1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LanaiTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LanaiISelLowering.h" 14 #include "Lanai.h" 15 #include "LanaiCondCode.h" 16 #include "LanaiMachineFunctionInfo.h" 17 #include "LanaiSubtarget.h" 18 #include "LanaiTargetObjectFile.h" 19 #include "MCTargetDesc/LanaiBaseInfo.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/TargetCallingConv.h" 34 #include "llvm/CodeGen/ValueTypes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CodeGen.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/KnownBits.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cmath> 51 #include <cstdint> 52 #include <cstdlib> 53 #include <utility> 54 55 #define DEBUG_TYPE "lanai-lower" 56 57 using namespace llvm; 58 59 // Limit on number of instructions the lowered multiplication may have before a 60 // call to the library function should be generated instead. The threshold is 61 // currently set to 14 as this was the smallest threshold that resulted in all 62 // constant multiplications being lowered. A threshold of 5 covered all cases 63 // except for one multiplication which required 14. mulsi3 requires 16 64 // instructions (including the prologue and epilogue but excluding instructions 65 // at call site). Until we can inline mulsi3, generating at most 14 instructions 66 // will be faster than invoking mulsi3. 67 static cl::opt<int> LanaiLowerConstantMulThreshold( 68 "lanai-constant-mul-threshold", cl::Hidden, 69 cl::desc("Maximum number of instruction to generate when lowering constant " 70 "multiplication instead of calling library function [default=14]"), 71 cl::init(14)); 72 73 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, 74 const LanaiSubtarget &STI) 75 : TargetLowering(TM) { 76 // Set up the register classes. 77 addRegisterClass(MVT::i32, &Lanai::GPRRegClass); 78 79 // Compute derived properties from the register classes 80 TRI = STI.getRegisterInfo(); 81 computeRegisterProperties(TRI); 82 83 setStackPointerRegisterToSaveRestore(Lanai::SP); 84 85 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 88 setOperationAction(ISD::SETCC, MVT::i32, Custom); 89 setOperationAction(ISD::SELECT, MVT::i32, Expand); 90 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 91 92 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 93 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 94 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 95 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 96 97 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 98 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 99 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 100 101 setOperationAction(ISD::VASTART, MVT::Other, Custom); 102 setOperationAction(ISD::VAARG, MVT::Other, Expand); 103 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 104 setOperationAction(ISD::VAEND, MVT::Other, Expand); 105 106 setOperationAction(ISD::SDIV, MVT::i32, Expand); 107 setOperationAction(ISD::UDIV, MVT::i32, Expand); 108 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 109 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 110 setOperationAction(ISD::SREM, MVT::i32, Expand); 111 setOperationAction(ISD::UREM, MVT::i32, Expand); 112 113 setOperationAction(ISD::MUL, MVT::i32, Custom); 114 setOperationAction(ISD::MULHU, MVT::i32, Expand); 115 setOperationAction(ISD::MULHS, MVT::i32, Expand); 116 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 117 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 118 119 setOperationAction(ISD::ROTR, MVT::i32, Expand); 120 setOperationAction(ISD::ROTL, MVT::i32, Expand); 121 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 122 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 123 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 124 125 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 126 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 127 setOperationAction(ISD::CTLZ, MVT::i32, Legal); 128 setOperationAction(ISD::CTTZ, MVT::i32, Legal); 129 130 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 131 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 132 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 133 134 // Extended load operations for i1 types must be promoted 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 139 } 140 141 setTargetDAGCombine(ISD::ADD); 142 setTargetDAGCombine(ISD::SUB); 143 setTargetDAGCombine(ISD::AND); 144 setTargetDAGCombine(ISD::OR); 145 setTargetDAGCombine(ISD::XOR); 146 147 // Function alignments (log2) 148 setMinFunctionAlignment(2); 149 setPrefFunctionAlignment(2); 150 151 setJumpIsExpensive(true); 152 153 // TODO: Setting the minimum jump table entries needed before a 154 // switch is transformed to a jump table to 100 to avoid creating jump tables 155 // as this was causing bad performance compared to a large group of if 156 // statements. Re-evaluate this on new benchmarks. 157 setMinimumJumpTableEntries(100); 158 159 // Use fast calling convention for library functions. 160 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { 161 setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast); 162 } 163 164 MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 165 MaxStoresPerMemsetOptSize = 8; 166 MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores 167 MaxStoresPerMemcpyOptSize = 8; 168 MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores 169 MaxStoresPerMemmoveOptSize = 8; 170 171 // Booleans always contain 0 or 1. 172 setBooleanContents(ZeroOrOneBooleanContent); 173 } 174 175 SDValue LanaiTargetLowering::LowerOperation(SDValue Op, 176 SelectionDAG &DAG) const { 177 switch (Op.getOpcode()) { 178 case ISD::MUL: 179 return LowerMUL(Op, DAG); 180 case ISD::BR_CC: 181 return LowerBR_CC(Op, DAG); 182 case ISD::ConstantPool: 183 return LowerConstantPool(Op, DAG); 184 case ISD::GlobalAddress: 185 return LowerGlobalAddress(Op, DAG); 186 case ISD::BlockAddress: 187 return LowerBlockAddress(Op, DAG); 188 case ISD::JumpTable: 189 return LowerJumpTable(Op, DAG); 190 case ISD::SELECT_CC: 191 return LowerSELECT_CC(Op, DAG); 192 case ISD::SETCC: 193 return LowerSETCC(Op, DAG); 194 case ISD::SHL_PARTS: 195 return LowerSHL_PARTS(Op, DAG); 196 case ISD::SRL_PARTS: 197 return LowerSRL_PARTS(Op, DAG); 198 case ISD::VASTART: 199 return LowerVASTART(Op, DAG); 200 case ISD::DYNAMIC_STACKALLOC: 201 return LowerDYNAMIC_STACKALLOC(Op, DAG); 202 case ISD::RETURNADDR: 203 return LowerRETURNADDR(Op, DAG); 204 case ISD::FRAMEADDR: 205 return LowerFRAMEADDR(Op, DAG); 206 default: 207 llvm_unreachable("unimplemented operand"); 208 } 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Lanai Inline Assembly Support 213 //===----------------------------------------------------------------------===// 214 215 unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT /*VT*/, 216 SelectionDAG & /*DAG*/) const { 217 // Only unallocatable registers should be matched here. 218 unsigned Reg = StringSwitch<unsigned>(RegName) 219 .Case("pc", Lanai::PC) 220 .Case("sp", Lanai::SP) 221 .Case("fp", Lanai::FP) 222 .Case("rr1", Lanai::RR1) 223 .Case("r10", Lanai::R10) 224 .Case("rr2", Lanai::RR2) 225 .Case("r11", Lanai::R11) 226 .Case("rca", Lanai::RCA) 227 .Default(0); 228 229 if (Reg) 230 return Reg; 231 report_fatal_error("Invalid register name global variable"); 232 } 233 234 std::pair<unsigned, const TargetRegisterClass *> 235 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 236 StringRef Constraint, 237 MVT VT) const { 238 if (Constraint.size() == 1) 239 // GCC Constraint Letters 240 switch (Constraint[0]) { 241 case 'r': // GENERAL_REGS 242 return std::make_pair(0U, &Lanai::GPRRegClass); 243 default: 244 break; 245 } 246 247 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 248 } 249 250 // Examine constraint type and operand type and determine a weight value. 251 // This object must already have been set up with the operand type 252 // and the current alternative constraint selected. 253 TargetLowering::ConstraintWeight 254 LanaiTargetLowering::getSingleConstraintMatchWeight( 255 AsmOperandInfo &Info, const char *Constraint) const { 256 ConstraintWeight Weight = CW_Invalid; 257 Value *CallOperandVal = Info.CallOperandVal; 258 // If we don't have a value, we can't do a match, 259 // but allow it at the lowest weight. 260 if (CallOperandVal == nullptr) 261 return CW_Default; 262 // Look at the constraint type. 263 switch (*Constraint) { 264 case 'I': // signed 16 bit immediate 265 case 'J': // integer zero 266 case 'K': // unsigned 16 bit immediate 267 case 'L': // immediate in the range 0 to 31 268 case 'M': // signed 32 bit immediate where lower 16 bits are 0 269 case 'N': // signed 26 bit immediate 270 case 'O': // integer zero 271 if (isa<ConstantInt>(CallOperandVal)) 272 Weight = CW_Constant; 273 break; 274 default: 275 Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); 276 break; 277 } 278 return Weight; 279 } 280 281 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops 282 // vector. If it is invalid, don't add anything to Ops. 283 void LanaiTargetLowering::LowerAsmOperandForConstraint( 284 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 285 SelectionDAG &DAG) const { 286 SDValue Result(nullptr, 0); 287 288 // Only support length 1 constraints for now. 289 if (Constraint.length() > 1) 290 return; 291 292 char ConstraintLetter = Constraint[0]; 293 switch (ConstraintLetter) { 294 case 'I': // Signed 16 bit constant 295 // If this fails, the parent routine will give an error 296 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 297 if (isInt<16>(C->getSExtValue())) { 298 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 299 Op.getValueType()); 300 break; 301 } 302 } 303 return; 304 case 'J': // integer zero 305 case 'O': 306 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 307 if (C->getZExtValue() == 0) { 308 Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); 309 break; 310 } 311 } 312 return; 313 case 'K': // unsigned 16 bit immediate 314 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 315 if (isUInt<16>(C->getZExtValue())) { 316 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 317 Op.getValueType()); 318 break; 319 } 320 } 321 return; 322 case 'L': // immediate in the range 0 to 31 323 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 324 if (C->getZExtValue() <= 31) { 325 Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), 326 Op.getValueType()); 327 break; 328 } 329 } 330 return; 331 case 'M': // signed 32 bit immediate where lower 16 bits are 0 332 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 333 int64_t Val = C->getSExtValue(); 334 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { 335 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 336 break; 337 } 338 } 339 return; 340 case 'N': // signed 26 bit immediate 341 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 342 int64_t Val = C->getSExtValue(); 343 if ((Val >= -33554432) && (Val <= 33554431)) { 344 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 345 break; 346 } 347 } 348 return; 349 default: 350 break; // This will fall through to the generic implementation 351 } 352 353 if (Result.getNode()) { 354 Ops.push_back(Result); 355 return; 356 } 357 358 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 359 } 360 361 //===----------------------------------------------------------------------===// 362 // Calling Convention Implementation 363 //===----------------------------------------------------------------------===// 364 365 #include "LanaiGenCallingConv.inc" 366 367 static unsigned NumFixedArgs; 368 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, 369 CCValAssign::LocInfo LocInfo, 370 ISD::ArgFlagsTy ArgFlags, CCState &State) { 371 // Handle fixed arguments with default CC. 372 // Note: Both the default and fast CC handle VarArg the same and hence the 373 // calling convention of the function is not considered here. 374 if (ValNo < NumFixedArgs) { 375 return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); 376 } 377 378 // Promote i8/i16 args to i32 379 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 380 LocVT = MVT::i32; 381 if (ArgFlags.isSExt()) 382 LocInfo = CCValAssign::SExt; 383 else if (ArgFlags.isZExt()) 384 LocInfo = CCValAssign::ZExt; 385 else 386 LocInfo = CCValAssign::AExt; 387 } 388 389 // VarArgs get passed on stack 390 unsigned Offset = State.AllocateStack(4, 4); 391 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 392 return false; 393 } 394 395 SDValue LanaiTargetLowering::LowerFormalArguments( 396 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 397 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 398 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 399 switch (CallConv) { 400 case CallingConv::C: 401 case CallingConv::Fast: 402 return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); 403 default: 404 report_fatal_error("Unsupported calling convention"); 405 } 406 } 407 408 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 409 SmallVectorImpl<SDValue> &InVals) const { 410 SelectionDAG &DAG = CLI.DAG; 411 SDLoc &DL = CLI.DL; 412 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 413 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 414 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 415 SDValue Chain = CLI.Chain; 416 SDValue Callee = CLI.Callee; 417 bool &IsTailCall = CLI.IsTailCall; 418 CallingConv::ID CallConv = CLI.CallConv; 419 bool IsVarArg = CLI.IsVarArg; 420 421 // Lanai target does not yet support tail call optimization. 422 IsTailCall = false; 423 424 switch (CallConv) { 425 case CallingConv::Fast: 426 case CallingConv::C: 427 return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, 428 OutVals, Ins, DL, DAG, InVals); 429 default: 430 report_fatal_error("Unsupported calling convention"); 431 } 432 } 433 434 // LowerCCCArguments - transform physical registers into virtual registers and 435 // generate load operations for arguments places on the stack. 436 SDValue LanaiTargetLowering::LowerCCCArguments( 437 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 438 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 439 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 440 MachineFunction &MF = DAG.getMachineFunction(); 441 MachineFrameInfo &MFI = MF.getFrameInfo(); 442 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 443 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 444 445 // Assign locations to all of the incoming arguments. 446 SmallVector<CCValAssign, 16> ArgLocs; 447 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 448 *DAG.getContext()); 449 if (CallConv == CallingConv::Fast) { 450 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); 451 } else { 452 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); 453 } 454 455 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 456 CCValAssign &VA = ArgLocs[i]; 457 if (VA.isRegLoc()) { 458 // Arguments passed in registers 459 EVT RegVT = VA.getLocVT(); 460 switch (RegVT.getSimpleVT().SimpleTy) { 461 case MVT::i32: { 462 unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); 463 RegInfo.addLiveIn(VA.getLocReg(), VReg); 464 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); 465 466 // If this is an 8/16-bit value, it is really passed promoted to 32 467 // bits. Insert an assert[sz]ext to capture this, then truncate to the 468 // right size. 469 if (VA.getLocInfo() == CCValAssign::SExt) 470 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, 471 DAG.getValueType(VA.getValVT())); 472 else if (VA.getLocInfo() == CCValAssign::ZExt) 473 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, 474 DAG.getValueType(VA.getValVT())); 475 476 if (VA.getLocInfo() != CCValAssign::Full) 477 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); 478 479 InVals.push_back(ArgValue); 480 break; 481 } 482 default: 483 LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " 484 << RegVT.getEVTString() << "\n"); 485 llvm_unreachable("unhandled argument type"); 486 } 487 } else { 488 // Sanity check 489 assert(VA.isMemLoc()); 490 // Load the argument to a virtual register 491 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 492 // Check that the argument fits in stack slot 493 if (ObjSize > 4) { 494 errs() << "LowerFormalArguments Unhandled argument type: " 495 << EVT(VA.getLocVT()).getEVTString() << "\n"; 496 } 497 // Create the frame index object for this incoming parameter... 498 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 499 500 // Create the SelectionDAG nodes corresponding to a load 501 // from this parameter 502 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 503 InVals.push_back(DAG.getLoad( 504 VA.getLocVT(), DL, Chain, FIN, 505 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 506 } 507 } 508 509 // The Lanai ABI for returning structs by value requires that we copy 510 // the sret argument into rv for the return. Save the argument into 511 // a virtual register so that we can access it from the return points. 512 if (MF.getFunction().hasStructRetAttr()) { 513 unsigned Reg = LanaiMFI->getSRetReturnReg(); 514 if (!Reg) { 515 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); 516 LanaiMFI->setSRetReturnReg(Reg); 517 } 518 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); 519 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 520 } 521 522 if (IsVarArg) { 523 // Record the frame index of the first variable argument 524 // which is a value necessary to VASTART. 525 int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true); 526 LanaiMFI->setVarArgsFrameIndex(FI); 527 } 528 529 return Chain; 530 } 531 532 SDValue 533 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 534 bool IsVarArg, 535 const SmallVectorImpl<ISD::OutputArg> &Outs, 536 const SmallVectorImpl<SDValue> &OutVals, 537 const SDLoc &DL, SelectionDAG &DAG) const { 538 // CCValAssign - represent the assignment of the return value to a location 539 SmallVector<CCValAssign, 16> RVLocs; 540 541 // CCState - Info about the registers and stack slot. 542 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 543 *DAG.getContext()); 544 545 // Analize return values. 546 CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); 547 548 SDValue Flag; 549 SmallVector<SDValue, 4> RetOps(1, Chain); 550 551 // Copy the result values into the output registers. 552 for (unsigned i = 0; i != RVLocs.size(); ++i) { 553 CCValAssign &VA = RVLocs[i]; 554 assert(VA.isRegLoc() && "Can only return in registers!"); 555 556 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); 557 558 // Guarantee that all emitted copies are stuck together with flags. 559 Flag = Chain.getValue(1); 560 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 561 } 562 563 // The Lanai ABI for returning structs by value requires that we copy 564 // the sret argument into rv for the return. We saved the argument into 565 // a virtual register in the entry block, so now we copy the value out 566 // and into rv. 567 if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) { 568 MachineFunction &MF = DAG.getMachineFunction(); 569 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 570 unsigned Reg = LanaiMFI->getSRetReturnReg(); 571 assert(Reg && 572 "SRetReturnReg should have been set in LowerFormalArguments()."); 573 SDValue Val = 574 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 575 576 Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag); 577 Flag = Chain.getValue(1); 578 RetOps.push_back( 579 DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); 580 } 581 582 RetOps[0] = Chain; // Update chain 583 584 unsigned Opc = LanaiISD::RET_FLAG; 585 if (Flag.getNode()) 586 RetOps.push_back(Flag); 587 588 // Return Void 589 return DAG.getNode(Opc, DL, MVT::Other, 590 ArrayRef<SDValue>(&RetOps[0], RetOps.size())); 591 } 592 593 // LowerCCCCallTo - functions arguments are copied from virtual regs to 594 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 595 SDValue LanaiTargetLowering::LowerCCCCallTo( 596 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, 597 bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs, 598 const SmallVectorImpl<SDValue> &OutVals, 599 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 600 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 601 // Analyze operands of the call, assigning locations to each operand. 602 SmallVector<CCValAssign, 16> ArgLocs; 603 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 604 *DAG.getContext()); 605 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 606 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 607 608 NumFixedArgs = 0; 609 if (IsVarArg && G) { 610 const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); 611 if (CalleeFn) 612 NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); 613 } 614 if (NumFixedArgs) 615 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); 616 else { 617 if (CallConv == CallingConv::Fast) 618 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); 619 else 620 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); 621 } 622 623 // Get a count of how many bytes are to be pushed on the stack. 624 unsigned NumBytes = CCInfo.getNextStackOffset(); 625 626 // Create local copies for byval args. 627 SmallVector<SDValue, 8> ByValArgs; 628 for (unsigned I = 0, E = Outs.size(); I != E; ++I) { 629 ISD::ArgFlagsTy Flags = Outs[I].Flags; 630 if (!Flags.isByVal()) 631 continue; 632 633 SDValue Arg = OutVals[I]; 634 unsigned Size = Flags.getByValSize(); 635 unsigned Align = Flags.getByValAlign(); 636 637 int FI = MFI.CreateStackObject(Size, Align, false); 638 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 639 SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); 640 641 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 642 /*IsVolatile=*/false, 643 /*AlwaysInline=*/false, 644 /*isTailCall=*/false, MachinePointerInfo(), 645 MachinePointerInfo()); 646 ByValArgs.push_back(FIPtr); 647 } 648 649 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 650 651 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 652 SmallVector<SDValue, 12> MemOpChains; 653 SDValue StackPtr; 654 655 // Walk the register/memloc assignments, inserting copies/loads. 656 for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { 657 CCValAssign &VA = ArgLocs[I]; 658 SDValue Arg = OutVals[I]; 659 ISD::ArgFlagsTy Flags = Outs[I].Flags; 660 661 // Promote the value if needed. 662 switch (VA.getLocInfo()) { 663 case CCValAssign::Full: 664 break; 665 case CCValAssign::SExt: 666 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 667 break; 668 case CCValAssign::ZExt: 669 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 670 break; 671 case CCValAssign::AExt: 672 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 673 break; 674 default: 675 llvm_unreachable("Unknown loc info!"); 676 } 677 678 // Use local copy if it is a byval arg. 679 if (Flags.isByVal()) 680 Arg = ByValArgs[J++]; 681 682 // Arguments that can be passed on register must be kept at RegsToPass 683 // vector 684 if (VA.isRegLoc()) { 685 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 686 } else { 687 assert(VA.isMemLoc()); 688 689 if (StackPtr.getNode() == nullptr) 690 StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, 691 getPointerTy(DAG.getDataLayout())); 692 693 SDValue PtrOff = 694 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 695 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 696 697 MemOpChains.push_back( 698 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 699 } 700 } 701 702 // Transform all store nodes into one single node because all store nodes are 703 // independent of each other. 704 if (!MemOpChains.empty()) 705 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 706 ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); 707 708 SDValue InFlag; 709 710 // Build a sequence of copy-to-reg nodes chained together with token chain and 711 // flag operands which copy the outgoing args into registers. The InFlag in 712 // necessary since all emitted instructions must be stuck together. 713 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 714 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 715 RegsToPass[I].second, InFlag); 716 InFlag = Chain.getValue(1); 717 } 718 719 // If the callee is a GlobalAddress node (quite common, every direct call is) 720 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 721 // Likewise ExternalSymbol -> TargetExternalSymbol. 722 uint8_t OpFlag = LanaiII::MO_NO_FLAG; 723 if (G) { 724 Callee = DAG.getTargetGlobalAddress( 725 G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); 726 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 727 Callee = DAG.getTargetExternalSymbol( 728 E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); 729 } 730 731 // Returns a chain & a flag for retval copy to use. 732 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 733 SmallVector<SDValue, 8> Ops; 734 Ops.push_back(Chain); 735 Ops.push_back(Callee); 736 737 // Add a register mask operand representing the call-preserved registers. 738 // TODO: Should return-twice functions be handled? 739 const uint32_t *Mask = 740 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 741 assert(Mask && "Missing call preserved mask for calling convention"); 742 Ops.push_back(DAG.getRegisterMask(Mask)); 743 744 // Add argument registers to the end of the list so that they are 745 // known live into the call. 746 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 747 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 748 RegsToPass[I].second.getValueType())); 749 750 if (InFlag.getNode()) 751 Ops.push_back(InFlag); 752 753 Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, 754 ArrayRef<SDValue>(&Ops[0], Ops.size())); 755 InFlag = Chain.getValue(1); 756 757 // Create the CALLSEQ_END node. 758 Chain = DAG.getCALLSEQ_END( 759 Chain, 760 DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), 761 DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag, 762 DL); 763 InFlag = Chain.getValue(1); 764 765 // Handle result values, copying them out of physregs into vregs that we 766 // return. 767 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 768 InVals); 769 } 770 771 // LowerCallResult - Lower the result values of a call into the 772 // appropriate copies out of appropriate physical registers. 773 SDValue LanaiTargetLowering::LowerCallResult( 774 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 775 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 776 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 777 // Assign locations to each value returned by this call. 778 SmallVector<CCValAssign, 16> RVLocs; 779 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 780 *DAG.getContext()); 781 782 CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); 783 784 // Copy all of the result registers out of their specified physreg. 785 for (unsigned I = 0; I != RVLocs.size(); ++I) { 786 Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), 787 RVLocs[I].getValVT(), InFlag) 788 .getValue(1); 789 InFlag = Chain.getValue(2); 790 InVals.push_back(Chain.getValue(0)); 791 } 792 793 return Chain; 794 } 795 796 //===----------------------------------------------------------------------===// 797 // Custom Lowerings 798 //===----------------------------------------------------------------------===// 799 800 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL, 801 SDValue &RHS, SelectionDAG &DAG) { 802 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 803 804 // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, 805 // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) 806 // and Lanai only supports integer comparisons, so only provide definitions 807 // for them. 808 switch (SetCCOpcode) { 809 case ISD::SETEQ: 810 return LPCC::ICC_EQ; 811 case ISD::SETGT: 812 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 813 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 814 // X > -1 -> X >= 0 -> is_plus(X) 815 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 816 return LPCC::ICC_PL; 817 } 818 return LPCC::ICC_GT; 819 case ISD::SETUGT: 820 return LPCC::ICC_UGT; 821 case ISD::SETLT: 822 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 823 if (RHSC->getZExtValue() == 0) 824 // X < 0 -> is_minus(X) 825 return LPCC::ICC_MI; 826 return LPCC::ICC_LT; 827 case ISD::SETULT: 828 return LPCC::ICC_ULT; 829 case ISD::SETLE: 830 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 831 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 832 // X <= -1 -> X < 0 -> is_minus(X) 833 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 834 return LPCC::ICC_MI; 835 } 836 return LPCC::ICC_LE; 837 case ISD::SETULE: 838 return LPCC::ICC_ULE; 839 case ISD::SETGE: 840 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 841 if (RHSC->getZExtValue() == 0) 842 // X >= 0 -> is_plus(X) 843 return LPCC::ICC_PL; 844 return LPCC::ICC_GE; 845 case ISD::SETUGE: 846 return LPCC::ICC_UGE; 847 case ISD::SETNE: 848 return LPCC::ICC_NE; 849 case ISD::SETONE: 850 case ISD::SETUNE: 851 case ISD::SETOGE: 852 case ISD::SETOLE: 853 case ISD::SETOLT: 854 case ISD::SETOGT: 855 case ISD::SETOEQ: 856 case ISD::SETUEQ: 857 case ISD::SETO: 858 case ISD::SETUO: 859 llvm_unreachable("Unsupported comparison."); 860 default: 861 llvm_unreachable("Unknown integer condition code!"); 862 } 863 } 864 865 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 866 SDValue Chain = Op.getOperand(0); 867 SDValue Cond = Op.getOperand(1); 868 SDValue LHS = Op.getOperand(2); 869 SDValue RHS = Op.getOperand(3); 870 SDValue Dest = Op.getOperand(4); 871 SDLoc DL(Op); 872 873 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 874 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 875 SDValue Flag = 876 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 877 878 return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, 879 TargetCC, Flag); 880 } 881 882 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 883 EVT VT = Op->getValueType(0); 884 if (VT != MVT::i32) 885 return SDValue(); 886 887 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 888 if (!C) 889 return SDValue(); 890 891 int64_t MulAmt = C->getSExtValue(); 892 int32_t HighestOne = -1; 893 uint32_t NonzeroEntries = 0; 894 int SignedDigit[32] = {0}; 895 896 // Convert to non-adjacent form (NAF) signed-digit representation. 897 // NAF is a signed-digit form where no adjacent digits are non-zero. It is the 898 // minimal Hamming weight representation of a number (on average 1/3 of the 899 // digits will be non-zero vs 1/2 for regular binary representation). And as 900 // the non-zero digits will be the only digits contributing to the instruction 901 // count, this is desirable. The next loop converts it to NAF (following the 902 // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by 903 // choosing the non-zero coefficients such that the resulting quotient is 904 // divisible by 2 which will cause the next coefficient to be zero. 905 int64_t E = std::abs(MulAmt); 906 int S = (MulAmt < 0 ? -1 : 1); 907 int I = 0; 908 while (E > 0) { 909 int ZI = 0; 910 if (E % 2 == 1) { 911 ZI = 2 - (E % 4); 912 if (ZI != 0) 913 ++NonzeroEntries; 914 } 915 SignedDigit[I] = S * ZI; 916 if (SignedDigit[I] == 1) 917 HighestOne = I; 918 E = (E - ZI) / 2; 919 ++I; 920 } 921 922 // Compute number of instructions required. Due to differences in lowering 923 // between the different processors this count is not exact. 924 // Start by assuming a shift and a add/sub for every non-zero entry (hence 925 // every non-zero entry requires 1 shift and 1 add/sub except for the first 926 // entry). 927 int32_t InstrRequired = 2 * NonzeroEntries - 1; 928 // Correct possible over-adding due to shift by 0 (which is not emitted). 929 if (std::abs(MulAmt) % 2 == 1) 930 --InstrRequired; 931 // Return if the form generated would exceed the instruction threshold. 932 if (InstrRequired > LanaiLowerConstantMulThreshold) 933 return SDValue(); 934 935 SDValue Res; 936 SDLoc DL(Op); 937 SDValue V = Op->getOperand(0); 938 939 // Initialize the running sum. Set the running sum to the maximal shifted 940 // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a 941 // term NAF). 942 if (HighestOne == -1) 943 Res = DAG.getConstant(0, DL, MVT::i32); 944 else { 945 Res = DAG.getNode(ISD::SHL, DL, VT, V, 946 DAG.getConstant(HighestOne, DL, MVT::i32)); 947 SignedDigit[HighestOne] = 0; 948 } 949 950 // Assemble multiplication from shift, add, sub using NAF form and running 951 // sum. 952 for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]); 953 ++I) { 954 if (SignedDigit[I] == 0) 955 continue; 956 957 // Shifted multiplicand (v<<i). 958 SDValue Op = 959 DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32)); 960 if (SignedDigit[I] == 1) 961 Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op); 962 else if (SignedDigit[I] == -1) 963 Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op); 964 } 965 return Res; 966 } 967 968 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 969 SDValue LHS = Op.getOperand(0); 970 SDValue RHS = Op.getOperand(1); 971 SDValue Cond = Op.getOperand(2); 972 SDLoc DL(Op); 973 974 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 975 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 976 SDValue Flag = 977 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 978 979 return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag); 980 } 981 982 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op, 983 SelectionDAG &DAG) const { 984 SDValue LHS = Op.getOperand(0); 985 SDValue RHS = Op.getOperand(1); 986 SDValue TrueV = Op.getOperand(2); 987 SDValue FalseV = Op.getOperand(3); 988 SDValue Cond = Op.getOperand(4); 989 SDLoc DL(Op); 990 991 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 992 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 993 SDValue Flag = 994 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 995 996 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 997 return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC, 998 Flag); 999 } 1000 1001 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1002 MachineFunction &MF = DAG.getMachineFunction(); 1003 LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); 1004 1005 SDLoc DL(Op); 1006 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1007 getPointerTy(DAG.getDataLayout())); 1008 1009 // vastart just stores the address of the VarArgsFrameIndex slot into the 1010 // memory location argument. 1011 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1012 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1013 MachinePointerInfo(SV)); 1014 } 1015 1016 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1017 SelectionDAG &DAG) const { 1018 SDValue Chain = Op.getOperand(0); 1019 SDValue Size = Op.getOperand(1); 1020 SDLoc DL(Op); 1021 1022 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 1023 1024 // Get a reference to the stack pointer. 1025 SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); 1026 1027 // Subtract the dynamic size from the actual stack size to 1028 // obtain the new stack size. 1029 SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); 1030 1031 // For Lanai, the outgoing memory arguments area should be on top of the 1032 // alloca area on the stack i.e., the outgoing memory arguments should be 1033 // at a lower address than the alloca area. Move the alloca area down the 1034 // stack by adding back the space reserved for outgoing arguments to SP 1035 // here. 1036 // 1037 // We do not know what the size of the outgoing args is at this point. 1038 // So, we add a pseudo instruction ADJDYNALLOC that will adjust the 1039 // stack pointer. We replace this instruction with on that has the correct, 1040 // known offset in emitPrologue(). 1041 SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); 1042 1043 // The Sub result contains the new stack start address, so it 1044 // must be placed in the stack pointer register. 1045 SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); 1046 1047 SDValue Ops[2] = {ArgAdjust, CopyChain}; 1048 return DAG.getMergeValues(Ops, DL); 1049 } 1050 1051 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, 1052 SelectionDAG &DAG) const { 1053 MachineFunction &MF = DAG.getMachineFunction(); 1054 MachineFrameInfo &MFI = MF.getFrameInfo(); 1055 MFI.setReturnAddressIsTaken(true); 1056 1057 EVT VT = Op.getValueType(); 1058 SDLoc DL(Op); 1059 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1060 if (Depth) { 1061 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1062 const unsigned Offset = -4; 1063 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1064 DAG.getIntPtrConstant(Offset, DL)); 1065 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1066 } 1067 1068 // Return the link register, which contains the return address. 1069 // Mark it an implicit live-in. 1070 unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); 1071 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 1072 } 1073 1074 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, 1075 SelectionDAG &DAG) const { 1076 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1077 MFI.setFrameAddressIsTaken(true); 1078 1079 EVT VT = Op.getValueType(); 1080 SDLoc DL(Op); 1081 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); 1082 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1083 while (Depth--) { 1084 const unsigned Offset = -8; 1085 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1086 DAG.getIntPtrConstant(Offset, DL)); 1087 FrameAddr = 1088 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1089 } 1090 return FrameAddr; 1091 } 1092 1093 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { 1094 switch (Opcode) { 1095 case LanaiISD::ADJDYNALLOC: 1096 return "LanaiISD::ADJDYNALLOC"; 1097 case LanaiISD::RET_FLAG: 1098 return "LanaiISD::RET_FLAG"; 1099 case LanaiISD::CALL: 1100 return "LanaiISD::CALL"; 1101 case LanaiISD::SELECT_CC: 1102 return "LanaiISD::SELECT_CC"; 1103 case LanaiISD::SETCC: 1104 return "LanaiISD::SETCC"; 1105 case LanaiISD::SUBBF: 1106 return "LanaiISD::SUBBF"; 1107 case LanaiISD::SET_FLAG: 1108 return "LanaiISD::SET_FLAG"; 1109 case LanaiISD::BR_CC: 1110 return "LanaiISD::BR_CC"; 1111 case LanaiISD::Wrapper: 1112 return "LanaiISD::Wrapper"; 1113 case LanaiISD::HI: 1114 return "LanaiISD::HI"; 1115 case LanaiISD::LO: 1116 return "LanaiISD::LO"; 1117 case LanaiISD::SMALL: 1118 return "LanaiISD::SMALL"; 1119 default: 1120 return nullptr; 1121 } 1122 } 1123 1124 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, 1125 SelectionDAG &DAG) const { 1126 SDLoc DL(Op); 1127 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1128 const Constant *C = N->getConstVal(); 1129 const LanaiTargetObjectFile *TLOF = 1130 static_cast<const LanaiTargetObjectFile *>( 1131 getTargetMachine().getObjFileLowering()); 1132 1133 // If the code model is small or constant will be placed in the small section, 1134 // then assume address will fit in 21-bits. 1135 if (getTargetMachine().getCodeModel() == CodeModel::Small || 1136 TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { 1137 SDValue Small = DAG.getTargetConstantPool( 1138 C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG); 1139 return DAG.getNode(ISD::OR, DL, MVT::i32, 1140 DAG.getRegister(Lanai::R0, MVT::i32), 1141 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1142 } else { 1143 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1144 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1145 1146 SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), 1147 N->getOffset(), OpFlagHi); 1148 SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), 1149 N->getOffset(), OpFlagLo); 1150 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1151 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1152 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1153 return Result; 1154 } 1155 } 1156 1157 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, 1158 SelectionDAG &DAG) const { 1159 SDLoc DL(Op); 1160 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 1161 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 1162 1163 const LanaiTargetObjectFile *TLOF = 1164 static_cast<const LanaiTargetObjectFile *>( 1165 getTargetMachine().getObjFileLowering()); 1166 1167 // If the code model is small or global variable will be placed in the small 1168 // section, then assume address will fit in 21-bits. 1169 const GlobalObject *GO = GV->getBaseObject(); 1170 if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) { 1171 SDValue Small = DAG.getTargetGlobalAddress( 1172 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); 1173 return DAG.getNode(ISD::OR, DL, MVT::i32, 1174 DAG.getRegister(Lanai::R0, MVT::i32), 1175 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1176 } else { 1177 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1178 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1179 1180 // Create the TargetGlobalAddress node, folding in the constant offset. 1181 SDValue Hi = DAG.getTargetGlobalAddress( 1182 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); 1183 SDValue Lo = DAG.getTargetGlobalAddress( 1184 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); 1185 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1186 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1187 return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1188 } 1189 } 1190 1191 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, 1192 SelectionDAG &DAG) const { 1193 SDLoc DL(Op); 1194 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1195 1196 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1197 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1198 1199 SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); 1200 SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); 1201 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1202 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1203 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1204 return Result; 1205 } 1206 1207 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, 1208 SelectionDAG &DAG) const { 1209 SDLoc DL(Op); 1210 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1211 1212 // If the code model is small assume address will fit in 21-bits. 1213 if (getTargetMachine().getCodeModel() == CodeModel::Small) { 1214 SDValue Small = DAG.getTargetJumpTable( 1215 JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); 1216 return DAG.getNode(ISD::OR, DL, MVT::i32, 1217 DAG.getRegister(Lanai::R0, MVT::i32), 1218 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1219 } else { 1220 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1221 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1222 1223 SDValue Hi = DAG.getTargetJumpTable( 1224 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); 1225 SDValue Lo = DAG.getTargetJumpTable( 1226 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); 1227 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1228 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1229 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1230 return Result; 1231 } 1232 } 1233 1234 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op, 1235 SelectionDAG &DAG) const { 1236 EVT VT = Op.getValueType(); 1237 unsigned VTBits = VT.getSizeInBits(); 1238 SDLoc dl(Op); 1239 assert(Op.getNumOperands() == 3 && "Unexpected SHL!"); 1240 SDValue ShOpLo = Op.getOperand(0); 1241 SDValue ShOpHi = Op.getOperand(1); 1242 SDValue ShAmt = Op.getOperand(2); 1243 1244 // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt: 1245 // LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt)) 1246 // HiBitsForHi = ShOpHi << ShAmt 1247 // Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi) 1248 // Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt) 1249 // return (Hi << 32) | Lo; 1250 1251 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 1252 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1253 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 1254 1255 // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We 1256 // wanted 0, so CSEL it directly. 1257 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1258 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1259 LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi); 1260 1261 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 1262 DAG.getConstant(VTBits, dl, MVT::i32)); 1263 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 1264 SDValue HiForNormalShift = 1265 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); 1266 1267 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 1268 1269 SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE); 1270 SDValue Hi = 1271 DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift); 1272 1273 // Lanai shifts of larger than register sizes are wrapped rather than 1274 // clamped, so we can't just emit "lo << b" if b is too big. 1275 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 1276 SDValue Lo = DAG.getSelect( 1277 dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift); 1278 1279 SDValue Ops[2] = {Lo, Hi}; 1280 return DAG.getMergeValues(Ops, dl); 1281 } 1282 1283 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op, 1284 SelectionDAG &DAG) const { 1285 MVT VT = Op.getSimpleValueType(); 1286 unsigned VTBits = VT.getSizeInBits(); 1287 SDLoc dl(Op); 1288 SDValue ShOpLo = Op.getOperand(0); 1289 SDValue ShOpHi = Op.getOperand(1); 1290 SDValue ShAmt = Op.getOperand(2); 1291 1292 // Performs the following for a >> b: 1293 // unsigned r_high = a_high >> b; 1294 // r_high = (32 - b <= 0) ? 0 : r_high; 1295 // 1296 // unsigned r_low = a_low >> b; 1297 // r_low = (32 - b <= 0) ? r_high : r_low; 1298 // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b)); 1299 // return (unsigned long long)r_high << 32 | r_low; 1300 // Note: This takes advantage of Lanai's shift behavior to avoid needing to 1301 // mask the shift amount. 1302 1303 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1304 SDValue NegatedPlus32 = DAG.getNode( 1305 ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1306 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE); 1307 1308 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt); 1309 Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi); 1310 1311 SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt); 1312 Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo); 1313 SDValue CarryBits = 1314 DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32); 1315 SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1316 Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo, 1317 DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits)); 1318 1319 SDValue Ops[2] = {Lo, Hi}; 1320 return DAG.getMergeValues(Ops, dl); 1321 } 1322 1323 // Helper function that checks if N is a null or all ones constant. 1324 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 1325 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 1326 } 1327 1328 // Return true if N is conditionally 0 or all ones. 1329 // Detects these expressions where cc is an i1 value: 1330 // 1331 // (select cc 0, y) [AllOnes=0] 1332 // (select cc y, 0) [AllOnes=0] 1333 // (zext cc) [AllOnes=0] 1334 // (sext cc) [AllOnes=0/1] 1335 // (select cc -1, y) [AllOnes=1] 1336 // (select cc y, -1) [AllOnes=1] 1337 // 1338 // * AllOnes determines whether to check for an all zero (AllOnes false) or an 1339 // all ones operand (AllOnes true). 1340 // * Invert is set when N is the all zero/ones constant when CC is false. 1341 // * OtherOp is set to the alternative value of N. 1342 // 1343 // For example, for (select cc X, Y) and AllOnes = 0 if: 1344 // * X = 0, Invert = False and OtherOp = Y 1345 // * Y = 0, Invert = True and OtherOp = X 1346 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, 1347 bool &Invert, SDValue &OtherOp, 1348 SelectionDAG &DAG) { 1349 switch (N->getOpcode()) { 1350 default: 1351 return false; 1352 case ISD::SELECT: { 1353 CC = N->getOperand(0); 1354 SDValue N1 = N->getOperand(1); 1355 SDValue N2 = N->getOperand(2); 1356 if (isZeroOrAllOnes(N1, AllOnes)) { 1357 Invert = false; 1358 OtherOp = N2; 1359 return true; 1360 } 1361 if (isZeroOrAllOnes(N2, AllOnes)) { 1362 Invert = true; 1363 OtherOp = N1; 1364 return true; 1365 } 1366 return false; 1367 } 1368 case ISD::ZERO_EXTEND: { 1369 // (zext cc) can never be the all ones value. 1370 if (AllOnes) 1371 return false; 1372 CC = N->getOperand(0); 1373 if (CC.getValueType() != MVT::i1) 1374 return false; 1375 SDLoc dl(N); 1376 EVT VT = N->getValueType(0); 1377 OtherOp = DAG.getConstant(1, dl, VT); 1378 Invert = true; 1379 return true; 1380 } 1381 case ISD::SIGN_EXTEND: { 1382 CC = N->getOperand(0); 1383 if (CC.getValueType() != MVT::i1) 1384 return false; 1385 SDLoc dl(N); 1386 EVT VT = N->getValueType(0); 1387 Invert = !AllOnes; 1388 if (AllOnes) 1389 // When looking for an AllOnes constant, N is an sext, and the 'other' 1390 // value is 0. 1391 OtherOp = DAG.getConstant(0, dl, VT); 1392 else 1393 OtherOp = 1394 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT); 1395 return true; 1396 } 1397 } 1398 } 1399 1400 // Combine a constant select operand into its use: 1401 // 1402 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 1403 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1404 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 1405 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 1406 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 1407 // 1408 // The transform is rejected if the select doesn't have a constant operand that 1409 // is null, or all ones when AllOnes is set. 1410 // 1411 // Also recognize sext/zext from i1: 1412 // 1413 // (add (zext cc), x) -> (select cc (add x, 1), x) 1414 // (add (sext cc), x) -> (select cc (add x, -1), x) 1415 // 1416 // These transformations eventually create predicated instructions. 1417 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 1418 TargetLowering::DAGCombinerInfo &DCI, 1419 bool AllOnes) { 1420 SelectionDAG &DAG = DCI.DAG; 1421 EVT VT = N->getValueType(0); 1422 SDValue NonConstantVal; 1423 SDValue CCOp; 1424 bool SwapSelectOps; 1425 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 1426 NonConstantVal, DAG)) 1427 return SDValue(); 1428 1429 // Slct is now know to be the desired identity constant when CC is true. 1430 SDValue TrueVal = OtherOp; 1431 SDValue FalseVal = 1432 DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 1433 // Unless SwapSelectOps says CC should be false. 1434 if (SwapSelectOps) 1435 std::swap(TrueVal, FalseVal); 1436 1437 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); 1438 } 1439 1440 // Attempt combineSelectAndUse on each operand of a commutative operator N. 1441 static SDValue 1442 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 1443 bool AllOnes) { 1444 SDValue N0 = N->getOperand(0); 1445 SDValue N1 = N->getOperand(1); 1446 if (N0.getNode()->hasOneUse()) 1447 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) 1448 return Result; 1449 if (N1.getNode()->hasOneUse()) 1450 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) 1451 return Result; 1452 return SDValue(); 1453 } 1454 1455 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 1456 static SDValue PerformSUBCombine(SDNode *N, 1457 TargetLowering::DAGCombinerInfo &DCI) { 1458 SDValue N0 = N->getOperand(0); 1459 SDValue N1 = N->getOperand(1); 1460 1461 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1462 if (N1.getNode()->hasOneUse()) 1463 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false)) 1464 return Result; 1465 1466 return SDValue(); 1467 } 1468 1469 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N, 1470 DAGCombinerInfo &DCI) const { 1471 switch (N->getOpcode()) { 1472 default: 1473 break; 1474 case ISD::ADD: 1475 case ISD::OR: 1476 case ISD::XOR: 1477 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false); 1478 case ISD::AND: 1479 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true); 1480 case ISD::SUB: 1481 return PerformSUBCombine(N, DCI); 1482 } 1483 1484 return SDValue(); 1485 } 1486 1487 void LanaiTargetLowering::computeKnownBitsForTargetNode( 1488 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 1489 const SelectionDAG &DAG, unsigned Depth) const { 1490 unsigned BitWidth = Known.getBitWidth(); 1491 switch (Op.getOpcode()) { 1492 default: 1493 break; 1494 case LanaiISD::SETCC: 1495 Known = KnownBits(BitWidth); 1496 Known.Zero.setBits(1, BitWidth); 1497 break; 1498 case LanaiISD::SELECT_CC: 1499 KnownBits Known2; 1500 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 1501 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 1502 Known.Zero &= Known2.Zero; 1503 Known.One &= Known2.One; 1504 break; 1505 } 1506 } 1507