL && ShiftAmount) { 997 // Emit a special goodness here: 998 // srl A, 1 => clrc; rrc A 999 Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim); 1000 ShiftAmount -= 1; 1001 } 1002 1003 while (ShiftAmount--) 1004 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA), 1005 dl, VT, Victim); 1006 1007 return Victim; 1008 } 1009 1010 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op, 1011 SelectionDAG &DAG) const { 1012 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 1013 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 1014 EVT PtrVT = Op.getValueType(); 1015 1016 // Create the TargetGlobalAddress node, folding in the constant offset. 1017 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset); 1018 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result); 1019 } 1020 1021 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op, 1022 SelectionDAG &DAG) const { 1023 SDLoc dl(Op); 1024 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 1025 EVT PtrVT = Op.getValueType(); 1026 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT); 1027 1028 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result); 1029 } 1030 1031 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op, 1032 SelectionDAG &DAG) const { 1033 SDLoc dl(Op); 1034 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1035 EVT PtrVT = Op.getValueType(); 1036 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT); 1037 1038 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result); 1039 } 1040 1041 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC, 1042 ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) { 1043 // FIXME: Handle bittests someday 1044 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet"); 1045 1046 // FIXME: Handle jump negative someday 1047 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID; 1048 switch (CC) { 1049 default: llvm_unreachable("Invalid integer condition!"); 1050 case ISD::SETEQ: 1051 TCC = MSP430CC::COND_E; // aka COND_Z 1052 // Minor optimization: if LHS is a constant, swap operands, then the 1053 // constant can be folded into comparison. 1054 if (LHS.getOpcode() == ISD::Constant) 1055 std::swap(LHS, RHS); 1056 break; 1057 case ISD::SETNE: 1058 TCC = MSP430CC::COND_NE; // aka COND_NZ 1059 // Minor optimization: if LHS is a constant, swap operands, then the 1060 // constant can be folded into comparison. 1061 if (LHS.getOpcode() == ISD::Constant) 1062 std::swap(LHS, RHS); 1063 break; 1064 case ISD::SETULE: 1065 std::swap(LHS, RHS); 1066 [[fallthrough]]; 1067 case ISD::SETUGE: 1068 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to 1069 // fold constant into instruction. 1070 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 1071 LHS = RHS; 1072 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 1073 TCC = MSP430CC::COND_LO; 1074 break; 1075 } 1076 TCC = MSP430CC::COND_HS; // aka COND_C 1077 break; 1078 case ISD::SETUGT: 1079 std::swap(LHS, RHS); 1080 [[fallthrough]]; 1081 case ISD::SETULT: 1082 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to 1083 // fold constant into instruction. 1084 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 1085 LHS = RHS; 1086 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 1087 TCC = MSP430CC::COND_HS; 1088 break; 1089 } 1090 TCC = MSP430CC::COND_LO; // aka COND_NC 1091 break; 1092 case ISD::SETLE: 1093 std::swap(LHS, RHS); 1094 [[fallthrough]]; 1095 case ISD::SETGE: 1096 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to 1097 // fold constant into instruction. 1098 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 1099 LHS = RHS; 1100 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 1101 TCC = MSP430CC::COND_L; 1102 break; 1103 } 1104 TCC = MSP430CC::COND_GE; 1105 break; 1106 case ISD::SETGT: 1107 std::swap(LHS, RHS); 1108 [[fallthrough]]; 1109 case ISD::SETLT: 1110 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to 1111 // fold constant into instruction. 1112 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 1113 LHS = RHS; 1114 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 1115 TCC = MSP430CC::COND_GE; 1116 break; 1117 } 1118 TCC = MSP430CC::COND_L; 1119 break; 1120 } 1121 1122 TargetCC = DAG.getConstant(TCC, dl, MVT::i8); 1123 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS); 1124 } 1125 1126 1127 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 1128 SDValue Chain = Op.getOperand(0); 1129 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 1130 SDValue LHS = Op.getOperand(2); 1131 SDValue RHS = Op.getOperand(3); 1132 SDValue Dest = Op.getOperand(4); 1133 SDLoc dl (Op); 1134 1135 SDValue TargetCC; 1136 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 1137 1138 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(), 1139 Chain, Dest, TargetCC, Flag); 1140 } 1141 1142 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1143 SDValue LHS = Op.getOperand(0); 1144 SDValue RHS = Op.getOperand(1); 1145 SDLoc dl (Op); 1146 1147 // If we are doing an AND and testing against zero, then the CMP 1148 // will not be generated. The AND (or BIT) will generate the condition codes, 1149 // but they are different from CMP. 1150 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so 1151 // lowering & isel wouldn't diverge. 1152 bool andCC = false; 1153 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 1154 if (RHSC->isZero() && LHS.hasOneUse() && 1155 (LHS.getOpcode() == ISD::AND || 1156 (LHS.getOpcode() == ISD::TRUNCATE && 1157 LHS.getOperand(0).getOpcode() == ISD::AND))) { 1158 andCC = true; 1159 } 1160 } 1161 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1162 SDValue TargetCC; 1163 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 1164 1165 // Get the condition codes directly from the status register, if its easy. 1166 // Otherwise a branch will be generated. Note that the AND and BIT 1167 // instructions generate different flags than CMP, the carry bit can be used 1168 // for NE/EQ. 1169 bool Invert = false; 1170 bool Shift = false; 1171 bool Convert = true; 1172 switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) { 1173 default: 1174 Convert = false; 1175 break; 1176 case MSP430CC::COND_HS: 1177 // Res = SR & 1, no processing is required 1178 break; 1179 case MSP430CC::COND_LO: 1180 // Res = ~(SR & 1) 1181 Invert = true; 1182 break; 1183 case MSP430CC::COND_NE: 1184 if (andCC) { 1185 // C = ~Z, thus Res = SR & 1, no processing is required 1186 } else { 1187 // Res = ~((SR >> 1) & 1) 1188 Shift = true; 1189 Invert = true; 1190 } 1191 break; 1192 case MSP430CC::COND_E: 1193 Shift = true; 1194 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however, 1195 // Res = (SR >> 1) & 1 is 1 word shorter. 1196 break; 1197 } 1198 EVT VT = Op.getValueType(); 1199 SDValue One = DAG.getConstant(1, dl, VT); 1200 if (Convert) { 1201 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR, 1202 MVT::i16, Flag); 1203 if (Shift) 1204 // FIXME: somewhere this is turned into a SRL, lower it MSP specific? 1205 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One); 1206 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One); 1207 if (Invert) 1208 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One); 1209 return SR; 1210 } else { 1211 SDValue Zero = DAG.getConstant(0, dl, VT); 1212 SDValue Ops[] = {One, Zero, TargetCC, Flag}; 1213 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops); 1214 } 1215 } 1216 1217 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op, 1218 SelectionDAG &DAG) const { 1219 SDValue LHS = Op.getOperand(0); 1220 SDValue RHS = Op.getOperand(1); 1221 SDValue TrueV = Op.getOperand(2); 1222 SDValue FalseV = Op.getOperand(3); 1223 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 1224 SDLoc dl (Op); 1225 1226 SDValue TargetCC; 1227 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 1228 1229 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag}; 1230 1231 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops); 1232 } 1233 1234 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op, 1235 SelectionDAG &DAG) const { 1236 SDValue Val = Op.getOperand(0); 1237 EVT VT = Op.getValueType(); 1238 SDLoc dl(Op); 1239 1240 assert(VT == MVT::i16 && "Only support i16 for now!"); 1241 1242 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 1243 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val), 1244 DAG.getValueType(Val.getValueType())); 1245 } 1246 1247 SDValue 1248 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { 1249 MachineFunction &MF = DAG.getMachineFunction(); 1250 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1251 int ReturnAddrIndex = FuncInfo->getRAIndex(); 1252 MVT PtrVT = getFrameIndexTy(MF.getDataLayout()); 1253 1254 if (ReturnAddrIndex == 0) { 1255 // Set up a frame object for the return address. 1256 uint64_t SlotSize = PtrVT.getStoreSize(); 1257 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize, 1258 true); 1259 FuncInfo->setRAIndex(ReturnAddrIndex); 1260 } 1261 1262 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT); 1263 } 1264 1265 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op, 1266 SelectionDAG &DAG) const { 1267 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1268 MFI.setReturnAddressIsTaken(true); 1269 1270 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1271 return SDValue(); 1272 1273 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1274 SDLoc dl(Op); 1275 EVT PtrVT = Op.getValueType(); 1276 1277 if (Depth > 0) { 1278 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1279 SDValue Offset = 1280 DAG.getConstant(PtrVT.getStoreSize(), dl, MVT::i16); 1281 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 1282 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 1283 MachinePointerInfo()); 1284 } 1285 1286 // Just load the return address. 1287 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 1288 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 1289 MachinePointerInfo()); 1290 } 1291 1292 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op, 1293 SelectionDAG &DAG) const { 1294 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1295 MFI.setFrameAddressIsTaken(true); 1296 1297 EVT VT = Op.getValueType(); 1298 SDLoc dl(Op); // FIXME probably not meaningful 1299 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1300 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 1301 MSP430::R4, VT); 1302 while (Depth--) 1303 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 1304 MachinePointerInfo()); 1305 return FrameAddr; 1306 } 1307 1308 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op, 1309 SelectionDAG &DAG) const { 1310 MachineFunction &MF = DAG.getMachineFunction(); 1311 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1312 1313 SDValue Ptr = Op.getOperand(1); 1314 EVT PtrVT = Ptr.getValueType(); 1315 1316 // Frame index of first vararg argument 1317 SDValue FrameIndex = 1318 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1319 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1320 1321 // Create a store of the frame index to the location operand 1322 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Ptr, 1323 MachinePointerInfo(SV)); 1324 } 1325 1326 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op, 1327 SelectionDAG &DAG) const { 1328 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1329 EVT PtrVT = Op.getValueType(); 1330 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1331 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result); 1332 } 1333 1334 /// getPostIndexedAddressParts - returns true by value, base pointer and 1335 /// offset pointer and addressing mode by reference if this node can be 1336 /// combined with a load / store to form a post-indexed load / store. 1337 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 1338 SDValue &Base, 1339 SDValue &Offset, 1340 ISD::MemIndexedMode &AM, 1341 SelectionDAG &DAG) const { 1342 1343 LoadSDNode *LD = cast<LoadSDNode>(N); 1344 if (LD->getExtensionType() != ISD::NON_EXTLOAD) 1345 return false; 1346 1347 EVT VT = LD->getMemoryVT(); 1348 if (VT != MVT::i8 && VT != MVT::i16) 1349 return false; 1350 1351 if (Op->getOpcode() != ISD::ADD) 1352 return false; 1353 1354 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 1355 uint64_t RHSC = RHS->getZExtValue(); 1356 if ((VT == MVT::i16 && RHSC != 2) || 1357 (VT == MVT::i8 && RHSC != 1)) 1358 return false; 1359 1360 Base = Op->getOperand(0); 1361 Offset = DAG.getConstant(RHSC, SDLoc(N), VT); 1362 AM = ISD::POST_INC; 1363 return true; 1364 } 1365 1366 return false; 1367 } 1368 1369 1370 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const { 1371 switch ((MSP430ISD::NodeType)Opcode) { 1372 case MSP430ISD::FIRST_NUMBER: break; 1373 case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG"; 1374 case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG"; 1375 case MSP430ISD::RRA: return "MSP430ISD::RRA"; 1376 case MSP430ISD::RLA: return "MSP430ISD::RLA"; 1377 case MSP430ISD::RRC: return "MSP430ISD::RRC"; 1378 case MSP430ISD::RRCL: return "MSP430ISD::RRCL"; 1379 case MSP430ISD::CALL: return "MSP430ISD::CALL"; 1380 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper"; 1381 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC"; 1382 case MSP430ISD::CMP: return "MSP430ISD::CMP"; 1383 case MSP430ISD::SETCC: return "MSP430ISD::SETCC"; 1384 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC"; 1385 case MSP430ISD::DADD: return "MSP430ISD::DADD"; 1386 } 1387 return nullptr; 1388 } 1389 1390 bool MSP430TargetLowering::isTruncateFree(Type *Ty1, 1391 Type *Ty2) const { 1392 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 1393 return false; 1394 1395 return (Ty1->getPrimitiveSizeInBits().getFixedValue() > 1396 Ty2->getPrimitiveSizeInBits().getFixedValue()); 1397 } 1398 1399 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 1400 if (!VT1.isInteger() || !VT2.isInteger()) 1401 return false; 1402 1403 return (VT1.getFixedSizeInBits() > VT2.getFixedSizeInBits()); 1404 } 1405 1406 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 1407 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1408 return false && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16); 1409 } 1410 1411 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 1412 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1413 return false && VT1 == MVT::i8 && VT2 == MVT::i16; 1414 } 1415 1416 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1417 return isZExtFree(Val.getValueType(), VT2); 1418 } 1419 1420 //===----------------------------------------------------------------------===// 1421 // Other Lowering Code 1422 //===----------------------------------------------------------------------===// 1423 1424 MachineBasicBlock * 1425 MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI, 1426 MachineBasicBlock *BB) const { 1427 MachineFunction *F = BB->getParent(); 1428 MachineRegisterInfo &RI = F->getRegInfo(); 1429 DebugLoc dl = MI.getDebugLoc(); 1430 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo(); 1431 1432 unsigned Opc; 1433 bool ClearCarry = false; 1434 const TargetRegisterClass * RC; 1435 switch (MI.getOpcode()) { 1436 default: llvm_unreachable("Invalid shift opcode!"); 1437 case MSP430::Shl8: 1438 Opc = MSP430::ADD8rr; 1439 RC = &MSP430::GR8RegClass; 1440 break; 1441 case MSP430::Shl16: 1442 Opc = MSP430::ADD16rr; 1443 RC = &MSP430::GR16RegClass; 1444 break; 1445 case MSP430::Sra8: 1446 Opc = MSP430::RRA8r; 1447 RC = &MSP430::GR8RegClass; 1448 break; 1449 case MSP430::Sra16: 1450 Opc = MSP430::RRA16r; 1451 RC = &MSP430::GR16RegClass; 1452 break; 1453 case MSP430::Srl8: 1454 ClearCarry = true; 1455 Opc = MSP430::RRC8r; 1456 RC = &MSP430::GR8RegClass; 1457 break; 1458 case MSP430::Srl16: 1459 ClearCarry = true; 1460 Opc = MSP430::RRC16r; 1461 RC = &MSP430::GR16RegClass; 1462 break; 1463 case MSP430::Rrcl8: 1464 case MSP430::Rrcl16: { 1465 BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR) 1466 .addReg(MSP430::SR).addImm(1); 1467 Register SrcReg = MI.getOperand(1).getReg(); 1468 Register DstReg = MI.getOperand(0).getReg(); 1469 unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16 1470 ? MSP430::RRC16r : MSP430::RRC8r; 1471 BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg) 1472 .addReg(SrcReg); 1473 MI.eraseFromParent(); // The pseudo instruction is gone now. 1474 return BB; 1475 } 1476 } 1477 1478 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1479 MachineFunction::iterator I = ++BB->getIterator(); 1480 1481 // Create loop block 1482 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); 1483 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); 1484 1485 F->insert(I, LoopBB); 1486 F->insert(I, RemBB); 1487 1488 // Update machine-CFG edges by transferring all successors of the current 1489 // block to the block containing instructions after shift. 1490 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), 1491 BB->end()); 1492 RemBB->transferSuccessorsAndUpdatePHIs(BB); 1493 1494 // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB 1495 BB->addSuccessor(LoopBB); 1496 BB->addSuccessor(RemBB); 1497 LoopBB->addSuccessor(RemBB); 1498 LoopBB->addSuccessor(LoopBB); 1499 1500 Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass); 1501 Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass); 1502 Register ShiftReg = RI.createVirtualRegister(RC); 1503 Register ShiftReg2 = RI.createVirtualRegister(RC); 1504 Register ShiftAmtSrcReg = MI.getOperand(2).getReg(); 1505 Register SrcReg = MI.getOperand(1).getReg(); 1506 Register DstReg = MI.getOperand(0).getReg(); 1507 1508 // BB: 1509 // cmp 0, N 1510 // je RemBB 1511 BuildMI(BB, dl, TII.get(MSP430::CMP8ri)) 1512 .addReg(ShiftAmtSrcReg).addImm(0); 1513 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1514 .addMBB(RemBB) 1515 .addImm(MSP430CC::COND_E); 1516 1517 // LoopBB: 1518 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] 1519 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] 1520 // ShiftReg2 = shift ShiftReg 1521 // ShiftAmt2 = ShiftAmt - 1; 1522 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg) 1523 .addReg(SrcReg).addMBB(BB) 1524 .addReg(ShiftReg2).addMBB(LoopBB); 1525 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg) 1526 .addReg(ShiftAmtSrcReg).addMBB(BB) 1527 .addReg(ShiftAmtReg2).addMBB(LoopBB); 1528 if (ClearCarry) 1529 BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR) 1530 .addReg(MSP430::SR).addImm(1); 1531 if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr) 1532 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2) 1533 .addReg(ShiftReg) 1534 .addReg(ShiftReg); 1535 else 1536 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2) 1537 .addReg(ShiftReg); 1538 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2) 1539 .addReg(ShiftAmtReg).addImm(1); 1540 BuildMI(LoopBB, dl, TII.get(MSP430::JCC)) 1541 .addMBB(LoopBB) 1542 .addImm(MSP430CC::COND_NE); 1543 1544 // RemBB: 1545 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] 1546 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg) 1547 .addReg(SrcReg).addMBB(BB) 1548 .addReg(ShiftReg2).addMBB(LoopBB); 1549 1550 MI.eraseFromParent(); // The pseudo instruction is gone now. 1551 return RemBB; 1552 } 1553 1554 MachineBasicBlock * 1555 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1556 MachineBasicBlock *BB) const { 1557 unsigned Opc = MI.getOpcode(); 1558 1559 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 || 1560 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 || 1561 Opc == MSP430::Srl8 || Opc == MSP430::Srl16 || 1562 Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16) 1563 return EmitShiftInstr(MI, BB); 1564 1565 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1566 DebugLoc dl = MI.getDebugLoc(); 1567 1568 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) && 1569 "Unexpected instr type to insert"); 1570 1571 // To "insert" a SELECT instruction, we actually have to insert the diamond 1572 // control-flow pattern. The incoming instruction knows the destination vreg 1573 // to set, the condition code register to branch on, the true/false values to 1574 // select between, and a branch opcode to use. 1575 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1576 MachineFunction::iterator I = ++BB->getIterator(); 1577 1578 // thisMBB: 1579 // ... 1580 // TrueVal = ... 1581 // cmpTY ccX, r1, r2 1582 // jCC copy1MBB 1583 // fallthrough --> copy0MBB 1584 MachineBasicBlock *thisMBB = BB; 1585 MachineFunction *F = BB->getParent(); 1586 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1587 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); 1588 F->insert(I, copy0MBB); 1589 F->insert(I, copy1MBB); 1590 // Update machine-CFG edges by transferring all successors of the current 1591 // block to the new block which will contain the Phi node for the select. 1592 copy1MBB->splice(copy1MBB->begin(), BB, 1593 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1594 copy1MBB->transferSuccessorsAndUpdatePHIs(BB); 1595 // Next, add the true and fallthrough blocks as its successors. 1596 BB->addSuccessor(copy0MBB); 1597 BB->addSuccessor(copy1MBB); 1598 1599 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1600 .addMBB(copy1MBB) 1601 .addImm(MI.getOperand(3).getImm()); 1602 1603 // copy0MBB: 1604 // %FalseValue = ... 1605 // # fallthrough to copy1MBB 1606 BB = copy0MBB; 1607 1608 // Update machine-CFG edges 1609 BB->addSuccessor(copy1MBB); 1610 1611 // copy1MBB: 1612 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1613 // ... 1614 BB = copy1MBB; 1615 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg()) 1616 .addReg(MI.getOperand(2).getReg()) 1617 .addMBB(copy0MBB) 1618 .addReg(MI.getOperand(1).getReg()) 1619 .addMBB(thisMBB); 1620 1621 MI.eraseFromParent(); // The pseudo instruction is gone now. 1622 return BB; 1623 } 1624