xref: /freebsd/contrib/llvm-project/llvm/lib/Target/M68k/M68kInstrArithmetic.td (revision 4d3fc8b0570b29fb0d6ee9525f104d52176ff0d4)
1//===-- M68kInstrArithmetic.td - Integer Arith Instrs ------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file describes the integer arithmetic instructions in the M68k
11/// architecture. Here is the current status of the file:
12///
13///  Machine:
14///
15///    ADD       [~]   ADDA      [~]   ADDI        [~]   ADDQ [ ]   ADDX [~]
16///    CLR       [ ]   CMP       [~]   CMPA        [~]   CMPI [~]   CMPM [ ]
17///    CMP2      [ ]   DIVS/DIVU [~]   DIVSL/DIVUL [ ]   EXT  [~]   EXTB [ ]
18///    MULS/MULU [~]   NEG       [~]   NEGX        [~]   SUB  [~]   SUBA [~]
19///    SUBI      [~]   SUBQ      [ ]   SUBX        [~]
20///
21///  Map:
22///
23///   [ ] - was not touched at all
24///   [!] - requires extarnal stuff implemented
25///   [~] - functional implementation
26///   [X] - complete implementation
27///
28//===----------------------------------------------------------------------===//
29
30//===----------------------------------------------------------------------===//
31// OPMODE Encoding
32//===----------------------------------------------------------------------===//
33class MxOpModeEncoding<bits<3> encoding> {
34  bits<3> Value = encoding;
35}
36
37// op EA, Dn
38def MxOpMode8_d_EA  : MxOpModeEncoding<0b000>;
39def MxOpMode16_d_EA : MxOpModeEncoding<0b001>;
40def MxOpMode32_d_EA : MxOpModeEncoding<0b010>;
41
42// op Dn, EA
43def MxOpMode8_EA_d  : MxOpModeEncoding<0b100>;
44def MxOpMode16_EA_d : MxOpModeEncoding<0b101>;
45def MxOpMode32_EA_d : MxOpModeEncoding<0b110>;
46
47// op EA, An
48def MxOpMode16_a_EA : MxOpModeEncoding<0b011>;
49def MxOpMode32_a_EA : MxOpModeEncoding<0b111>;
50
51
52//===----------------------------------------------------------------------===//
53// Encoding
54//===----------------------------------------------------------------------===//
55
56let Defs = [CCR] in {
57let Constraints = "$src = $dst" in {
58
59/// Encoding for Normal forms
60/// ----------------------------------------------------
61///  F  E  D  C | B  A  9 | 8  7  6 | 5  4  3 | 2  1  0
62/// ----------------------------------------------------
63///             |         |         | EFFECTIVE ADDRESS
64///  x  x  x  x |   REG   | OP MODE |   MODE  |   REG
65/// ----------------------------------------------------
66
67// $reg, $ccr <- $reg op $reg
68class MxBiArOp_R_RR_xEA<string MN, SDNode NODE, MxType DST_TYPE, MxType SRC_TYPE,
69                        bits<4> CMD>
70    : MxInst<(outs DST_TYPE.ROp:$dst), (ins DST_TYPE.ROp:$src, SRC_TYPE.ROp:$opd),
71             MN#"."#DST_TYPE.Prefix#"\t$opd, $dst",
72             [(set DST_TYPE.VT:$dst, CCR, (NODE DST_TYPE.VT:$src, SRC_TYPE.VT:$opd))]> {
73  let Inst = (descend
74    CMD, (operand "$dst", 3),
75    !cast<MxOpModeEncoding>("MxOpMode"#DST_TYPE.Size#"_"#DST_TYPE.RLet#"_EA").Value,
76    !cond(
77      !eq(SRC_TYPE.RLet, "r") : (descend 0b00, (operand "$opd", 4)),
78      !eq(SRC_TYPE.RLet, "d") : (descend 0b000, (operand "$opd", 3))
79    )
80  );
81}
82
83/// This Op is similar to the one above except it uses reversed opmode, some
84/// commands(e.g. eor) do not support dEA or rEA modes and require EAd for
85/// register only operations.
86/// NOTE when using dd commands it is irrelevant which opmode to use(as it seems)
87/// but some opcodes support address register and some do not which creates this
88/// mess.
89class MxBiArOp_R_RR_EAd<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
90    : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd),
91             MN#"."#TYPE.Prefix#"\t$opd, $dst",
92             [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd))]> {
93  let Inst = (descend
94    CMD, (operand "$opd", 3),
95    !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_EA_"#TYPE.RLet).Value,
96    /*Destination can only be a data register*/
97    /*MODE*/0b000,
98    /*REGISTER*/(operand "$dst", 3));
99}
100
101let mayLoad = 1 in
102class MxBiArOp_R_RM<string MN, SDNode NODE, MxType TYPE, MxOperand OPD, ComplexPattern PAT,
103                    bits<4> CMD, MxEncMemOp SRC_ENC>
104    : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, OPD:$opd),
105             MN#"."#TYPE.Prefix#"\t$opd, $dst",
106             [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, (TYPE.Load PAT:$opd)))]> {
107  let Inst = (ascend
108    (descend CMD, (operand "$dst", 3),
109             !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_"#TYPE.RLet#"_EA").Value,
110             SRC_ENC.EA),
111    SRC_ENC.Supplement
112  );
113}
114
115/// Encoding for Immediate forms
116/// ---------------------------------------------------
117///  F  E  D  C  B  A  9  8 | 7  6 | 5  4  3 | 2  1  0
118/// ---------------------------------------------------
119///                         |      | EFFECTIVE ADDRESS
120///  x  x  x  x  x  x  x  x | SIZE |   MODE  |   REG
121/// ---------------------------------------------------
122///     16-BIT WORD DATA    |     8-BIT BYTE DATA
123/// ---------------------------------------------------
124///                 32-BIT LONG DATA
125/// ---------------------------------------------------
126/// NOTE It is used to store an immediate to memory, imm-to-reg are handled with
127/// normal version
128
129// $reg <- $reg op $imm
130class MxBiArOp_R_RI_xEA<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
131    : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.IOp:$opd),
132             MN#"."#TYPE.Prefix#"\t$opd, $dst",
133             [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.IPat:$opd))]> {
134  let Inst = (ascend
135    (descend CMD, (operand "$dst", 3),
136             !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_"#TYPE.RLet#"_EA").Value,
137             MxEncAddrMode_i<"opd", TYPE.Size>.EA),
138    MxEncAddrMode_i<"opd", TYPE.Size>.Supplement
139  );
140}
141
142// Again, there are two ways to write an immediate to Dn register either dEA
143// opmode or using *I encoding, and again some instructions also support address
144// registers some do not.
145class MxBiArOp_R_RI<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
146    : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.IOp:$opd),
147             MN#"i."#TYPE.Prefix#"\t$opd, $dst",
148             [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.IPat:$opd))]> {
149  let Inst = (ascend
150    (descend 0b0000, CMD,
151             !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value,
152             // The destination cannot be address register, so it's always
153             // the MODE for data register direct mode.
154             /*MODE*/0b000,
155             /*REGISTER*/(operand "$dst", 3)),
156    // Source (i.e. immediate value) encoding
157    MxEncAddrMode_i<"opd", TYPE.Size>.Supplement
158  );
159}
160} // Constraints
161
162let mayLoad = 1, mayStore = 1 in {
163
164// FIXME MxBiArOp_FMR/FMI cannot consume CCR from MxAdd/MxSub which leads for
165// MxAdd to survive the match and subsequent mismatch.
166class MxBiArOp_MR<string MN, MxType TYPE,
167                  MxOperand MEMOpd, bits<4> CMD, MxEncMemOp DST_ENC>
168    : MxInst<(outs), (ins MEMOpd:$dst, TYPE.ROp:$opd),
169             MN#"."#TYPE.Prefix#"\t$opd, $dst", []> {
170  let Inst = (ascend
171    (descend CMD, (operand "$opd", 3),
172             !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_EA_"#TYPE.RLet).Value,
173             DST_ENC.EA),
174    DST_ENC.Supplement
175  );
176}
177
178class MxBiArOp_MI<string MN, MxType TYPE,
179                  MxOperand MEMOpd, bits<4> CMD, MxEncMemOp DST_ENC>
180    : MxInst<(outs), (ins MEMOpd:$dst, TYPE.IOp:$opd),
181             MN#"."#TYPE.Prefix#"\t$opd, $dst", []> {
182  let Inst = (ascend
183    (descend 0b0000, CMD,
184             !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value,
185             DST_ENC.EA),
186    // Source (i.e. immediate value) encoding
187    MxEncAddrMode_i<"opd", TYPE.Size>.Supplement,
188    // Destination encoding
189    DST_ENC.Supplement
190  );
191}
192} // mayLoad, mayStore
193} // Defs = [CCR]
194
195multiclass MxBiArOp_DF<string MN, SDNode NODE, bit isComm,
196                       bits<4> CMD, bits<4> CMDI> {
197
198  foreach SZ = [8, 16, 32] in {
199    // op $mem, $reg
200    def NAME#SZ#"dk"  : MxBiArOp_R_RM<MN, NODE,
201                                      !cast<MxType>("MxType"#SZ#"d"),
202                                      !cast<MxType>("MxType"#SZ).KOp,
203                                      !cast<MxType>("MxType"#SZ).KPat,
204                                      CMD, MxEncAddrMode_k<"opd">>;
205
206    def NAME#SZ#"dq"  : MxBiArOp_R_RM<MN, NODE,
207                                      !cast<MxType>("MxType"#SZ#"d"),
208                                      !cast<MxType>("MxType"#SZ).QOp,
209                                      !cast<MxType>("MxType"#SZ).QPat,
210                                      CMD, MxEncAddrMode_q<"opd">>;
211
212    def NAME#SZ#"dp"  : MxBiArOp_R_RM<MN, NODE,
213                                      !cast<MxType>("MxType"#SZ#"d"),
214                                      !cast<MxType>("MxType"#SZ).POp,
215                                      !cast<MxType>("MxType"#SZ).PPat,
216                                      CMD, MxEncAddrMode_p<"opd">>;
217
218    def NAME#SZ#"df"  : MxBiArOp_R_RM<MN, NODE,
219                                      !cast<MxType>("MxType"#SZ#"d"),
220                                      !cast<MxType>("MxType"#SZ).FOp,
221                                      !cast<MxType>("MxType"#SZ).FPat,
222                                      CMD, MxEncAddrMode_f<"opd">>;
223
224    def NAME#SZ#"dj"  : MxBiArOp_R_RM<MN, NODE,
225                                      !cast<MxType>("MxType"#SZ#"d"),
226                                      !cast<MxType>("MxType"#SZ).JOp,
227                                      !cast<MxType>("MxType"#SZ).JPat,
228                                      CMD, MxEncAddrMode_j<"opd">>;
229    // op $imm, $reg
230    def NAME#SZ#"di"  : MxBiArOp_R_RI_xEA<MN, NODE,
231                                          !cast<MxType>("MxType"#SZ#"d"),
232                                          CMD>;
233    // op $reg, $mem
234    def NAME#SZ#"pd"  : MxBiArOp_MR<MN,
235                                    !cast<MxType>("MxType"#SZ#"d"),
236                                    !cast<MxType>("MxType"#SZ).POp,
237                                    CMD, MxEncAddrMode_p<"dst">>;
238
239    def NAME#SZ#"fd"  : MxBiArOp_MR<MN,
240                                    !cast<MxType>("MxType"#SZ#"d"),
241                                    !cast<MxType>("MxType"#SZ).FOp,
242                                    CMD, MxEncAddrMode_f<"dst">>;
243
244    def NAME#SZ#"jd"  : MxBiArOp_MR<MN,
245                                    !cast<MxType>("MxType"#SZ#"d"),
246                                    !cast<MxType>("MxType"#SZ).JOp,
247                                    CMD, MxEncAddrMode_j<"dst">>;
248    // op $imm, $mem
249    def NAME#SZ#"pi"  : MxBiArOp_MI<MN,
250                                    !cast<MxType>("MxType"#SZ),
251                                    !cast<MxType>("MxType"#SZ).POp,
252                                    CMDI, MxEncAddrMode_p<"dst">>;
253
254    def NAME#SZ#"fi"  : MxBiArOp_MI<MN,
255                                    !cast<MxType>("MxType"#SZ),
256                                    !cast<MxType>("MxType"#SZ).FOp,
257                                    CMDI, MxEncAddrMode_f<"dst">>;
258
259    def NAME#SZ#"ji"  : MxBiArOp_MI<MN,
260                                    !cast<MxType>("MxType"#SZ),
261                                    !cast<MxType>("MxType"#SZ).JOp,
262                                    CMDI, MxEncAddrMode_j<"dst">>;
263    // op $reg, $reg
264    let isCommutable = isComm in
265    def NAME#SZ#"dd" : MxBiArOp_R_RR_xEA<MN, NODE,
266                                         !cast<MxType>("MxType"#SZ#"d"),
267                                         !cast<MxType>("MxType"#SZ#"d"),
268                                         CMD>;
269  } // foreach SZ
270
271  foreach SZ = [16, 32] in
272  def NAME#SZ#"dr" : MxBiArOp_R_RR_xEA<MN, NODE,
273                                       !cast<MxType>("MxType"#SZ#"d"),
274                                       !cast<MxType>("MxType"#SZ#"r"),
275                                       CMD>;
276
277} // MxBiArOp_DF
278
279
280// These special snowflakes allowed to match address registers but since *A
281// operations do not produce CCR we should not match them against Mx nodes that
282// produce it.
283let Pattern = [(null_frag)] in
284multiclass MxBiArOp_AF<string MN, SDNode NODE, bits<4> CMD> {
285
286  def NAME#"32ak" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.KOp, MxType32.KPat,
287                                  CMD, MxEncAddrMode_k<"opd">>;
288  def NAME#"32aq" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.QOp, MxType32.QPat,
289                                  CMD, MxEncAddrMode_q<"opd">>;
290  def NAME#"32af" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.FOp, MxType32.FPat,
291                                  CMD, MxEncAddrMode_f<"opd">>;
292  def NAME#"32ap" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.POp, MxType32.PPat,
293                                  CMD, MxEncAddrMode_p<"opd">>;
294  def NAME#"32aj" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.JOp, MxType32.JPat,
295                                  CMD, MxEncAddrMode_j<"opd">>;
296  def NAME#"32ai" : MxBiArOp_R_RI_xEA<MN, NODE, MxType32a, CMD>;
297
298  def NAME#"32ar" : MxBiArOp_R_RR_xEA<MN, NODE, MxType32a, MxType32r, CMD>;
299
300} // MxBiArOp_AF
301
302// NOTE These naturally produce CCR
303
304//===----------------------------------------------------------------------===//
305// Add/Sub
306//===----------------------------------------------------------------------===//
307
308defm ADD : MxBiArOp_DF<"add",  MxAdd, 1, 0xD, 0x6>;
309defm ADD : MxBiArOp_AF<"adda", MxAdd, 0xD>;
310defm SUB : MxBiArOp_DF<"sub",  MxSub, 0, 0x9, 0x4>;
311defm SUB : MxBiArOp_AF<"suba", MxSub, 0x9>;
312
313
314let Uses = [CCR], Defs = [CCR] in {
315let Constraints = "$src = $dst" in {
316
317/// Encoding for Extended forms
318/// ------------------------------------------------------
319///  F  E  D  C | B  A  9 | 8 | 7  6 | 5  4 | 3 | 2  1  0
320/// ------------------------------------------------------
321///  x  x  x  x |  REG Rx | 1 | SIZE | 0  0 | M |  REG Ry
322/// ------------------------------------------------------
323/// Rx - destination
324/// Ry - source
325/// M  - address mode switch
326
327// $reg, ccr <- $reg op $reg op ccr
328class MxBiArOp_R_RRX<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
329    : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd),
330             MN#"."#TYPE.Prefix#"\t$opd, $dst",
331             [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd, CCR))]> {
332  let Inst = (descend CMD,
333    // Destination register
334    (operand "$dst", 3),
335    0b1,
336    // SIZE
337    !cond(!eq(TYPE.Size, 8): 0b00,
338          !eq(TYPE.Size, 16): 0b01,
339          !eq(TYPE.Size, 32): 0b10),
340    0b00, /*R/M*/0b0,
341    // Source register
342    (operand "$opd", 3)
343  );
344}
345} // Constraints
346} // Uses, Defs
347
348multiclass MxBiArOp_RFF<string MN, SDNode NODE, bit isComm, bits<4> CMD> {
349
350let isCommutable = isComm in {
351  foreach SZ = [8, 16, 32] in
352  def NAME#SZ#"dd"  : MxBiArOp_R_RRX<MN, NODE, !cast<MxType>("MxType"#SZ#"d"), CMD>;
353} // isComm
354
355} // MxBiArOp_RFF
356
357// NOTE These consume and produce CCR
358defm ADDX : MxBiArOp_RFF<"addx", MxAddX, 1, 0xD>;
359defm SUBX : MxBiArOp_RFF<"subx", MxSubX, 0, 0x9>;
360
361
362//===----------------------------------------------------------------------===//
363// And/Xor/Or
364//===----------------------------------------------------------------------===//
365
366defm AND : MxBiArOp_DF<"and", MxAnd, 1, 0xC, 0x2>;
367defm OR  : MxBiArOp_DF<"or",  MxOr,  1, 0x8, 0x0>;
368
369multiclass MxBiArOp_DF_EAd<string MN, SDNode NODE, bits<4> CMD, bits<4> CMDI> {
370  foreach SZ = [8, 16, 32] in {
371    let isCommutable = 1 in
372    def NAME#SZ#"dd"  : MxBiArOp_R_RR_EAd<MN, NODE,
373                                          !cast<MxType>("MxType"#SZ#"d"),
374                                          CMD>;
375
376    def NAME#SZ#"di"  : MxBiArOp_R_RI<MN, NODE,
377                                      !cast<MxType>("MxType"#SZ#"d"),
378                                      CMDI>;
379  } // foreach SZ
380} // MxBiArOp_DF_EAd
381
382defm XOR : MxBiArOp_DF_EAd<"eor", MxXor, 0xB, 0xA>;
383
384
385//===----------------------------------------------------------------------===//
386// CMP
387//===----------------------------------------------------------------------===//
388
389let Defs = [CCR] in {
390class MxCmp_RR<MxType LHS_TYPE, MxType RHS_TYPE = LHS_TYPE>
391    : MxInst<(outs), (ins LHS_TYPE.ROp:$lhs, RHS_TYPE.ROp:$rhs),
392             "cmp."#RHS_TYPE.Prefix#"\t$lhs, $rhs",
393             [(set CCR, (MxCmp LHS_TYPE.VT:$lhs, RHS_TYPE.VT:$rhs))]> {
394  let Inst = (descend 0b1011,
395    // REGISTER
396    (operand "$rhs", 3),
397    // OPMODE
398    !cast<MxOpModeEncoding>("MxOpMode"#RHS_TYPE.Size#"_"#RHS_TYPE.RLet#"_EA").Value,
399    // MODE without last bit
400    0b00,
401    // REGISTER prefixed by D/A bit
402    (operand "$lhs", 4)
403  );
404}
405
406class MxCmp_RI<MxType TYPE>
407    : MxInst<(outs), (ins TYPE.IOp:$imm, TYPE.ROp:$reg),
408             "cmpi."#TYPE.Prefix#"\t$imm, $reg",
409             [(set CCR, (MxCmp TYPE.IPat:$imm, TYPE.VT:$reg))]> {
410  let Inst = (ascend
411    (descend 0b00001100,
412             !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value,
413             // The destination cannot be address register, so it's always
414             // the MODE for data register direct mode.
415             /*MODE*/0b000,
416             /*REGISTER*/(operand "$reg", 3)),
417    // Source (i.e. immediate value) encoding
418    MxEncAddrMode_i<"imm", TYPE.Size>.Supplement
419  );
420}
421
422let mayLoad = 1 in {
423
424class MxCmp_MI<MxType TYPE, MxOperand MEMOpd, ComplexPattern MEMPat,
425               MxEncMemOp MEM_ENC>
426    : MxInst<(outs), (ins TYPE.IOp:$imm, MEMOpd:$mem),
427             "cmpi."#TYPE.Prefix#"\t$imm, $mem",
428             [(set CCR, (MxCmp TYPE.IPat:$imm, (load MEMPat:$mem)))]> {
429  let Inst = (ascend
430    (descend 0b00001100,
431             !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value,
432             MEM_ENC.EA),
433    // Source (i.e. immediate value) encoding
434    MxEncAddrMode_i<"imm", TYPE.Size>.Supplement,
435    // Destination (i.e. memory operand) encoding
436    MEM_ENC.Supplement
437  );
438}
439
440// FIXME: What about abs.W?
441class MxCmp_BI<MxType TYPE>
442    : MxInst<(outs), (ins TYPE.IOp:$imm, MxAL32:$abs),
443             "cmpi."#TYPE.Prefix#"\t$imm, $abs",
444             [(set CCR, (MxCmp TYPE.IPat:$imm,
445                               (load (i32 (MxWrapper tglobaladdr:$abs)))))]> {
446  defvar AbsEncoding = MxEncAddrMode_abs<"abs", true>;
447  let Inst = (ascend
448    (descend 0b00001100,
449             !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value,
450             AbsEncoding.EA),
451    // Source (i.e. immediate value) encoding
452    MxEncAddrMode_i<"imm", TYPE.Size>.Supplement,
453    // Destination (i.e. memory operand) encoding
454    AbsEncoding.Supplement
455  );
456}
457
458class MxCmp_RM<MxType TYPE, MxOperand MEMOpd, ComplexPattern MEMPat,
459               MxEncMemOp MEM_ENC>
460    : MxInst<(outs), (ins TYPE.ROp:$reg, MEMOpd:$mem),
461             "cmp."#TYPE.Prefix#"\t$mem, $reg",
462             [(set CCR, (MxCmp (load MEMPat:$mem), TYPE.ROp:$reg))]> {
463  let Inst = (ascend
464    (descend 0b1011,
465      // REGISTER
466      (operand "$reg", 3),
467      // OPMODE
468      !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_d_EA").Value,
469      MEM_ENC.EA),
470    MEM_ENC.Supplement
471  );
472}
473} // let mayLoad = 1
474
475} // let Defs = [CCR]
476
477multiclass MMxCmp_RM<MxType TYPE> {
478  def NAME#TYPE.KOp.Letter : MxCmp_RM<TYPE, TYPE.KOp, TYPE.KPat, MxEncAddrMode_k<"mem">>;
479  def NAME#TYPE.QOp.Letter : MxCmp_RM<TYPE, TYPE.QOp, TYPE.QPat, MxEncAddrMode_q<"mem">>;
480  def NAME#TYPE.POp.Letter : MxCmp_RM<TYPE, TYPE.POp, TYPE.PPat, MxEncAddrMode_p<"mem">>;
481  def NAME#TYPE.FOp.Letter : MxCmp_RM<TYPE, TYPE.FOp, TYPE.FPat, MxEncAddrMode_f<"mem">>;
482  def NAME#TYPE.JOp.Letter : MxCmp_RM<TYPE, TYPE.JOp, TYPE.JPat, MxEncAddrMode_j<"mem">>;
483}
484
485multiclass MMxCmp_MI<MxType TYPE> {
486  def NAME#TYPE.KOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.KOp, TYPE.KPat,
487                                          MxEncAddrMode_k<"mem">>;
488  def NAME#TYPE.QOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.QOp, TYPE.QPat,
489                                          MxEncAddrMode_q<"mem">>;
490  def NAME#TYPE.POp.Letter#"i" : MxCmp_MI<TYPE, TYPE.POp, TYPE.PPat,
491                                          MxEncAddrMode_p<"mem">>;
492  def NAME#TYPE.FOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.FOp, TYPE.FPat,
493                                          MxEncAddrMode_f<"mem">>;
494  def NAME#TYPE.JOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.JOp, TYPE.JPat,
495                                          MxEncAddrMode_j<"mem">>;
496}
497
498foreach S = [8, 16, 32] in {
499  def CMP#S#di : MxCmp_RI<!cast<MxType>("MxType"#S#"d")>;
500  def CMP#S#bi : MxCmp_BI<!cast<MxType>("MxType"#S#"d")>;
501} // foreach
502
503def CMP8dd : MxCmp_RR<MxType8d>;
504foreach S = [16, 32] in {
505  def CMP#S#dr : MxCmp_RR<!cast<MxType>("MxType"#S#"r"),
506                          !cast<MxType>("MxType"#S#"d")>;
507}
508
509// cmp mem, Dn
510defm CMP8d  : MMxCmp_RM<MxType8d>;
511defm CMP16d : MMxCmp_RM<MxType16d>;
512defm CMP32d : MMxCmp_RM<MxType32d>;
513
514// cmp #imm, mem
515defm CMP8  : MMxCmp_MI<MxType8d>;
516defm CMP16 : MMxCmp_MI<MxType16d>;
517defm CMP32 : MMxCmp_MI<MxType32d>;
518
519
520//===----------------------------------------------------------------------===//
521// EXT
522//===----------------------------------------------------------------------===//
523
524/// ---------------------------------------------------
525///  F  E  D  C  B  A  9 | 8  7  6 | 5  4  3 | 2  1  0
526/// ---------------------------------------------------
527///  0  1  0  0  1  0  0 |  OPMODE | 0  0  0 |   REG
528/// ---------------------------------------------------
529let Defs = [CCR] in
530let Constraints = "$src = $dst" in
531class MxExt<MxType TO, MxType FROM>
532    : MxInst<(outs TO.ROp:$dst), (ins TO.ROp:$src),
533             "ext."#TO.Prefix#"\t$src", []> {
534  let Inst = (descend 0b0100100,
535    // OPMODE
536    !cond(
537      // byte -> word
538      !and(!eq(FROM.Size, 8), !eq(TO.Size, 16)): 0b010,
539      // word -> long
540      !and(!eq(FROM.Size, 16), !eq(TO.Size, 32)): 0b011,
541      // byte -> long
542      !and(!eq(FROM.Size, 8), !eq(TO.Size, 32)): 0b111
543    ),
544    0b000,
545    // REGISTER
546    (operand "$src", 3)
547  );
548}
549
550def EXT16 : MxExt<MxType16d, MxType8d>;
551def EXT32 : MxExt<MxType32d, MxType16d>;
552
553def : Pat<(sext_inreg i16:$src, i8),  (EXT16 $src)>;
554def : Pat<(sext_inreg i32:$src, i16), (EXT32 $src)>;
555def : Pat<(sext_inreg i32:$src, i8),
556          (EXT32 (MOVXd32d16 (EXT16 (EXTRACT_SUBREG $src, MxSubRegIndex16Lo))))>;
557
558
559//===----------------------------------------------------------------------===//
560// DIV/MUL
561//===----------------------------------------------------------------------===//
562
563/// Word operation:
564/// ----------------------------------------------------
565///  F  E  D  C | B  A  9 | 8  7  6 | 5  4  3 | 2  1  0
566/// ----------------------------------------------------
567///             |         |         | EFFECTIVE ADDRESS
568///  x  x  x  x |   REG   | OP MODE |   MODE  |   REG
569/// ----------------------------------------------------
570let Defs = [CCR] in {
571let Constraints = "$src = $dst" in {
572// $dreg <- $dreg op $dreg
573class MxDiMuOp_DD<string MN, bits<4> CMD, bit SIGNED = false,
574                  MxOperand DST, MxOperand OPD>
575    : MxInst<(outs DST:$dst), (ins DST:$src, OPD:$opd), MN#"\t$opd, $dst", []> {
576  let Inst = (descend CMD,
577    // REGISTER
578    (operand "$dst", 3),
579    !if(SIGNED, 0b111, 0b011),
580    /*MODE*/0b000, /*REGISTER*/(operand "$opd", 3)
581  );
582}
583
584// $reg <- $reg op $imm
585class MxDiMuOp_DI<string MN, bits<4> CMD, bit SIGNED = false,
586                  MxOperand DST, MxOperand OPD>
587    : MxInst<(outs DST:$dst), (ins DST:$src, OPD:$opd), MN#"\t$opd, $dst", []> {
588  // FIXME: Support immediates with different widths.
589  defvar ImmEnc = MxEncAddrMode_i<"opd", 16>;
590  let Inst = (ascend
591    (descend CMD,
592      // REGISTER
593      (operand "$dst", 3),
594      !if(SIGNED, 0b111, 0b011), ImmEnc.EA),
595    ImmEnc.Supplement
596  );
597}
598} // let Constraints
599} // Defs = [CCR]
600
601multiclass MxDiMuOp<string MN, bits<4> CMD, bit isComm = 0> {
602  let isCommutable = isComm in {
603    def "S"#NAME#"d32d16" : MxDiMuOp_DD<MN#"s", CMD, /*SIGNED*/true, MxDRD32, MxDRD16>;
604    def "U"#NAME#"d32d16" : MxDiMuOp_DD<MN#"u", CMD, /*SIGNED*/false, MxDRD32, MxDRD16>;
605  }
606
607  def "S"#NAME#"d32i16" : MxDiMuOp_DI<MN#"s", CMD, /*SIGNED*/true, MxDRD32, Mxi16imm>;
608  def "U"#NAME#"d32i16" : MxDiMuOp_DI<MN#"u", CMD, /*SIGNED*/false, MxDRD32, Mxi16imm>;
609}
610
611defm DIV : MxDiMuOp<"div", 0x8>;
612
613// This is used to cast immediates to 16-bits for operations which don't
614// support smaller immediate sizes.
615def as_i16imm : SDNodeXForm<imm, [{
616  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i16);
617}]>;
618
619// RR i8
620def : Pat<(sdiv i8:$dst, i8:$opd),
621          (EXTRACT_SUBREG
622            (SDIVd32d16 (MOVSXd32d8 $dst), (MOVSXd16d8 $opd)),
623             MxSubRegIndex8Lo)>;
624
625def : Pat<(udiv i8:$dst, i8:$opd),
626          (EXTRACT_SUBREG
627            (UDIVd32d16 (MOVZXd32d8 $dst), (MOVZXd16d8 $opd)),
628             MxSubRegIndex8Lo)>;
629
630def : Pat<(srem i8:$dst, i8:$opd),
631          (EXTRACT_SUBREG
632            (ASR32di (ASR32di (SDIVd32d16 (MOVSXd32d8 $dst), (MOVSXd16d8 $opd)), 8), 8),
633             MxSubRegIndex8Lo)>;
634
635def : Pat<(urem i8:$dst, i8:$opd),
636          (EXTRACT_SUBREG
637            (LSR32di (LSR32di (UDIVd32d16 (MOVZXd32d8 $dst), (MOVZXd16d8 $opd)), 8), 8),
638             MxSubRegIndex8Lo)>;
639
640// RR i16
641def : Pat<(sdiv i16:$dst, i16:$opd),
642          (EXTRACT_SUBREG
643            (SDIVd32d16 (MOVSXd32d16 $dst), $opd),
644             MxSubRegIndex16Lo)>;
645
646def : Pat<(udiv i16:$dst, i16:$opd),
647          (EXTRACT_SUBREG
648            (UDIVd32d16 (MOVZXd32d16 $dst), $opd),
649             MxSubRegIndex16Lo)>;
650
651def : Pat<(srem i16:$dst, i16:$opd),
652          (EXTRACT_SUBREG
653            (ASR32di (ASR32di (SDIVd32d16 (MOVSXd32d16 $dst), $opd), 8), 8),
654             MxSubRegIndex16Lo)>;
655
656def : Pat<(urem i16:$dst, i16:$opd),
657          (EXTRACT_SUBREG
658            (LSR32di (LSR32di (UDIVd32d16 (MOVZXd32d16 $dst), $opd), 8), 8),
659             MxSubRegIndex16Lo)>;
660
661
662// RI i8
663def : Pat<(sdiv i8:$dst, MximmSExt8:$opd),
664          (EXTRACT_SUBREG
665            (SDIVd32i16 (MOVSXd32d8 $dst), (as_i16imm $opd)),
666             MxSubRegIndex8Lo)>;
667
668def : Pat<(udiv i8:$dst, MximmSExt8:$opd),
669          (EXTRACT_SUBREG
670            (UDIVd32i16 (MOVZXd32d8 $dst), (as_i16imm $opd)),
671             MxSubRegIndex8Lo)>;
672
673def : Pat<(srem i8:$dst, MximmSExt8:$opd),
674          (EXTRACT_SUBREG
675            (ASR32di (ASR32di (SDIVd32i16 (MOVSXd32d8 $dst), (as_i16imm $opd)), 8), 8),
676             MxSubRegIndex8Lo)>;
677
678def : Pat<(urem i8:$dst, MximmSExt8:$opd),
679          (EXTRACT_SUBREG
680            (LSR32di (LSR32di (UDIVd32i16 (MOVZXd32d8 $dst), (as_i16imm $opd)), 8), 8),
681             MxSubRegIndex8Lo)>;
682
683// RI i16
684def : Pat<(sdiv i16:$dst, MximmSExt16:$opd),
685          (EXTRACT_SUBREG
686            (SDIVd32i16 (MOVSXd32d16 $dst), imm:$opd),
687             MxSubRegIndex16Lo)>;
688
689def : Pat<(udiv i16:$dst, MximmSExt16:$opd),
690          (EXTRACT_SUBREG
691            (UDIVd32i16 (MOVZXd32d16 $dst), imm:$opd),
692             MxSubRegIndex16Lo)>;
693
694def : Pat<(srem i16:$dst, MximmSExt16:$opd),
695          (EXTRACT_SUBREG
696            (ASR32di (ASR32di (SDIVd32i16 (MOVSXd32d16 $dst), imm:$opd), 8), 8),
697             MxSubRegIndex16Lo)>;
698
699def : Pat<(urem i16:$dst, MximmSExt16:$opd),
700          (EXTRACT_SUBREG
701            (LSR32di (LSR32di (UDIVd32i16 (MOVZXd32d16 $dst), imm:$opd), 8), 8),
702             MxSubRegIndex16Lo)>;
703
704
705defm MUL : MxDiMuOp<"mul", 0xC, 1>;
706
707// RR
708def : Pat<(mul i16:$dst, i16:$opd),
709          (EXTRACT_SUBREG
710            (SMULd32d16 (MOVXd32d16 $dst), $opd),
711             MxSubRegIndex16Lo)>;
712
713def : Pat<(mulhs i16:$dst, i16:$opd),
714          (EXTRACT_SUBREG
715            (ASR32di (ASR32di (SMULd32d16 (MOVXd32d16 $dst), $opd), 8), 8),
716             MxSubRegIndex16Lo)>;
717
718def : Pat<(mulhu i16:$dst, i16:$opd),
719          (EXTRACT_SUBREG
720            (LSR32di (LSR32di (UMULd32d16 (MOVXd32d16 $dst), $opd), 8), 8),
721             MxSubRegIndex16Lo)>;
722
723
724// RI
725def : Pat<(mul i16:$dst, MximmSExt16:$opd),
726          (EXTRACT_SUBREG
727            (SMULd32i16 (MOVXd32d16 $dst), imm:$opd),
728             MxSubRegIndex16Lo)>;
729
730def : Pat<(mulhs i16:$dst, MximmSExt16:$opd),
731          (EXTRACT_SUBREG
732            (ASR32di (ASR32di (SMULd32i16 (MOVXd32d16 $dst), imm:$opd), 8), 8),
733             MxSubRegIndex16Lo)>;
734
735def : Pat<(mulhu i16:$dst, MximmSExt16:$opd),
736          (EXTRACT_SUBREG
737            (LSR32di (LSR32di (UMULd32i16 (MOVXd32d16 $dst), imm:$opd), 8), 8),
738             MxSubRegIndex16Lo)>;
739
740
741//===----------------------------------------------------------------------===//
742// NEG/NEGX
743//===----------------------------------------------------------------------===//
744
745/// ------------+------------+------+---------+---------
746///  F  E  D  C | B  A  9  8 | 7  6 | 5  4  3 | 2  1  0
747/// ------------+------------+------+-------------------
748///             |            |      | EFFECTIVE ADDRESS
749///  0  1  0  0 | x  x  x  x | SIZE |   MODE  |   REG
750/// ------------+------------+------+---------+---------
751let Defs = [CCR] in {
752let Constraints = "$src = $dst" in {
753
754class MxNeg_D<MxType TYPE>
755    : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src),
756             "neg."#TYPE.Prefix#"\t$dst",
757             [(set TYPE.VT:$dst, (ineg TYPE.VT:$src))]> {
758  let Inst = (descend 0b01000100,
759    /*SIZE*/!cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value,
760    //MODE without last bit
761    0b00,
762    //REGISTER prefixed by D/A bit
763    (operand "$dst", 4)
764  );
765}
766
767let Uses = [CCR] in {
768class MxNegX_D<MxType TYPE>
769    : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src),
770             "negx."#TYPE.Prefix#"\t$dst",
771             [(set TYPE.VT:$dst, (MxSubX 0, TYPE.VT:$src, CCR))]> {
772  let Inst = (descend 0b01000000,
773    /*SIZE*/!cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value,
774    //MODE without last bit
775    0b00,
776    //REGISTER prefixed by D/A bit
777    (operand "$dst", 4)
778  );
779}
780}
781
782} // let Constraints
783} // let Defs = [CCR]
784
785foreach S = [8, 16, 32] in {
786  def NEG#S#d  : MxNeg_D<!cast<MxType>("MxType"#S#"d")>;
787  def NEGX#S#d : MxNegX_D<!cast<MxType>("MxType"#S#"d")>;
788}
789
790def : Pat<(MxSub 0, i8 :$src), (NEG8d  MxDRD8 :$src)>;
791def : Pat<(MxSub 0, i16:$src), (NEG16d MxDRD16:$src)>;
792def : Pat<(MxSub 0, i32:$src), (NEG32d MxDRD32:$src)>;
793
794//===----------------------------------------------------------------------===//
795// no-CCR Patterns
796//===----------------------------------------------------------------------===//
797
798/// Basically the reason for this stuff is that add and addc share the same
799/// operand types constraints for whatever reasons and I had to define a common
800/// MxAdd and MxSub instructions that produce CCR and then pattern-map add and addc
801/// to it.
802/// NOTE On the other hand I see no reason why I cannot just drop explicit CCR
803/// result. Anyway works for now, hopefully I will better understand how this stuff
804/// is designed later
805foreach N = ["add", "addc"] in {
806
807  // add reg, reg
808  def : Pat<(!cast<SDNode>(N) i8 :$src, i8 :$opd),
809            (ADD8dd  MxDRD8 :$src, MxDRD8 :$opd)>;
810  def : Pat<(!cast<SDNode>(N) i16:$src, i16:$opd),
811            (ADD16dr MxXRD16:$src, MxDRD16:$opd)>;
812  def : Pat<(!cast<SDNode>(N) i32:$src, i32:$opd),
813            (ADD32dr MxXRD32:$src, MxDRD32:$opd)>;
814
815  // add (An), reg
816  def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.JPat:$opd)),
817            (ADD8dj MxDRD8:$src, MxType8.JOp:$opd)>;
818  def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.JPat:$opd)),
819            (ADD16dj MxDRD16:$src, MxType16.JOp:$opd)>;
820  def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.JPat:$opd)),
821            (ADD32dj MxDRD32:$src, MxType32.JOp:$opd)>;
822
823  // add (i,An), reg
824  def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.PPat:$opd)),
825            (ADD8dp MxDRD8:$src, MxType8.POp:$opd)>;
826  def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.PPat:$opd)),
827            (ADD16dp MxDRD16:$src, MxType16.POp:$opd)>;
828  def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.PPat:$opd)),
829            (ADD32dp MxDRD32:$src, MxType32.POp:$opd)>;
830
831  // add (i,An,Xn), reg
832  def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.FPat:$opd)),
833            (ADD8df MxDRD8:$src, MxType8.FOp:$opd)>;
834  def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.FPat:$opd)),
835            (ADD16df MxDRD16:$src, MxType16.FOp:$opd)>;
836  def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.FPat:$opd)),
837            (ADD32df MxDRD32:$src, MxType32.FOp:$opd)>;
838
839  // add reg, imm
840  def : Pat<(!cast<SDNode>(N) i8: $src, MximmSExt8:$opd),
841            (ADD8di  MxDRD8 :$src, imm:$opd)>;
842  def : Pat<(!cast<SDNode>(N) i16:$src, MximmSExt16:$opd),
843            (ADD16di MxDRD16:$src, imm:$opd)>;
844
845  // LEAp is more complex and thus will be selected over normal ADD32ri but it cannot
846  // be used with data registers, here by adding complexity to a simple ADD32ri insts
847  // we make sure it will be selected over LEAp
848  let AddedComplexity = 15 in {
849  def : Pat<(!cast<SDNode>(N) i32:$src, MximmSExt32:$opd),
850            (ADD32di MxDRD32:$src, imm:$opd)>;
851  } // AddedComplexity = 15
852
853  // add imm, (An)
854  def : Pat<(store (!cast<SDNode>(N) (load MxType8.JPat:$dst), MxType8.IPat:$opd),
855                   MxType8.JPat:$dst),
856            (ADD8ji MxType8.JOp:$dst, imm:$opd)>;
857  def : Pat<(store (!cast<SDNode>(N) (load MxType16.JPat:$dst), MxType16.IPat:$opd),
858                   MxType16.JPat:$dst),
859            (ADD16ji MxType16.JOp:$dst, imm:$opd)>;
860  def : Pat<(store (!cast<SDNode>(N) (load MxType32.JPat:$dst), MxType32.IPat:$opd),
861                   MxType32.JPat:$dst),
862            (ADD32ji MxType32.JOp:$dst, imm:$opd)>;
863
864} // foreach add, addc
865
866def : Pat<(adde i8 :$src, i8 :$opd), (ADDX8dd  MxDRD8 :$src, MxDRD8 :$opd)>;
867def : Pat<(adde i16:$src, i16:$opd), (ADDX16dd MxDRD16:$src, MxDRD16:$opd)>;
868def : Pat<(adde i32:$src, i32:$opd), (ADDX32dd MxDRD32:$src, MxDRD32:$opd)>;
869
870
871
872foreach N = ["sub", "subc"] in {
873
874  // sub reg, reg
875  def : Pat<(!cast<SDNode>(N) i8 :$src, i8 :$opd),
876            (SUB8dd  MxDRD8 :$src, MxDRD8 :$opd)>;
877  def : Pat<(!cast<SDNode>(N) i16:$src, i16:$opd),
878            (SUB16dd MxDRD16:$src, MxDRD16:$opd)>;
879  def : Pat<(!cast<SDNode>(N) i32:$src, i32:$opd),
880            (SUB32dd MxDRD32:$src, MxDRD32:$opd)>;
881
882
883  // sub (An), reg
884  def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.JPat:$opd)),
885            (SUB8dj MxDRD8:$src, MxType8.JOp:$opd)>;
886  def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.JPat:$opd)),
887            (SUB16dj MxDRD16:$src, MxType16.JOp:$opd)>;
888  def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.JPat:$opd)),
889            (SUB32dj MxDRD32:$src, MxType32.JOp:$opd)>;
890
891  // sub (i,An), reg
892  def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.PPat:$opd)),
893            (SUB8dp MxDRD8:$src, MxType8.POp:$opd)>;
894  def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.PPat:$opd)),
895            (SUB16dp MxDRD16:$src, MxType16.POp:$opd)>;
896  def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.PPat:$opd)),
897            (SUB32dp MxDRD32:$src, MxType32.POp:$opd)>;
898
899  // sub (i,An,Xn), reg
900  def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.FPat:$opd)),
901            (SUB8df MxDRD8:$src, MxType8.FOp:$opd)>;
902  def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.FPat:$opd)),
903            (SUB16df MxDRD16:$src, MxType16.FOp:$opd)>;
904  def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.FPat:$opd)),
905            (SUB32df MxDRD32:$src, MxType32.FOp:$opd)>;
906
907  // sub reg, imm
908  def : Pat<(!cast<SDNode>(N) i8 :$src, MximmSExt8 :$opd),
909            (SUB8di  MxDRD8 :$src, imm:$opd)>;
910  def : Pat<(!cast<SDNode>(N) i16:$src, MximmSExt16:$opd),
911            (SUB16di MxDRD16:$src, imm:$opd)>;
912  def : Pat<(!cast<SDNode>(N) i32:$src, MximmSExt32:$opd),
913            (SUB32di MxDRD32:$src, imm:$opd)>;
914
915  // sub imm, (An)
916  def : Pat<(store (!cast<SDNode>(N) (load MxType8.JPat:$dst), MxType8.IPat:$opd),
917                   MxType8.JPat:$dst),
918            (SUB8ji MxType8.JOp:$dst, imm:$opd)>;
919  def : Pat<(store (!cast<SDNode>(N) (load MxType16.JPat:$dst), MxType16.IPat:$opd),
920                   MxType16.JPat:$dst),
921            (SUB16ji MxType16.JOp:$dst, imm:$opd)>;
922  def : Pat<(store (!cast<SDNode>(N) (load MxType32.JPat:$dst), MxType32.IPat:$opd),
923                   MxType32.JPat:$dst),
924            (SUB32ji MxType32.JOp:$dst, imm:$opd)>;
925
926} // foreach sub, subx
927
928def : Pat<(sube i8 :$src, i8 :$opd), (SUBX8dd  MxDRD8 :$src, MxDRD8 :$opd)>;
929def : Pat<(sube i16:$src, i16:$opd), (SUBX16dd MxDRD16:$src, MxDRD16:$opd)>;
930def : Pat<(sube i32:$src, i32:$opd), (SUBX32dd MxDRD32:$src, MxDRD32:$opd)>;
931
932multiclass BitwisePat<string INST, SDNode OP> {
933  // op reg, reg
934  def : Pat<(OP i8 :$src, i8 :$opd),
935            (!cast<MxInst>(INST#"8dd")  MxDRD8 :$src, MxDRD8 :$opd)>;
936  def : Pat<(OP i16:$src, i16:$opd),
937            (!cast<MxInst>(INST#"16dd") MxDRD16:$src, MxDRD16:$opd)>;
938  def : Pat<(OP i32:$src, i32:$opd),
939            (!cast<MxInst>(INST#"32dd") MxDRD32:$src, MxDRD32:$opd)>;
940  // op reg, imm
941  def : Pat<(OP i8: $src, MximmSExt8 :$opd),
942            (!cast<MxInst>(INST#"8di")  MxDRD8 :$src, imm:$opd)>;
943  def : Pat<(OP i16:$src, MximmSExt16:$opd),
944            (!cast<MxInst>(INST#"16di") MxDRD16:$src, imm:$opd)>;
945  def : Pat<(OP i32:$src, MximmSExt32:$opd),
946            (!cast<MxInst>(INST#"32di") MxDRD32:$src, imm:$opd)>;
947}
948
949defm : BitwisePat<"AND", and>;
950defm : BitwisePat<"OR",  or>;
951defm : BitwisePat<"XOR", xor>;
952