1//== LoongArchInstrInfo.td - Target Description for LoongArch -*- tablegen -*-// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the LoongArch instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// LoongArch specific DAG Nodes. 15//===----------------------------------------------------------------------===// 16 17// Target-independent type requirements, but with target-specific formats. 18def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, 19 SDTCisVT<1, i32>]>; 20def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, 21 SDTCisVT<1, i32>]>; 22 23// Target-dependent type requirements. 24def SDT_LoongArchCall : SDTypeProfile<0, -1, [SDTCisVT<0, GRLenVT>]>; 25def SDT_LoongArchIntBinOpW : SDTypeProfile<1, 2, [ 26 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64> 27]>; 28 29def SDT_LoongArchBStrIns: SDTypeProfile<1, 4, [ 30 SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<3>, 31 SDTCisSameAs<3, 4> 32]>; 33 34def SDT_LoongArchBStrPick: SDTypeProfile<1, 3, [ 35 SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisSameAs<2, 3> 36]>; 37 38// "VI" means no output and an integer input. 39def SDT_LoongArchVI : SDTypeProfile<0, 1, [SDTCisVT<0, GRLenVT>]>; 40 41def SDT_LoongArchCsrrd : SDTypeProfile<1, 1, [SDTCisInt<0>, 42 SDTCisVT<1, GRLenVT>]>; 43def SDT_LoongArchCsrwr : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 44 SDTCisVT<2, GRLenVT>]>; 45def SDT_LoongArchCsrxchg : SDTypeProfile<1, 3, [SDTCisInt<0>, 46 SDTCisSameAs<0, 1>, 47 SDTCisSameAs<0, 2>, 48 SDTCisVT<3, GRLenVT>]>; 49def SDT_LoongArchIocsrwr : SDTypeProfile<0, 2, [SDTCisInt<0>, 50 SDTCisSameAs<0, 1>]>; 51def SDT_LoongArchMovgr2fcsr : SDTypeProfile<0, 2, [SDTCisVT<0, GRLenVT>, 52 SDTCisSameAs<0, 1>]>; 53def SDT_LoongArchMovfcsr2gr : SDTypeProfile<1, 1, [SDTCisVT<0, GRLenVT>, 54 SDTCisSameAs<0, 1>]>; 55 56// TODO: Add LoongArch specific DAG Nodes 57// Target-independent nodes, but with target-specific formats. 58def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart, 59 [SDNPHasChain, SDNPOutGlue]>; 60def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd, 61 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 62 63// Target-dependent nodes. 64def loongarch_call : SDNode<"LoongArchISD::CALL", SDT_LoongArchCall, 65 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 66 SDNPVariadic]>; 67def loongarch_ret : SDNode<"LoongArchISD::RET", SDTNone, 68 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 69def loongarch_tail : SDNode<"LoongArchISD::TAIL", SDT_LoongArchCall, 70 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 71 SDNPVariadic]>; 72def loongarch_call_medium : SDNode<"LoongArchISD::CALL_MEDIUM", SDT_LoongArchCall, 73 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 74 SDNPVariadic]>; 75def loongarch_tail_medium : SDNode<"LoongArchISD::TAIL_MEDIUM", SDT_LoongArchCall, 76 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 77 SDNPVariadic]>; 78def loongarch_call_large : SDNode<"LoongArchISD::CALL_LARGE", SDT_LoongArchCall, 79 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 80 SDNPVariadic]>; 81def loongarch_tail_large : SDNode<"LoongArchISD::TAIL_LARGE", SDT_LoongArchCall, 82 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 83 SDNPVariadic]>; 84def loongarch_sll_w : SDNode<"LoongArchISD::SLL_W", SDT_LoongArchIntBinOpW>; 85def loongarch_sra_w : SDNode<"LoongArchISD::SRA_W", SDT_LoongArchIntBinOpW>; 86def loongarch_srl_w : SDNode<"LoongArchISD::SRL_W", SDT_LoongArchIntBinOpW>; 87def loongarch_rotr_w : SDNode<"LoongArchISD::ROTR_W", SDT_LoongArchIntBinOpW>; 88def loongarch_div_wu : SDNode<"LoongArchISD::DIV_WU", SDT_LoongArchIntBinOpW>; 89def loongarch_mod_wu : SDNode<"LoongArchISD::MOD_WU", SDT_LoongArchIntBinOpW>; 90def loongarch_crc_w_b_w 91 : SDNode<"LoongArchISD::CRC_W_B_W", SDT_LoongArchIntBinOpW, [SDNPHasChain]>; 92def loongarch_crc_w_h_w 93 : SDNode<"LoongArchISD::CRC_W_H_W", SDT_LoongArchIntBinOpW, [SDNPHasChain]>; 94def loongarch_crc_w_w_w 95 : SDNode<"LoongArchISD::CRC_W_W_W", SDT_LoongArchIntBinOpW, [SDNPHasChain]>; 96def loongarch_crc_w_d_w 97 : SDNode<"LoongArchISD::CRC_W_D_W", SDT_LoongArchIntBinOpW, [SDNPHasChain]>; 98def loongarch_crcc_w_b_w : SDNode<"LoongArchISD::CRCC_W_B_W", 99 SDT_LoongArchIntBinOpW, [SDNPHasChain]>; 100def loongarch_crcc_w_h_w : SDNode<"LoongArchISD::CRCC_W_H_W", 101 SDT_LoongArchIntBinOpW, [SDNPHasChain]>; 102def loongarch_crcc_w_w_w : SDNode<"LoongArchISD::CRCC_W_W_W", 103 SDT_LoongArchIntBinOpW, [SDNPHasChain]>; 104def loongarch_crcc_w_d_w : SDNode<"LoongArchISD::CRCC_W_D_W", 105 SDT_LoongArchIntBinOpW, [SDNPHasChain]>; 106def loongarch_bstrins 107 : SDNode<"LoongArchISD::BSTRINS", SDT_LoongArchBStrIns>; 108def loongarch_bstrpick 109 : SDNode<"LoongArchISD::BSTRPICK", SDT_LoongArchBStrPick>; 110def loongarch_revb_2h : SDNode<"LoongArchISD::REVB_2H", SDTUnaryOp>; 111def loongarch_revb_2w : SDNode<"LoongArchISD::REVB_2W", SDTUnaryOp>; 112def loongarch_bitrev_4b : SDNode<"LoongArchISD::BITREV_4B", SDTUnaryOp>; 113def loongarch_bitrev_w : SDNode<"LoongArchISD::BITREV_W", SDTUnaryOp>; 114def loongarch_clzw : SDNode<"LoongArchISD::CLZ_W", SDTIntBitCountUnaryOp>; 115def loongarch_ctzw : SDNode<"LoongArchISD::CTZ_W", SDTIntBitCountUnaryOp>; 116def loongarch_dbar : SDNode<"LoongArchISD::DBAR", SDT_LoongArchVI, 117 [SDNPHasChain, SDNPSideEffect]>; 118def loongarch_ibar : SDNode<"LoongArchISD::IBAR", SDT_LoongArchVI, 119 [SDNPHasChain, SDNPSideEffect]>; 120def loongarch_break : SDNode<"LoongArchISD::BREAK", SDT_LoongArchVI, 121 [SDNPHasChain, SDNPSideEffect]>; 122def loongarch_movfcsr2gr : SDNode<"LoongArchISD::MOVFCSR2GR", 123 SDT_LoongArchMovfcsr2gr, [SDNPHasChain]>; 124def loongarch_movgr2fcsr : SDNode<"LoongArchISD::MOVGR2FCSR", 125 SDT_LoongArchMovgr2fcsr, 126 [SDNPHasChain, SDNPSideEffect]>; 127def loongarch_syscall : SDNode<"LoongArchISD::SYSCALL", SDT_LoongArchVI, 128 [SDNPHasChain, SDNPSideEffect]>; 129def loongarch_csrrd : SDNode<"LoongArchISD::CSRRD", SDT_LoongArchCsrrd, 130 [SDNPHasChain, SDNPSideEffect]>; 131def loongarch_csrwr : SDNode<"LoongArchISD::CSRWR", SDT_LoongArchCsrwr, 132 [SDNPHasChain, SDNPSideEffect]>; 133def loongarch_csrxchg : SDNode<"LoongArchISD::CSRXCHG", 134 SDT_LoongArchCsrxchg, 135 [SDNPHasChain, SDNPSideEffect]>; 136def loongarch_iocsrrd_b : SDNode<"LoongArchISD::IOCSRRD_B", SDTUnaryOp, 137 [SDNPHasChain, SDNPSideEffect]>; 138def loongarch_iocsrrd_h : SDNode<"LoongArchISD::IOCSRRD_H", SDTUnaryOp, 139 [SDNPHasChain, SDNPSideEffect]>; 140def loongarch_iocsrrd_w : SDNode<"LoongArchISD::IOCSRRD_W", SDTUnaryOp, 141 [SDNPHasChain, SDNPSideEffect]>; 142def loongarch_iocsrrd_d : SDNode<"LoongArchISD::IOCSRRD_D", SDTUnaryOp, 143 [SDNPHasChain, SDNPSideEffect]>; 144def loongarch_iocsrwr_b : SDNode<"LoongArchISD::IOCSRWR_B", 145 SDT_LoongArchIocsrwr, 146 [SDNPHasChain, SDNPSideEffect]>; 147def loongarch_iocsrwr_h : SDNode<"LoongArchISD::IOCSRWR_H", 148 SDT_LoongArchIocsrwr, 149 [SDNPHasChain, SDNPSideEffect]>; 150def loongarch_iocsrwr_w : SDNode<"LoongArchISD::IOCSRWR_W", 151 SDT_LoongArchIocsrwr, 152 [SDNPHasChain, SDNPSideEffect]>; 153def loongarch_iocsrwr_d : SDNode<"LoongArchISD::IOCSRWR_D", 154 SDT_LoongArchIocsrwr, 155 [SDNPHasChain, SDNPSideEffect]>; 156def loongarch_cpucfg : SDNode<"LoongArchISD::CPUCFG", SDTUnaryOp, 157 [SDNPHasChain]>; 158 159def to_fclass_mask: SDNodeXForm<timm, [{ 160 uint64_t Check = N->getZExtValue(); 161 unsigned Mask = 0; 162 if (Check & fcSNan) 163 Mask |= LoongArch::FClassMaskSignalingNaN; 164 if (Check & fcQNan) 165 Mask |= LoongArch::FClassMaskQuietNaN; 166 if (Check & fcPosInf) 167 Mask |= LoongArch::FClassMaskPositiveInfinity; 168 if (Check & fcNegInf) 169 Mask |= LoongArch::FClassMaskNegativeInfinity; 170 if (Check & fcPosNormal) 171 Mask |= LoongArch::FClassMaskPositiveNormal; 172 if (Check & fcNegNormal) 173 Mask |= LoongArch::FClassMaskNegativeNormal; 174 if (Check & fcPosSubnormal) 175 Mask |= LoongArch::FClassMaskPositiveSubnormal; 176 if (Check & fcNegSubnormal) 177 Mask |= LoongArch::FClassMaskNegativeSubnormal; 178 if (Check & fcPosZero) 179 Mask |= LoongArch::FClassMaskPositiveZero; 180 if (Check & fcNegZero) 181 Mask |= LoongArch::FClassMaskNegativeZero; 182 return CurDAG->getTargetConstant(Mask, SDLoc(N), Subtarget->getGRLenVT()); 183}]>; 184 185//===----------------------------------------------------------------------===// 186// Operand and SDNode transformation definitions. 187//===----------------------------------------------------------------------===// 188 189class ImmAsmOperand<string prefix, int width, string suffix> 190 : AsmOperandClass { 191 let Name = prefix # "Imm" # width # suffix; 192 let DiagnosticType = !strconcat("Invalid", Name); 193 let RenderMethod = "addImmOperands"; 194} 195 196class SImmAsmOperand<int width, string suffix = ""> 197 : ImmAsmOperand<"S", width, suffix> { 198} 199 200class UImmAsmOperand<int width, string suffix = ""> 201 : ImmAsmOperand<"U", width, suffix> { 202} 203 204// A parse method for "$r*" or "$r*, 0", where the 0 is be silently ignored. 205// Only used for "AM*" instructions, in order to be compatible with GAS. 206def AtomicMemAsmOperand : AsmOperandClass { 207 let Name = "AtomicMemAsmOperand"; 208 let RenderMethod = "addRegOperands"; 209 let PredicateMethod = "isGPR"; 210 let ParserMethod = "parseAtomicMemOp"; 211} 212 213def GPRMemAtomic : RegisterOperand<GPR> { 214 let ParserMatchClass = AtomicMemAsmOperand; 215 let PrintMethod = "printAtomicMemOp"; 216} 217 218// A parameterized register class alternative to i32imm/i64imm from Target.td. 219def grlenimm : Operand<GRLenVT>; 220def imm32 : Operand<GRLenVT> { 221 let ParserMatchClass = ImmAsmOperand<"", 32, "">; 222} 223def imm64 : Operand<i64> { 224 let ParserMatchClass = ImmAsmOperand<"", 64, "">; 225} 226 227def uimm1 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<1>(Imm);}]>{ 228 let ParserMatchClass = UImmAsmOperand<1>; 229} 230 231def uimm2 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<2>(Imm);}]> { 232 let ParserMatchClass = UImmAsmOperand<2>; 233} 234 235def uimm2_plus1 : Operand<GRLenVT>, 236 ImmLeaf<GRLenVT, [{return isUInt<2>(Imm - 1);}]> { 237 let ParserMatchClass = UImmAsmOperand<2, "plus1">; 238 let EncoderMethod = "getImmOpValueSub1"; 239 let DecoderMethod = "decodeUImmOperand<2, 1>"; 240} 241 242def uimm3 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<3>(Imm);}]> { 243 let ParserMatchClass = UImmAsmOperand<3>; 244} 245 246def uimm4 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<4>(Imm);}]> { 247 let ParserMatchClass = UImmAsmOperand<4>; 248} 249 250def uimm5 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<5>(Imm);}]> { 251 let ParserMatchClass = UImmAsmOperand<5>; 252} 253 254def uimm6 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<6>(Imm);}]> { 255 let ParserMatchClass = UImmAsmOperand<6>; 256} 257 258def uimm7 : Operand<GRLenVT> { 259 let ParserMatchClass = UImmAsmOperand<7>; 260} 261 262def uimm8 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<8>(Imm);}]> { 263 let ParserMatchClass = UImmAsmOperand<8>; 264} 265 266class UImm12Operand : Operand<GRLenVT>, 267 ImmLeaf <GRLenVT, [{return isUInt<12>(Imm);}]> { 268 let DecoderMethod = "decodeUImmOperand<12>"; 269} 270 271def uimm12 : UImm12Operand { 272 let ParserMatchClass = UImmAsmOperand<12>; 273} 274 275def uimm12_ori : UImm12Operand { 276 let ParserMatchClass = UImmAsmOperand<12, "ori">; 277} 278 279def uimm14 : Operand<GRLenVT>, 280 ImmLeaf <GRLenVT, [{return isUInt<14>(Imm);}]> { 281 let ParserMatchClass = UImmAsmOperand<14>; 282} 283 284def uimm15 : Operand<GRLenVT>, 285 ImmLeaf <GRLenVT, [{return isUInt<15>(Imm);}]> { 286 let ParserMatchClass = UImmAsmOperand<15>; 287} 288 289def simm5 : Operand<GRLenVT> { 290 let ParserMatchClass = SImmAsmOperand<5>; 291 let DecoderMethod = "decodeSImmOperand<5>"; 292} 293 294def simm8 : Operand<GRLenVT> { 295 let ParserMatchClass = SImmAsmOperand<8>; 296 let DecoderMethod = "decodeSImmOperand<8>"; 297} 298 299foreach I = [1, 2, 3] in { 300def simm8_lsl # I : Operand<GRLenVT> { 301 let ParserMatchClass = SImmAsmOperand<8, "lsl" # I>; 302 let EncoderMethod = "getImmOpValueAsr<" # I # ">"; 303 let DecoderMethod = "decodeSImmOperand<8," # I # ">"; 304} 305} 306 307def simm9_lsl3 : Operand<GRLenVT> { 308 let ParserMatchClass = SImmAsmOperand<9, "lsl3">; 309 let EncoderMethod = "getImmOpValueAsr<3>"; 310 let DecoderMethod = "decodeSImmOperand<9, 3>"; 311} 312 313def simm10 : Operand<GRLenVT> { 314 let ParserMatchClass = SImmAsmOperand<10>; 315} 316 317def simm10_lsl2 : Operand<GRLenVT> { 318 let ParserMatchClass = SImmAsmOperand<10, "lsl2">; 319 let EncoderMethod = "getImmOpValueAsr<2>"; 320 let DecoderMethod = "decodeSImmOperand<10, 2>"; 321} 322 323def simm11_lsl1 : Operand<GRLenVT> { 324 let ParserMatchClass = SImmAsmOperand<11, "lsl1">; 325 let EncoderMethod = "getImmOpValueAsr<1>"; 326 let DecoderMethod = "decodeSImmOperand<11, 1>"; 327} 328 329class SImm12Operand : Operand<GRLenVT>, 330 ImmLeaf <GRLenVT, [{return isInt<12>(Imm);}]> { 331 let DecoderMethod = "decodeSImmOperand<12>"; 332} 333 334def simm12 : SImm12Operand { 335 let ParserMatchClass = SImmAsmOperand<12>; 336} 337 338def simm12_addlike : SImm12Operand { 339 let ParserMatchClass = SImmAsmOperand<12, "addlike">; 340} 341 342def simm12_lu52id : SImm12Operand { 343 let ParserMatchClass = SImmAsmOperand<12, "lu52id">; 344} 345 346def simm13 : Operand<GRLenVT> { 347 let ParserMatchClass = SImmAsmOperand<13>; 348 let DecoderMethod = "decodeSImmOperand<13>"; 349} 350 351def simm14_lsl2 : Operand<GRLenVT>, 352 ImmLeaf<GRLenVT, [{return isShiftedInt<14,2>(Imm);}]> { 353 let ParserMatchClass = SImmAsmOperand<14, "lsl2">; 354 let EncoderMethod = "getImmOpValueAsr<2>"; 355 let DecoderMethod = "decodeSImmOperand<14, 2>"; 356} 357 358def simm16 : Operand<GRLenVT> { 359 let ParserMatchClass = SImmAsmOperand<16>; 360 let DecoderMethod = "decodeSImmOperand<16>"; 361} 362 363def simm16_lsl2 : Operand<GRLenVT>, 364 ImmLeaf<GRLenVT, [{return isInt<16>(Imm>>2);}]> { 365 let ParserMatchClass = SImmAsmOperand<16, "lsl2">; 366 let EncoderMethod = "getImmOpValueAsr<2>"; 367 let DecoderMethod = "decodeSImmOperand<16, 2>"; 368} 369 370def simm16_lsl2_br : Operand<OtherVT> { 371 let ParserMatchClass = SImmAsmOperand<16, "lsl2">; 372 let EncoderMethod = "getImmOpValueAsr<2>"; 373 let DecoderMethod = "decodeSImmOperand<16, 2>"; 374} 375 376class SImm20Operand : Operand<GRLenVT> { 377 let DecoderMethod = "decodeSImmOperand<20>"; 378} 379 380def simm20 : SImm20Operand { 381 let ParserMatchClass = SImmAsmOperand<20>; 382} 383 384def simm20_pcalau12i : SImm20Operand { 385 let ParserMatchClass = SImmAsmOperand<20, "pcalau12i">; 386} 387 388def simm20_lu12iw : SImm20Operand { 389 let ParserMatchClass = SImmAsmOperand<20, "lu12iw">; 390} 391 392def simm20_lu32id : SImm20Operand { 393 let ParserMatchClass = SImmAsmOperand<20, "lu32id">; 394} 395 396def simm20_pcaddu18i : SImm20Operand { 397 let ParserMatchClass = SImmAsmOperand<20, "pcaddu18i">; 398} 399 400def simm21_lsl2 : Operand<OtherVT> { 401 let ParserMatchClass = SImmAsmOperand<21, "lsl2">; 402 let EncoderMethod = "getImmOpValueAsr<2>"; 403 let DecoderMethod = "decodeSImmOperand<21, 2>"; 404} 405 406def SImm26OperandB: AsmOperandClass { 407 let Name = "SImm26OperandB"; 408 let PredicateMethod = "isSImm26Operand"; 409 let RenderMethod = "addImmOperands"; 410 let DiagnosticType = "InvalidSImm26Operand"; 411 let ParserMethod = "parseImmediate"; 412} 413 414// A symbol or an imm used in B/PseudoBR. 415def simm26_b : Operand<OtherVT> { 416 let ParserMatchClass = SImm26OperandB; 417 let EncoderMethod = "getImmOpValueAsr<2>"; 418 let DecoderMethod = "decodeSImmOperand<26, 2>"; 419} 420 421def SImm26OperandBL: AsmOperandClass { 422 let Name = "SImm26OperandBL"; 423 let PredicateMethod = "isSImm26Operand"; 424 let RenderMethod = "addImmOperands"; 425 let DiagnosticType = "InvalidSImm26Operand"; 426 let ParserMethod = "parseSImm26Operand"; 427} 428 429// A symbol or an imm used in BL/PseudoCALL/PseudoTAIL. 430def simm26_symbol : Operand<GRLenVT> { 431 let ParserMatchClass = SImm26OperandBL; 432 let EncoderMethod = "getImmOpValueAsr<2>"; 433 let DecoderMethod = "decodeSImmOperand<26, 2>"; 434} 435 436// A 32-bit signed immediate with the lowest 16 bits zeroed, suitable for 437// direct use with `addu16i.d`. 438def simm16_lsl16 : Operand<GRLenVT>, 439 ImmLeaf<GRLenVT, [{return isShiftedInt<16, 16>(Imm);}]>; 440 441// A 32-bit signed immediate expressible with a pair of `addu16i.d + addi` for 442// use in additions. 443def simm32_hi16_lo12: Operand<GRLenVT>, ImmLeaf<GRLenVT, [{ 444 return !isInt<12>(Imm) && isShiftedInt<16, 16>(Imm - SignExtend64<12>(Imm)); 445}]>; 446 447def BareSymbol : AsmOperandClass { 448 let Name = "BareSymbol"; 449 let RenderMethod = "addImmOperands"; 450 let DiagnosticType = "InvalidBareSymbol"; 451 let ParserMethod = "parseImmediate"; 452} 453 454// A bare symbol used in "PseudoLA_*" instructions. 455def bare_symbol : Operand<GRLenVT> { 456 let ParserMatchClass = BareSymbol; 457} 458 459def TPRelAddSymbol : AsmOperandClass { 460 let Name = "TPRelAddSymbol"; 461 let RenderMethod = "addImmOperands"; 462 let DiagnosticType = "InvalidTPRelAddSymbol"; 463 let ParserMethod = "parseOperandWithModifier"; 464} 465 466// A bare symbol with the %le_add_r variant. 467def tprel_add_symbol : Operand<GRLenVT> { 468 let ParserMatchClass = TPRelAddSymbol; 469} 470 471 472// Standalone (codegen-only) immleaf patterns. 473 474// A 12-bit signed immediate plus one where the imm range will be [-2047, 2048]. 475def simm12_plus1 : ImmLeaf<GRLenVT, 476 [{return (isInt<12>(Imm) && Imm != -2048) || Imm == 2048;}]>; 477 478// Return the negation of an immediate value. 479def NegImm : SDNodeXForm<imm, [{ 480 return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N), 481 N->getValueType(0)); 482}]>; 483 484// FP immediate patterns. 485def fpimm0 : PatLeaf<(fpimm), [{return N->isExactlyValue(+0.0);}]>; 486def fpimm0neg : PatLeaf<(fpimm), [{return N->isExactlyValue(-0.0);}]>; 487def fpimm1 : PatLeaf<(fpimm), [{return N->isExactlyValue(+1.0);}]>; 488 489// Return an immediate subtracted from 32. 490def ImmSubFrom32 : SDNodeXForm<imm, [{ 491 return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), 492 N->getValueType(0)); 493}]>; 494 495// Return the lowest 12 bits of the signed immediate. 496def LO12: SDNodeXForm<imm, [{ 497 return CurDAG->getTargetConstant(SignExtend64<12>(N->getSExtValue()), 498 SDLoc(N), N->getValueType(0)); 499}]>; 500 501// Return the higher 16 bits of the signed immediate. 502def HI16 : SDNodeXForm<imm, [{ 503 return CurDAG->getTargetConstant(N->getSExtValue() >> 16, SDLoc(N), 504 N->getValueType(0)); 505}]>; 506 507// Return the higher 16 bits of the signed immediate, adjusted for use within an 508// `addu16i.d + addi` pair. 509def HI16ForAddu16idAddiPair: SDNodeXForm<imm, [{ 510 auto Imm = N->getSExtValue(); 511 return CurDAG->getTargetConstant((Imm - SignExtend64<12>(Imm)) >> 16, 512 SDLoc(N), N->getValueType(0)); 513}]>; 514 515def BaseAddr : ComplexPattern<iPTR, 1, "SelectBaseAddr">; 516def AddrConstant : ComplexPattern<iPTR, 2, "SelectAddrConstant">; 517def NonFIBaseAddr : ComplexPattern<iPTR, 1, "selectNonFIBaseAddr">; 518 519def fma_nsz : PatFrag<(ops node:$fj, node:$fk, node:$fa), 520 (fma node:$fj, node:$fk, node:$fa), [{ 521 return N->getFlags().hasNoSignedZeros(); 522}]>; 523 524// Check if (add r, imm) can be optimized to (ADDI (ADDI r, imm0), imm1), 525// in which imm = imm0 + imm1, and both imm0 & imm1 are simm12. 526def AddiPair : PatLeaf<(imm), [{ 527 if (!N->hasOneUse()) 528 return false; 529 // The immediate operand must be in range [-4096,-2049] or [2048,4094]. 530 int64_t Imm = N->getSExtValue(); 531 return (-4096 <= Imm && Imm <= -2049) || (2048 <= Imm && Imm <= 4094); 532}]>; 533 534// Return -2048 if immediate is negative or 2047 if positive. 535def AddiPairImmLarge : SDNodeXForm<imm, [{ 536 int64_t Imm = N->getSExtValue() < 0 ? -2048 : 2047; 537 return CurDAG->getTargetConstant(Imm, SDLoc(N), 538 N->getValueType(0)); 539}]>; 540 541// Return imm - (imm < 0 ? -2048 : 2047). 542def AddiPairImmSmall : SDNodeXForm<imm, [{ 543 int64_t Imm = N->getSExtValue(); 544 int64_t Adj = Imm < 0 ? -2048 : 2047; 545 return CurDAG->getTargetConstant(Imm - Adj, SDLoc(N), 546 N->getValueType(0)); 547}]>; 548 549// Check if (mul r, imm) can be optimized to (SLLI (ALSL r, r, i0), i1), 550// in which imm = (1 + (1 << i0)) << i1. 551def AlslSlliImm : PatLeaf<(imm), [{ 552 if (!N->hasOneUse()) 553 return false; 554 uint64_t Imm = N->getZExtValue(); 555 unsigned I1 = llvm::countr_zero(Imm); 556 uint64_t Rem = Imm >> I1; 557 return Rem == 3 || Rem == 5 || Rem == 9 || Rem == 17; 558}]>; 559 560def AlslSlliImmI1 : SDNodeXForm<imm, [{ 561 uint64_t Imm = N->getZExtValue(); 562 unsigned I1 = llvm::countr_zero(Imm); 563 return CurDAG->getTargetConstant(I1, SDLoc(N), 564 N->getValueType(0)); 565}]>; 566 567def AlslSlliImmI0 : SDNodeXForm<imm, [{ 568 uint64_t Imm = N->getZExtValue(); 569 unsigned I1 = llvm::countr_zero(Imm); 570 uint64_t I0; 571 switch (Imm >> I1) { 572 case 3: I0 = 1; break; 573 case 5: I0 = 2; break; 574 case 9: I0 = 3; break; 575 default: I0 = 4; break; 576 } 577 return CurDAG->getTargetConstant(I0, SDLoc(N), 578 N->getValueType(0)); 579}]>; 580 581// Check if (and r, imm) can be optimized to (BSTRINS r, R0, msb, lsb), 582// in which imm = ~((2^^(msb-lsb+1) - 1) << lsb). 583def BstrinsImm : PatLeaf<(imm), [{ 584 if (!N->hasOneUse()) 585 return false; 586 uint64_t Imm = N->getZExtValue(); 587 // andi can be used instead if Imm <= 0xfff. 588 if (Imm <= 0xfff) 589 return false; 590 unsigned MaskIdx, MaskLen; 591 return N->getValueType(0).getSizeInBits() == 32 592 ? llvm::isShiftedMask_32(~Imm, MaskIdx, MaskLen) 593 : llvm::isShiftedMask_64(~Imm, MaskIdx, MaskLen); 594}]>; 595 596def BstrinsMsb: SDNodeXForm<imm, [{ 597 uint64_t Imm = N->getZExtValue(); 598 unsigned MaskIdx, MaskLen; 599 N->getValueType(0).getSizeInBits() == 32 600 ? llvm::isShiftedMask_32(~Imm, MaskIdx, MaskLen) 601 : llvm::isShiftedMask_64(~Imm, MaskIdx, MaskLen); 602 return CurDAG->getTargetConstant(MaskIdx + MaskLen - 1, SDLoc(N), 603 N->getValueType(0)); 604}]>; 605 606def BstrinsLsb: SDNodeXForm<imm, [{ 607 uint64_t Imm = N->getZExtValue(); 608 unsigned MaskIdx, MaskLen; 609 N->getValueType(0).getSizeInBits() == 32 610 ? llvm::isShiftedMask_32(~Imm, MaskIdx, MaskLen) 611 : llvm::isShiftedMask_64(~Imm, MaskIdx, MaskLen); 612 return CurDAG->getTargetConstant(MaskIdx, SDLoc(N), N->getValueType(0)); 613}]>; 614 615//===----------------------------------------------------------------------===// 616// Instruction Formats 617//===----------------------------------------------------------------------===// 618 619include "LoongArchInstrFormats.td" 620include "LoongArchFloatInstrFormats.td" 621include "LoongArchLSXInstrFormats.td" 622include "LoongArchLASXInstrFormats.td" 623include "LoongArchLBTInstrFormats.td" 624 625//===----------------------------------------------------------------------===// 626// Instruction Class Templates 627//===----------------------------------------------------------------------===// 628 629let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in { 630class ALU_3R<bits<32> op> 631 : Fmt3R<op, (outs GPR:$rd), (ins GPR:$rj, GPR:$rk), "$rd, $rj, $rk">; 632class ALU_2R<bits<32> op> 633 : Fmt2R<op, (outs GPR:$rd), (ins GPR:$rj), "$rd, $rj">; 634 635class ALU_3RI2<bits<32> op, Operand ImmOpnd> 636 : Fmt3RI2<op, (outs GPR:$rd), (ins GPR:$rj, GPR:$rk, ImmOpnd:$imm2), 637 "$rd, $rj, $rk, $imm2">; 638class ALU_3RI3<bits<32> op, Operand ImmOpnd> 639 : Fmt3RI3<op, (outs GPR:$rd), (ins GPR:$rj, GPR:$rk, ImmOpnd:$imm3), 640 "$rd, $rj, $rk, $imm3">; 641class ALU_2RI5<bits<32> op, Operand ImmOpnd> 642 : Fmt2RI5<op, (outs GPR:$rd), (ins GPR:$rj, ImmOpnd:$imm5), 643 "$rd, $rj, $imm5">; 644class ALU_2RI6<bits<32> op, Operand ImmOpnd> 645 : Fmt2RI6<op, (outs GPR:$rd), (ins GPR:$rj, ImmOpnd:$imm6), 646 "$rd, $rj, $imm6">; 647class ALU_2RI12<bits<32> op, Operand ImmOpnd> 648 : Fmt2RI12<op, (outs GPR:$rd), (ins GPR:$rj, ImmOpnd:$imm12), 649 "$rd, $rj, $imm12">; 650class ALU_2RI16<bits<32> op, Operand ImmOpnd> 651 : Fmt2RI16<op, (outs GPR:$rd), (ins GPR:$rj, ImmOpnd:$imm16), 652 "$rd, $rj, $imm16">; 653class ALU_1RI20<bits<32> op, Operand ImmOpnd> 654 : Fmt1RI20<op, (outs GPR:$rd), (ins ImmOpnd:$imm20), "$rd, $imm20">; 655} // hasSideEffects = 0, mayLoad = 0, mayStore = 0 656 657let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in 658class MISC_I15<bits<32> op> 659 : FmtI15<op, (outs), (ins uimm15:$imm15), "$imm15">; 660 661let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in 662class RDTIME_2R<bits<32> op> 663 : Fmt2R<op, (outs GPR:$rd, GPR:$rj), (ins), "$rd, $rj">; 664 665let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in { 666class BrCC_2RI16<bits<32> op> 667 : Fmt2RI16<op, (outs), (ins GPR:$rj, GPR:$rd, simm16_lsl2_br:$imm16), 668 "$rj, $rd, $imm16"> { 669 let isBranch = 1; 670 let isTerminator = 1; 671} 672class BrCCZ_1RI21<bits<32> op> 673 : Fmt1RI21<op, (outs), (ins GPR:$rj, simm21_lsl2:$imm21), 674 "$rj, $imm21"> { 675 let isBranch = 1; 676 let isTerminator = 1; 677} 678class Br_I26<bits<32> op> 679 : FmtI26<op, (outs), (ins simm26_b:$imm26), "$imm26"> { 680 let isBranch = 1; 681 let isTerminator = 1; 682 let isBarrier = 1; 683} 684} // hasSideEffects = 0, mayLoad = 0, mayStore = 0 685 686let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in { 687class LOAD_3R<bits<32> op> 688 : Fmt3R<op, (outs GPR:$rd), (ins GPR:$rj, GPR:$rk), "$rd, $rj, $rk">; 689class LOAD_2RI12<bits<32> op> 690 : Fmt2RI12<op, (outs GPR:$rd), (ins GPR:$rj, simm12_addlike:$imm12), 691 "$rd, $rj, $imm12">; 692class LOAD_2RI14<bits<32> op> 693 : Fmt2RI14<op, (outs GPR:$rd), (ins GPR:$rj, simm14_lsl2:$imm14), 694 "$rd, $rj, $imm14">; 695} // hasSideEffects = 0, mayLoad = 1, mayStore = 0 696 697let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in { 698class STORE_3R<bits<32> op> 699 : Fmt3R<op, (outs), (ins GPR:$rd, GPR:$rj, GPR:$rk), 700 "$rd, $rj, $rk">; 701class STORE_2RI12<bits<32> op> 702 : Fmt2RI12<op, (outs), (ins GPR:$rd, GPR:$rj, simm12_addlike:$imm12), 703 "$rd, $rj, $imm12">; 704class STORE_2RI14<bits<32> op> 705 : Fmt2RI14<op, (outs), (ins GPR:$rd, GPR:$rj, simm14_lsl2:$imm14), 706 "$rd, $rj, $imm14">; 707} // hasSideEffects = 0, mayLoad = 0, mayStore = 1 708 709let hasSideEffects = 0, mayLoad = 1, mayStore = 1, Constraints = "@earlyclobber $rd" in 710class AM_3R<bits<32> op> 711 : Fmt3R<op, (outs GPR:$rd), (ins GPR:$rk, GPRMemAtomic:$rj), 712 "$rd, $rk, $rj">; 713 714let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in { 715class LLBase<bits<32> op> 716 : Fmt2RI14<op, (outs GPR:$rd), (ins GPR:$rj, simm14_lsl2:$imm14), 717 "$rd, $rj, $imm14">; 718class LLBase_ACQ<bits<32> op> 719 : Fmt2R<op, (outs GPR:$rd), (ins GPR:$rj), "$rd, $rj">; 720} 721 722let hasSideEffects = 0, mayLoad = 0, mayStore = 1, Constraints = "$rd = $dst" in { 723class SCBase<bits<32> op> 724 : Fmt2RI14<op, (outs GPR:$dst), (ins GPR:$rd, GPR:$rj, simm14_lsl2:$imm14), 725 "$rd, $rj, $imm14">; 726class SCBase_128<bits<32> op> 727 : Fmt3R<op, (outs GPR:$dst), (ins GPR:$rd, GPR:$rk, GPR:$rj), 728 "$rd, $rk, $rj">; 729class SCBase_REL<bits<32> op> 730 : Fmt2R<op, (outs GPR:$dst), (ins GPR:$rd, GPR:$rj), "$rd, $rj">; 731} 732 733let hasSideEffects = 1 in 734class IOCSRRD<bits<32> op> 735 : Fmt2R<op, (outs GPR:$rd), (ins GPR:$rj), "$rd, $rj">; 736 737let hasSideEffects = 1 in 738class IOCSRWR<bits<32> op> 739 : Fmt2R<op, (outs), (ins GPR:$rd, GPR:$rj), "$rd, $rj">; 740 741//===----------------------------------------------------------------------===// 742// Basic Integer Instructions 743//===----------------------------------------------------------------------===// 744 745// Arithmetic Operation Instructions 746def ADD_W : ALU_3R<0x00100000>; 747def SUB_W : ALU_3R<0x00110000>; 748def ADDI_W : ALU_2RI12<0x02800000, simm12_addlike>; 749def ALSL_W : ALU_3RI2<0x00040000, uimm2_plus1>; 750let isReMaterializable = 1 in { 751def LU12I_W : ALU_1RI20<0x14000000, simm20_lu12iw>; 752} 753def SLT : ALU_3R<0x00120000>; 754def SLTU : ALU_3R<0x00128000>; 755def SLTI : ALU_2RI12<0x02000000, simm12>; 756def SLTUI : ALU_2RI12<0x02400000, simm12>; 757def PCADDI : ALU_1RI20<0x18000000, simm20>; 758def PCADDU12I : ALU_1RI20<0x1c000000, simm20>; 759def PCALAU12I : ALU_1RI20<0x1a000000, simm20_pcalau12i>; 760def AND : ALU_3R<0x00148000>; 761def OR : ALU_3R<0x00150000>; 762def NOR : ALU_3R<0x00140000>; 763def XOR : ALU_3R<0x00158000>; 764def ANDN : ALU_3R<0x00168000>; 765def ORN : ALU_3R<0x00160000>; 766def ANDI : ALU_2RI12<0x03400000, uimm12>; 767// See LoongArchInstrInfo::isAsCheapAsAMove for more details. 768let isReMaterializable = 1, isAsCheapAsAMove = 1 in { 769def ORI : ALU_2RI12<0x03800000, uimm12_ori>; 770def XORI : ALU_2RI12<0x03c00000, uimm12>; 771} 772def MUL_W : ALU_3R<0x001c0000>; 773def MULH_W : ALU_3R<0x001c8000>; 774def MULH_WU : ALU_3R<0x001d0000>; 775let usesCustomInserter = true in { 776def DIV_W : ALU_3R<0x00200000>; 777def MOD_W : ALU_3R<0x00208000>; 778def DIV_WU : ALU_3R<0x00210000>; 779def MOD_WU : ALU_3R<0x00218000>; 780} // usesCustomInserter = true 781 782// Bit-shift Instructions 783def SLL_W : ALU_3R<0x00170000>; 784def SRL_W : ALU_3R<0x00178000>; 785def SRA_W : ALU_3R<0x00180000>; 786def ROTR_W : ALU_3R<0x001b0000>; 787 788def SLLI_W : ALU_2RI5<0x00408000, uimm5>; 789def SRLI_W : ALU_2RI5<0x00448000, uimm5>; 790def SRAI_W : ALU_2RI5<0x00488000, uimm5>; 791def ROTRI_W : ALU_2RI5<0x004c8000, uimm5>; 792 793// Bit-manipulation Instructions 794def EXT_W_B : ALU_2R<0x00005c00>; 795def EXT_W_H : ALU_2R<0x00005800>; 796def CLO_W : ALU_2R<0x00001000>; 797def CLZ_W : ALU_2R<0x00001400>; 798def CTO_W : ALU_2R<0x00001800>; 799def CTZ_W : ALU_2R<0x00001c00>; 800def BYTEPICK_W : ALU_3RI2<0x00080000, uimm2>; 801def REVB_2H : ALU_2R<0x00003000>; 802def BITREV_4B : ALU_2R<0x00004800>; 803def BITREV_W : ALU_2R<0x00005000>; 804let Constraints = "$rd = $dst" in { 805def BSTRINS_W : FmtBSTR_W<0x00600000, (outs GPR:$dst), 806 (ins GPR:$rd, GPR:$rj, uimm5:$msbw, uimm5:$lsbw), 807 "$rd, $rj, $msbw, $lsbw">; 808} 809def BSTRPICK_W : FmtBSTR_W<0x00608000, (outs GPR:$rd), 810 (ins GPR:$rj, uimm5:$msbw, uimm5:$lsbw), 811 "$rd, $rj, $msbw, $lsbw">; 812def MASKEQZ : ALU_3R<0x00130000>; 813def MASKNEZ : ALU_3R<0x00138000>; 814 815// Branch Instructions 816def BEQ : BrCC_2RI16<0x58000000>; 817def BNE : BrCC_2RI16<0x5c000000>; 818def BLT : BrCC_2RI16<0x60000000>; 819def BGE : BrCC_2RI16<0x64000000>; 820def BLTU : BrCC_2RI16<0x68000000>; 821def BGEU : BrCC_2RI16<0x6c000000>; 822def BEQZ : BrCCZ_1RI21<0x40000000>; 823def BNEZ : BrCCZ_1RI21<0x44000000>; 824def B : Br_I26<0x50000000>; 825 826let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCall = 1, Defs=[R1] in 827def BL : FmtI26<0x54000000, (outs), (ins simm26_symbol:$imm26), "$imm26">; 828let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 829def JIRL : Fmt2RI16<0x4c000000, (outs GPR:$rd), 830 (ins GPR:$rj, simm16_lsl2:$imm16), "$rd, $rj, $imm16">; 831 832// Common Memory Access Instructions 833def LD_B : LOAD_2RI12<0x28000000>; 834def LD_H : LOAD_2RI12<0x28400000>; 835def LD_W : LOAD_2RI12<0x28800000>; 836def LD_BU : LOAD_2RI12<0x2a000000>; 837def LD_HU : LOAD_2RI12<0x2a400000>; 838def ST_B : STORE_2RI12<0x29000000>; 839def ST_H : STORE_2RI12<0x29400000>; 840def ST_W : STORE_2RI12<0x29800000>; 841let hasSideEffects = 0, mayLoad = 1, mayStore = 1 in 842def PRELD : FmtPRELD<(outs), (ins uimm5:$imm5, GPR:$rj, simm12:$imm12), 843 "$imm5, $rj, $imm12">; 844 845// Atomic Memory Access Instructions 846def LL_W : LLBase<0x20000000>; 847def SC_W : SCBase<0x21000000>; 848def LLACQ_W : LLBase_ACQ<0x38578000>; 849def SCREL_W : SCBase_REL<0x38578400>; 850 851// Barrier Instructions 852def DBAR : MISC_I15<0x38720000>; 853def IBAR : MISC_I15<0x38728000>; 854 855// Other Miscellaneous Instructions 856def SYSCALL : MISC_I15<0x002b0000>; 857def BREAK : MISC_I15<0x002a0000>; 858def RDTIMEL_W : RDTIME_2R<0x00006000>; 859def RDTIMEH_W : RDTIME_2R<0x00006400>; 860def CPUCFG : ALU_2R<0x00006c00>; 861 862// Cache Maintenance Instructions 863def CACOP : FmtCACOP<(outs), (ins uimm5:$op, GPR:$rj, simm12:$imm12), 864 "$op, $rj, $imm12">; 865 866/// LA64 instructions 867 868let Predicates = [IsLA64] in { 869 870// Arithmetic Operation Instructions for 64-bits 871def ADD_D : ALU_3R<0x00108000>; 872def SUB_D : ALU_3R<0x00118000>; 873// ADDI_D isn't always rematerializable, but isReMaterializable will be used as 874// a hint which is verified in isReallyTriviallyReMaterializable. 875// See LoongArchInstrInfo::isAsCheapAsAMove for more details. 876let isReMaterializable = 1, isAsCheapAsAMove = 1 in { 877def ADDI_D : ALU_2RI12<0x02c00000, simm12_addlike>; 878} 879def ADDU16I_D : ALU_2RI16<0x10000000, simm16>; 880def ALSL_WU : ALU_3RI2<0x00060000, uimm2_plus1>; 881def ALSL_D : ALU_3RI2<0x002c0000, uimm2_plus1>; 882let Constraints = "$rd = $dst" in { 883let hasSideEffects = 0, mayLoad = 0, mayStore = 0, 884 isReMaterializable = 1 in 885def LU32I_D : Fmt1RI20<0x16000000, (outs GPR:$dst), 886 (ins GPR:$rd, simm20_lu32id:$imm20), 887 "$rd, $imm20">; 888} 889let isReMaterializable = 1 in { 890def LU52I_D : ALU_2RI12<0x03000000, simm12_lu52id>; 891} 892def PCADDU18I : ALU_1RI20<0x1e000000, simm20_pcaddu18i>; 893def MUL_D : ALU_3R<0x001d8000>; 894def MULH_D : ALU_3R<0x001e0000>; 895def MULH_DU : ALU_3R<0x001e8000>; 896def MULW_D_W : ALU_3R<0x001f0000>; 897def MULW_D_WU : ALU_3R<0x001f8000>; 898let usesCustomInserter = true in { 899def DIV_D : ALU_3R<0x00220000>; 900def MOD_D : ALU_3R<0x00228000>; 901def DIV_DU : ALU_3R<0x00230000>; 902def MOD_DU : ALU_3R<0x00238000>; 903} // usesCustomInserter = true 904 905// Bit-shift Instructions for 64-bits 906def SLL_D : ALU_3R<0x00188000>; 907def SRL_D : ALU_3R<0x00190000>; 908def SRA_D : ALU_3R<0x00198000>; 909def ROTR_D : ALU_3R<0x001b8000>; 910def SLLI_D : ALU_2RI6<0x00410000, uimm6>; 911def SRLI_D : ALU_2RI6<0x00450000, uimm6>; 912def SRAI_D : ALU_2RI6<0x00490000, uimm6>; 913def ROTRI_D : ALU_2RI6<0x004d0000, uimm6>; 914 915// Bit-manipulation Instructions for 64-bits 916def CLO_D : ALU_2R<0x00002000>; 917def CLZ_D : ALU_2R<0x00002400>; 918def CTO_D : ALU_2R<0x00002800>; 919def CTZ_D : ALU_2R<0x00002c00>; 920def BYTEPICK_D : ALU_3RI3<0x000c0000, uimm3>; 921def REVB_4H : ALU_2R<0x00003400>; 922def REVB_2W : ALU_2R<0x00003800>; 923def REVB_D : ALU_2R<0x00003c00>; 924def REVH_2W : ALU_2R<0x00004000>; 925def REVH_D : ALU_2R<0x00004400>; 926def BITREV_8B : ALU_2R<0x00004c00>; 927def BITREV_D : ALU_2R<0x00005400>; 928let Constraints = "$rd = $dst" in { 929def BSTRINS_D : FmtBSTR_D<0x00800000, (outs GPR:$dst), 930 (ins GPR:$rd, GPR:$rj, uimm6:$msbd, uimm6:$lsbd), 931 "$rd, $rj, $msbd, $lsbd">; 932} 933def BSTRPICK_D : FmtBSTR_D<0x00c00000, (outs GPR:$rd), 934 (ins GPR:$rj, uimm6:$msbd, uimm6:$lsbd), 935 "$rd, $rj, $msbd, $lsbd">; 936 937// Common Memory Access Instructions for 64-bits 938def LD_WU : LOAD_2RI12<0x2a800000>; 939def LD_D : LOAD_2RI12<0x28c00000>; 940def ST_D : STORE_2RI12<0x29c00000>; 941def LDX_B : LOAD_3R<0x38000000>; 942def LDX_H : LOAD_3R<0x38040000>; 943def LDX_W : LOAD_3R<0x38080000>; 944def LDX_D : LOAD_3R<0x380c0000>; 945def LDX_BU : LOAD_3R<0x38200000>; 946def LDX_HU : LOAD_3R<0x38240000>; 947def LDX_WU : LOAD_3R<0x38280000>; 948def STX_B : STORE_3R<0x38100000>; 949def STX_H : STORE_3R<0x38140000>; 950def STX_W : STORE_3R<0x38180000>; 951def STX_D : STORE_3R<0x381c0000>; 952def LDPTR_W : LOAD_2RI14<0x24000000>; 953def LDPTR_D : LOAD_2RI14<0x26000000>; 954def STPTR_W : STORE_2RI14<0x25000000>; 955def STPTR_D : STORE_2RI14<0x27000000>; 956let hasSideEffects = 0, mayLoad = 1, mayStore = 1 in 957def PRELDX : FmtPRELDX<(outs), (ins uimm5:$imm5, GPR:$rj, GPR:$rk), 958 "$imm5, $rj, $rk">; 959 960// Bound Check Memory Access Instructions 961def LDGT_B : LOAD_3R<0x38780000>; 962def LDGT_H : LOAD_3R<0x38788000>; 963def LDGT_W : LOAD_3R<0x38790000>; 964def LDGT_D : LOAD_3R<0x38798000>; 965def LDLE_B : LOAD_3R<0x387a0000>; 966def LDLE_H : LOAD_3R<0x387a8000>; 967def LDLE_W : LOAD_3R<0x387b0000>; 968def LDLE_D : LOAD_3R<0x387b8000>; 969def STGT_B : STORE_3R<0x387c0000>; 970def STGT_H : STORE_3R<0x387c8000>; 971def STGT_W : STORE_3R<0x387d0000>; 972def STGT_D : STORE_3R<0x387d8000>; 973def STLE_B : STORE_3R<0x387e0000>; 974def STLE_H : STORE_3R<0x387e8000>; 975def STLE_W : STORE_3R<0x387f0000>; 976def STLE_D : STORE_3R<0x387f8000>; 977 978// Atomic Memory Access Instructions for 64-bits 979def AMSWAP_B : AM_3R<0x385c0000>; 980def AMSWAP_H : AM_3R<0x385c8000>; 981def AMSWAP_W : AM_3R<0x38600000>; 982def AMSWAP_D : AM_3R<0x38608000>; 983def AMADD_B : AM_3R<0x385d0000>; 984def AMADD_H : AM_3R<0x385d8000>; 985def AMADD_W : AM_3R<0x38610000>; 986def AMADD_D : AM_3R<0x38618000>; 987def AMAND_W : AM_3R<0x38620000>; 988def AMAND_D : AM_3R<0x38628000>; 989def AMOR_W : AM_3R<0x38630000>; 990def AMOR_D : AM_3R<0x38638000>; 991def AMXOR_W : AM_3R<0x38640000>; 992def AMXOR_D : AM_3R<0x38648000>; 993def AMMAX_W : AM_3R<0x38650000>; 994def AMMAX_D : AM_3R<0x38658000>; 995def AMMIN_W : AM_3R<0x38660000>; 996def AMMIN_D : AM_3R<0x38668000>; 997def AMMAX_WU : AM_3R<0x38670000>; 998def AMMAX_DU : AM_3R<0x38678000>; 999def AMMIN_WU : AM_3R<0x38680000>; 1000def AMMIN_DU : AM_3R<0x38688000>; 1001def AMSWAP__DB_B : AM_3R<0x385e0000>; 1002def AMSWAP__DB_H : AM_3R<0x385e8000>; 1003def AMSWAP__DB_W : AM_3R<0x38690000>; 1004def AMSWAP__DB_D : AM_3R<0x38698000>; 1005def AMADD__DB_B : AM_3R<0x385f0000>; 1006def AMADD__DB_H : AM_3R<0x385f8000>; 1007def AMADD__DB_W : AM_3R<0x386a0000>; 1008def AMADD__DB_D : AM_3R<0x386a8000>; 1009def AMAND__DB_W : AM_3R<0x386b0000>; 1010def AMAND__DB_D : AM_3R<0x386b8000>; 1011def AMOR__DB_W : AM_3R<0x386c0000>; 1012def AMOR__DB_D : AM_3R<0x386c8000>; 1013def AMXOR__DB_W : AM_3R<0x386d0000>; 1014def AMXOR__DB_D : AM_3R<0x386d8000>; 1015def AMMAX__DB_W : AM_3R<0x386e0000>; 1016def AMMAX__DB_D : AM_3R<0x386e8000>; 1017def AMMIN__DB_W : AM_3R<0x386f0000>; 1018def AMMIN__DB_D : AM_3R<0x386f8000>; 1019def AMMAX__DB_WU : AM_3R<0x38700000>; 1020def AMMAX__DB_DU : AM_3R<0x38708000>; 1021def AMMIN__DB_WU : AM_3R<0x38710000>; 1022def AMMIN__DB_DU : AM_3R<0x38718000>; 1023def AMCAS_B : AM_3R<0x38580000>; 1024def AMCAS_H : AM_3R<0x38588000>; 1025def AMCAS_W : AM_3R<0x38590000>; 1026def AMCAS_D : AM_3R<0x38598000>; 1027def AMCAS__DB_B : AM_3R<0x385a0000>; 1028def AMCAS__DB_H : AM_3R<0x385a8000>; 1029def AMCAS__DB_W : AM_3R<0x385b0000>; 1030def AMCAS__DB_D : AM_3R<0x385b8000>; 1031def LL_D : LLBase<0x22000000>; 1032def SC_D : SCBase<0x23000000>; 1033def SC_Q : SCBase_128<0x38570000>; 1034def LLACQ_D : LLBase_ACQ<0x38578800>; 1035def SCREL_D : SCBase_REL<0x38578C00>; 1036 1037// CRC Check Instructions 1038def CRC_W_B_W : ALU_3R<0x00240000>; 1039def CRC_W_H_W : ALU_3R<0x00248000>; 1040def CRC_W_W_W : ALU_3R<0x00250000>; 1041def CRC_W_D_W : ALU_3R<0x00258000>; 1042def CRCC_W_B_W : ALU_3R<0x00260000>; 1043def CRCC_W_H_W : ALU_3R<0x00268000>; 1044def CRCC_W_W_W : ALU_3R<0x00270000>; 1045def CRCC_W_D_W : ALU_3R<0x00278000>; 1046 1047// Other Miscellaneous Instructions for 64-bits 1048def ASRTLE_D : FmtASRT<0x00010000, (outs), (ins GPR:$rj, GPR:$rk), 1049 "$rj, $rk">; 1050def ASRTGT_D : FmtASRT<0x00018000, (outs), (ins GPR:$rj, GPR:$rk), 1051 "$rj, $rk">; 1052def RDTIME_D : RDTIME_2R<0x00006800>; 1053} // Predicates = [IsLA64] 1054 1055//===----------------------------------------------------------------------===// 1056// Pseudo-instructions and codegen patterns 1057// 1058// Naming convention: For 'generic' pattern classes, we use the naming 1059// convention PatTy1Ty2. 1060//===----------------------------------------------------------------------===// 1061 1062/// Generic pattern classes 1063 1064class PatGprGpr<SDPatternOperator OpNode, LAInst Inst> 1065 : Pat<(OpNode GPR:$rj, GPR:$rk), (Inst GPR:$rj, GPR:$rk)>; 1066class PatGprGpr_32<SDPatternOperator OpNode, LAInst Inst> 1067 : Pat<(sext_inreg (OpNode GPR:$rj, GPR:$rk), i32), (Inst GPR:$rj, GPR:$rk)>; 1068class PatGpr<SDPatternOperator OpNode, LAInst Inst> 1069 : Pat<(OpNode GPR:$rj), (Inst GPR:$rj)>; 1070 1071class PatGprImm<SDPatternOperator OpNode, LAInst Inst, Operand ImmOpnd> 1072 : Pat<(OpNode GPR:$rj, ImmOpnd:$imm), 1073 (Inst GPR:$rj, ImmOpnd:$imm)>; 1074class PatGprImm_32<SDPatternOperator OpNode, LAInst Inst, Operand ImmOpnd> 1075 : Pat<(sext_inreg (OpNode GPR:$rj, ImmOpnd:$imm), i32), 1076 (Inst GPR:$rj, ImmOpnd:$imm)>; 1077 1078/// Predicates 1079def AddLike: PatFrags<(ops node:$A, node:$B), 1080 [(add node:$A, node:$B), (or node:$A, node:$B)], [{ 1081 return CurDAG->isBaseWithConstantOffset(SDValue(N, 0)); 1082}]>; 1083 1084/// Simple arithmetic operations 1085 1086// Match both a plain shift and one where the shift amount is masked (this is 1087// typically introduced when the legalizer promotes the shift amount and 1088// zero-extends it). For LoongArch, the mask is unnecessary as shifts in the 1089// base ISA only read the least significant 5 bits (LA32) or 6 bits (LA64). 1090def shiftMaskGRLen 1091 : ComplexPattern<GRLenVT, 1, "selectShiftMaskGRLen", [], [], 0>; 1092def shiftMask32 : ComplexPattern<i64, 1, "selectShiftMask32", [], [], 0>; 1093 1094def sexti32 : ComplexPattern<i64, 1, "selectSExti32">; 1095def zexti32 : ComplexPattern<i64, 1, "selectZExti32">; 1096 1097class shiftop<SDPatternOperator operator> 1098 : PatFrag<(ops node:$val, node:$count), 1099 (operator node:$val, (GRLenVT (shiftMaskGRLen node:$count)))>; 1100class shiftopw<SDPatternOperator operator> 1101 : PatFrag<(ops node:$val, node:$count), 1102 (operator node:$val, (i64 (shiftMask32 node:$count)))>; 1103 1104def mul_const_oneuse : PatFrag<(ops node:$A, node:$B), 1105 (mul node:$A, node:$B), [{ 1106 if (auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 1107 return N1C->hasOneUse(); 1108 return false; 1109}]>; 1110 1111let Predicates = [IsLA32] in { 1112def : PatGprGpr<add, ADD_W>; 1113def : PatGprImm<add, ADDI_W, simm12>; 1114def : PatGprGpr<sub, SUB_W>; 1115def : PatGprGpr<sdiv, DIV_W>; 1116def : PatGprGpr<udiv, DIV_WU>; 1117def : PatGprGpr<srem, MOD_W>; 1118def : PatGprGpr<urem, MOD_WU>; 1119def : PatGprGpr<mul, MUL_W>; 1120def : PatGprGpr<mulhs, MULH_W>; 1121def : PatGprGpr<mulhu, MULH_WU>; 1122def : PatGprGpr<rotr, ROTR_W>; 1123def : PatGprImm<rotr, ROTRI_W, uimm5>; 1124 1125foreach Idx = 1...3 in { 1126 defvar ShamtA = !mul(8, Idx); 1127 defvar ShamtB = !mul(8, !sub(4, Idx)); 1128 def : Pat<(or (shl GPR:$rk, (i32 ShamtA)), (srl GPR:$rj, (i32 ShamtB))), 1129 (BYTEPICK_W GPR:$rj, GPR:$rk, Idx)>; 1130} 1131} // Predicates = [IsLA32] 1132 1133let Predicates = [IsLA64] in { 1134def : PatGprGpr<add, ADD_D>; 1135def : PatGprImm<add, ADDI_D, simm12>; 1136def : PatGprGpr<sub, SUB_D>; 1137def : PatGprGpr<sdiv, DIV_D>; 1138def : PatGprGpr_32<sdiv, DIV_W>; 1139def : PatGprGpr<udiv, DIV_DU>; 1140def : PatGprGpr<loongarch_div_wu, DIV_WU>; 1141def : PatGprGpr<srem, MOD_D>; 1142def : PatGprGpr_32<srem, MOD_W>; 1143def : PatGprGpr<urem, MOD_DU>; 1144def : PatGprGpr<loongarch_mod_wu, MOD_WU>; 1145def : PatGprGpr<rotr, ROTR_D>; 1146def : PatGprGpr<loongarch_rotr_w, ROTR_W>; 1147def : PatGprGpr_32<rotr, ROTR_W>; 1148def : PatGprImm<rotr, ROTRI_D, uimm6>; 1149def : PatGprImm_32<rotr, ROTRI_W, uimm5>; 1150def : PatGprImm<loongarch_rotr_w, ROTRI_W, uimm5>; 1151// TODO: Select "_W[U]" instructions for i32xi32 if only lower 32 bits of the 1152// product are used. 1153def : PatGprGpr<mul, MUL_D>; 1154def : PatGprGpr<mulhs, MULH_D>; 1155def : PatGprGpr<mulhu, MULH_DU>; 1156// Select MULW_D_W for calculating the full 64 bits product of i32xi32 signed 1157// multiplication. 1158def : Pat<(i64 (mul (sext_inreg GPR:$rj, i32), (sext_inreg GPR:$rk, i32))), 1159 (MULW_D_W GPR:$rj, GPR:$rk)>; 1160// Select MULW_D_WU for calculating the full 64 bits product of i32xi32 1161// unsigned multiplication. 1162def : Pat<(i64 (mul (loongarch_bstrpick GPR:$rj, (i64 31), (i64 0)), 1163 (loongarch_bstrpick GPR:$rk, (i64 31), (i64 0)))), 1164 (MULW_D_WU GPR:$rj, GPR:$rk)>; 1165 1166def : Pat<(add GPR:$rj, simm16_lsl16:$imm), 1167 (ADDU16I_D GPR:$rj, (HI16 $imm))>; 1168def : Pat<(add GPR:$rj, simm32_hi16_lo12:$imm), 1169 (ADDI_D (ADDU16I_D GPR:$rj, (HI16ForAddu16idAddiPair $imm)), 1170 (LO12 $imm))>; 1171def : Pat<(sext_inreg (add GPR:$rj, simm32_hi16_lo12:$imm), i32), 1172 (ADDI_W (ADDU16I_D GPR:$rj, (HI16ForAddu16idAddiPair $imm)), 1173 (LO12 $imm))>; 1174 1175let Predicates = [IsLA32] in { 1176def : Pat<(add GPR:$rj, (AddiPair:$im)), 1177 (ADDI_W (ADDI_W GPR:$rj, (AddiPairImmLarge AddiPair:$im)), 1178 (AddiPairImmSmall AddiPair:$im))>; 1179} // Predicates = [IsLA32] 1180 1181let Predicates = [IsLA64] in { 1182def : Pat<(add GPR:$rj, (AddiPair:$im)), 1183 (ADDI_D (ADDI_D GPR:$rj, (AddiPairImmLarge AddiPair:$im)), 1184 (AddiPairImmSmall AddiPair:$im))>; 1185def : Pat<(sext_inreg (add GPR:$rj, (AddiPair:$im)), i32), 1186 (ADDI_W (ADDI_W GPR:$rj, (AddiPairImmLarge AddiPair:$im)), 1187 (AddiPairImmSmall AddiPair:$im))>; 1188} // Predicates = [IsLA64] 1189 1190let Predicates = [IsLA32] in { 1191foreach Idx0 = 1...4 in { 1192 foreach Idx1 = 1...4 in { 1193 defvar CImm = !add(1, !shl(!add(1, !shl(1, Idx0)), Idx1)); 1194 def : Pat<(mul_const_oneuse GPR:$r, (i32 CImm)), 1195 (ALSL_W (ALSL_W GPR:$r, GPR:$r, (i32 Idx0)), 1196 GPR:$r, (i32 Idx1))>; 1197 } 1198} 1199foreach Idx0 = 1...4 in { 1200 foreach Idx1 = 1...4 in { 1201 defvar Cb = !add(1, !shl(1, Idx0)); 1202 defvar CImm = !add(Cb, !shl(Cb, Idx1)); 1203 def : Pat<(mul_const_oneuse GPR:$r, (i32 CImm)), 1204 (ALSL_W (ALSL_W GPR:$r, GPR:$r, (i32 Idx0)), 1205 (ALSL_W GPR:$r, GPR:$r, (i32 Idx0)), (i32 Idx1))>; 1206 } 1207} 1208} // Predicates = [IsLA32] 1209 1210let Predicates = [IsLA64] in { 1211foreach Idx0 = 1...4 in { 1212 foreach Idx1 = 1...4 in { 1213 defvar CImm = !add(1, !shl(!add(1, !shl(1, Idx0)), Idx1)); 1214 def : Pat<(sext_inreg (mul_const_oneuse GPR:$r, (i64 CImm)), i32), 1215 (ALSL_W (ALSL_W GPR:$r, GPR:$r, (i64 Idx0)), 1216 GPR:$r, (i64 Idx1))>; 1217 def : Pat<(mul_const_oneuse GPR:$r, (i64 CImm)), 1218 (ALSL_D (ALSL_D GPR:$r, GPR:$r, (i64 Idx0)), 1219 GPR:$r, (i64 Idx1))>; 1220 } 1221} 1222foreach Idx0 = 1...4 in { 1223 foreach Idx1 = 1...4 in { 1224 defvar Cb = !add(1, !shl(1, Idx0)); 1225 defvar CImm = !add(Cb, !shl(Cb, Idx1)); 1226 def : Pat<(sext_inreg (mul_const_oneuse GPR:$r, (i64 CImm)), i32), 1227 (ALSL_W (ALSL_W GPR:$r, GPR:$r, (i64 Idx0)), 1228 (ALSL_W GPR:$r, GPR:$r, (i64 Idx0)), (i64 Idx1))>; 1229 def : Pat<(mul_const_oneuse GPR:$r, (i64 CImm)), 1230 (ALSL_D (ALSL_D GPR:$r, GPR:$r, (i64 Idx0)), 1231 (ALSL_D GPR:$r, GPR:$r, (i64 Idx0)), (i64 Idx1))>; 1232 } 1233} 1234} // Predicates = [IsLA64] 1235 1236let Predicates = [IsLA32] in { 1237def : Pat<(mul GPR:$rj, (AlslSlliImm:$im)), 1238 (SLLI_W (ALSL_W GPR:$rj, GPR:$rj, (AlslSlliImmI0 AlslSlliImm:$im)), 1239 (AlslSlliImmI1 AlslSlliImm:$im))>; 1240} // Predicates = [IsLA32] 1241 1242let Predicates = [IsLA64] in { 1243def : Pat<(sext_inreg (mul GPR:$rj, (AlslSlliImm:$im)), i32), 1244 (SLLI_W (ALSL_W GPR:$rj, GPR:$rj, (AlslSlliImmI0 AlslSlliImm:$im)), 1245 (AlslSlliImmI1 AlslSlliImm:$im))>; 1246def : Pat<(mul GPR:$rj, (AlslSlliImm:$im)), 1247 (SLLI_D (ALSL_D GPR:$rj, GPR:$rj, (AlslSlliImmI0 AlslSlliImm:$im)), 1248 (AlslSlliImmI1 AlslSlliImm:$im))>; 1249} // Predicates = [IsLA64] 1250 1251foreach Idx = 1...7 in { 1252 defvar ShamtA = !mul(8, Idx); 1253 defvar ShamtB = !mul(8, !sub(8, Idx)); 1254 def : Pat<(or (shl GPR:$rk, (i64 ShamtA)), (srl GPR:$rj, (i64 ShamtB))), 1255 (BYTEPICK_D GPR:$rj, GPR:$rk, Idx)>; 1256} 1257 1258foreach Idx = 1...3 in { 1259 defvar ShamtA = !mul(8, Idx); 1260 defvar ShamtB = !mul(8, !sub(4, Idx)); 1261 // NOTE: the srl node would already be transformed into a loongarch_bstrpick 1262 // by the time this pattern gets to execute, hence the weird construction. 1263 def : Pat<(sext_inreg (or (shl GPR:$rk, (i64 ShamtA)), 1264 (loongarch_bstrpick GPR:$rj, (i64 31), 1265 (i64 ShamtB))), i32), 1266 (BYTEPICK_W GPR:$rj, GPR:$rk, Idx)>; 1267} 1268} // Predicates = [IsLA64] 1269 1270def : PatGprGpr<and, AND>; 1271def : PatGprImm<and, ANDI, uimm12>; 1272def : PatGprGpr<or, OR>; 1273def : PatGprImm<or, ORI, uimm12>; 1274def : PatGprGpr<xor, XOR>; 1275def : PatGprImm<xor, XORI, uimm12>; 1276def : Pat<(not GPR:$rj), (NOR GPR:$rj, R0)>; 1277def : Pat<(not (or GPR:$rj, GPR:$rk)), (NOR GPR:$rj, GPR:$rk)>; 1278def : Pat<(or GPR:$rj, (not GPR:$rk)), (ORN GPR:$rj, GPR:$rk)>; 1279def : Pat<(and GPR:$rj, (not GPR:$rk)), (ANDN GPR:$rj, GPR:$rk)>; 1280 1281let Predicates = [IsLA32] in { 1282def : Pat<(and GPR:$rj, BstrinsImm:$imm), 1283 (BSTRINS_W GPR:$rj, R0, (BstrinsMsb BstrinsImm:$imm), 1284 (BstrinsLsb BstrinsImm:$imm))>; 1285} // Predicates = [IsLA32] 1286 1287let Predicates = [IsLA64] in { 1288def : Pat<(and GPR:$rj, BstrinsImm:$imm), 1289 (BSTRINS_D GPR:$rj, R0, (BstrinsMsb BstrinsImm:$imm), 1290 (BstrinsLsb BstrinsImm:$imm))>; 1291} // Predicates = [IsLA64] 1292 1293/// Traps 1294 1295// We lower `trap` to `amswap.w rd:$r0, rk:$r1, rj:$r0`, as this is guaranteed 1296// to trap with an INE (non-existent on LA32, explicitly documented to INE on 1297// LA64). And the resulting signal is different from `debugtrap` like on some 1298// other existing ports so programs/porters might have an easier time. 1299def PseudoUNIMP : Pseudo<(outs), (ins), [(trap)]>, 1300 PseudoInstExpansion<(AMSWAP_W R0, R1, R0)>; 1301 1302// We lower `debugtrap` to `break 0`, as this is guaranteed to exist and work, 1303// even for LA32 Primary. Also, because so far the ISA does not provide a 1304// specific trap instruction/kind exclusively for alerting the debugger, 1305// every other project uses the generic immediate of 0 for this. 1306def : Pat<(debugtrap), (BREAK 0)>; 1307 1308/// Bit counting operations 1309 1310let Predicates = [IsLA64] in { 1311def : PatGpr<ctlz, CLZ_D>; 1312def : PatGpr<cttz, CTZ_D>; 1313def : Pat<(ctlz (not GPR:$rj)), (CLO_D GPR:$rj)>; 1314def : Pat<(cttz (not GPR:$rj)), (CTO_D GPR:$rj)>; 1315def : PatGpr<loongarch_clzw, CLZ_W>; 1316def : PatGpr<loongarch_ctzw, CTZ_W>; 1317def : Pat<(loongarch_clzw (not GPR:$rj)), (CLO_W GPR:$rj)>; 1318def : Pat<(loongarch_ctzw (not GPR:$rj)), (CTO_W GPR:$rj)>; 1319} // Predicates = [IsLA64] 1320 1321let Predicates = [IsLA32] in { 1322def : PatGpr<ctlz, CLZ_W>; 1323def : PatGpr<cttz, CTZ_W>; 1324def : Pat<(ctlz (not GPR:$rj)), (CLO_W GPR:$rj)>; 1325def : Pat<(cttz (not GPR:$rj)), (CTO_W GPR:$rj)>; 1326} // Predicates = [IsLA32] 1327 1328/// FrameIndex calculations 1329let Predicates = [IsLA32] in { 1330def : Pat<(AddLike (i32 BaseAddr:$rj), simm12:$imm12), 1331 (ADDI_W (i32 BaseAddr:$rj), simm12:$imm12)>; 1332} // Predicates = [IsLA32] 1333let Predicates = [IsLA64] in { 1334def : Pat<(AddLike (i64 BaseAddr:$rj), simm12:$imm12), 1335 (ADDI_D (i64 BaseAddr:$rj), simm12:$imm12)>; 1336} // Predicates = [IsLA64] 1337 1338/// Shifted addition 1339let Predicates = [IsLA32] in { 1340def : Pat<(add GPR:$rk, (shl GPR:$rj, uimm2_plus1:$imm2)), 1341 (ALSL_W GPR:$rj, GPR:$rk, uimm2_plus1:$imm2)>; 1342} // Predicates = [IsLA32] 1343let Predicates = [IsLA64] in { 1344def : Pat<(add GPR:$rk, (shl GPR:$rj, uimm2_plus1:$imm2)), 1345 (ALSL_D GPR:$rj, GPR:$rk, uimm2_plus1:$imm2)>; 1346def : Pat<(sext_inreg (add GPR:$rk, (shl GPR:$rj, uimm2_plus1:$imm2)), i32), 1347 (ALSL_W GPR:$rj, GPR:$rk, uimm2_plus1:$imm2)>; 1348def : Pat<(loongarch_bstrpick (add GPR:$rk, (shl GPR:$rj, uimm2_plus1:$imm2)), 1349 (i64 31), (i64 0)), 1350 (ALSL_WU GPR:$rj, GPR:$rk, uimm2_plus1:$imm2)>; 1351} // Predicates = [IsLA64] 1352 1353/// Shift 1354 1355let Predicates = [IsLA32] in { 1356def : PatGprGpr<shiftop<shl>, SLL_W>; 1357def : PatGprGpr<shiftop<sra>, SRA_W>; 1358def : PatGprGpr<shiftop<srl>, SRL_W>; 1359def : PatGprImm<shl, SLLI_W, uimm5>; 1360def : PatGprImm<sra, SRAI_W, uimm5>; 1361def : PatGprImm<srl, SRLI_W, uimm5>; 1362} // Predicates = [IsLA32] 1363 1364let Predicates = [IsLA64] in { 1365def : PatGprGpr<shiftopw<loongarch_sll_w>, SLL_W>; 1366def : PatGprGpr<shiftopw<loongarch_sra_w>, SRA_W>; 1367def : PatGprGpr<shiftopw<loongarch_srl_w>, SRL_W>; 1368def : PatGprGpr<shiftop<shl>, SLL_D>; 1369def : PatGprGpr<shiftop<sra>, SRA_D>; 1370def : PatGprGpr<shiftop<srl>, SRL_D>; 1371def : PatGprImm<shl, SLLI_D, uimm6>; 1372def : PatGprImm<sra, SRAI_D, uimm6>; 1373def : PatGprImm<srl, SRLI_D, uimm6>; 1374} // Predicates = [IsLA64] 1375 1376/// sext and zext 1377 1378def : Pat<(sext_inreg GPR:$rj, i8), (EXT_W_B GPR:$rj)>; 1379def : Pat<(sext_inreg GPR:$rj, i16), (EXT_W_H GPR:$rj)>; 1380 1381let Predicates = [IsLA64] in { 1382def : Pat<(sext_inreg GPR:$rj, i32), (ADDI_W GPR:$rj, 0)>; 1383} // Predicates = [IsLA64] 1384 1385/// Setcc 1386 1387def : PatGprGpr<setlt, SLT>; 1388def : PatGprImm<setlt, SLTI, simm12>; 1389def : PatGprGpr<setult, SLTU>; 1390def : PatGprImm<setult, SLTUI, simm12>; 1391 1392// Define pattern expansions for setcc operations that aren't directly 1393// handled by a LoongArch instruction. 1394def : Pat<(seteq GPR:$rj, 0), (SLTUI GPR:$rj, 1)>; 1395def : Pat<(seteq GPR:$rj, GPR:$rk), (SLTUI (XOR GPR:$rj, GPR:$rk), 1)>; 1396let Predicates = [IsLA32] in { 1397def : Pat<(seteq GPR:$rj, simm12_plus1:$imm12), 1398 (SLTUI (ADDI_W GPR:$rj, (NegImm simm12_plus1:$imm12)), 1)>; 1399} // Predicates = [IsLA32] 1400let Predicates = [IsLA64] in { 1401def : Pat<(seteq GPR:$rj, simm12_plus1:$imm12), 1402 (SLTUI (ADDI_D GPR:$rj, (NegImm simm12_plus1:$imm12)), 1)>; 1403} // Predicates = [IsLA64] 1404def : Pat<(setne GPR:$rj, 0), (SLTU R0, GPR:$rj)>; 1405def : Pat<(setne GPR:$rj, GPR:$rk), (SLTU R0, (XOR GPR:$rj, GPR:$rk))>; 1406let Predicates = [IsLA32] in { 1407def : Pat<(setne GPR:$rj, simm12_plus1:$imm12), 1408 (SLTU R0, (ADDI_W GPR:$rj, (NegImm simm12_plus1:$imm12)))>; 1409} // Predicates = [IsLA32] 1410let Predicates = [IsLA64] in { 1411def : Pat<(setne GPR:$rj, simm12_plus1:$imm12), 1412 (SLTU R0, (ADDI_D GPR:$rj, (NegImm simm12_plus1:$imm12)))>; 1413} // Predicates = [IsLA64] 1414def : Pat<(setugt GPR:$rj, GPR:$rk), (SLTU GPR:$rk, GPR:$rj)>; 1415def : Pat<(setuge GPR:$rj, GPR:$rk), (XORI (SLTU GPR:$rj, GPR:$rk), 1)>; 1416def : Pat<(setule GPR:$rj, GPR:$rk), (XORI (SLTU GPR:$rk, GPR:$rj), 1)>; 1417def : Pat<(setgt GPR:$rj, GPR:$rk), (SLT GPR:$rk, GPR:$rj)>; 1418def : Pat<(setge GPR:$rj, GPR:$rk), (XORI (SLT GPR:$rj, GPR:$rk), 1)>; 1419def : Pat<(setle GPR:$rj, GPR:$rk), (XORI (SLT GPR:$rk, GPR:$rj), 1)>; 1420 1421/// Select 1422 1423def : Pat<(select GPR:$cond, GPR:$t, 0), (MASKEQZ GPR:$t, GPR:$cond)>; 1424def : Pat<(select GPR:$cond, 0, GPR:$f), (MASKNEZ GPR:$f, GPR:$cond)>; 1425def : Pat<(select GPR:$cond, GPR:$t, GPR:$f), 1426 (OR (MASKEQZ GPR:$t, GPR:$cond), (MASKNEZ GPR:$f, GPR:$cond))>; 1427 1428/// Branches and jumps 1429 1430class BccPat<PatFrag CondOp, LAInst Inst> 1431 : Pat<(brcond (GRLenVT (CondOp GPR:$rj, GPR:$rd)), bb:$imm16), 1432 (Inst GPR:$rj, GPR:$rd, bb:$imm16)>; 1433 1434def : BccPat<seteq, BEQ>; 1435def : BccPat<setne, BNE>; 1436def : BccPat<setlt, BLT>; 1437def : BccPat<setge, BGE>; 1438def : BccPat<setult, BLTU>; 1439def : BccPat<setuge, BGEU>; 1440 1441class BccSwapPat<PatFrag CondOp, LAInst InstBcc> 1442 : Pat<(brcond (GRLenVT (CondOp GPR:$rd, GPR:$rj)), bb:$imm16), 1443 (InstBcc GPR:$rj, GPR:$rd, bb:$imm16)>; 1444 1445// Condition codes that don't have matching LoongArch branch instructions, but 1446// are trivially supported by swapping the two input operands. 1447def : BccSwapPat<setgt, BLT>; 1448def : BccSwapPat<setle, BGE>; 1449def : BccSwapPat<setugt, BLTU>; 1450def : BccSwapPat<setule, BGEU>; 1451 1452// An extra pattern is needed for a brcond without a setcc (i.e. where the 1453// condition was calculated elsewhere). 1454def : Pat<(brcond GPR:$rj, bb:$imm21), (BNEZ GPR:$rj, bb:$imm21)>; 1455 1456def : Pat<(brcond (GRLenVT (seteq GPR:$rj, 0)), bb:$imm21), 1457 (BEQZ GPR:$rj, bb:$imm21)>; 1458def : Pat<(brcond (GRLenVT (setne GPR:$rj, 0)), bb:$imm21), 1459 (BNEZ GPR:$rj, bb:$imm21)>; 1460 1461let isBarrier = 1, isBranch = 1, isTerminator = 1 in 1462def PseudoBR : Pseudo<(outs), (ins simm26_b:$imm26), [(br bb:$imm26)]>, 1463 PseudoInstExpansion<(B simm26_b:$imm26)>; 1464 1465let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in 1466def PseudoBRIND : Pseudo<(outs), (ins GPR:$rj, simm16_lsl2:$imm16)>, 1467 PseudoInstExpansion<(JIRL R0, GPR:$rj, simm16_lsl2:$imm16)>; 1468 1469def : Pat<(brind GPR:$rj), (PseudoBRIND GPR:$rj, 0)>; 1470def : Pat<(brind (add GPR:$rj, simm16_lsl2:$imm16)), 1471 (PseudoBRIND GPR:$rj, simm16_lsl2:$imm16)>; 1472 1473// Function call with 'Small' code model. 1474let isCall = 1, Defs = [R1] in 1475def PseudoCALL : Pseudo<(outs), (ins bare_symbol:$func)>; 1476 1477def : Pat<(loongarch_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>; 1478def : Pat<(loongarch_call texternalsym:$func), (PseudoCALL texternalsym:$func)>; 1479 1480// Function call with 'Medium' code model. 1481let isCall = 1, Defs = [R1, R20], Size = 8 in 1482def PseudoCALL_MEDIUM : Pseudo<(outs), (ins bare_symbol:$func)>; 1483 1484let Predicates = [IsLA64] in { 1485def : Pat<(loongarch_call_medium tglobaladdr:$func), 1486 (PseudoCALL_MEDIUM tglobaladdr:$func)>; 1487def : Pat<(loongarch_call_medium texternalsym:$func), 1488 (PseudoCALL_MEDIUM texternalsym:$func)>; 1489} // Predicates = [IsLA64] 1490 1491// Function call with 'Large' code model. 1492let isCall = 1, Defs = [R1, R20], Size = 24 in 1493def PseudoCALL_LARGE: Pseudo<(outs), (ins bare_symbol:$func)>; 1494 1495let Predicates = [IsLA64] in { 1496def : Pat<(loongarch_call_large tglobaladdr:$func), 1497 (PseudoCALL_LARGE tglobaladdr:$func)>; 1498def : Pat<(loongarch_call_large texternalsym:$func), 1499 (PseudoCALL_LARGE texternalsym:$func)>; 1500} // Predicates = [IsLA64] 1501 1502let isCall = 1, Defs = [R1] in 1503def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rj), 1504 [(loongarch_call GPR:$rj)]>, 1505 PseudoInstExpansion<(JIRL R1, GPR:$rj, 0)>; 1506let Predicates = [IsLA64] in { 1507def : Pat<(loongarch_call_medium GPR:$rj), (PseudoCALLIndirect GPR:$rj)>; 1508def : Pat<(loongarch_call_large GPR:$rj), (PseudoCALLIndirect GPR:$rj)>; 1509} 1510 1511let isCall = 1, hasSideEffects = 0, mayStore = 0, mayLoad = 0, Defs = [R1] in 1512def PseudoJIRL_CALL : Pseudo<(outs), (ins GPR:$rj, simm16_lsl2:$imm16)>, 1513 PseudoInstExpansion<(JIRL R1, GPR:$rj, 1514 simm16_lsl2:$imm16)>; 1515 1516let isBarrier = 1, isReturn = 1, isTerminator = 1 in 1517def PseudoRET : Pseudo<(outs), (ins), [(loongarch_ret)]>, 1518 PseudoInstExpansion<(JIRL R0, R1, 0)>; 1519 1520// Tail call with 'Small' code model. 1521let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [R3] in 1522def PseudoTAIL : Pseudo<(outs), (ins bare_symbol:$dst)>; 1523 1524def : Pat<(loongarch_tail (iPTR tglobaladdr:$dst)), 1525 (PseudoTAIL tglobaladdr:$dst)>; 1526def : Pat<(loongarch_tail (iPTR texternalsym:$dst)), 1527 (PseudoTAIL texternalsym:$dst)>; 1528 1529// Tail call with 'Medium' code model. 1530let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 1531 Uses = [R3], Defs = [R20], Size = 8 in 1532def PseudoTAIL_MEDIUM : Pseudo<(outs), (ins bare_symbol:$dst)>; 1533 1534let Predicates = [IsLA64] in { 1535def : Pat<(loongarch_tail_medium (iPTR tglobaladdr:$dst)), 1536 (PseudoTAIL_MEDIUM tglobaladdr:$dst)>; 1537def : Pat<(loongarch_tail_medium (iPTR texternalsym:$dst)), 1538 (PseudoTAIL_MEDIUM texternalsym:$dst)>; 1539} // Predicates = [IsLA64] 1540 1541// Tail call with 'Large' code model. 1542let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 1543 Uses = [R3], Defs = [R19, R20], Size = 24 in 1544def PseudoTAIL_LARGE : Pseudo<(outs), (ins bare_symbol:$dst)>; 1545 1546let Predicates = [IsLA64] in { 1547def : Pat<(loongarch_tail_large (iPTR tglobaladdr:$dst)), 1548 (PseudoTAIL_LARGE tglobaladdr:$dst)>; 1549def : Pat<(loongarch_tail_large (iPTR texternalsym:$dst)), 1550 (PseudoTAIL_LARGE texternalsym:$dst)>; 1551} // Predicates = [IsLA64] 1552 1553let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [R3] in 1554def PseudoTAILIndirect : Pseudo<(outs), (ins GPRT:$rj), 1555 [(loongarch_tail GPRT:$rj)]>, 1556 PseudoInstExpansion<(JIRL R0, GPR:$rj, 0)>; 1557let Predicates = [IsLA64] in { 1558def : Pat<(loongarch_tail_medium GPR:$rj), (PseudoTAILIndirect GPR:$rj)>; 1559def : Pat<(loongarch_tail_large GPR:$rj), (PseudoTAILIndirect GPR:$rj)>; 1560} 1561 1562let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 1563 hasSideEffects = 0, mayStore = 0, mayLoad = 0, Uses = [R3] in 1564def PseudoB_TAIL : Pseudo<(outs), (ins simm26_b:$imm26)>, 1565 PseudoInstExpansion<(B simm26_b:$imm26)>; 1566 1567let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 1568 hasSideEffects = 0, mayStore = 0, mayLoad = 0, Uses = [R3] in 1569def PseudoJIRL_TAIL : Pseudo<(outs), (ins GPR:$rj, simm16_lsl2:$imm16)>, 1570 PseudoInstExpansion<(JIRL R0, GPR:$rj, 1571 simm16_lsl2:$imm16)>; 1572 1573/// call36/taill36 macro instructions 1574let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, isAsmParserOnly = 1, 1575 Defs = [R1], Size = 8, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in 1576def PseudoCALL36 : Pseudo<(outs), (ins bare_symbol:$dst), [], 1577 "call36", "$dst">, 1578 Requires<[IsLA64]>; 1579let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [R3], 1580 isCodeGenOnly = 0, isAsmParserOnly = 1, Size = 8, hasSideEffects = 0, 1581 mayStore = 0, mayLoad = 0 in 1582def PseudoTAIL36 : Pseudo<(outs), (ins GPR:$tmp, bare_symbol:$dst), [], 1583 "tail36", "$tmp, $dst">, 1584 Requires<[IsLA64]>; 1585 1586// This is a special case of the ADD_W/D instruction used to facilitate the use 1587// of a fourth operand to emit a relocation on a symbol relating to this 1588// instruction. The relocation does not affect any bits of the instruction itself 1589// but is used as a hint to the linker. 1590let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in { 1591def PseudoAddTPRel_W : Pseudo<(outs GPR:$rd), 1592 (ins GPR:$rj, GPR:$rk, tprel_add_symbol:$sym), [], 1593 "add.w", "$rd, $rj, $rk, $sym">, 1594 Requires<[IsLA32]>; 1595def PseudoAddTPRel_D : Pseudo<(outs GPR:$rd), 1596 (ins GPR:$rj, GPR:$rk, tprel_add_symbol:$sym), [], 1597 "add.d", "$rd, $rj, $rk, $sym">, 1598 Requires<[IsLA64]>; 1599} 1600 1601/// Load address (la*) macro instructions. 1602 1603// Define isCodeGenOnly = 0 to expose them to tablegened assembly parser. 1604let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0, 1605 isAsmParserOnly = 1 in { 1606def PseudoLA_ABS : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 1607 "la.abs", "$dst, $src">; 1608def PseudoLA_ABS_LARGE : Pseudo<(outs GPR:$dst), 1609 (ins GPR:$tmp, bare_symbol:$src), [], 1610 "la.abs", "$dst, $src">; 1611def PseudoLA_PCREL : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 1612 "la.pcrel", "$dst, $src">; 1613def PseudoLA_TLS_LD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 1614 "la.tls.ld", "$dst, $src">; 1615def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 1616 "la.tls.gd", "$dst, $src">; 1617let Defs = [R20], Size = 20 in { 1618def PseudoLA_PCREL_LARGE : Pseudo<(outs GPR:$dst), 1619 (ins GPR:$tmp, bare_symbol:$src), [], 1620 "la.pcrel", "$dst, $tmp, $src">, 1621 Requires<[IsLA64]>; 1622def PseudoLA_TLS_LE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 1623 "la.tls.le", "$dst, $src">; 1624def PseudoLA_TLS_LD_LARGE : Pseudo<(outs GPR:$dst), 1625 (ins GPR:$tmp, bare_symbol:$src), [], 1626 "la.tls.ld", "$dst, $tmp, $src">, 1627 Requires<[IsLA64]>; 1628def PseudoLA_TLS_GD_LARGE : Pseudo<(outs GPR:$dst), 1629 (ins GPR:$tmp, bare_symbol:$src), [], 1630 "la.tls.gd", "$dst, $tmp, $src">, 1631 Requires<[IsLA64]>; 1632} // Defs = [R20], Size = 20 1633} 1634let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0, 1635 isAsmParserOnly = 1 in { 1636def PseudoLA_GOT : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 1637 "la.got", "$dst, $src">; 1638def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 1639 "la.tls.ie", "$dst, $src">; 1640let Defs = [R20], Size = 20 in { 1641def PseudoLA_GOT_LARGE : Pseudo<(outs GPR:$dst), 1642 (ins GPR:$tmp, bare_symbol:$src), [], 1643 "la.got", "$dst, $tmp, $src">, 1644 Requires<[IsLA64]>; 1645def PseudoLA_TLS_IE_LARGE : Pseudo<(outs GPR:$dst), 1646 (ins GPR:$tmp, bare_symbol:$src), [], 1647 "la.tls.ie", "$dst, $tmp, $src">, 1648 Requires<[IsLA64]>; 1649} // Defs = [R20], Size = 20 1650} 1651 1652// Used for expand PseudoLA_TLS_DESC_* instructions. 1653let isCall = 1, isBarrier = 1, hasSideEffects = 0, mayStore = 0, mayLoad = 0, 1654 Defs = [R4], Uses = [R4] in 1655def PseudoDESC_CALL : Pseudo<(outs GPR:$rd), (ins GPR:$rj, simm16_lsl2:$imm16)>, 1656 PseudoInstExpansion<(JIRL GPR:$rd, GPR:$rj, 1657 simm16_lsl2:$imm16)>; 1658 1659// TLSDESC 1660let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0, 1661 isAsmParserOnly = 1, Defs = [R1] in { 1662def PseudoLA_TLS_DESC_ABS : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), 1663 [], "la.tls.desc", "$dst, $src">, 1664 Requires<[IsLA32, HasLaGlobalWithAbs]>; 1665def PseudoLA_TLS_DESC_ABS_LARGE : Pseudo<(outs GPR:$dst), 1666 (ins GPR:$tmp, bare_symbol:$src), [], 1667 "la.tls.desc", "$dst, $src">, 1668 Requires<[IsLA64, HasLaGlobalWithAbs]>; 1669def PseudoLA_TLS_DESC_PC : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 1670 "la.tls.desc", "$dst, $src">; 1671} 1672 1673let isCall = 1, isBarrier = 1, hasSideEffects = 0, mayStore = 0, mayLoad = 0, 1674 isCodeGenOnly = 0, isAsmParserOnly = 1, Defs = [R1, R4, R20], Size = 32 in 1675def PseudoLA_TLS_DESC_PC_LARGE : Pseudo<(outs GPR:$dst), 1676 (ins GPR:$tmp, bare_symbol:$src), [], 1677 "la.tls.desc", "$dst, $tmp, $src">, 1678 Requires<[IsLA64]>; 1679 1680// Load address inst alias: "la", "la.global" and "la.local". 1681// Default: 1682// la = la.global = la.got 1683// la.local = la.pcrel 1684// With feature "+la-global-with-pcrel": 1685// la = la.global = la.pcrel 1686// With feature "+la-global-with-abs": 1687// la = la.global = la.abs 1688// With feature "+la-local-with-abs": 1689// la.local = la.abs 1690// With features "+la-global-with-pcrel,+la-global-with-abs"(disorder): 1691// la = la.global = la.pcrel 1692// Note: To keep consistent with gnu-as behavior, the "la" can only have one 1693// register operand. 1694def : InstAlias<"la $dst, $src", (PseudoLA_GOT GPR:$dst, bare_symbol:$src)>; 1695def : InstAlias<"la.global $dst, $src", 1696 (PseudoLA_GOT GPR:$dst, bare_symbol:$src)>; 1697def : InstAlias<"la.global $dst, $tmp, $src", 1698 (PseudoLA_GOT_LARGE GPR:$dst, GPR:$tmp, bare_symbol:$src)>; 1699def : InstAlias<"la.local $dst, $src", 1700 (PseudoLA_PCREL GPR:$dst, bare_symbol:$src)>; 1701def : InstAlias<"la.local $dst, $tmp, $src", 1702 (PseudoLA_PCREL_LARGE GPR:$dst, GPR:$tmp, bare_symbol:$src)>; 1703 1704// Note: Keep HasLaGlobalWithPcrel before HasLaGlobalWithAbs to ensure 1705// "la-global-with-pcrel" takes effect when bose "la-global-with-pcrel" and 1706// "la-global-with-abs" are enabled. 1707let Predicates = [HasLaGlobalWithPcrel] in { 1708def : InstAlias<"la $dst, $src", (PseudoLA_PCREL GPR:$dst, bare_symbol:$src)>; 1709def : InstAlias<"la.global $dst, $src", 1710 (PseudoLA_PCREL GPR:$dst, bare_symbol:$src)>; 1711def : InstAlias<"la.global $dst, $tmp, $src", 1712 (PseudoLA_PCREL_LARGE GPR:$dst, GPR:$tmp, bare_symbol:$src)>; 1713} // Predicates = [HasLaGlobalWithPcrel] 1714 1715let Predicates = [HasLaGlobalWithAbs] in { 1716def : InstAlias<"la $dst, $src", (PseudoLA_ABS GPR:$dst, bare_symbol:$src)>; 1717def : InstAlias<"la.global $dst, $src", 1718 (PseudoLA_ABS GPR:$dst, bare_symbol:$src)>; 1719def : InstAlias<"la.global $dst, $tmp, $src", 1720 (PseudoLA_ABS_LARGE GPR:$dst, GPR:$tmp, bare_symbol:$src)>; 1721} // Predicates = [HasLaGlobalWithAbs] 1722 1723let Predicates = [HasLaLocalWithAbs] in { 1724def : InstAlias<"la.local $dst, $src", 1725 (PseudoLA_ABS GPR:$dst, bare_symbol:$src)>; 1726def : InstAlias<"la.local $dst, $tmp, $src", 1727 (PseudoLA_ABS_LARGE GPR:$dst, GPR:$tmp, bare_symbol:$src)>; 1728} // Predicates = [HasLaLocalWithAbs] 1729 1730/// BSTRINS and BSTRPICK 1731 1732let Predicates = [IsLA32] in { 1733def : Pat<(loongarch_bstrins GPR:$rd, GPR:$rj, uimm5:$msbd, uimm5:$lsbd), 1734 (BSTRINS_W GPR:$rd, GPR:$rj, uimm5:$msbd, uimm5:$lsbd)>; 1735def : Pat<(loongarch_bstrpick GPR:$rj, uimm5:$msbd, uimm5:$lsbd), 1736 (BSTRPICK_W GPR:$rj, uimm5:$msbd, uimm5:$lsbd)>; 1737} // Predicates = [IsLA32] 1738 1739let Predicates = [IsLA64] in { 1740def : Pat<(loongarch_bstrins GPR:$rd, GPR:$rj, uimm6:$msbd, uimm6:$lsbd), 1741 (BSTRINS_D GPR:$rd, GPR:$rj, uimm6:$msbd, uimm6:$lsbd)>; 1742def : Pat<(loongarch_bstrpick GPR:$rj, uimm6:$msbd, uimm6:$lsbd), 1743 (BSTRPICK_D GPR:$rj, uimm6:$msbd, uimm6:$lsbd)>; 1744} // Predicates = [IsLA64] 1745 1746/// Byte-swapping and bit-reversal 1747 1748def : Pat<(loongarch_revb_2h GPR:$rj), (REVB_2H GPR:$rj)>; 1749def : Pat<(loongarch_bitrev_4b GPR:$rj), (BITREV_4B GPR:$rj)>; 1750 1751let Predicates = [IsLA32] in { 1752def : Pat<(bswap GPR:$rj), (ROTRI_W (REVB_2H GPR:$rj), 16)>; 1753def : Pat<(bitreverse GPR:$rj), (BITREV_W GPR:$rj)>; 1754def : Pat<(bswap (bitreverse GPR:$rj)), (BITREV_4B GPR:$rj)>; 1755def : Pat<(bitreverse (bswap GPR:$rj)), (BITREV_4B GPR:$rj)>; 1756} // Predicates = [IsLA32] 1757 1758let Predicates = [IsLA64] in { 1759def : Pat<(loongarch_revb_2w GPR:$rj), (REVB_2W GPR:$rj)>; 1760def : Pat<(bswap GPR:$rj), (REVB_D GPR:$rj)>; 1761def : Pat<(loongarch_bitrev_w GPR:$rj), (BITREV_W GPR:$rj)>; 1762def : Pat<(bitreverse GPR:$rj), (BITREV_D GPR:$rj)>; 1763def : Pat<(bswap (bitreverse GPR:$rj)), (BITREV_8B GPR:$rj)>; 1764def : Pat<(bitreverse (bswap GPR:$rj)), (BITREV_8B GPR:$rj)>; 1765} // Predicates = [IsLA64] 1766 1767/// Loads 1768 1769multiclass LdPat<PatFrag LoadOp, LAInst Inst, ValueType vt = GRLenVT> { 1770 def : Pat<(vt (LoadOp BaseAddr:$rj)), (Inst BaseAddr:$rj, 0)>; 1771 def : Pat<(vt (LoadOp (AddrConstant GPR:$rj, simm12:$imm12))), 1772 (Inst GPR:$rj, simm12:$imm12)>; 1773 def : Pat<(vt (LoadOp (AddLike BaseAddr:$rj, simm12:$imm12))), 1774 (Inst BaseAddr:$rj, simm12:$imm12)>; 1775} 1776 1777defm : LdPat<sextloadi8, LD_B>; 1778defm : LdPat<extloadi8, LD_B>; 1779defm : LdPat<sextloadi16, LD_H>; 1780defm : LdPat<extloadi16, LD_H>; 1781defm : LdPat<load, LD_W>, Requires<[IsLA32]>; 1782defm : LdPat<zextloadi8, LD_BU>; 1783defm : LdPat<zextloadi16, LD_HU>; 1784let Predicates = [IsLA64] in { 1785defm : LdPat<sextloadi32, LD_W, i64>; 1786defm : LdPat<extloadi32, LD_W, i64>; 1787defm : LdPat<zextloadi32, LD_WU, i64>; 1788defm : LdPat<load, LD_D, i64>; 1789} // Predicates = [IsLA64] 1790 1791// LA64 register-register-addressed loads 1792let Predicates = [IsLA64] in { 1793class RegRegLdPat<PatFrag LoadOp, LAInst Inst, ValueType vt> 1794 : Pat<(vt (LoadOp (add NonFIBaseAddr:$rj, GPR:$rk))), 1795 (Inst NonFIBaseAddr:$rj, GPR:$rk)>; 1796 1797def : RegRegLdPat<extloadi8, LDX_B, i64>; 1798def : RegRegLdPat<sextloadi8, LDX_B, i64>; 1799def : RegRegLdPat<zextloadi8, LDX_BU, i64>; 1800def : RegRegLdPat<extloadi16, LDX_H, i64>; 1801def : RegRegLdPat<sextloadi16, LDX_H, i64>; 1802def : RegRegLdPat<zextloadi16, LDX_HU, i64>; 1803def : RegRegLdPat<extloadi32, LDX_W, i64>; 1804def : RegRegLdPat<sextloadi32, LDX_W, i64>; 1805def : RegRegLdPat<zextloadi32, LDX_WU, i64>; 1806def : RegRegLdPat<load, LDX_D, i64>; 1807} // Predicates = [IsLA64] 1808 1809/// Stores 1810 1811multiclass StPat<PatFrag StoreOp, LAInst Inst, RegisterClass StTy, 1812 ValueType vt> { 1813 def : Pat<(StoreOp (vt StTy:$rd), BaseAddr:$rj), 1814 (Inst StTy:$rd, BaseAddr:$rj, 0)>; 1815 def : Pat<(StoreOp (vt StTy:$rs2), (AddrConstant GPR:$rj, simm12:$imm12)), 1816 (Inst StTy:$rs2, GPR:$rj, simm12:$imm12)>; 1817 def : Pat<(StoreOp (vt StTy:$rd), (AddLike BaseAddr:$rj, simm12:$imm12)), 1818 (Inst StTy:$rd, BaseAddr:$rj, simm12:$imm12)>; 1819} 1820 1821defm : StPat<truncstorei8, ST_B, GPR, GRLenVT>; 1822defm : StPat<truncstorei16, ST_H, GPR, GRLenVT>; 1823defm : StPat<store, ST_W, GPR, i32>, Requires<[IsLA32]>; 1824let Predicates = [IsLA64] in { 1825defm : StPat<truncstorei32, ST_W, GPR, i64>; 1826defm : StPat<store, ST_D, GPR, i64>; 1827} // Predicates = [IsLA64] 1828 1829let Predicates = [IsLA64] in { 1830def : Pat<(i64 (sextloadi32 (AddLike BaseAddr:$rj, simm14_lsl2:$imm14))), 1831 (LDPTR_W BaseAddr:$rj, simm14_lsl2:$imm14)>; 1832def : Pat<(i64 (load (AddLike BaseAddr:$rj, simm14_lsl2:$imm14))), 1833 (LDPTR_D BaseAddr:$rj, simm14_lsl2:$imm14)>; 1834def : Pat<(truncstorei32 (i64 GPR:$rd), 1835 (AddLike BaseAddr:$rj, simm14_lsl2:$imm14)), 1836 (STPTR_W GPR:$rd, BaseAddr:$rj, simm14_lsl2:$imm14)>; 1837def : Pat<(store (i64 GPR:$rd), (AddLike BaseAddr:$rj, simm14_lsl2:$imm14)), 1838 (STPTR_D GPR:$rd, BaseAddr:$rj, simm14_lsl2:$imm14)>; 1839} // Predicates = [IsLA64] 1840 1841// LA64 register-register-addressed stores 1842let Predicates = [IsLA64] in { 1843class RegRegStPat<PatFrag StoreOp, LAInst Inst, RegisterClass StTy, 1844 ValueType vt> 1845 : Pat<(StoreOp (vt StTy:$rd), (add NonFIBaseAddr:$rj, GPR:$rk)), 1846 (Inst StTy:$rd, NonFIBaseAddr:$rj, GPR:$rk)>; 1847 1848def : RegRegStPat<truncstorei8, STX_B, GPR, i64>; 1849def : RegRegStPat<truncstorei16, STX_H, GPR, i64>; 1850def : RegRegStPat<truncstorei32, STX_W, GPR, i64>; 1851def : RegRegStPat<store, STX_D, GPR, i64>; 1852} // Predicates = [IsLA64] 1853 1854/// Atomic loads and stores 1855 1856// DBAR hint encoding for LA664 and later micro-architectures, paraphrased from 1857// the Linux patch revealing it [1]: 1858// 1859// - Bit 4: kind of constraint (0: completion, 1: ordering) 1860// - Bit 3: barrier for previous read (0: true, 1: false) 1861// - Bit 2: barrier for previous write (0: true, 1: false) 1862// - Bit 1: barrier for succeeding read (0: true, 1: false) 1863// - Bit 0: barrier for succeeding write (0: true, 1: false) 1864// 1865// Hint 0x700: barrier for "read after read" from the same address, which is 1866// e.g. needed by LL-SC loops on older models. (DBAR 0x700 behaves the same as 1867// nop if such reordering is disabled on supporting newer models.) 1868// 1869// [1]: https://lore.kernel.org/loongarch/20230516124536.535343-1-chenhuacai@loongson.cn/ 1870// 1871// Implementations without support for the finer-granularity hints simply treat 1872// all as the full barrier (DBAR 0), so we can unconditionally start emiting the 1873// more precise hints right away. 1874 1875def : Pat<(atomic_fence 4, timm), (DBAR 0b10100)>; // acquire 1876def : Pat<(atomic_fence 5, timm), (DBAR 0b10010)>; // release 1877def : Pat<(atomic_fence 6, timm), (DBAR 0b10000)>; // acqrel 1878def : Pat<(atomic_fence 7, timm), (DBAR 0b10000)>; // seqcst 1879 1880defm : LdPat<atomic_load_8, LD_B>; 1881defm : LdPat<atomic_load_16, LD_H>; 1882defm : LdPat<atomic_load_32, LD_W>; 1883 1884class release_seqcst_store<PatFrag base> 1885 : PatFrag<(ops node:$val, node:$ptr), (base node:$val, node:$ptr), [{ 1886 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getSuccessOrdering(); 1887 return isReleaseOrStronger(Ordering); 1888}]>; 1889 1890class unordered_monotonic_store<PatFrag base> 1891 : PatFrag<(ops node:$val, node:$ptr), (base node:$val, node:$ptr), [{ 1892 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getSuccessOrdering(); 1893 return !isReleaseOrStronger(Ordering); 1894}]>; 1895 1896def atomic_store_release_seqcst_32 : release_seqcst_store<atomic_store_32>; 1897def atomic_store_release_seqcst_64 : release_seqcst_store<atomic_store_64>; 1898def atomic_store_unordered_monotonic_32 1899 : unordered_monotonic_store<atomic_store_32>; 1900def atomic_store_unordered_monotonic_64 1901 : unordered_monotonic_store<atomic_store_64>; 1902 1903defm : StPat<atomic_store_8, ST_B, GPR, GRLenVT>; 1904defm : StPat<atomic_store_16, ST_H, GPR, GRLenVT>; 1905defm : StPat<atomic_store_unordered_monotonic_32, ST_W, GPR, i32>, 1906 Requires<[IsLA32]>; 1907 1908def PseudoAtomicStoreW 1909 : Pseudo<(outs GPR:$dst), (ins GPR:$rk, GPR:$rj)>, 1910 PseudoInstExpansion<(AMSWAP__DB_W R0, GPR:$rk, GPRMemAtomic:$rj)>; 1911 1912def : Pat<(atomic_store_release_seqcst_32 GPR:$rj, GPR:$rk), 1913 (PseudoAtomicStoreW GPR:$rj, GPR:$rk)>; 1914 1915let Predicates = [IsLA64] in { 1916def PseudoAtomicStoreD 1917 : Pseudo<(outs GPR:$dst), (ins GPR:$rk, GPR:$rj)>, 1918 PseudoInstExpansion<(AMSWAP__DB_D R0, GPR:$rk, GPRMemAtomic:$rj)>; 1919 1920def : Pat<(atomic_store_release_seqcst_64 GPR:$rj, GPR:$rk), 1921 (PseudoAtomicStoreD GPR:$rj, GPR:$rk)>; 1922 1923defm : LdPat<atomic_load_64, LD_D>; 1924defm : StPat<atomic_store_unordered_monotonic_32, ST_W, GPR, i64>; 1925defm : StPat<atomic_store_unordered_monotonic_64, ST_D, GPR, i64>; 1926} // Predicates = [IsLA64] 1927 1928/// Atomic Ops 1929 1930class PseudoMaskedAM 1931 : Pseudo<(outs GPR:$res, GPR:$scratch), 1932 (ins GPR:$addr, GPR:$incr, GPR:$mask, grlenimm:$ordering)> { 1933 let Constraints = "@earlyclobber $res,@earlyclobber $scratch"; 1934 let mayLoad = 1; 1935 let mayStore = 1; 1936 let hasSideEffects = 0; 1937 let Size = 36; 1938} 1939 1940def PseudoMaskedAtomicSwap32 : PseudoMaskedAM; 1941def PseudoMaskedAtomicLoadAdd32 : PseudoMaskedAM; 1942def PseudoMaskedAtomicLoadSub32 : PseudoMaskedAM; 1943def PseudoMaskedAtomicLoadNand32 : PseudoMaskedAM; 1944 1945class PseudoAM : Pseudo<(outs GPR:$res, GPR:$scratch), 1946 (ins GPR:$addr, GPR:$incr, grlenimm:$ordering)> { 1947 let Constraints = "@earlyclobber $res,@earlyclobber $scratch"; 1948 let mayLoad = 1; 1949 let mayStore = 1; 1950 let hasSideEffects = 0; 1951 let Size = 24; 1952} 1953 1954def PseudoAtomicSwap32 : PseudoAM; 1955def PseudoAtomicLoadNand32 : PseudoAM; 1956def PseudoAtomicLoadNand64 : PseudoAM; 1957def PseudoAtomicLoadAdd32 : PseudoAM; 1958def PseudoAtomicLoadSub32 : PseudoAM; 1959def PseudoAtomicLoadAnd32 : PseudoAM; 1960def PseudoAtomicLoadOr32 : PseudoAM; 1961def PseudoAtomicLoadXor32 : PseudoAM; 1962 1963multiclass PseudoBinPat<string Op, Pseudo BinInst> { 1964 def : Pat<(!cast<PatFrag>(Op#"_monotonic") GPR:$addr, GPR:$incr), 1965 (BinInst GPR:$addr, GPR:$incr, 2)>; 1966 def : Pat<(!cast<PatFrag>(Op#"_acquire") GPR:$addr, GPR:$incr), 1967 (BinInst GPR:$addr, GPR:$incr, 4)>; 1968 def : Pat<(!cast<PatFrag>(Op#"_release") GPR:$addr, GPR:$incr), 1969 (BinInst GPR:$addr, GPR:$incr, 5)>; 1970 def : Pat<(!cast<PatFrag>(Op#"_acq_rel") GPR:$addr, GPR:$incr), 1971 (BinInst GPR:$addr, GPR:$incr, 6)>; 1972 def : Pat<(!cast<PatFrag>(Op#"_seq_cst") GPR:$addr, GPR:$incr), 1973 (BinInst GPR:$addr, GPR:$incr, 7)>; 1974} 1975 1976class PseudoMaskedAMUMinUMax 1977 : Pseudo<(outs GPR:$res, GPR:$scratch1, GPR:$scratch2), 1978 (ins GPR:$addr, GPR:$incr, GPR:$mask, grlenimm:$ordering)> { 1979 let Constraints = "@earlyclobber $res,@earlyclobber $scratch1," 1980 "@earlyclobber $scratch2"; 1981 let mayLoad = 1; 1982 let mayStore = 1; 1983 let hasSideEffects = 0; 1984 let Size = 48; 1985} 1986 1987def PseudoMaskedAtomicLoadUMax32 : PseudoMaskedAMUMinUMax; 1988def PseudoMaskedAtomicLoadUMin32 : PseudoMaskedAMUMinUMax; 1989 1990class PseudoMaskedAMMinMax 1991 : Pseudo<(outs GPR:$res, GPR:$scratch1, GPR:$scratch2), 1992 (ins GPR:$addr, GPR:$incr, GPR:$mask, grlenimm:$sextshamt, 1993 grlenimm:$ordering)> { 1994 let Constraints = "@earlyclobber $res,@earlyclobber $scratch1," 1995 "@earlyclobber $scratch2"; 1996 let mayLoad = 1; 1997 let mayStore = 1; 1998 let hasSideEffects = 0; 1999 let Size = 56; 2000} 2001 2002def PseudoMaskedAtomicLoadMax32 : PseudoMaskedAMMinMax; 2003def PseudoMaskedAtomicLoadMin32 : PseudoMaskedAMMinMax; 2004 2005/// Compare and exchange 2006 2007class PseudoCmpXchg 2008 : Pseudo<(outs GPR:$res, GPR:$scratch), 2009 (ins GPR:$addr, GPR:$cmpval, GPR:$newval, grlenimm:$fail_order)> { 2010 let Constraints = "@earlyclobber $res,@earlyclobber $scratch"; 2011 let mayLoad = 1; 2012 let mayStore = 1; 2013 let hasSideEffects = 0; 2014 let Size = 36; 2015} 2016 2017def PseudoCmpXchg32 : PseudoCmpXchg; 2018def PseudoCmpXchg64 : PseudoCmpXchg; 2019 2020def PseudoMaskedCmpXchg32 2021 : Pseudo<(outs GPR:$res, GPR:$scratch), 2022 (ins GPR:$addr, GPR:$cmpval, GPR:$newval, GPR:$mask, 2023 grlenimm:$fail_order)> { 2024 let Constraints = "@earlyclobber $res,@earlyclobber $scratch"; 2025 let mayLoad = 1; 2026 let mayStore = 1; 2027 let hasSideEffects = 0; 2028 let Size = 44; 2029} 2030 2031class PseudoMaskedAMMinMaxPat<Intrinsic intrin, Pseudo AMInst> 2032 : Pat<(intrin GPR:$addr, GPR:$incr, GPR:$mask, GPR:$shiftamt, 2033 timm:$ordering), 2034 (AMInst GPR:$addr, GPR:$incr, GPR:$mask, GPR:$shiftamt, 2035 timm:$ordering)>; 2036 2037class AtomicPat<Intrinsic intrin, Pseudo AMInst> 2038 : Pat<(intrin GPR:$addr, GPR:$incr, GPR:$mask, timm:$ordering), 2039 (AMInst GPR:$addr, GPR:$incr, GPR:$mask, timm:$ordering)>; 2040 2041// These atomic cmpxchg PatFrags only care about the failure ordering. 2042// The PatFrags defined by multiclass `ternary_atomic_op_ord` in 2043// TargetSelectionDAG.td care about the merged memory ordering that is the 2044// stronger one between success and failure. But for LoongArch LL-SC we only 2045// need to care about the failure ordering as explained in PR #67391. So we 2046// define these PatFrags that will be used to define cmpxchg pats below. 2047multiclass ternary_atomic_op_failure_ord { 2048 def NAME#_failure_monotonic : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 2049 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val), [{ 2050 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getFailureOrdering(); 2051 return Ordering == AtomicOrdering::Monotonic; 2052 }]>; 2053 def NAME#_failure_acquire : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 2054 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val), [{ 2055 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getFailureOrdering(); 2056 return Ordering == AtomicOrdering::Acquire; 2057 }]>; 2058 def NAME#_failure_release : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 2059 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val), [{ 2060 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getFailureOrdering(); 2061 return Ordering == AtomicOrdering::Release; 2062 }]>; 2063 def NAME#_failure_acq_rel : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 2064 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val), [{ 2065 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getFailureOrdering(); 2066 return Ordering == AtomicOrdering::AcquireRelease; 2067 }]>; 2068 def NAME#_failure_seq_cst : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 2069 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val), [{ 2070 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getFailureOrdering(); 2071 return Ordering == AtomicOrdering::SequentiallyConsistent; 2072 }]>; 2073} 2074 2075defm atomic_cmp_swap_i32 : ternary_atomic_op_failure_ord; 2076defm atomic_cmp_swap_i64 : ternary_atomic_op_failure_ord; 2077 2078let Predicates = [IsLA64] in { 2079def : AtomicPat<int_loongarch_masked_atomicrmw_xchg_i64, 2080 PseudoMaskedAtomicSwap32>; 2081def : Pat<(atomic_swap_i32 GPR:$addr, GPR:$incr), 2082 (AMSWAP__DB_W GPR:$incr, GPR:$addr)>; 2083def : Pat<(atomic_swap_i64 GPR:$addr, GPR:$incr), 2084 (AMSWAP__DB_D GPR:$incr, GPR:$addr)>; 2085def : Pat<(atomic_load_add_i64 GPR:$rj, GPR:$rk), 2086 (AMADD__DB_D GPR:$rk, GPR:$rj)>; 2087def : AtomicPat<int_loongarch_masked_atomicrmw_add_i64, 2088 PseudoMaskedAtomicLoadAdd32>; 2089def : Pat<(atomic_load_sub_i32 GPR:$rj, GPR:$rk), 2090 (AMADD__DB_W (SUB_W R0, GPR:$rk), GPR:$rj)>; 2091def : Pat<(atomic_load_sub_i64 GPR:$rj, GPR:$rk), 2092 (AMADD__DB_D (SUB_D R0, GPR:$rk), GPR:$rj)>; 2093def : AtomicPat<int_loongarch_masked_atomicrmw_sub_i64, 2094 PseudoMaskedAtomicLoadSub32>; 2095defm : PseudoBinPat<"atomic_load_nand_i64", PseudoAtomicLoadNand64>; 2096def : AtomicPat<int_loongarch_masked_atomicrmw_nand_i64, 2097 PseudoMaskedAtomicLoadNand32>; 2098def : Pat<(atomic_load_add_i32 GPR:$rj, GPR:$rk), 2099 (AMADD__DB_W GPR:$rk, GPR:$rj)>; 2100def : Pat<(atomic_load_and_i32 GPR:$rj, GPR:$rk), 2101 (AMAND__DB_W GPR:$rk, GPR:$rj)>; 2102def : Pat<(atomic_load_and_i64 GPR:$rj, GPR:$rk), 2103 (AMAND__DB_D GPR:$rk, GPR:$rj)>; 2104def : Pat<(atomic_load_or_i32 GPR:$rj, GPR:$rk), 2105 (AMOR__DB_W GPR:$rk, GPR:$rj)>; 2106def : Pat<(atomic_load_or_i64 GPR:$rj, GPR:$rk), 2107 (AMOR__DB_D GPR:$rk, GPR:$rj)>; 2108def : Pat<(atomic_load_xor_i32 GPR:$rj, GPR:$rk), 2109 (AMXOR__DB_W GPR:$rk, GPR:$rj)>; 2110def : Pat<(atomic_load_xor_i64 GPR:$rj, GPR:$rk), 2111 (AMXOR__DB_D GPR:$rk, GPR:$rj)>; 2112 2113def : Pat<(atomic_load_umin_i32 GPR:$rj, GPR:$rk), 2114 (AMMIN__DB_WU GPR:$rk, GPR:$rj)>; 2115def : Pat<(atomic_load_umin_i64 GPR:$rj, GPR:$rk), 2116 (AMMIN__DB_DU GPR:$rk, GPR:$rj)>; 2117def : Pat<(atomic_load_umax_i32 GPR:$rj, GPR:$rk), 2118 (AMMAX__DB_WU GPR:$rk, GPR:$rj)>; 2119def : Pat<(atomic_load_umax_i64 GPR:$rj, GPR:$rk), 2120 (AMMAX__DB_DU GPR:$rk, GPR:$rj)>; 2121 2122def : Pat<(atomic_load_min_i32 GPR:$rj, GPR:$rk), 2123 (AMMIN__DB_W GPR:$rk, GPR:$rj)>; 2124def : Pat<(atomic_load_min_i64 GPR:$rj, GPR:$rk), 2125 (AMMIN__DB_D GPR:$rk, GPR:$rj)>; 2126def : Pat<(atomic_load_max_i32 GPR:$rj, GPR:$rk), 2127 (AMMAX__DB_W GPR:$rk, GPR:$rj)>; 2128def : Pat<(atomic_load_max_i64 GPR:$rj, GPR:$rk), 2129 (AMMAX__DB_D GPR:$rk, GPR:$rj)>; 2130 2131def : AtomicPat<int_loongarch_masked_atomicrmw_umax_i64, 2132 PseudoMaskedAtomicLoadUMax32>; 2133def : AtomicPat<int_loongarch_masked_atomicrmw_umin_i64, 2134 PseudoMaskedAtomicLoadUMin32>; 2135 2136// Ordering constants must be kept in sync with the AtomicOrdering enum in 2137// AtomicOrdering.h. 2138multiclass PseudoCmpXchgPat<string Op, Pseudo CmpXchgInst, 2139 ValueType vt = GRLenVT> { 2140 def : Pat<(vt (!cast<PatFrag>(Op#"_failure_monotonic") GPR:$addr, GPR:$cmp, GPR:$new)), 2141 (CmpXchgInst GPR:$addr, GPR:$cmp, GPR:$new, 2)>; 2142 def : Pat<(vt (!cast<PatFrag>(Op#"_failure_acquire") GPR:$addr, GPR:$cmp, GPR:$new)), 2143 (CmpXchgInst GPR:$addr, GPR:$cmp, GPR:$new, 4)>; 2144 def : Pat<(vt (!cast<PatFrag>(Op#"_failure_release") GPR:$addr, GPR:$cmp, GPR:$new)), 2145 (CmpXchgInst GPR:$addr, GPR:$cmp, GPR:$new, 5)>; 2146 def : Pat<(vt (!cast<PatFrag>(Op#"_failure_acq_rel") GPR:$addr, GPR:$cmp, GPR:$new)), 2147 (CmpXchgInst GPR:$addr, GPR:$cmp, GPR:$new, 6)>; 2148 def : Pat<(vt (!cast<PatFrag>(Op#"_failure_seq_cst") GPR:$addr, GPR:$cmp, GPR:$new)), 2149 (CmpXchgInst GPR:$addr, GPR:$cmp, GPR:$new, 7)>; 2150} 2151 2152defm : PseudoCmpXchgPat<"atomic_cmp_swap_i32", PseudoCmpXchg32>; 2153defm : PseudoCmpXchgPat<"atomic_cmp_swap_i64", PseudoCmpXchg64, i64>; 2154def : Pat<(int_loongarch_masked_cmpxchg_i64 2155 GPR:$addr, GPR:$cmpval, GPR:$newval, GPR:$mask, timm:$fail_order), 2156 (PseudoMaskedCmpXchg32 2157 GPR:$addr, GPR:$cmpval, GPR:$newval, GPR:$mask, timm:$fail_order)>; 2158 2159def : PseudoMaskedAMMinMaxPat<int_loongarch_masked_atomicrmw_max_i64, 2160 PseudoMaskedAtomicLoadMax32>; 2161def : PseudoMaskedAMMinMaxPat<int_loongarch_masked_atomicrmw_min_i64, 2162 PseudoMaskedAtomicLoadMin32>; 2163} // Predicates = [IsLA64] 2164 2165defm : PseudoBinPat<"atomic_load_nand_i32", PseudoAtomicLoadNand32>; 2166 2167let Predicates = [IsLA32] in { 2168def : AtomicPat<int_loongarch_masked_atomicrmw_xchg_i32, 2169 PseudoMaskedAtomicSwap32>; 2170defm : PseudoBinPat<"atomic_swap_i32", PseudoAtomicSwap32>; 2171def : AtomicPat<int_loongarch_masked_atomicrmw_add_i32, 2172 PseudoMaskedAtomicLoadAdd32>; 2173def : AtomicPat<int_loongarch_masked_atomicrmw_sub_i32, 2174 PseudoMaskedAtomicLoadSub32>; 2175def : AtomicPat<int_loongarch_masked_atomicrmw_nand_i32, 2176 PseudoMaskedAtomicLoadNand32>; 2177defm : PseudoBinPat<"atomic_load_add_i32", PseudoAtomicLoadAdd32>; 2178defm : PseudoBinPat<"atomic_load_sub_i32", PseudoAtomicLoadSub32>; 2179defm : PseudoBinPat<"atomic_load_and_i32", PseudoAtomicLoadAnd32>; 2180defm : PseudoBinPat<"atomic_load_or_i32", PseudoAtomicLoadOr32>; 2181defm : PseudoBinPat<"atomic_load_xor_i32", PseudoAtomicLoadXor32>; 2182} // Predicates = [IsLA32] 2183 2184/// Intrinsics 2185 2186def : Pat<(int_loongarch_cacop_d timm:$op, i64:$rj, timm:$imm12), 2187 (CACOP timm:$op, GPR:$rj, timm:$imm12)>; 2188def : Pat<(int_loongarch_cacop_w i32:$op, i32:$rj, i32:$imm12), 2189 (CACOP timm:$op, GPR:$rj, timm:$imm12)>; 2190def : Pat<(loongarch_dbar uimm15:$imm15), (DBAR uimm15:$imm15)>; 2191def : Pat<(loongarch_ibar uimm15:$imm15), (IBAR uimm15:$imm15)>; 2192def : Pat<(loongarch_break uimm15:$imm15), (BREAK uimm15:$imm15)>; 2193def : Pat<(loongarch_syscall uimm15:$imm15), (SYSCALL uimm15:$imm15)>; 2194 2195let Predicates = [IsLA64] in { 2196// CRC Check Instructions 2197def : PatGprGpr<loongarch_crc_w_b_w, CRC_W_B_W>; 2198def : PatGprGpr<loongarch_crc_w_h_w, CRC_W_H_W>; 2199def : PatGprGpr<loongarch_crc_w_w_w, CRC_W_W_W>; 2200def : PatGprGpr<loongarch_crc_w_d_w, CRC_W_D_W>; 2201def : PatGprGpr<loongarch_crcc_w_b_w, CRCC_W_B_W>; 2202def : PatGprGpr<loongarch_crcc_w_h_w, CRCC_W_H_W>; 2203def : PatGprGpr<loongarch_crcc_w_w_w, CRCC_W_W_W>; 2204def : PatGprGpr<loongarch_crcc_w_d_w, CRCC_W_D_W>; 2205} // Predicates = [IsLA64] 2206 2207/// Other pseudo-instructions 2208 2209// Pessimistically assume the stack pointer will be clobbered 2210let Defs = [R3], Uses = [R3] in { 2211def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 2212 [(callseq_start timm:$amt1, timm:$amt2)]>; 2213def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 2214 [(callseq_end timm:$amt1, timm:$amt2)]>; 2215} // Defs = [R3], Uses = [R3] 2216 2217//===----------------------------------------------------------------------===// 2218// Assembler Pseudo Instructions 2219//===----------------------------------------------------------------------===// 2220 2221def : InstAlias<"nop", (ANDI R0, R0, 0)>; 2222def : InstAlias<"move $dst, $src", (OR GPR:$dst, GPR:$src, R0)>; 2223// `ret` is supported since binutils commit 20f2e2686c79a5ac (version 2.40 and 2224// later). 2225def : InstAlias<"ret", (JIRL R0, R1, 0)>; 2226def : InstAlias<"jr $rj", (JIRL R0, GPR:$rj, 0)>; 2227 2228// Branches implemented with alias. 2229// Always output the canonical mnemonic for the pseudo branch instructions. 2230// The GNU tools emit the canonical mnemonic for the branch pseudo instructions 2231// as well (e.g. "bgt" will be recognised by the assembler but never printed by 2232// objdump). Match this behaviour by setting a zero weight. 2233def : InstAlias<"bgt $rj, $rd, $imm16", 2234 (BLT GPR:$rd, GPR:$rj, simm16_lsl2_br:$imm16), 0>; 2235def : InstAlias<"bgtu $rj, $rd, $imm16", 2236 (BLTU GPR:$rd, GPR:$rj, simm16_lsl2_br:$imm16), 0>; 2237def : InstAlias<"ble $rj, $rd, $imm16", 2238 (BGE GPR:$rd, GPR:$rj, simm16_lsl2_br:$imm16), 0>; 2239def : InstAlias<"bleu $rj, $rd, $imm16", 2240 (BGEU GPR:$rd, GPR:$rj, simm16_lsl2_br:$imm16), 0>; 2241def : InstAlias<"bltz $rd, $imm16", 2242 (BLT GPR:$rd, R0, simm16_lsl2_br:$imm16), 0>; 2243def : InstAlias<"bgtz $rj, $imm16", 2244 (BLT R0, GPR:$rj, simm16_lsl2_br:$imm16), 0>; 2245def : InstAlias<"blez $rj, $imm16", 2246 (BGE R0, GPR:$rj, simm16_lsl2_br:$imm16), 0>; 2247def : InstAlias<"bgez $rd, $imm16", 2248 (BGE GPR:$rd, R0, simm16_lsl2_br:$imm16), 0>; 2249 2250// Load immediate. 2251let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0, 2252 isAsmParserOnly = 1 in { 2253def PseudoLI_W : Pseudo<(outs GPR:$rd), (ins imm32:$imm), [], 2254 "li.w", "$rd, $imm">; 2255def PseudoLI_D : Pseudo<(outs GPR:$rd), (ins imm64:$imm), [], 2256 "li.d", "$rd, $imm">, Requires<[IsLA64]>; 2257} 2258 2259//===----------------------------------------------------------------------===// 2260// Basic Floating-Point Instructions 2261//===----------------------------------------------------------------------===// 2262 2263include "LoongArchFloat32InstrInfo.td" 2264include "LoongArchFloat64InstrInfo.td" 2265 2266let Predicates = [HasBasicF], usesCustomInserter = 1 in { 2267 def WRFCSR : Pseudo<(outs), (ins uimm2:$fcsr, GPR:$src), 2268 [(loongarch_movgr2fcsr uimm2:$fcsr, GRLenVT:$src)]>; 2269 def RDFCSR : Pseudo<(outs GPR:$rd), (ins uimm2:$fcsr), 2270 [(set GPR:$rd, (loongarch_movfcsr2gr uimm2:$fcsr))]>; 2271} 2272 2273//===----------------------------------------------------------------------===// 2274// Privilege Instructions 2275//===----------------------------------------------------------------------===// 2276 2277// CSR Access Instructions 2278let hasSideEffects = 1 in 2279def CSRRD : FmtCSR<0x04000000, (outs GPR:$rd), (ins uimm14:$csr_num), 2280 "$rd, $csr_num">; 2281let hasSideEffects = 1, Constraints = "$rd = $dst" in { 2282def CSRWR : FmtCSR<0x04000020, (outs GPR:$dst), 2283 (ins GPR:$rd, uimm14:$csr_num), "$rd, $csr_num">; 2284def CSRXCHG : FmtCSRXCHG<0x04000000, (outs GPR:$dst), 2285 (ins GPR:$rd, GPR:$rj, uimm14:$csr_num), 2286 "$rd, $rj, $csr_num">; 2287} // hasSideEffects = 1, Constraints = "$rd = $dst" 2288 2289// IOCSR Access Instructions 2290def IOCSRRD_B : IOCSRRD<0x06480000>; 2291def IOCSRRD_H : IOCSRRD<0x06480400>; 2292def IOCSRRD_W : IOCSRRD<0x06480800>; 2293def IOCSRWR_B : IOCSRWR<0x06481000>; 2294def IOCSRWR_H : IOCSRWR<0x06481400>; 2295def IOCSRWR_W : IOCSRWR<0x06481800>; 2296let Predicates = [IsLA64] in { 2297def IOCSRRD_D : IOCSRRD<0x06480c00>; 2298def IOCSRWR_D : IOCSRWR<0x06481c00>; 2299} // Predicates = [IsLA64] 2300 2301// TLB Maintenance Instructions 2302let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in { 2303def TLBSRCH : FmtI32<0x06482800>; 2304def TLBRD : FmtI32<0x06482c00>; 2305def TLBWR : FmtI32<0x06483000>; 2306def TLBFILL : FmtI32<0x06483400>; 2307def TLBCLR : FmtI32<0x06482000>; 2308def TLBFLUSH : FmtI32<0x06482400>; 2309def INVTLB : FmtINVTLB<(outs), (ins GPR:$rk, GPR:$rj, uimm5:$op), 2310 "$op, $rj, $rk">; 2311} // hasSideEffects = 1, mayLoad = 0, mayStore = 0 2312 2313// Software Page Walking Instructions 2314def LDDIR : Fmt2RI8<0x06400000, (outs GPR:$rd), 2315 (ins GPR:$rj, uimm8:$imm8), "$rd, $rj, $imm8">; 2316def LDPTE : FmtLDPTE<(outs), (ins GPR:$rj, uimm8:$seq), "$rj, $seq">; 2317 2318 2319// Other Miscellaneous Instructions 2320let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in 2321def ERTN : FmtI32<0x06483800>; 2322def DBCL : MISC_I15<0x002a8000>; 2323def IDLE : MISC_I15<0x06488000>; 2324 2325//===----------------------------------------------------------------------===// 2326// Privilege Intrinsics 2327//===----------------------------------------------------------------------===// 2328 2329def : Pat<(loongarch_csrrd uimm14:$imm14), (CSRRD uimm14:$imm14)>; 2330def : Pat<(loongarch_csrwr GPR:$rd, uimm14:$imm14), 2331 (CSRWR GPR:$rd, uimm14:$imm14)>; 2332def : Pat<(loongarch_csrxchg GPR:$rd, GPR:$rj, uimm14:$imm14), 2333 (CSRXCHG GPR:$rd, GPR:$rj, uimm14:$imm14)>; 2334 2335def : Pat<(loongarch_iocsrrd_b GPR:$rj), (IOCSRRD_B GPR:$rj)>; 2336def : Pat<(loongarch_iocsrrd_h GPR:$rj), (IOCSRRD_H GPR:$rj)>; 2337def : Pat<(loongarch_iocsrrd_w GPR:$rj), (IOCSRRD_W GPR:$rj)>; 2338 2339def : Pat<(loongarch_iocsrwr_b GPR:$rd, GPR:$rj), (IOCSRWR_B GPR:$rd, GPR:$rj)>; 2340def : Pat<(loongarch_iocsrwr_h GPR:$rd, GPR:$rj), (IOCSRWR_H GPR:$rd, GPR:$rj)>; 2341def : Pat<(loongarch_iocsrwr_w GPR:$rd, GPR:$rj), (IOCSRWR_W GPR:$rd, GPR:$rj)>; 2342 2343def : Pat<(loongarch_cpucfg GPR:$rj), (CPUCFG GPR:$rj)>; 2344 2345let Predicates = [IsLA64] in { 2346def : Pat<(loongarch_iocsrrd_d GPR:$rj), (IOCSRRD_D GPR:$rj)>; 2347def : Pat<(loongarch_iocsrwr_d GPR:$rd, GPR:$rj), (IOCSRWR_D GPR:$rd, GPR:$rj)>; 2348def : Pat<(int_loongarch_asrtle_d GPR:$rj, GPR:$rk), 2349 (ASRTLE_D GPR:$rj, GPR:$rk)>; 2350def : Pat<(int_loongarch_asrtgt_d GPR:$rj, GPR:$rk), 2351 (ASRTGT_D GPR:$rj, GPR:$rk)>; 2352def : Pat<(int_loongarch_lddir_d GPR:$rj, timm:$imm8), 2353 (LDDIR GPR:$rj, timm:$imm8)>; 2354def : Pat<(int_loongarch_ldpte_d GPR:$rj, timm:$imm8), 2355 (LDPTE GPR:$rj, timm:$imm8)>; 2356} // Predicates = [IsLA64] 2357 2358//===----------------------------------------------------------------------===// 2359// LSX Instructions 2360//===----------------------------------------------------------------------===// 2361include "LoongArchLSXInstrInfo.td" 2362 2363//===----------------------------------------------------------------------===// 2364// LASX Instructions 2365//===----------------------------------------------------------------------===// 2366include "LoongArchLASXInstrInfo.td" 2367 2368//===----------------------------------------------------------------------===// 2369// LVZ Instructions 2370//===----------------------------------------------------------------------===// 2371include "LoongArchLVZInstrInfo.td" 2372 2373//===----------------------------------------------------------------------===// 2374// LBT Instructions 2375//===----------------------------------------------------------------------===// 2376include "LoongArchLBTInstrInfo.td" 2377