xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Lanai/LanaiMemAluCombiner.cpp (revision 950a6087ec18cd22464b3297573f54a6d9223c99)
1 //===-- LanaiMemAluCombiner.cpp - Pass to combine memory & ALU operations -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // Simple pass to combine memory and ALU operations
9 //
10 // The Lanai ISA supports instructions where a load/store modifies the base
11 // register used in the load/store operation. This pass finds suitable
12 // load/store and ALU instructions and combines them into one instruction.
13 //
14 // For example,
15 //   ld [ %r6 -- ], %r12
16 // is a supported instruction that is not currently generated by the instruction
17 // selection pass of this backend. This pass generates these instructions by
18 // merging
19 //   add %r6, -4, %r6
20 // followed by
21 //   ld [ %r6 ], %r12
22 // in the same machine basic block into one machine instruction.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LanaiAluCode.h"
26 #include "LanaiTargetMachine.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/RegisterScavenging.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/Support/CommandLine.h"
34 using namespace llvm;
35 
36 #define GET_INSTRMAP_INFO
37 #include "LanaiGenInstrInfo.inc"
38 
39 #define DEBUG_TYPE "lanai-mem-alu-combiner"
40 
41 STATISTIC(NumLdStAluCombined, "Number of memory and ALU instructions combined");
42 
43 static llvm::cl::opt<bool> DisableMemAluCombiner(
44     "disable-lanai-mem-alu-combiner", llvm::cl::init(false),
45     llvm::cl::desc("Do not combine ALU and memory operators"),
46     llvm::cl::Hidden);
47 
48 namespace llvm {
49 void initializeLanaiMemAluCombinerPass(PassRegistry &);
50 } // namespace llvm
51 
52 namespace {
53 typedef MachineBasicBlock::iterator MbbIterator;
54 typedef MachineFunction::iterator MfIterator;
55 
56 class LanaiMemAluCombiner : public MachineFunctionPass {
57 public:
58   static char ID;
59   explicit LanaiMemAluCombiner() : MachineFunctionPass(ID) {
60     initializeLanaiMemAluCombinerPass(*PassRegistry::getPassRegistry());
61   }
62 
63   StringRef getPassName() const override {
64     return "Lanai load / store optimization pass";
65   }
66 
67   bool runOnMachineFunction(MachineFunction &F) override;
68 
69   MachineFunctionProperties getRequiredProperties() const override {
70     return MachineFunctionProperties().set(
71         MachineFunctionProperties::Property::NoVRegs);
72   }
73 
74 private:
75   MbbIterator findClosestSuitableAluInstr(MachineBasicBlock *BB,
76                                           const MbbIterator &MemInstr,
77                                           bool Decrement);
78   void insertMergedInstruction(MachineBasicBlock *BB,
79                                const MbbIterator &MemInstr,
80                                const MbbIterator &AluInstr, bool Before);
81   bool combineMemAluInBasicBlock(MachineBasicBlock *BB);
82 
83   // Target machine description which we query for register names, data
84   // layout, etc.
85   const TargetInstrInfo *TII;
86 };
87 } // namespace
88 
89 char LanaiMemAluCombiner::ID = 0;
90 
91 INITIALIZE_PASS(LanaiMemAluCombiner, DEBUG_TYPE,
92                 "Lanai memory ALU combiner pass", false, false)
93 
94 namespace {
95 bool isSpls(uint16_t Opcode) { return Lanai::splsIdempotent(Opcode) == Opcode; }
96 
97 // Determine the opcode for the merged instruction created by considering the
98 // old memory operation's opcode and whether the merged opcode will have an
99 // immediate offset.
100 unsigned mergedOpcode(unsigned OldOpcode, bool ImmediateOffset) {
101   switch (OldOpcode) {
102   case Lanai::LDW_RI:
103   case Lanai::LDW_RR:
104     if (ImmediateOffset)
105       return Lanai::LDW_RI;
106     return Lanai::LDW_RR;
107   case Lanai::LDHs_RI:
108   case Lanai::LDHs_RR:
109     if (ImmediateOffset)
110       return Lanai::LDHs_RI;
111     return Lanai::LDHs_RR;
112   case Lanai::LDHz_RI:
113   case Lanai::LDHz_RR:
114     if (ImmediateOffset)
115       return Lanai::LDHz_RI;
116     return Lanai::LDHz_RR;
117   case Lanai::LDBs_RI:
118   case Lanai::LDBs_RR:
119     if (ImmediateOffset)
120       return Lanai::LDBs_RI;
121     return Lanai::LDBs_RR;
122   case Lanai::LDBz_RI:
123   case Lanai::LDBz_RR:
124     if (ImmediateOffset)
125       return Lanai::LDBz_RI;
126     return Lanai::LDBz_RR;
127   case Lanai::SW_RI:
128   case Lanai::SW_RR:
129     if (ImmediateOffset)
130       return Lanai::SW_RI;
131     return Lanai::SW_RR;
132   case Lanai::STB_RI:
133   case Lanai::STB_RR:
134     if (ImmediateOffset)
135       return Lanai::STB_RI;
136     return Lanai::STB_RR;
137   case Lanai::STH_RI:
138   case Lanai::STH_RR:
139     if (ImmediateOffset)
140       return Lanai::STH_RI;
141     return Lanai::STH_RR;
142   default:
143     return 0;
144   }
145 }
146 
147 // Check if the machine instruction has non-volatile memory operands of the type
148 // supported for combining with ALU instructions.
149 bool isNonVolatileMemoryOp(const MachineInstr &MI) {
150   if (!MI.hasOneMemOperand())
151     return false;
152 
153   // Determine if the machine instruction is a supported memory operation by
154   // testing if the computed merge opcode is a valid memory operation opcode.
155   if (mergedOpcode(MI.getOpcode(), false) == 0)
156     return false;
157 
158   const MachineMemOperand *MemOperand = *MI.memoperands_begin();
159 
160   // Don't move volatile memory accesses
161   // TODO: unclear if we need to be as conservative about atomics
162   if (MemOperand->isVolatile() || MemOperand->isAtomic())
163     return false;
164 
165   return true;
166 }
167 
168 // Test to see if two machine operands are of the same type. This test is less
169 // strict than the MachineOperand::isIdenticalTo function.
170 bool isSameOperand(const MachineOperand &Op1, const MachineOperand &Op2) {
171   if (Op1.getType() != Op2.getType())
172     return false;
173 
174   switch (Op1.getType()) {
175   case MachineOperand::MO_Register:
176     return Op1.getReg() == Op2.getReg();
177   case MachineOperand::MO_Immediate:
178     return Op1.getImm() == Op2.getImm();
179   default:
180     return false;
181   }
182 }
183 
184 bool isZeroOperand(const MachineOperand &Op) {
185   return ((Op.isReg() && Op.getReg() == Lanai::R0) ||
186           (Op.isImm() && Op.getImm() == 0));
187 }
188 
189 // Determines whether a register is used by an instruction.
190 bool InstrUsesReg(const MbbIterator &Instr, const MachineOperand *Reg) {
191   for (MachineInstr::const_mop_iterator Mop = Instr->operands_begin();
192        Mop != Instr->operands_end(); ++Mop) {
193     if (isSameOperand(*Mop, *Reg))
194       return true;
195   }
196   return false;
197 }
198 
199 // Converts between machine opcode and AluCode.
200 // Flag using/modifying ALU operations should not be considered for merging and
201 // are omitted from this list.
202 LPAC::AluCode mergedAluCode(unsigned AluOpcode) {
203   switch (AluOpcode) {
204   case Lanai::ADD_I_LO:
205   case Lanai::ADD_R:
206     return LPAC::ADD;
207   case Lanai::SUB_I_LO:
208   case Lanai::SUB_R:
209     return LPAC::SUB;
210   case Lanai::AND_I_LO:
211   case Lanai::AND_R:
212     return LPAC::AND;
213   case Lanai::OR_I_LO:
214   case Lanai::OR_R:
215     return LPAC::OR;
216   case Lanai::XOR_I_LO:
217   case Lanai::XOR_R:
218     return LPAC::XOR;
219   case Lanai::SHL_R:
220     return LPAC::SHL;
221   case Lanai::SRL_R:
222     return LPAC::SRL;
223   case Lanai::SRA_R:
224     return LPAC::SRA;
225   case Lanai::SA_I:
226   case Lanai::SL_I:
227   default:
228     return LPAC::UNKNOWN;
229   }
230 }
231 
232 // Insert a new combined memory and ALU operation instruction.
233 //
234 // This function builds a new machine instruction using the MachineInstrBuilder
235 // class and inserts it before the memory instruction.
236 void LanaiMemAluCombiner::insertMergedInstruction(MachineBasicBlock *BB,
237                                                   const MbbIterator &MemInstr,
238                                                   const MbbIterator &AluInstr,
239                                                   bool Before) {
240   // Insert new combined load/store + alu operation
241   MachineOperand Dest = MemInstr->getOperand(0);
242   MachineOperand Base = MemInstr->getOperand(1);
243   MachineOperand MemOffset = MemInstr->getOperand(2);
244   MachineOperand AluOffset = AluInstr->getOperand(2);
245 
246   // Abort if ALU offset is not a register or immediate
247   assert((AluOffset.isReg() || AluOffset.isImm()) &&
248          "Unsupported operand type in merge");
249 
250   // Determined merged instructions opcode and ALU code
251   LPAC::AluCode AluOpcode = mergedAluCode(AluInstr->getOpcode());
252   unsigned NewOpc = mergedOpcode(MemInstr->getOpcode(), AluOffset.isImm());
253 
254   assert(AluOpcode != LPAC::UNKNOWN && "Unknown ALU code in merging");
255   assert(NewOpc != 0 && "Unknown merged node opcode");
256 
257   // Build and insert new machine instruction
258   MachineInstrBuilder InstrBuilder =
259       BuildMI(*BB, MemInstr, MemInstr->getDebugLoc(), TII->get(NewOpc));
260   InstrBuilder.addReg(Dest.getReg(), getDefRegState(true));
261   InstrBuilder.addReg(Base.getReg(), getKillRegState(true));
262 
263   // Add offset to machine instruction
264   if (AluOffset.isReg())
265     InstrBuilder.addReg(AluOffset.getReg());
266   else if (AluOffset.isImm())
267     InstrBuilder.addImm(AluOffset.getImm());
268   else
269     llvm_unreachable("Unsupported ld/st ALU merge.");
270 
271   // Create a pre-op if the ALU operation preceded the memory operation or the
272   // MemOffset is non-zero (i.e. the memory value should be adjusted before
273   // accessing it), else create a post-op.
274   if (Before || !isZeroOperand(MemOffset))
275     InstrBuilder.addImm(LPAC::makePreOp(AluOpcode));
276   else
277     InstrBuilder.addImm(LPAC::makePostOp(AluOpcode));
278 
279   // Transfer memory operands.
280   InstrBuilder.setMemRefs(MemInstr->memoperands());
281 }
282 
283 // Function determines if ALU operation (in alu_iter) can be combined with
284 // a load/store with base and offset.
285 bool isSuitableAluInstr(bool IsSpls, const MbbIterator &AluIter,
286                         const MachineOperand &Base,
287                         const MachineOperand &Offset) {
288   // ALU operations have 3 operands
289   if (AluIter->getNumOperands() != 3)
290     return false;
291 
292   MachineOperand &Dest = AluIter->getOperand(0);
293   MachineOperand &Op1 = AluIter->getOperand(1);
294   MachineOperand &Op2 = AluIter->getOperand(2);
295 
296   // Only match instructions using the base register as destination and with the
297   // base and first operand equal
298   if (!isSameOperand(Dest, Base) || !isSameOperand(Dest, Op1))
299     return false;
300 
301   if (Op2.isImm()) {
302     // It is not a match if the 2nd operand in the ALU operation is an
303     // immediate but the ALU operation is not an addition.
304     if (AluIter->getOpcode() != Lanai::ADD_I_LO)
305       return false;
306 
307     if (Offset.isReg() && Offset.getReg() == Lanai::R0)
308       return true;
309 
310     if (Offset.isImm() &&
311         ((Offset.getImm() == 0 &&
312           // Check that the Op2 would fit in the immediate field of the
313           // memory operation.
314           ((IsSpls && isInt<10>(Op2.getImm())) ||
315            (!IsSpls && isInt<16>(Op2.getImm())))) ||
316          Offset.getImm() == Op2.getImm()))
317       return true;
318   } else if (Op2.isReg()) {
319     // The Offset and 2nd operand are both registers and equal
320     if (Offset.isReg() && Op2.getReg() == Offset.getReg())
321       return true;
322   } else
323     // Only consider operations with register or immediate values
324     return false;
325 
326   return false;
327 }
328 
329 MbbIterator LanaiMemAluCombiner::findClosestSuitableAluInstr(
330     MachineBasicBlock *BB, const MbbIterator &MemInstr, const bool Decrement) {
331   MachineOperand *Base = &MemInstr->getOperand(1);
332   MachineOperand *Offset = &MemInstr->getOperand(2);
333   bool IsSpls = isSpls(MemInstr->getOpcode());
334 
335   MbbIterator First = MemInstr;
336   MbbIterator Last = Decrement ? BB->begin() : BB->end();
337 
338   while (First != Last) {
339     Decrement ? --First : ++First;
340 
341     if (First == Last)
342       break;
343 
344     // Skip over debug instructions
345     if (First->isDebugInstr())
346       continue;
347 
348     if (isSuitableAluInstr(IsSpls, First, *Base, *Offset)) {
349       return First;
350     }
351 
352     // Usage of the base or offset register is not a form suitable for merging.
353     if (First != Last) {
354       if (InstrUsesReg(First, Base))
355         break;
356       if (Offset->isReg() && InstrUsesReg(First, Offset))
357         break;
358     }
359   }
360 
361   return MemInstr;
362 }
363 
364 bool LanaiMemAluCombiner::combineMemAluInBasicBlock(MachineBasicBlock *BB) {
365   bool Modified = false;
366 
367   MbbIterator MBBIter = BB->begin(), End = BB->end();
368   while (MBBIter != End) {
369     bool IsMemOp = isNonVolatileMemoryOp(*MBBIter);
370 
371     if (IsMemOp) {
372       MachineOperand AluOperand = MBBIter->getOperand(3);
373       unsigned int DestReg = MBBIter->getOperand(0).getReg(),
374                    BaseReg = MBBIter->getOperand(1).getReg();
375       assert(AluOperand.isImm() && "Unexpected memory operator type");
376       LPAC::AluCode AluOpcode = static_cast<LPAC::AluCode>(AluOperand.getImm());
377 
378       // Skip memory operations that already modify the base register or if
379       // the destination and base register are the same
380       if (!LPAC::modifiesOp(AluOpcode) && DestReg != BaseReg) {
381         for (int Inc = 0; Inc <= 1; ++Inc) {
382           MbbIterator AluIter =
383               findClosestSuitableAluInstr(BB, MBBIter, Inc == 0);
384           if (AluIter != MBBIter) {
385             insertMergedInstruction(BB, MBBIter, AluIter, Inc == 0);
386 
387             ++NumLdStAluCombined;
388             Modified = true;
389 
390             // Erase the matching ALU instruction
391             BB->erase(AluIter);
392             // Erase old load/store instruction
393             BB->erase(MBBIter++);
394             break;
395           }
396         }
397       }
398     }
399     if (MBBIter == End)
400       break;
401     ++MBBIter;
402   }
403 
404   return Modified;
405 }
406 
407 // Driver function that iterates over the machine basic building blocks of a
408 // machine function
409 bool LanaiMemAluCombiner::runOnMachineFunction(MachineFunction &MF) {
410   if (DisableMemAluCombiner)
411     return false;
412 
413   TII = MF.getSubtarget<LanaiSubtarget>().getInstrInfo();
414   bool Modified = false;
415   for (MachineBasicBlock &MBB : MF)
416     Modified |= combineMemAluInBasicBlock(&MBB);
417   return Modified;
418 }
419 } // namespace
420 
421 FunctionPass *llvm::createLanaiMemAluCombinerPass() {
422   return new LanaiMemAluCombiner();
423 }
424