xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Lanai/LanaiISelLowering.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LanaiTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LanaiISelLowering.h"
14 #include "Lanai.h"
15 #include "LanaiCondCode.h"
16 #include "LanaiMachineFunctionInfo.h"
17 #include "LanaiSubtarget.h"
18 #include "LanaiTargetObjectFile.h"
19 #include "MCTargetDesc/LanaiBaseInfo.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetCallingConv.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CodeGen.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/KnownBits.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cmath>
51 #include <cstdint>
52 #include <cstdlib>
53 #include <utility>
54 
55 #define DEBUG_TYPE "lanai-lower"
56 
57 using namespace llvm;
58 
59 // Limit on number of instructions the lowered multiplication may have before a
60 // call to the library function should be generated instead. The threshold is
61 // currently set to 14 as this was the smallest threshold that resulted in all
62 // constant multiplications being lowered. A threshold of 5 covered all cases
63 // except for one multiplication which required 14. mulsi3 requires 16
64 // instructions (including the prologue and epilogue but excluding instructions
65 // at call site). Until we can inline mulsi3, generating at most 14 instructions
66 // will be faster than invoking mulsi3.
67 static cl::opt<int> LanaiLowerConstantMulThreshold(
68     "lanai-constant-mul-threshold", cl::Hidden,
69     cl::desc("Maximum number of instruction to generate when lowering constant "
70              "multiplication instead of calling library function [default=14]"),
71     cl::init(14));
72 
73 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
74                                          const LanaiSubtarget &STI)
75     : TargetLowering(TM) {
76   // Set up the register classes.
77   addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
78 
79   // Compute derived properties from the register classes
80   TRI = STI.getRegisterInfo();
81   computeRegisterProperties(TRI);
82 
83   setStackPointerRegisterToSaveRestore(Lanai::SP);
84 
85   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
86   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
88   setOperationAction(ISD::SETCC, MVT::i32, Custom);
89   setOperationAction(ISD::SELECT, MVT::i32, Expand);
90   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
91 
92   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
93   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
94   setOperationAction(ISD::JumpTable, MVT::i32, Custom);
95   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
96 
97   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
98   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
99   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
100 
101   setOperationAction(ISD::VASTART, MVT::Other, Custom);
102   setOperationAction(ISD::VAARG, MVT::Other, Expand);
103   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
104   setOperationAction(ISD::VAEND, MVT::Other, Expand);
105 
106   setOperationAction(ISD::SDIV, MVT::i32, Expand);
107   setOperationAction(ISD::UDIV, MVT::i32, Expand);
108   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
109   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
110   setOperationAction(ISD::SREM, MVT::i32, Expand);
111   setOperationAction(ISD::UREM, MVT::i32, Expand);
112 
113   setOperationAction(ISD::MUL, MVT::i32, Custom);
114   setOperationAction(ISD::MULHU, MVT::i32, Expand);
115   setOperationAction(ISD::MULHS, MVT::i32, Expand);
116   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
118 
119   setOperationAction(ISD::ROTR, MVT::i32, Expand);
120   setOperationAction(ISD::ROTL, MVT::i32, Expand);
121   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
122   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
123   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
124 
125   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
126   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
127   setOperationAction(ISD::CTLZ, MVT::i32, Legal);
128   setOperationAction(ISD::CTTZ, MVT::i32, Legal);
129 
130   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
131   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
133 
134   // Extended load operations for i1 types must be promoted
135   for (MVT VT : MVT::integer_valuetypes()) {
136     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
137     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
139   }
140 
141   setTargetDAGCombine(ISD::ADD);
142   setTargetDAGCombine(ISD::SUB);
143   setTargetDAGCombine(ISD::AND);
144   setTargetDAGCombine(ISD::OR);
145   setTargetDAGCombine(ISD::XOR);
146 
147   // Function alignments (log2)
148   setMinFunctionAlignment(2);
149   setPrefFunctionAlignment(2);
150 
151   setJumpIsExpensive(true);
152 
153   // TODO: Setting the minimum jump table entries needed before a
154   // switch is transformed to a jump table to 100 to avoid creating jump tables
155   // as this was causing bad performance compared to a large group of if
156   // statements. Re-evaluate this on new benchmarks.
157   setMinimumJumpTableEntries(100);
158 
159   // Use fast calling convention for library functions.
160   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
161     setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
162   }
163 
164   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
165   MaxStoresPerMemsetOptSize = 8;
166   MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
167   MaxStoresPerMemcpyOptSize = 8;
168   MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
169   MaxStoresPerMemmoveOptSize = 8;
170 
171   // Booleans always contain 0 or 1.
172   setBooleanContents(ZeroOrOneBooleanContent);
173 }
174 
175 SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
176                                             SelectionDAG &DAG) const {
177   switch (Op.getOpcode()) {
178   case ISD::MUL:
179     return LowerMUL(Op, DAG);
180   case ISD::BR_CC:
181     return LowerBR_CC(Op, DAG);
182   case ISD::ConstantPool:
183     return LowerConstantPool(Op, DAG);
184   case ISD::GlobalAddress:
185     return LowerGlobalAddress(Op, DAG);
186   case ISD::BlockAddress:
187     return LowerBlockAddress(Op, DAG);
188   case ISD::JumpTable:
189     return LowerJumpTable(Op, DAG);
190   case ISD::SELECT_CC:
191     return LowerSELECT_CC(Op, DAG);
192   case ISD::SETCC:
193     return LowerSETCC(Op, DAG);
194   case ISD::SHL_PARTS:
195     return LowerSHL_PARTS(Op, DAG);
196   case ISD::SRL_PARTS:
197     return LowerSRL_PARTS(Op, DAG);
198   case ISD::VASTART:
199     return LowerVASTART(Op, DAG);
200   case ISD::DYNAMIC_STACKALLOC:
201     return LowerDYNAMIC_STACKALLOC(Op, DAG);
202   case ISD::RETURNADDR:
203     return LowerRETURNADDR(Op, DAG);
204   case ISD::FRAMEADDR:
205     return LowerFRAMEADDR(Op, DAG);
206   default:
207     llvm_unreachable("unimplemented operand");
208   }
209 }
210 
211 //===----------------------------------------------------------------------===//
212 //                       Lanai Inline Assembly Support
213 //===----------------------------------------------------------------------===//
214 
215 unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT /*VT*/,
216                                                 SelectionDAG & /*DAG*/) const {
217   // Only unallocatable registers should be matched here.
218   unsigned Reg = StringSwitch<unsigned>(RegName)
219                      .Case("pc", Lanai::PC)
220                      .Case("sp", Lanai::SP)
221                      .Case("fp", Lanai::FP)
222                      .Case("rr1", Lanai::RR1)
223                      .Case("r10", Lanai::R10)
224                      .Case("rr2", Lanai::RR2)
225                      .Case("r11", Lanai::R11)
226                      .Case("rca", Lanai::RCA)
227                      .Default(0);
228 
229   if (Reg)
230     return Reg;
231   report_fatal_error("Invalid register name global variable");
232 }
233 
234 std::pair<unsigned, const TargetRegisterClass *>
235 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
236                                                   StringRef Constraint,
237                                                   MVT VT) const {
238   if (Constraint.size() == 1)
239     // GCC Constraint Letters
240     switch (Constraint[0]) {
241     case 'r': // GENERAL_REGS
242       return std::make_pair(0U, &Lanai::GPRRegClass);
243     default:
244       break;
245     }
246 
247   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
248 }
249 
250 // Examine constraint type and operand type and determine a weight value.
251 // This object must already have been set up with the operand type
252 // and the current alternative constraint selected.
253 TargetLowering::ConstraintWeight
254 LanaiTargetLowering::getSingleConstraintMatchWeight(
255     AsmOperandInfo &Info, const char *Constraint) const {
256   ConstraintWeight Weight = CW_Invalid;
257   Value *CallOperandVal = Info.CallOperandVal;
258   // If we don't have a value, we can't do a match,
259   // but allow it at the lowest weight.
260   if (CallOperandVal == nullptr)
261     return CW_Default;
262   // Look at the constraint type.
263   switch (*Constraint) {
264   case 'I': // signed 16 bit immediate
265   case 'J': // integer zero
266   case 'K': // unsigned 16 bit immediate
267   case 'L': // immediate in the range 0 to 31
268   case 'M': // signed 32 bit immediate where lower 16 bits are 0
269   case 'N': // signed 26 bit immediate
270   case 'O': // integer zero
271     if (isa<ConstantInt>(CallOperandVal))
272       Weight = CW_Constant;
273     break;
274   default:
275     Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
276     break;
277   }
278   return Weight;
279 }
280 
281 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops
282 // vector.  If it is invalid, don't add anything to Ops.
283 void LanaiTargetLowering::LowerAsmOperandForConstraint(
284     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
285     SelectionDAG &DAG) const {
286   SDValue Result(nullptr, 0);
287 
288   // Only support length 1 constraints for now.
289   if (Constraint.length() > 1)
290     return;
291 
292   char ConstraintLetter = Constraint[0];
293   switch (ConstraintLetter) {
294   case 'I': // Signed 16 bit constant
295     // If this fails, the parent routine will give an error
296     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
297       if (isInt<16>(C->getSExtValue())) {
298         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
299                                        Op.getValueType());
300         break;
301       }
302     }
303     return;
304   case 'J': // integer zero
305   case 'O':
306     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
307       if (C->getZExtValue() == 0) {
308         Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
309         break;
310       }
311     }
312     return;
313   case 'K': // unsigned 16 bit immediate
314     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
315       if (isUInt<16>(C->getZExtValue())) {
316         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
317                                        Op.getValueType());
318         break;
319       }
320     }
321     return;
322   case 'L': // immediate in the range 0 to 31
323     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
324       if (C->getZExtValue() <= 31) {
325         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
326                                        Op.getValueType());
327         break;
328       }
329     }
330     return;
331   case 'M': // signed 32 bit immediate where lower 16 bits are 0
332     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
333       int64_t Val = C->getSExtValue();
334       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
335         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
336         break;
337       }
338     }
339     return;
340   case 'N': // signed 26 bit immediate
341     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
342       int64_t Val = C->getSExtValue();
343       if ((Val >= -33554432) && (Val <= 33554431)) {
344         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
345         break;
346       }
347     }
348     return;
349   default:
350     break; // This will fall through to the generic implementation
351   }
352 
353   if (Result.getNode()) {
354     Ops.push_back(Result);
355     return;
356   }
357 
358   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
359 }
360 
361 //===----------------------------------------------------------------------===//
362 //                      Calling Convention Implementation
363 //===----------------------------------------------------------------------===//
364 
365 #include "LanaiGenCallingConv.inc"
366 
367 static unsigned NumFixedArgs;
368 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
369                               CCValAssign::LocInfo LocInfo,
370                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
371   // Handle fixed arguments with default CC.
372   // Note: Both the default and fast CC handle VarArg the same and hence the
373   // calling convention of the function is not considered here.
374   if (ValNo < NumFixedArgs) {
375     return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
376   }
377 
378   // Promote i8/i16 args to i32
379   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
380     LocVT = MVT::i32;
381     if (ArgFlags.isSExt())
382       LocInfo = CCValAssign::SExt;
383     else if (ArgFlags.isZExt())
384       LocInfo = CCValAssign::ZExt;
385     else
386       LocInfo = CCValAssign::AExt;
387   }
388 
389   // VarArgs get passed on stack
390   unsigned Offset = State.AllocateStack(4, 4);
391   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
392   return false;
393 }
394 
395 SDValue LanaiTargetLowering::LowerFormalArguments(
396     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
397     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
398     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
399   switch (CallConv) {
400   case CallingConv::C:
401   case CallingConv::Fast:
402     return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
403   default:
404     report_fatal_error("Unsupported calling convention");
405   }
406 }
407 
408 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
409                                        SmallVectorImpl<SDValue> &InVals) const {
410   SelectionDAG &DAG = CLI.DAG;
411   SDLoc &DL = CLI.DL;
412   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
413   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
414   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
415   SDValue Chain = CLI.Chain;
416   SDValue Callee = CLI.Callee;
417   bool &IsTailCall = CLI.IsTailCall;
418   CallingConv::ID CallConv = CLI.CallConv;
419   bool IsVarArg = CLI.IsVarArg;
420 
421   // Lanai target does not yet support tail call optimization.
422   IsTailCall = false;
423 
424   switch (CallConv) {
425   case CallingConv::Fast:
426   case CallingConv::C:
427     return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
428                           OutVals, Ins, DL, DAG, InVals);
429   default:
430     report_fatal_error("Unsupported calling convention");
431   }
432 }
433 
434 // LowerCCCArguments - transform physical registers into virtual registers and
435 // generate load operations for arguments places on the stack.
436 SDValue LanaiTargetLowering::LowerCCCArguments(
437     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
438     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
439     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
440   MachineFunction &MF = DAG.getMachineFunction();
441   MachineFrameInfo &MFI = MF.getFrameInfo();
442   MachineRegisterInfo &RegInfo = MF.getRegInfo();
443   LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
444 
445   // Assign locations to all of the incoming arguments.
446   SmallVector<CCValAssign, 16> ArgLocs;
447   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
448                  *DAG.getContext());
449   if (CallConv == CallingConv::Fast) {
450     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
451   } else {
452     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
453   }
454 
455   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
456     CCValAssign &VA = ArgLocs[i];
457     if (VA.isRegLoc()) {
458       // Arguments passed in registers
459       EVT RegVT = VA.getLocVT();
460       switch (RegVT.getSimpleVT().SimpleTy) {
461       case MVT::i32: {
462         unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
463         RegInfo.addLiveIn(VA.getLocReg(), VReg);
464         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
465 
466         // If this is an 8/16-bit value, it is really passed promoted to 32
467         // bits. Insert an assert[sz]ext to capture this, then truncate to the
468         // right size.
469         if (VA.getLocInfo() == CCValAssign::SExt)
470           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
471                                  DAG.getValueType(VA.getValVT()));
472         else if (VA.getLocInfo() == CCValAssign::ZExt)
473           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
474                                  DAG.getValueType(VA.getValVT()));
475 
476         if (VA.getLocInfo() != CCValAssign::Full)
477           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
478 
479         InVals.push_back(ArgValue);
480         break;
481       }
482       default:
483         LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
484                           << RegVT.getEVTString() << "\n");
485         llvm_unreachable("unhandled argument type");
486       }
487     } else {
488       // Sanity check
489       assert(VA.isMemLoc());
490       // Load the argument to a virtual register
491       unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
492       // Check that the argument fits in stack slot
493       if (ObjSize > 4) {
494         errs() << "LowerFormalArguments Unhandled argument type: "
495                << EVT(VA.getLocVT()).getEVTString() << "\n";
496       }
497       // Create the frame index object for this incoming parameter...
498       int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
499 
500       // Create the SelectionDAG nodes corresponding to a load
501       // from this parameter
502       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
503       InVals.push_back(DAG.getLoad(
504           VA.getLocVT(), DL, Chain, FIN,
505           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
506     }
507   }
508 
509   // The Lanai ABI for returning structs by value requires that we copy
510   // the sret argument into rv for the return. Save the argument into
511   // a virtual register so that we can access it from the return points.
512   if (MF.getFunction().hasStructRetAttr()) {
513     unsigned Reg = LanaiMFI->getSRetReturnReg();
514     if (!Reg) {
515       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
516       LanaiMFI->setSRetReturnReg(Reg);
517     }
518     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
519     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
520   }
521 
522   if (IsVarArg) {
523     // Record the frame index of the first variable argument
524     // which is a value necessary to VASTART.
525     int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true);
526     LanaiMFI->setVarArgsFrameIndex(FI);
527   }
528 
529   return Chain;
530 }
531 
532 SDValue
533 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
534                                  bool IsVarArg,
535                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
536                                  const SmallVectorImpl<SDValue> &OutVals,
537                                  const SDLoc &DL, SelectionDAG &DAG) const {
538   // CCValAssign - represent the assignment of the return value to a location
539   SmallVector<CCValAssign, 16> RVLocs;
540 
541   // CCState - Info about the registers and stack slot.
542   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
543                  *DAG.getContext());
544 
545   // Analize return values.
546   CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
547 
548   SDValue Flag;
549   SmallVector<SDValue, 4> RetOps(1, Chain);
550 
551   // Copy the result values into the output registers.
552   for (unsigned i = 0; i != RVLocs.size(); ++i) {
553     CCValAssign &VA = RVLocs[i];
554     assert(VA.isRegLoc() && "Can only return in registers!");
555 
556     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
557 
558     // Guarantee that all emitted copies are stuck together with flags.
559     Flag = Chain.getValue(1);
560     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
561   }
562 
563   // The Lanai ABI for returning structs by value requires that we copy
564   // the sret argument into rv for the return. We saved the argument into
565   // a virtual register in the entry block, so now we copy the value out
566   // and into rv.
567   if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) {
568     MachineFunction &MF = DAG.getMachineFunction();
569     LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
570     unsigned Reg = LanaiMFI->getSRetReturnReg();
571     assert(Reg &&
572            "SRetReturnReg should have been set in LowerFormalArguments().");
573     SDValue Val =
574         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
575 
576     Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag);
577     Flag = Chain.getValue(1);
578     RetOps.push_back(
579         DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
580   }
581 
582   RetOps[0] = Chain; // Update chain
583 
584   unsigned Opc = LanaiISD::RET_FLAG;
585   if (Flag.getNode())
586     RetOps.push_back(Flag);
587 
588   // Return Void
589   return DAG.getNode(Opc, DL, MVT::Other,
590                      ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
591 }
592 
593 // LowerCCCCallTo - functions arguments are copied from virtual regs to
594 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
595 SDValue LanaiTargetLowering::LowerCCCCallTo(
596     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
597     bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs,
598     const SmallVectorImpl<SDValue> &OutVals,
599     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
600     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
601   // Analyze operands of the call, assigning locations to each operand.
602   SmallVector<CCValAssign, 16> ArgLocs;
603   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
604                  *DAG.getContext());
605   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
606   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
607 
608   NumFixedArgs = 0;
609   if (IsVarArg && G) {
610     const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
611     if (CalleeFn)
612       NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
613   }
614   if (NumFixedArgs)
615     CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
616   else {
617     if (CallConv == CallingConv::Fast)
618       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
619     else
620       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
621   }
622 
623   // Get a count of how many bytes are to be pushed on the stack.
624   unsigned NumBytes = CCInfo.getNextStackOffset();
625 
626   // Create local copies for byval args.
627   SmallVector<SDValue, 8> ByValArgs;
628   for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
629     ISD::ArgFlagsTy Flags = Outs[I].Flags;
630     if (!Flags.isByVal())
631       continue;
632 
633     SDValue Arg = OutVals[I];
634     unsigned Size = Flags.getByValSize();
635     unsigned Align = Flags.getByValAlign();
636 
637     int FI = MFI.CreateStackObject(Size, Align, false);
638     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
639     SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
640 
641     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
642                           /*IsVolatile=*/false,
643                           /*AlwaysInline=*/false,
644                           /*isTailCall=*/false, MachinePointerInfo(),
645                           MachinePointerInfo());
646     ByValArgs.push_back(FIPtr);
647   }
648 
649   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
650 
651   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
652   SmallVector<SDValue, 12> MemOpChains;
653   SDValue StackPtr;
654 
655   // Walk the register/memloc assignments, inserting copies/loads.
656   for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
657     CCValAssign &VA = ArgLocs[I];
658     SDValue Arg = OutVals[I];
659     ISD::ArgFlagsTy Flags = Outs[I].Flags;
660 
661     // Promote the value if needed.
662     switch (VA.getLocInfo()) {
663     case CCValAssign::Full:
664       break;
665     case CCValAssign::SExt:
666       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
667       break;
668     case CCValAssign::ZExt:
669       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
670       break;
671     case CCValAssign::AExt:
672       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
673       break;
674     default:
675       llvm_unreachable("Unknown loc info!");
676     }
677 
678     // Use local copy if it is a byval arg.
679     if (Flags.isByVal())
680       Arg = ByValArgs[J++];
681 
682     // Arguments that can be passed on register must be kept at RegsToPass
683     // vector
684     if (VA.isRegLoc()) {
685       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
686     } else {
687       assert(VA.isMemLoc());
688 
689       if (StackPtr.getNode() == nullptr)
690         StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
691                                       getPointerTy(DAG.getDataLayout()));
692 
693       SDValue PtrOff =
694           DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
695                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
696 
697       MemOpChains.push_back(
698           DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
699     }
700   }
701 
702   // Transform all store nodes into one single node because all store nodes are
703   // independent of each other.
704   if (!MemOpChains.empty())
705     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
706                         ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
707 
708   SDValue InFlag;
709 
710   // Build a sequence of copy-to-reg nodes chained together with token chain and
711   // flag operands which copy the outgoing args into registers.  The InFlag in
712   // necessary since all emitted instructions must be stuck together.
713   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
714     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
715                              RegsToPass[I].second, InFlag);
716     InFlag = Chain.getValue(1);
717   }
718 
719   // If the callee is a GlobalAddress node (quite common, every direct call is)
720   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
721   // Likewise ExternalSymbol -> TargetExternalSymbol.
722   uint8_t OpFlag = LanaiII::MO_NO_FLAG;
723   if (G) {
724     Callee = DAG.getTargetGlobalAddress(
725         G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
726   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
727     Callee = DAG.getTargetExternalSymbol(
728         E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
729   }
730 
731   // Returns a chain & a flag for retval copy to use.
732   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
733   SmallVector<SDValue, 8> Ops;
734   Ops.push_back(Chain);
735   Ops.push_back(Callee);
736 
737   // Add a register mask operand representing the call-preserved registers.
738   // TODO: Should return-twice functions be handled?
739   const uint32_t *Mask =
740       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
741   assert(Mask && "Missing call preserved mask for calling convention");
742   Ops.push_back(DAG.getRegisterMask(Mask));
743 
744   // Add argument registers to the end of the list so that they are
745   // known live into the call.
746   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
747     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
748                                   RegsToPass[I].second.getValueType()));
749 
750   if (InFlag.getNode())
751     Ops.push_back(InFlag);
752 
753   Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
754                       ArrayRef<SDValue>(&Ops[0], Ops.size()));
755   InFlag = Chain.getValue(1);
756 
757   // Create the CALLSEQ_END node.
758   Chain = DAG.getCALLSEQ_END(
759       Chain,
760       DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
761       DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag,
762       DL);
763   InFlag = Chain.getValue(1);
764 
765   // Handle result values, copying them out of physregs into vregs that we
766   // return.
767   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
768                          InVals);
769 }
770 
771 // LowerCallResult - Lower the result values of a call into the
772 // appropriate copies out of appropriate physical registers.
773 SDValue LanaiTargetLowering::LowerCallResult(
774     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
775     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
776     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
777   // Assign locations to each value returned by this call.
778   SmallVector<CCValAssign, 16> RVLocs;
779   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
780                  *DAG.getContext());
781 
782   CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
783 
784   // Copy all of the result registers out of their specified physreg.
785   for (unsigned I = 0; I != RVLocs.size(); ++I) {
786     Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
787                                RVLocs[I].getValVT(), InFlag)
788                 .getValue(1);
789     InFlag = Chain.getValue(2);
790     InVals.push_back(Chain.getValue(0));
791   }
792 
793   return Chain;
794 }
795 
796 //===----------------------------------------------------------------------===//
797 //                      Custom Lowerings
798 //===----------------------------------------------------------------------===//
799 
800 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
801                                         SDValue &RHS, SelectionDAG &DAG) {
802   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
803 
804   // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
805   // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
806   // and Lanai only supports integer comparisons, so only provide definitions
807   // for them.
808   switch (SetCCOpcode) {
809   case ISD::SETEQ:
810     return LPCC::ICC_EQ;
811   case ISD::SETGT:
812     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
813       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
814         // X > -1 -> X >= 0 -> is_plus(X)
815         RHS = DAG.getConstant(0, DL, RHS.getValueType());
816         return LPCC::ICC_PL;
817       }
818     return LPCC::ICC_GT;
819   case ISD::SETUGT:
820     return LPCC::ICC_UGT;
821   case ISD::SETLT:
822     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
823       if (RHSC->getZExtValue() == 0)
824         // X < 0 -> is_minus(X)
825         return LPCC::ICC_MI;
826     return LPCC::ICC_LT;
827   case ISD::SETULT:
828     return LPCC::ICC_ULT;
829   case ISD::SETLE:
830     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
831       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
832         // X <= -1 -> X < 0 -> is_minus(X)
833         RHS = DAG.getConstant(0, DL, RHS.getValueType());
834         return LPCC::ICC_MI;
835       }
836     return LPCC::ICC_LE;
837   case ISD::SETULE:
838     return LPCC::ICC_ULE;
839   case ISD::SETGE:
840     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
841       if (RHSC->getZExtValue() == 0)
842         // X >= 0 -> is_plus(X)
843         return LPCC::ICC_PL;
844     return LPCC::ICC_GE;
845   case ISD::SETUGE:
846     return LPCC::ICC_UGE;
847   case ISD::SETNE:
848     return LPCC::ICC_NE;
849   case ISD::SETONE:
850   case ISD::SETUNE:
851   case ISD::SETOGE:
852   case ISD::SETOLE:
853   case ISD::SETOLT:
854   case ISD::SETOGT:
855   case ISD::SETOEQ:
856   case ISD::SETUEQ:
857   case ISD::SETO:
858   case ISD::SETUO:
859     llvm_unreachable("Unsupported comparison.");
860   default:
861     llvm_unreachable("Unknown integer condition code!");
862   }
863 }
864 
865 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
866   SDValue Chain = Op.getOperand(0);
867   SDValue Cond = Op.getOperand(1);
868   SDValue LHS = Op.getOperand(2);
869   SDValue RHS = Op.getOperand(3);
870   SDValue Dest = Op.getOperand(4);
871   SDLoc DL(Op);
872 
873   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
874   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
875   SDValue Flag =
876       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
877 
878   return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
879                      TargetCC, Flag);
880 }
881 
882 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
883   EVT VT = Op->getValueType(0);
884   if (VT != MVT::i32)
885     return SDValue();
886 
887   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
888   if (!C)
889     return SDValue();
890 
891   int64_t MulAmt = C->getSExtValue();
892   int32_t HighestOne = -1;
893   uint32_t NonzeroEntries = 0;
894   int SignedDigit[32] = {0};
895 
896   // Convert to non-adjacent form (NAF) signed-digit representation.
897   // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
898   // minimal Hamming weight representation of a number (on average 1/3 of the
899   // digits will be non-zero vs 1/2 for regular binary representation). And as
900   // the non-zero digits will be the only digits contributing to the instruction
901   // count, this is desirable. The next loop converts it to NAF (following the
902   // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
903   // choosing the non-zero coefficients such that the resulting quotient is
904   // divisible by 2 which will cause the next coefficient to be zero.
905   int64_t E = std::abs(MulAmt);
906   int S = (MulAmt < 0 ? -1 : 1);
907   int I = 0;
908   while (E > 0) {
909     int ZI = 0;
910     if (E % 2 == 1) {
911       ZI = 2 - (E % 4);
912       if (ZI != 0)
913         ++NonzeroEntries;
914     }
915     SignedDigit[I] = S * ZI;
916     if (SignedDigit[I] == 1)
917       HighestOne = I;
918     E = (E - ZI) / 2;
919     ++I;
920   }
921 
922   // Compute number of instructions required. Due to differences in lowering
923   // between the different processors this count is not exact.
924   // Start by assuming a shift and a add/sub for every non-zero entry (hence
925   // every non-zero entry requires 1 shift and 1 add/sub except for the first
926   // entry).
927   int32_t InstrRequired = 2 * NonzeroEntries - 1;
928   // Correct possible over-adding due to shift by 0 (which is not emitted).
929   if (std::abs(MulAmt) % 2 == 1)
930     --InstrRequired;
931   // Return if the form generated would exceed the instruction threshold.
932   if (InstrRequired > LanaiLowerConstantMulThreshold)
933     return SDValue();
934 
935   SDValue Res;
936   SDLoc DL(Op);
937   SDValue V = Op->getOperand(0);
938 
939   // Initialize the running sum. Set the running sum to the maximal shifted
940   // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
941   // term NAF).
942   if (HighestOne == -1)
943     Res = DAG.getConstant(0, DL, MVT::i32);
944   else {
945     Res = DAG.getNode(ISD::SHL, DL, VT, V,
946                       DAG.getConstant(HighestOne, DL, MVT::i32));
947     SignedDigit[HighestOne] = 0;
948   }
949 
950   // Assemble multiplication from shift, add, sub using NAF form and running
951   // sum.
952   for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]);
953        ++I) {
954     if (SignedDigit[I] == 0)
955       continue;
956 
957     // Shifted multiplicand (v<<i).
958     SDValue Op =
959         DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
960     if (SignedDigit[I] == 1)
961       Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
962     else if (SignedDigit[I] == -1)
963       Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
964   }
965   return Res;
966 }
967 
968 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
969   SDValue LHS = Op.getOperand(0);
970   SDValue RHS = Op.getOperand(1);
971   SDValue Cond = Op.getOperand(2);
972   SDLoc DL(Op);
973 
974   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
975   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
976   SDValue Flag =
977       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
978 
979   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
980 }
981 
982 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
983                                             SelectionDAG &DAG) const {
984   SDValue LHS = Op.getOperand(0);
985   SDValue RHS = Op.getOperand(1);
986   SDValue TrueV = Op.getOperand(2);
987   SDValue FalseV = Op.getOperand(3);
988   SDValue Cond = Op.getOperand(4);
989   SDLoc DL(Op);
990 
991   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
992   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
993   SDValue Flag =
994       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
995 
996   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
997   return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
998                      Flag);
999 }
1000 
1001 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1002   MachineFunction &MF = DAG.getMachineFunction();
1003   LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1004 
1005   SDLoc DL(Op);
1006   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1007                                  getPointerTy(DAG.getDataLayout()));
1008 
1009   // vastart just stores the address of the VarArgsFrameIndex slot into the
1010   // memory location argument.
1011   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1012   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1013                       MachinePointerInfo(SV));
1014 }
1015 
1016 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1017                                                      SelectionDAG &DAG) const {
1018   SDValue Chain = Op.getOperand(0);
1019   SDValue Size = Op.getOperand(1);
1020   SDLoc DL(Op);
1021 
1022   unsigned SPReg = getStackPointerRegisterToSaveRestore();
1023 
1024   // Get a reference to the stack pointer.
1025   SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1026 
1027   // Subtract the dynamic size from the actual stack size to
1028   // obtain the new stack size.
1029   SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1030 
1031   // For Lanai, the outgoing memory arguments area should be on top of the
1032   // alloca area on the stack i.e., the outgoing memory arguments should be
1033   // at a lower address than the alloca area. Move the alloca area down the
1034   // stack by adding back the space reserved for outgoing arguments to SP
1035   // here.
1036   //
1037   // We do not know what the size of the outgoing args is at this point.
1038   // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1039   // stack pointer. We replace this instruction with on that has the correct,
1040   // known offset in emitPrologue().
1041   SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1042 
1043   // The Sub result contains the new stack start address, so it
1044   // must be placed in the stack pointer register.
1045   SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1046 
1047   SDValue Ops[2] = {ArgAdjust, CopyChain};
1048   return DAG.getMergeValues(Ops, DL);
1049 }
1050 
1051 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1052                                              SelectionDAG &DAG) const {
1053   MachineFunction &MF = DAG.getMachineFunction();
1054   MachineFrameInfo &MFI = MF.getFrameInfo();
1055   MFI.setReturnAddressIsTaken(true);
1056 
1057   EVT VT = Op.getValueType();
1058   SDLoc DL(Op);
1059   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1060   if (Depth) {
1061     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1062     const unsigned Offset = -4;
1063     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1064                               DAG.getIntPtrConstant(Offset, DL));
1065     return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1066   }
1067 
1068   // Return the link register, which contains the return address.
1069   // Mark it an implicit live-in.
1070   unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1071   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1072 }
1073 
1074 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1075                                             SelectionDAG &DAG) const {
1076   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1077   MFI.setFrameAddressIsTaken(true);
1078 
1079   EVT VT = Op.getValueType();
1080   SDLoc DL(Op);
1081   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1082   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1083   while (Depth--) {
1084     const unsigned Offset = -8;
1085     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1086                               DAG.getIntPtrConstant(Offset, DL));
1087     FrameAddr =
1088         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1089   }
1090   return FrameAddr;
1091 }
1092 
1093 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1094   switch (Opcode) {
1095   case LanaiISD::ADJDYNALLOC:
1096     return "LanaiISD::ADJDYNALLOC";
1097   case LanaiISD::RET_FLAG:
1098     return "LanaiISD::RET_FLAG";
1099   case LanaiISD::CALL:
1100     return "LanaiISD::CALL";
1101   case LanaiISD::SELECT_CC:
1102     return "LanaiISD::SELECT_CC";
1103   case LanaiISD::SETCC:
1104     return "LanaiISD::SETCC";
1105   case LanaiISD::SUBBF:
1106     return "LanaiISD::SUBBF";
1107   case LanaiISD::SET_FLAG:
1108     return "LanaiISD::SET_FLAG";
1109   case LanaiISD::BR_CC:
1110     return "LanaiISD::BR_CC";
1111   case LanaiISD::Wrapper:
1112     return "LanaiISD::Wrapper";
1113   case LanaiISD::HI:
1114     return "LanaiISD::HI";
1115   case LanaiISD::LO:
1116     return "LanaiISD::LO";
1117   case LanaiISD::SMALL:
1118     return "LanaiISD::SMALL";
1119   default:
1120     return nullptr;
1121   }
1122 }
1123 
1124 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1125                                                SelectionDAG &DAG) const {
1126   SDLoc DL(Op);
1127   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1128   const Constant *C = N->getConstVal();
1129   const LanaiTargetObjectFile *TLOF =
1130       static_cast<const LanaiTargetObjectFile *>(
1131           getTargetMachine().getObjFileLowering());
1132 
1133   // If the code model is small or constant will be placed in the small section,
1134   // then assume address will fit in 21-bits.
1135   if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1136       TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1137     SDValue Small = DAG.getTargetConstantPool(
1138         C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG);
1139     return DAG.getNode(ISD::OR, DL, MVT::i32,
1140                        DAG.getRegister(Lanai::R0, MVT::i32),
1141                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1142   } else {
1143     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1144     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1145 
1146     SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1147                                            N->getOffset(), OpFlagHi);
1148     SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1149                                            N->getOffset(), OpFlagLo);
1150     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1151     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1152     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1153     return Result;
1154   }
1155 }
1156 
1157 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1158                                                 SelectionDAG &DAG) const {
1159   SDLoc DL(Op);
1160   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1161   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1162 
1163   const LanaiTargetObjectFile *TLOF =
1164       static_cast<const LanaiTargetObjectFile *>(
1165           getTargetMachine().getObjFileLowering());
1166 
1167   // If the code model is small or global variable will be placed in the small
1168   // section, then assume address will fit in 21-bits.
1169   const GlobalObject *GO = GV->getBaseObject();
1170   if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) {
1171     SDValue Small = DAG.getTargetGlobalAddress(
1172         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1173     return DAG.getNode(ISD::OR, DL, MVT::i32,
1174                        DAG.getRegister(Lanai::R0, MVT::i32),
1175                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1176   } else {
1177     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1178     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1179 
1180     // Create the TargetGlobalAddress node, folding in the constant offset.
1181     SDValue Hi = DAG.getTargetGlobalAddress(
1182         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1183     SDValue Lo = DAG.getTargetGlobalAddress(
1184         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1185     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1186     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1187     return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1188   }
1189 }
1190 
1191 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1192                                                SelectionDAG &DAG) const {
1193   SDLoc DL(Op);
1194   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1195 
1196   uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1197   uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1198 
1199   SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1200   SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1201   Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1202   Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1203   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1204   return Result;
1205 }
1206 
1207 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1208                                             SelectionDAG &DAG) const {
1209   SDLoc DL(Op);
1210   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1211 
1212   // If the code model is small assume address will fit in 21-bits.
1213   if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1214     SDValue Small = DAG.getTargetJumpTable(
1215         JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1216     return DAG.getNode(ISD::OR, DL, MVT::i32,
1217                        DAG.getRegister(Lanai::R0, MVT::i32),
1218                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1219   } else {
1220     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1221     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1222 
1223     SDValue Hi = DAG.getTargetJumpTable(
1224         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1225     SDValue Lo = DAG.getTargetJumpTable(
1226         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1227     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1228     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1229     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1230     return Result;
1231   }
1232 }
1233 
1234 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op,
1235                                             SelectionDAG &DAG) const {
1236   EVT VT = Op.getValueType();
1237   unsigned VTBits = VT.getSizeInBits();
1238   SDLoc dl(Op);
1239   assert(Op.getNumOperands() == 3 && "Unexpected SHL!");
1240   SDValue ShOpLo = Op.getOperand(0);
1241   SDValue ShOpHi = Op.getOperand(1);
1242   SDValue ShAmt = Op.getOperand(2);
1243 
1244   // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt:
1245   //   LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt))
1246   //   HiBitsForHi = ShOpHi << ShAmt
1247   //   Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi)
1248   //   Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt)
1249   //   return (Hi << 32) | Lo;
1250 
1251   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1252                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1253   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1254 
1255   // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We
1256   // wanted 0, so CSEL it directly.
1257   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1258   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1259   LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi);
1260 
1261   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1262                                    DAG.getConstant(VTBits, dl, MVT::i32));
1263   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1264   SDValue HiForNormalShift =
1265       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
1266 
1267   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1268 
1269   SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE);
1270   SDValue Hi =
1271       DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift);
1272 
1273   // Lanai shifts of larger than register sizes are wrapped rather than
1274   // clamped, so we can't just emit "lo << b" if b is too big.
1275   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1276   SDValue Lo = DAG.getSelect(
1277       dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift);
1278 
1279   SDValue Ops[2] = {Lo, Hi};
1280   return DAG.getMergeValues(Ops, dl);
1281 }
1282 
1283 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1284                                             SelectionDAG &DAG) const {
1285   MVT VT = Op.getSimpleValueType();
1286   unsigned VTBits = VT.getSizeInBits();
1287   SDLoc dl(Op);
1288   SDValue ShOpLo = Op.getOperand(0);
1289   SDValue ShOpHi = Op.getOperand(1);
1290   SDValue ShAmt = Op.getOperand(2);
1291 
1292   // Performs the following for a >> b:
1293   //   unsigned r_high = a_high >> b;
1294   //   r_high = (32 - b <= 0) ? 0 : r_high;
1295   //
1296   //   unsigned r_low = a_low >> b;
1297   //   r_low = (32 - b <= 0) ? r_high : r_low;
1298   //   r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1299   //   return (unsigned long long)r_high << 32 | r_low;
1300   // Note: This takes advantage of Lanai's shift behavior to avoid needing to
1301   // mask the shift amount.
1302 
1303   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1304   SDValue NegatedPlus32 = DAG.getNode(
1305       ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1306   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1307 
1308   SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1309   Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1310 
1311   SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1312   Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1313   SDValue CarryBits =
1314       DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1315   SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1316   Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1317                      DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1318 
1319   SDValue Ops[2] = {Lo, Hi};
1320   return DAG.getMergeValues(Ops, dl);
1321 }
1322 
1323 // Helper function that checks if N is a null or all ones constant.
1324 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1325   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1326 }
1327 
1328 // Return true if N is conditionally 0 or all ones.
1329 // Detects these expressions where cc is an i1 value:
1330 //
1331 //   (select cc 0, y)   [AllOnes=0]
1332 //   (select cc y, 0)   [AllOnes=0]
1333 //   (zext cc)          [AllOnes=0]
1334 //   (sext cc)          [AllOnes=0/1]
1335 //   (select cc -1, y)  [AllOnes=1]
1336 //   (select cc y, -1)  [AllOnes=1]
1337 //
1338 // * AllOnes determines whether to check for an all zero (AllOnes false) or an
1339 //   all ones operand (AllOnes true).
1340 // * Invert is set when N is the all zero/ones constant when CC is false.
1341 // * OtherOp is set to the alternative value of N.
1342 //
1343 // For example, for (select cc X, Y) and AllOnes = 0 if:
1344 // * X = 0, Invert = False and OtherOp = Y
1345 // * Y = 0, Invert = True and OtherOp = X
1346 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1347                                        bool &Invert, SDValue &OtherOp,
1348                                        SelectionDAG &DAG) {
1349   switch (N->getOpcode()) {
1350   default:
1351     return false;
1352   case ISD::SELECT: {
1353     CC = N->getOperand(0);
1354     SDValue N1 = N->getOperand(1);
1355     SDValue N2 = N->getOperand(2);
1356     if (isZeroOrAllOnes(N1, AllOnes)) {
1357       Invert = false;
1358       OtherOp = N2;
1359       return true;
1360     }
1361     if (isZeroOrAllOnes(N2, AllOnes)) {
1362       Invert = true;
1363       OtherOp = N1;
1364       return true;
1365     }
1366     return false;
1367   }
1368   case ISD::ZERO_EXTEND: {
1369     // (zext cc) can never be the all ones value.
1370     if (AllOnes)
1371       return false;
1372     CC = N->getOperand(0);
1373     if (CC.getValueType() != MVT::i1)
1374       return false;
1375     SDLoc dl(N);
1376     EVT VT = N->getValueType(0);
1377     OtherOp = DAG.getConstant(1, dl, VT);
1378     Invert = true;
1379     return true;
1380   }
1381   case ISD::SIGN_EXTEND: {
1382     CC = N->getOperand(0);
1383     if (CC.getValueType() != MVT::i1)
1384       return false;
1385     SDLoc dl(N);
1386     EVT VT = N->getValueType(0);
1387     Invert = !AllOnes;
1388     if (AllOnes)
1389       // When looking for an AllOnes constant, N is an sext, and the 'other'
1390       // value is 0.
1391       OtherOp = DAG.getConstant(0, dl, VT);
1392     else
1393       OtherOp =
1394           DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT);
1395     return true;
1396   }
1397   }
1398 }
1399 
1400 // Combine a constant select operand into its use:
1401 //
1402 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
1403 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
1404 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
1405 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
1406 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
1407 //
1408 // The transform is rejected if the select doesn't have a constant operand that
1409 // is null, or all ones when AllOnes is set.
1410 //
1411 // Also recognize sext/zext from i1:
1412 //
1413 //   (add (zext cc), x) -> (select cc (add x, 1), x)
1414 //   (add (sext cc), x) -> (select cc (add x, -1), x)
1415 //
1416 // These transformations eventually create predicated instructions.
1417 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1418                                    TargetLowering::DAGCombinerInfo &DCI,
1419                                    bool AllOnes) {
1420   SelectionDAG &DAG = DCI.DAG;
1421   EVT VT = N->getValueType(0);
1422   SDValue NonConstantVal;
1423   SDValue CCOp;
1424   bool SwapSelectOps;
1425   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1426                                   NonConstantVal, DAG))
1427     return SDValue();
1428 
1429   // Slct is now know to be the desired identity constant when CC is true.
1430   SDValue TrueVal = OtherOp;
1431   SDValue FalseVal =
1432       DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1433   // Unless SwapSelectOps says CC should be false.
1434   if (SwapSelectOps)
1435     std::swap(TrueVal, FalseVal);
1436 
1437   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1438 }
1439 
1440 // Attempt combineSelectAndUse on each operand of a commutative operator N.
1441 static SDValue
1442 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1443                                bool AllOnes) {
1444   SDValue N0 = N->getOperand(0);
1445   SDValue N1 = N->getOperand(1);
1446   if (N0.getNode()->hasOneUse())
1447     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1448       return Result;
1449   if (N1.getNode()->hasOneUse())
1450     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1451       return Result;
1452   return SDValue();
1453 }
1454 
1455 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
1456 static SDValue PerformSUBCombine(SDNode *N,
1457                                  TargetLowering::DAGCombinerInfo &DCI) {
1458   SDValue N0 = N->getOperand(0);
1459   SDValue N1 = N->getOperand(1);
1460 
1461   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1462   if (N1.getNode()->hasOneUse())
1463     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1464       return Result;
1465 
1466   return SDValue();
1467 }
1468 
1469 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1470                                                DAGCombinerInfo &DCI) const {
1471   switch (N->getOpcode()) {
1472   default:
1473     break;
1474   case ISD::ADD:
1475   case ISD::OR:
1476   case ISD::XOR:
1477     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1478   case ISD::AND:
1479     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1480   case ISD::SUB:
1481     return PerformSUBCombine(N, DCI);
1482   }
1483 
1484   return SDValue();
1485 }
1486 
1487 void LanaiTargetLowering::computeKnownBitsForTargetNode(
1488     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1489     const SelectionDAG &DAG, unsigned Depth) const {
1490   unsigned BitWidth = Known.getBitWidth();
1491   switch (Op.getOpcode()) {
1492   default:
1493     break;
1494   case LanaiISD::SETCC:
1495     Known = KnownBits(BitWidth);
1496     Known.Zero.setBits(1, BitWidth);
1497     break;
1498   case LanaiISD::SELECT_CC:
1499     KnownBits Known2;
1500     Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1501     Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1502     Known.Zero &= Known2.Zero;
1503     Known.One &= Known2.One;
1504     break;
1505   }
1506 }
1507