1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LanaiTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LanaiISelLowering.h" 14 #include "Lanai.h" 15 #include "LanaiCondCode.h" 16 #include "LanaiMachineFunctionInfo.h" 17 #include "LanaiSubtarget.h" 18 #include "LanaiTargetObjectFile.h" 19 #include "MCTargetDesc/LanaiBaseInfo.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/TargetCallingConv.h" 34 #include "llvm/CodeGen/ValueTypes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CodeGen.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/KnownBits.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cmath> 51 #include <cstdint> 52 #include <cstdlib> 53 #include <utility> 54 55 #define DEBUG_TYPE "lanai-lower" 56 57 using namespace llvm; 58 59 // Limit on number of instructions the lowered multiplication may have before a 60 // call to the library function should be generated instead. The threshold is 61 // currently set to 14 as this was the smallest threshold that resulted in all 62 // constant multiplications being lowered. A threshold of 5 covered all cases 63 // except for one multiplication which required 14. mulsi3 requires 16 64 // instructions (including the prologue and epilogue but excluding instructions 65 // at call site). Until we can inline mulsi3, generating at most 14 instructions 66 // will be faster than invoking mulsi3. 67 static cl::opt<int> LanaiLowerConstantMulThreshold( 68 "lanai-constant-mul-threshold", cl::Hidden, 69 cl::desc("Maximum number of instruction to generate when lowering constant " 70 "multiplication instead of calling library function [default=14]"), 71 cl::init(14)); 72 73 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, 74 const LanaiSubtarget &STI) 75 : TargetLowering(TM) { 76 // Set up the register classes. 77 addRegisterClass(MVT::i32, &Lanai::GPRRegClass); 78 79 // Compute derived properties from the register classes 80 TRI = STI.getRegisterInfo(); 81 computeRegisterProperties(TRI); 82 83 setStackPointerRegisterToSaveRestore(Lanai::SP); 84 85 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 88 setOperationAction(ISD::SETCC, MVT::i32, Custom); 89 setOperationAction(ISD::SELECT, MVT::i32, Expand); 90 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 91 92 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 93 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 94 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 95 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 96 97 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 98 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 99 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 100 101 setOperationAction(ISD::VASTART, MVT::Other, Custom); 102 setOperationAction(ISD::VAARG, MVT::Other, Expand); 103 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 104 setOperationAction(ISD::VAEND, MVT::Other, Expand); 105 106 setOperationAction(ISD::SDIV, MVT::i32, Expand); 107 setOperationAction(ISD::UDIV, MVT::i32, Expand); 108 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 109 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 110 setOperationAction(ISD::SREM, MVT::i32, Expand); 111 setOperationAction(ISD::UREM, MVT::i32, Expand); 112 113 setOperationAction(ISD::MUL, MVT::i32, Custom); 114 setOperationAction(ISD::MULHU, MVT::i32, Expand); 115 setOperationAction(ISD::MULHS, MVT::i32, Expand); 116 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 117 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 118 119 setOperationAction(ISD::ROTR, MVT::i32, Expand); 120 setOperationAction(ISD::ROTL, MVT::i32, Expand); 121 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 122 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 123 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 124 125 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 126 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 127 setOperationAction(ISD::CTLZ, MVT::i32, Legal); 128 setOperationAction(ISD::CTTZ, MVT::i32, Legal); 129 130 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 131 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 132 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 133 134 // Extended load operations for i1 types must be promoted 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 139 } 140 141 setTargetDAGCombine(ISD::ADD); 142 setTargetDAGCombine(ISD::SUB); 143 setTargetDAGCombine(ISD::AND); 144 setTargetDAGCombine(ISD::OR); 145 setTargetDAGCombine(ISD::XOR); 146 147 // Function alignments 148 setMinFunctionAlignment(Align(4)); 149 setPrefFunctionAlignment(Align(4)); 150 151 setJumpIsExpensive(true); 152 153 // TODO: Setting the minimum jump table entries needed before a 154 // switch is transformed to a jump table to 100 to avoid creating jump tables 155 // as this was causing bad performance compared to a large group of if 156 // statements. Re-evaluate this on new benchmarks. 157 setMinimumJumpTableEntries(100); 158 159 // Use fast calling convention for library functions. 160 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { 161 setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast); 162 } 163 164 MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 165 MaxStoresPerMemsetOptSize = 8; 166 MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores 167 MaxStoresPerMemcpyOptSize = 8; 168 MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores 169 MaxStoresPerMemmoveOptSize = 8; 170 171 // Booleans always contain 0 or 1. 172 setBooleanContents(ZeroOrOneBooleanContent); 173 } 174 175 SDValue LanaiTargetLowering::LowerOperation(SDValue Op, 176 SelectionDAG &DAG) const { 177 switch (Op.getOpcode()) { 178 case ISD::MUL: 179 return LowerMUL(Op, DAG); 180 case ISD::BR_CC: 181 return LowerBR_CC(Op, DAG); 182 case ISD::ConstantPool: 183 return LowerConstantPool(Op, DAG); 184 case ISD::GlobalAddress: 185 return LowerGlobalAddress(Op, DAG); 186 case ISD::BlockAddress: 187 return LowerBlockAddress(Op, DAG); 188 case ISD::JumpTable: 189 return LowerJumpTable(Op, DAG); 190 case ISD::SELECT_CC: 191 return LowerSELECT_CC(Op, DAG); 192 case ISD::SETCC: 193 return LowerSETCC(Op, DAG); 194 case ISD::SHL_PARTS: 195 return LowerSHL_PARTS(Op, DAG); 196 case ISD::SRL_PARTS: 197 return LowerSRL_PARTS(Op, DAG); 198 case ISD::VASTART: 199 return LowerVASTART(Op, DAG); 200 case ISD::DYNAMIC_STACKALLOC: 201 return LowerDYNAMIC_STACKALLOC(Op, DAG); 202 case ISD::RETURNADDR: 203 return LowerRETURNADDR(Op, DAG); 204 case ISD::FRAMEADDR: 205 return LowerFRAMEADDR(Op, DAG); 206 default: 207 llvm_unreachable("unimplemented operand"); 208 } 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Lanai Inline Assembly Support 213 //===----------------------------------------------------------------------===// 214 215 Register LanaiTargetLowering::getRegisterByName( 216 const char *RegName, EVT /*VT*/, 217 const MachineFunction & /*MF*/) const { 218 // Only unallocatable registers should be matched here. 219 Register Reg = StringSwitch<unsigned>(RegName) 220 .Case("pc", Lanai::PC) 221 .Case("sp", Lanai::SP) 222 .Case("fp", Lanai::FP) 223 .Case("rr1", Lanai::RR1) 224 .Case("r10", Lanai::R10) 225 .Case("rr2", Lanai::RR2) 226 .Case("r11", Lanai::R11) 227 .Case("rca", Lanai::RCA) 228 .Default(0); 229 230 if (Reg) 231 return Reg; 232 report_fatal_error("Invalid register name global variable"); 233 } 234 235 std::pair<unsigned, const TargetRegisterClass *> 236 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 237 StringRef Constraint, 238 MVT VT) const { 239 if (Constraint.size() == 1) 240 // GCC Constraint Letters 241 switch (Constraint[0]) { 242 case 'r': // GENERAL_REGS 243 return std::make_pair(0U, &Lanai::GPRRegClass); 244 default: 245 break; 246 } 247 248 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 249 } 250 251 // Examine constraint type and operand type and determine a weight value. 252 // This object must already have been set up with the operand type 253 // and the current alternative constraint selected. 254 TargetLowering::ConstraintWeight 255 LanaiTargetLowering::getSingleConstraintMatchWeight( 256 AsmOperandInfo &Info, const char *Constraint) const { 257 ConstraintWeight Weight = CW_Invalid; 258 Value *CallOperandVal = Info.CallOperandVal; 259 // If we don't have a value, we can't do a match, 260 // but allow it at the lowest weight. 261 if (CallOperandVal == nullptr) 262 return CW_Default; 263 // Look at the constraint type. 264 switch (*Constraint) { 265 case 'I': // signed 16 bit immediate 266 case 'J': // integer zero 267 case 'K': // unsigned 16 bit immediate 268 case 'L': // immediate in the range 0 to 31 269 case 'M': // signed 32 bit immediate where lower 16 bits are 0 270 case 'N': // signed 26 bit immediate 271 case 'O': // integer zero 272 if (isa<ConstantInt>(CallOperandVal)) 273 Weight = CW_Constant; 274 break; 275 default: 276 Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); 277 break; 278 } 279 return Weight; 280 } 281 282 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops 283 // vector. If it is invalid, don't add anything to Ops. 284 void LanaiTargetLowering::LowerAsmOperandForConstraint( 285 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 286 SelectionDAG &DAG) const { 287 SDValue Result(nullptr, 0); 288 289 // Only support length 1 constraints for now. 290 if (Constraint.length() > 1) 291 return; 292 293 char ConstraintLetter = Constraint[0]; 294 switch (ConstraintLetter) { 295 case 'I': // Signed 16 bit constant 296 // If this fails, the parent routine will give an error 297 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 298 if (isInt<16>(C->getSExtValue())) { 299 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 300 Op.getValueType()); 301 break; 302 } 303 } 304 return; 305 case 'J': // integer zero 306 case 'O': 307 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 308 if (C->getZExtValue() == 0) { 309 Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); 310 break; 311 } 312 } 313 return; 314 case 'K': // unsigned 16 bit immediate 315 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 316 if (isUInt<16>(C->getZExtValue())) { 317 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 318 Op.getValueType()); 319 break; 320 } 321 } 322 return; 323 case 'L': // immediate in the range 0 to 31 324 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 325 if (C->getZExtValue() <= 31) { 326 Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), 327 Op.getValueType()); 328 break; 329 } 330 } 331 return; 332 case 'M': // signed 32 bit immediate where lower 16 bits are 0 333 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 334 int64_t Val = C->getSExtValue(); 335 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { 336 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 337 break; 338 } 339 } 340 return; 341 case 'N': // signed 26 bit immediate 342 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 343 int64_t Val = C->getSExtValue(); 344 if ((Val >= -33554432) && (Val <= 33554431)) { 345 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 346 break; 347 } 348 } 349 return; 350 default: 351 break; // This will fall through to the generic implementation 352 } 353 354 if (Result.getNode()) { 355 Ops.push_back(Result); 356 return; 357 } 358 359 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 360 } 361 362 //===----------------------------------------------------------------------===// 363 // Calling Convention Implementation 364 //===----------------------------------------------------------------------===// 365 366 #include "LanaiGenCallingConv.inc" 367 368 static unsigned NumFixedArgs; 369 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, 370 CCValAssign::LocInfo LocInfo, 371 ISD::ArgFlagsTy ArgFlags, CCState &State) { 372 // Handle fixed arguments with default CC. 373 // Note: Both the default and fast CC handle VarArg the same and hence the 374 // calling convention of the function is not considered here. 375 if (ValNo < NumFixedArgs) { 376 return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); 377 } 378 379 // Promote i8/i16 args to i32 380 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 381 LocVT = MVT::i32; 382 if (ArgFlags.isSExt()) 383 LocInfo = CCValAssign::SExt; 384 else if (ArgFlags.isZExt()) 385 LocInfo = CCValAssign::ZExt; 386 else 387 LocInfo = CCValAssign::AExt; 388 } 389 390 // VarArgs get passed on stack 391 unsigned Offset = State.AllocateStack(4, 4); 392 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 393 return false; 394 } 395 396 SDValue LanaiTargetLowering::LowerFormalArguments( 397 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 398 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 399 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 400 switch (CallConv) { 401 case CallingConv::C: 402 case CallingConv::Fast: 403 return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); 404 default: 405 report_fatal_error("Unsupported calling convention"); 406 } 407 } 408 409 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 410 SmallVectorImpl<SDValue> &InVals) const { 411 SelectionDAG &DAG = CLI.DAG; 412 SDLoc &DL = CLI.DL; 413 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 414 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 415 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 416 SDValue Chain = CLI.Chain; 417 SDValue Callee = CLI.Callee; 418 bool &IsTailCall = CLI.IsTailCall; 419 CallingConv::ID CallConv = CLI.CallConv; 420 bool IsVarArg = CLI.IsVarArg; 421 422 // Lanai target does not yet support tail call optimization. 423 IsTailCall = false; 424 425 switch (CallConv) { 426 case CallingConv::Fast: 427 case CallingConv::C: 428 return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, 429 OutVals, Ins, DL, DAG, InVals); 430 default: 431 report_fatal_error("Unsupported calling convention"); 432 } 433 } 434 435 // LowerCCCArguments - transform physical registers into virtual registers and 436 // generate load operations for arguments places on the stack. 437 SDValue LanaiTargetLowering::LowerCCCArguments( 438 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 439 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 440 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 441 MachineFunction &MF = DAG.getMachineFunction(); 442 MachineFrameInfo &MFI = MF.getFrameInfo(); 443 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 444 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 445 446 // Assign locations to all of the incoming arguments. 447 SmallVector<CCValAssign, 16> ArgLocs; 448 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 449 *DAG.getContext()); 450 if (CallConv == CallingConv::Fast) { 451 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); 452 } else { 453 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); 454 } 455 456 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 457 CCValAssign &VA = ArgLocs[i]; 458 if (VA.isRegLoc()) { 459 // Arguments passed in registers 460 EVT RegVT = VA.getLocVT(); 461 switch (RegVT.getSimpleVT().SimpleTy) { 462 case MVT::i32: { 463 Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); 464 RegInfo.addLiveIn(VA.getLocReg(), VReg); 465 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); 466 467 // If this is an 8/16-bit value, it is really passed promoted to 32 468 // bits. Insert an assert[sz]ext to capture this, then truncate to the 469 // right size. 470 if (VA.getLocInfo() == CCValAssign::SExt) 471 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, 472 DAG.getValueType(VA.getValVT())); 473 else if (VA.getLocInfo() == CCValAssign::ZExt) 474 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, 475 DAG.getValueType(VA.getValVT())); 476 477 if (VA.getLocInfo() != CCValAssign::Full) 478 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); 479 480 InVals.push_back(ArgValue); 481 break; 482 } 483 default: 484 LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " 485 << RegVT.getEVTString() << "\n"); 486 llvm_unreachable("unhandled argument type"); 487 } 488 } else { 489 // Sanity check 490 assert(VA.isMemLoc()); 491 // Load the argument to a virtual register 492 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 493 // Check that the argument fits in stack slot 494 if (ObjSize > 4) { 495 errs() << "LowerFormalArguments Unhandled argument type: " 496 << EVT(VA.getLocVT()).getEVTString() << "\n"; 497 } 498 // Create the frame index object for this incoming parameter... 499 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 500 501 // Create the SelectionDAG nodes corresponding to a load 502 // from this parameter 503 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 504 InVals.push_back(DAG.getLoad( 505 VA.getLocVT(), DL, Chain, FIN, 506 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 507 } 508 } 509 510 // The Lanai ABI for returning structs by value requires that we copy 511 // the sret argument into rv for the return. Save the argument into 512 // a virtual register so that we can access it from the return points. 513 if (MF.getFunction().hasStructRetAttr()) { 514 unsigned Reg = LanaiMFI->getSRetReturnReg(); 515 if (!Reg) { 516 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); 517 LanaiMFI->setSRetReturnReg(Reg); 518 } 519 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); 520 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 521 } 522 523 if (IsVarArg) { 524 // Record the frame index of the first variable argument 525 // which is a value necessary to VASTART. 526 int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true); 527 LanaiMFI->setVarArgsFrameIndex(FI); 528 } 529 530 return Chain; 531 } 532 533 SDValue 534 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 535 bool IsVarArg, 536 const SmallVectorImpl<ISD::OutputArg> &Outs, 537 const SmallVectorImpl<SDValue> &OutVals, 538 const SDLoc &DL, SelectionDAG &DAG) const { 539 // CCValAssign - represent the assignment of the return value to a location 540 SmallVector<CCValAssign, 16> RVLocs; 541 542 // CCState - Info about the registers and stack slot. 543 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 544 *DAG.getContext()); 545 546 // Analize return values. 547 CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); 548 549 SDValue Flag; 550 SmallVector<SDValue, 4> RetOps(1, Chain); 551 552 // Copy the result values into the output registers. 553 for (unsigned i = 0; i != RVLocs.size(); ++i) { 554 CCValAssign &VA = RVLocs[i]; 555 assert(VA.isRegLoc() && "Can only return in registers!"); 556 557 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); 558 559 // Guarantee that all emitted copies are stuck together with flags. 560 Flag = Chain.getValue(1); 561 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 562 } 563 564 // The Lanai ABI for returning structs by value requires that we copy 565 // the sret argument into rv for the return. We saved the argument into 566 // a virtual register in the entry block, so now we copy the value out 567 // and into rv. 568 if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) { 569 MachineFunction &MF = DAG.getMachineFunction(); 570 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 571 unsigned Reg = LanaiMFI->getSRetReturnReg(); 572 assert(Reg && 573 "SRetReturnReg should have been set in LowerFormalArguments()."); 574 SDValue Val = 575 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 576 577 Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag); 578 Flag = Chain.getValue(1); 579 RetOps.push_back( 580 DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); 581 } 582 583 RetOps[0] = Chain; // Update chain 584 585 unsigned Opc = LanaiISD::RET_FLAG; 586 if (Flag.getNode()) 587 RetOps.push_back(Flag); 588 589 // Return Void 590 return DAG.getNode(Opc, DL, MVT::Other, 591 ArrayRef<SDValue>(&RetOps[0], RetOps.size())); 592 } 593 594 // LowerCCCCallTo - functions arguments are copied from virtual regs to 595 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 596 SDValue LanaiTargetLowering::LowerCCCCallTo( 597 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, 598 bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs, 599 const SmallVectorImpl<SDValue> &OutVals, 600 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 601 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 602 // Analyze operands of the call, assigning locations to each operand. 603 SmallVector<CCValAssign, 16> ArgLocs; 604 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 605 *DAG.getContext()); 606 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 607 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 608 609 NumFixedArgs = 0; 610 if (IsVarArg && G) { 611 const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); 612 if (CalleeFn) 613 NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); 614 } 615 if (NumFixedArgs) 616 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); 617 else { 618 if (CallConv == CallingConv::Fast) 619 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); 620 else 621 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); 622 } 623 624 // Get a count of how many bytes are to be pushed on the stack. 625 unsigned NumBytes = CCInfo.getNextStackOffset(); 626 627 // Create local copies for byval args. 628 SmallVector<SDValue, 8> ByValArgs; 629 for (unsigned I = 0, E = Outs.size(); I != E; ++I) { 630 ISD::ArgFlagsTy Flags = Outs[I].Flags; 631 if (!Flags.isByVal()) 632 continue; 633 634 SDValue Arg = OutVals[I]; 635 unsigned Size = Flags.getByValSize(); 636 unsigned Align = Flags.getByValAlign(); 637 638 int FI = MFI.CreateStackObject(Size, Align, false); 639 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 640 SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); 641 642 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 643 /*IsVolatile=*/false, 644 /*AlwaysInline=*/false, 645 /*isTailCall=*/false, MachinePointerInfo(), 646 MachinePointerInfo()); 647 ByValArgs.push_back(FIPtr); 648 } 649 650 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 651 652 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 653 SmallVector<SDValue, 12> MemOpChains; 654 SDValue StackPtr; 655 656 // Walk the register/memloc assignments, inserting copies/loads. 657 for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { 658 CCValAssign &VA = ArgLocs[I]; 659 SDValue Arg = OutVals[I]; 660 ISD::ArgFlagsTy Flags = Outs[I].Flags; 661 662 // Promote the value if needed. 663 switch (VA.getLocInfo()) { 664 case CCValAssign::Full: 665 break; 666 case CCValAssign::SExt: 667 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 668 break; 669 case CCValAssign::ZExt: 670 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 671 break; 672 case CCValAssign::AExt: 673 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 674 break; 675 default: 676 llvm_unreachable("Unknown loc info!"); 677 } 678 679 // Use local copy if it is a byval arg. 680 if (Flags.isByVal()) 681 Arg = ByValArgs[J++]; 682 683 // Arguments that can be passed on register must be kept at RegsToPass 684 // vector 685 if (VA.isRegLoc()) { 686 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 687 } else { 688 assert(VA.isMemLoc()); 689 690 if (StackPtr.getNode() == nullptr) 691 StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, 692 getPointerTy(DAG.getDataLayout())); 693 694 SDValue PtrOff = 695 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 696 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 697 698 MemOpChains.push_back( 699 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 700 } 701 } 702 703 // Transform all store nodes into one single node because all store nodes are 704 // independent of each other. 705 if (!MemOpChains.empty()) 706 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 707 ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); 708 709 SDValue InFlag; 710 711 // Build a sequence of copy-to-reg nodes chained together with token chain and 712 // flag operands which copy the outgoing args into registers. The InFlag in 713 // necessary since all emitted instructions must be stuck together. 714 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 715 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 716 RegsToPass[I].second, InFlag); 717 InFlag = Chain.getValue(1); 718 } 719 720 // If the callee is a GlobalAddress node (quite common, every direct call is) 721 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 722 // Likewise ExternalSymbol -> TargetExternalSymbol. 723 uint8_t OpFlag = LanaiII::MO_NO_FLAG; 724 if (G) { 725 Callee = DAG.getTargetGlobalAddress( 726 G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); 727 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 728 Callee = DAG.getTargetExternalSymbol( 729 E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); 730 } 731 732 // Returns a chain & a flag for retval copy to use. 733 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 734 SmallVector<SDValue, 8> Ops; 735 Ops.push_back(Chain); 736 Ops.push_back(Callee); 737 738 // Add a register mask operand representing the call-preserved registers. 739 // TODO: Should return-twice functions be handled? 740 const uint32_t *Mask = 741 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 742 assert(Mask && "Missing call preserved mask for calling convention"); 743 Ops.push_back(DAG.getRegisterMask(Mask)); 744 745 // Add argument registers to the end of the list so that they are 746 // known live into the call. 747 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 748 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 749 RegsToPass[I].second.getValueType())); 750 751 if (InFlag.getNode()) 752 Ops.push_back(InFlag); 753 754 Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, 755 ArrayRef<SDValue>(&Ops[0], Ops.size())); 756 InFlag = Chain.getValue(1); 757 758 // Create the CALLSEQ_END node. 759 Chain = DAG.getCALLSEQ_END( 760 Chain, 761 DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), 762 DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag, 763 DL); 764 InFlag = Chain.getValue(1); 765 766 // Handle result values, copying them out of physregs into vregs that we 767 // return. 768 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 769 InVals); 770 } 771 772 // LowerCallResult - Lower the result values of a call into the 773 // appropriate copies out of appropriate physical registers. 774 SDValue LanaiTargetLowering::LowerCallResult( 775 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 776 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 777 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 778 // Assign locations to each value returned by this call. 779 SmallVector<CCValAssign, 16> RVLocs; 780 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 781 *DAG.getContext()); 782 783 CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); 784 785 // Copy all of the result registers out of their specified physreg. 786 for (unsigned I = 0; I != RVLocs.size(); ++I) { 787 Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), 788 RVLocs[I].getValVT(), InFlag) 789 .getValue(1); 790 InFlag = Chain.getValue(2); 791 InVals.push_back(Chain.getValue(0)); 792 } 793 794 return Chain; 795 } 796 797 //===----------------------------------------------------------------------===// 798 // Custom Lowerings 799 //===----------------------------------------------------------------------===// 800 801 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL, 802 SDValue &RHS, SelectionDAG &DAG) { 803 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 804 805 // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, 806 // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) 807 // and Lanai only supports integer comparisons, so only provide definitions 808 // for them. 809 switch (SetCCOpcode) { 810 case ISD::SETEQ: 811 return LPCC::ICC_EQ; 812 case ISD::SETGT: 813 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 814 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 815 // X > -1 -> X >= 0 -> is_plus(X) 816 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 817 return LPCC::ICC_PL; 818 } 819 return LPCC::ICC_GT; 820 case ISD::SETUGT: 821 return LPCC::ICC_UGT; 822 case ISD::SETLT: 823 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 824 if (RHSC->getZExtValue() == 0) 825 // X < 0 -> is_minus(X) 826 return LPCC::ICC_MI; 827 return LPCC::ICC_LT; 828 case ISD::SETULT: 829 return LPCC::ICC_ULT; 830 case ISD::SETLE: 831 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 832 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 833 // X <= -1 -> X < 0 -> is_minus(X) 834 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 835 return LPCC::ICC_MI; 836 } 837 return LPCC::ICC_LE; 838 case ISD::SETULE: 839 return LPCC::ICC_ULE; 840 case ISD::SETGE: 841 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 842 if (RHSC->getZExtValue() == 0) 843 // X >= 0 -> is_plus(X) 844 return LPCC::ICC_PL; 845 return LPCC::ICC_GE; 846 case ISD::SETUGE: 847 return LPCC::ICC_UGE; 848 case ISD::SETNE: 849 return LPCC::ICC_NE; 850 case ISD::SETONE: 851 case ISD::SETUNE: 852 case ISD::SETOGE: 853 case ISD::SETOLE: 854 case ISD::SETOLT: 855 case ISD::SETOGT: 856 case ISD::SETOEQ: 857 case ISD::SETUEQ: 858 case ISD::SETO: 859 case ISD::SETUO: 860 llvm_unreachable("Unsupported comparison."); 861 default: 862 llvm_unreachable("Unknown integer condition code!"); 863 } 864 } 865 866 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 867 SDValue Chain = Op.getOperand(0); 868 SDValue Cond = Op.getOperand(1); 869 SDValue LHS = Op.getOperand(2); 870 SDValue RHS = Op.getOperand(3); 871 SDValue Dest = Op.getOperand(4); 872 SDLoc DL(Op); 873 874 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 875 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 876 SDValue Flag = 877 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 878 879 return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, 880 TargetCC, Flag); 881 } 882 883 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 884 EVT VT = Op->getValueType(0); 885 if (VT != MVT::i32) 886 return SDValue(); 887 888 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 889 if (!C) 890 return SDValue(); 891 892 int64_t MulAmt = C->getSExtValue(); 893 int32_t HighestOne = -1; 894 uint32_t NonzeroEntries = 0; 895 int SignedDigit[32] = {0}; 896 897 // Convert to non-adjacent form (NAF) signed-digit representation. 898 // NAF is a signed-digit form where no adjacent digits are non-zero. It is the 899 // minimal Hamming weight representation of a number (on average 1/3 of the 900 // digits will be non-zero vs 1/2 for regular binary representation). And as 901 // the non-zero digits will be the only digits contributing to the instruction 902 // count, this is desirable. The next loop converts it to NAF (following the 903 // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by 904 // choosing the non-zero coefficients such that the resulting quotient is 905 // divisible by 2 which will cause the next coefficient to be zero. 906 int64_t E = std::abs(MulAmt); 907 int S = (MulAmt < 0 ? -1 : 1); 908 int I = 0; 909 while (E > 0) { 910 int ZI = 0; 911 if (E % 2 == 1) { 912 ZI = 2 - (E % 4); 913 if (ZI != 0) 914 ++NonzeroEntries; 915 } 916 SignedDigit[I] = S * ZI; 917 if (SignedDigit[I] == 1) 918 HighestOne = I; 919 E = (E - ZI) / 2; 920 ++I; 921 } 922 923 // Compute number of instructions required. Due to differences in lowering 924 // between the different processors this count is not exact. 925 // Start by assuming a shift and a add/sub for every non-zero entry (hence 926 // every non-zero entry requires 1 shift and 1 add/sub except for the first 927 // entry). 928 int32_t InstrRequired = 2 * NonzeroEntries - 1; 929 // Correct possible over-adding due to shift by 0 (which is not emitted). 930 if (std::abs(MulAmt) % 2 == 1) 931 --InstrRequired; 932 // Return if the form generated would exceed the instruction threshold. 933 if (InstrRequired > LanaiLowerConstantMulThreshold) 934 return SDValue(); 935 936 SDValue Res; 937 SDLoc DL(Op); 938 SDValue V = Op->getOperand(0); 939 940 // Initialize the running sum. Set the running sum to the maximal shifted 941 // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a 942 // term NAF). 943 if (HighestOne == -1) 944 Res = DAG.getConstant(0, DL, MVT::i32); 945 else { 946 Res = DAG.getNode(ISD::SHL, DL, VT, V, 947 DAG.getConstant(HighestOne, DL, MVT::i32)); 948 SignedDigit[HighestOne] = 0; 949 } 950 951 // Assemble multiplication from shift, add, sub using NAF form and running 952 // sum. 953 for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]); 954 ++I) { 955 if (SignedDigit[I] == 0) 956 continue; 957 958 // Shifted multiplicand (v<<i). 959 SDValue Op = 960 DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32)); 961 if (SignedDigit[I] == 1) 962 Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op); 963 else if (SignedDigit[I] == -1) 964 Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op); 965 } 966 return Res; 967 } 968 969 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 970 SDValue LHS = Op.getOperand(0); 971 SDValue RHS = Op.getOperand(1); 972 SDValue Cond = Op.getOperand(2); 973 SDLoc DL(Op); 974 975 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 976 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 977 SDValue Flag = 978 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 979 980 return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag); 981 } 982 983 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op, 984 SelectionDAG &DAG) const { 985 SDValue LHS = Op.getOperand(0); 986 SDValue RHS = Op.getOperand(1); 987 SDValue TrueV = Op.getOperand(2); 988 SDValue FalseV = Op.getOperand(3); 989 SDValue Cond = Op.getOperand(4); 990 SDLoc DL(Op); 991 992 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 993 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 994 SDValue Flag = 995 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 996 997 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 998 return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC, 999 Flag); 1000 } 1001 1002 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1003 MachineFunction &MF = DAG.getMachineFunction(); 1004 LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); 1005 1006 SDLoc DL(Op); 1007 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1008 getPointerTy(DAG.getDataLayout())); 1009 1010 // vastart just stores the address of the VarArgsFrameIndex slot into the 1011 // memory location argument. 1012 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1013 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1014 MachinePointerInfo(SV)); 1015 } 1016 1017 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1018 SelectionDAG &DAG) const { 1019 SDValue Chain = Op.getOperand(0); 1020 SDValue Size = Op.getOperand(1); 1021 SDLoc DL(Op); 1022 1023 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 1024 1025 // Get a reference to the stack pointer. 1026 SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); 1027 1028 // Subtract the dynamic size from the actual stack size to 1029 // obtain the new stack size. 1030 SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); 1031 1032 // For Lanai, the outgoing memory arguments area should be on top of the 1033 // alloca area on the stack i.e., the outgoing memory arguments should be 1034 // at a lower address than the alloca area. Move the alloca area down the 1035 // stack by adding back the space reserved for outgoing arguments to SP 1036 // here. 1037 // 1038 // We do not know what the size of the outgoing args is at this point. 1039 // So, we add a pseudo instruction ADJDYNALLOC that will adjust the 1040 // stack pointer. We replace this instruction with on that has the correct, 1041 // known offset in emitPrologue(). 1042 SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); 1043 1044 // The Sub result contains the new stack start address, so it 1045 // must be placed in the stack pointer register. 1046 SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); 1047 1048 SDValue Ops[2] = {ArgAdjust, CopyChain}; 1049 return DAG.getMergeValues(Ops, DL); 1050 } 1051 1052 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, 1053 SelectionDAG &DAG) const { 1054 MachineFunction &MF = DAG.getMachineFunction(); 1055 MachineFrameInfo &MFI = MF.getFrameInfo(); 1056 MFI.setReturnAddressIsTaken(true); 1057 1058 EVT VT = Op.getValueType(); 1059 SDLoc DL(Op); 1060 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1061 if (Depth) { 1062 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1063 const unsigned Offset = -4; 1064 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1065 DAG.getIntPtrConstant(Offset, DL)); 1066 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1067 } 1068 1069 // Return the link register, which contains the return address. 1070 // Mark it an implicit live-in. 1071 unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); 1072 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 1073 } 1074 1075 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, 1076 SelectionDAG &DAG) const { 1077 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1078 MFI.setFrameAddressIsTaken(true); 1079 1080 EVT VT = Op.getValueType(); 1081 SDLoc DL(Op); 1082 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); 1083 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1084 while (Depth--) { 1085 const unsigned Offset = -8; 1086 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1087 DAG.getIntPtrConstant(Offset, DL)); 1088 FrameAddr = 1089 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1090 } 1091 return FrameAddr; 1092 } 1093 1094 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { 1095 switch (Opcode) { 1096 case LanaiISD::ADJDYNALLOC: 1097 return "LanaiISD::ADJDYNALLOC"; 1098 case LanaiISD::RET_FLAG: 1099 return "LanaiISD::RET_FLAG"; 1100 case LanaiISD::CALL: 1101 return "LanaiISD::CALL"; 1102 case LanaiISD::SELECT_CC: 1103 return "LanaiISD::SELECT_CC"; 1104 case LanaiISD::SETCC: 1105 return "LanaiISD::SETCC"; 1106 case LanaiISD::SUBBF: 1107 return "LanaiISD::SUBBF"; 1108 case LanaiISD::SET_FLAG: 1109 return "LanaiISD::SET_FLAG"; 1110 case LanaiISD::BR_CC: 1111 return "LanaiISD::BR_CC"; 1112 case LanaiISD::Wrapper: 1113 return "LanaiISD::Wrapper"; 1114 case LanaiISD::HI: 1115 return "LanaiISD::HI"; 1116 case LanaiISD::LO: 1117 return "LanaiISD::LO"; 1118 case LanaiISD::SMALL: 1119 return "LanaiISD::SMALL"; 1120 default: 1121 return nullptr; 1122 } 1123 } 1124 1125 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, 1126 SelectionDAG &DAG) const { 1127 SDLoc DL(Op); 1128 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1129 const Constant *C = N->getConstVal(); 1130 const LanaiTargetObjectFile *TLOF = 1131 static_cast<const LanaiTargetObjectFile *>( 1132 getTargetMachine().getObjFileLowering()); 1133 1134 // If the code model is small or constant will be placed in the small section, 1135 // then assume address will fit in 21-bits. 1136 if (getTargetMachine().getCodeModel() == CodeModel::Small || 1137 TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { 1138 SDValue Small = DAG.getTargetConstantPool( 1139 C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG); 1140 return DAG.getNode(ISD::OR, DL, MVT::i32, 1141 DAG.getRegister(Lanai::R0, MVT::i32), 1142 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1143 } else { 1144 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1145 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1146 1147 SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), 1148 N->getOffset(), OpFlagHi); 1149 SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), 1150 N->getOffset(), OpFlagLo); 1151 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1152 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1153 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1154 return Result; 1155 } 1156 } 1157 1158 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, 1159 SelectionDAG &DAG) const { 1160 SDLoc DL(Op); 1161 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 1162 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 1163 1164 const LanaiTargetObjectFile *TLOF = 1165 static_cast<const LanaiTargetObjectFile *>( 1166 getTargetMachine().getObjFileLowering()); 1167 1168 // If the code model is small or global variable will be placed in the small 1169 // section, then assume address will fit in 21-bits. 1170 const GlobalObject *GO = GV->getBaseObject(); 1171 if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) { 1172 SDValue Small = DAG.getTargetGlobalAddress( 1173 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); 1174 return DAG.getNode(ISD::OR, DL, MVT::i32, 1175 DAG.getRegister(Lanai::R0, MVT::i32), 1176 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1177 } else { 1178 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1179 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1180 1181 // Create the TargetGlobalAddress node, folding in the constant offset. 1182 SDValue Hi = DAG.getTargetGlobalAddress( 1183 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); 1184 SDValue Lo = DAG.getTargetGlobalAddress( 1185 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); 1186 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1187 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1188 return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1189 } 1190 } 1191 1192 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, 1193 SelectionDAG &DAG) const { 1194 SDLoc DL(Op); 1195 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1196 1197 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1198 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1199 1200 SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); 1201 SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); 1202 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1203 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1204 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1205 return Result; 1206 } 1207 1208 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, 1209 SelectionDAG &DAG) const { 1210 SDLoc DL(Op); 1211 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1212 1213 // If the code model is small assume address will fit in 21-bits. 1214 if (getTargetMachine().getCodeModel() == CodeModel::Small) { 1215 SDValue Small = DAG.getTargetJumpTable( 1216 JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); 1217 return DAG.getNode(ISD::OR, DL, MVT::i32, 1218 DAG.getRegister(Lanai::R0, MVT::i32), 1219 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1220 } else { 1221 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1222 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1223 1224 SDValue Hi = DAG.getTargetJumpTable( 1225 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); 1226 SDValue Lo = DAG.getTargetJumpTable( 1227 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); 1228 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1229 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1230 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1231 return Result; 1232 } 1233 } 1234 1235 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op, 1236 SelectionDAG &DAG) const { 1237 EVT VT = Op.getValueType(); 1238 unsigned VTBits = VT.getSizeInBits(); 1239 SDLoc dl(Op); 1240 assert(Op.getNumOperands() == 3 && "Unexpected SHL!"); 1241 SDValue ShOpLo = Op.getOperand(0); 1242 SDValue ShOpHi = Op.getOperand(1); 1243 SDValue ShAmt = Op.getOperand(2); 1244 1245 // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt: 1246 // LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt)) 1247 // HiBitsForHi = ShOpHi << ShAmt 1248 // Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi) 1249 // Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt) 1250 // return (Hi << 32) | Lo; 1251 1252 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 1253 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1254 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 1255 1256 // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We 1257 // wanted 0, so CSEL it directly. 1258 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1259 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1260 LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi); 1261 1262 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 1263 DAG.getConstant(VTBits, dl, MVT::i32)); 1264 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 1265 SDValue HiForNormalShift = 1266 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); 1267 1268 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 1269 1270 SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE); 1271 SDValue Hi = 1272 DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift); 1273 1274 // Lanai shifts of larger than register sizes are wrapped rather than 1275 // clamped, so we can't just emit "lo << b" if b is too big. 1276 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 1277 SDValue Lo = DAG.getSelect( 1278 dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift); 1279 1280 SDValue Ops[2] = {Lo, Hi}; 1281 return DAG.getMergeValues(Ops, dl); 1282 } 1283 1284 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op, 1285 SelectionDAG &DAG) const { 1286 MVT VT = Op.getSimpleValueType(); 1287 unsigned VTBits = VT.getSizeInBits(); 1288 SDLoc dl(Op); 1289 SDValue ShOpLo = Op.getOperand(0); 1290 SDValue ShOpHi = Op.getOperand(1); 1291 SDValue ShAmt = Op.getOperand(2); 1292 1293 // Performs the following for a >> b: 1294 // unsigned r_high = a_high >> b; 1295 // r_high = (32 - b <= 0) ? 0 : r_high; 1296 // 1297 // unsigned r_low = a_low >> b; 1298 // r_low = (32 - b <= 0) ? r_high : r_low; 1299 // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b)); 1300 // return (unsigned long long)r_high << 32 | r_low; 1301 // Note: This takes advantage of Lanai's shift behavior to avoid needing to 1302 // mask the shift amount. 1303 1304 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1305 SDValue NegatedPlus32 = DAG.getNode( 1306 ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1307 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE); 1308 1309 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt); 1310 Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi); 1311 1312 SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt); 1313 Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo); 1314 SDValue CarryBits = 1315 DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32); 1316 SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1317 Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo, 1318 DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits)); 1319 1320 SDValue Ops[2] = {Lo, Hi}; 1321 return DAG.getMergeValues(Ops, dl); 1322 } 1323 1324 // Helper function that checks if N is a null or all ones constant. 1325 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 1326 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 1327 } 1328 1329 // Return true if N is conditionally 0 or all ones. 1330 // Detects these expressions where cc is an i1 value: 1331 // 1332 // (select cc 0, y) [AllOnes=0] 1333 // (select cc y, 0) [AllOnes=0] 1334 // (zext cc) [AllOnes=0] 1335 // (sext cc) [AllOnes=0/1] 1336 // (select cc -1, y) [AllOnes=1] 1337 // (select cc y, -1) [AllOnes=1] 1338 // 1339 // * AllOnes determines whether to check for an all zero (AllOnes false) or an 1340 // all ones operand (AllOnes true). 1341 // * Invert is set when N is the all zero/ones constant when CC is false. 1342 // * OtherOp is set to the alternative value of N. 1343 // 1344 // For example, for (select cc X, Y) and AllOnes = 0 if: 1345 // * X = 0, Invert = False and OtherOp = Y 1346 // * Y = 0, Invert = True and OtherOp = X 1347 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, 1348 bool &Invert, SDValue &OtherOp, 1349 SelectionDAG &DAG) { 1350 switch (N->getOpcode()) { 1351 default: 1352 return false; 1353 case ISD::SELECT: { 1354 CC = N->getOperand(0); 1355 SDValue N1 = N->getOperand(1); 1356 SDValue N2 = N->getOperand(2); 1357 if (isZeroOrAllOnes(N1, AllOnes)) { 1358 Invert = false; 1359 OtherOp = N2; 1360 return true; 1361 } 1362 if (isZeroOrAllOnes(N2, AllOnes)) { 1363 Invert = true; 1364 OtherOp = N1; 1365 return true; 1366 } 1367 return false; 1368 } 1369 case ISD::ZERO_EXTEND: { 1370 // (zext cc) can never be the all ones value. 1371 if (AllOnes) 1372 return false; 1373 CC = N->getOperand(0); 1374 if (CC.getValueType() != MVT::i1) 1375 return false; 1376 SDLoc dl(N); 1377 EVT VT = N->getValueType(0); 1378 OtherOp = DAG.getConstant(1, dl, VT); 1379 Invert = true; 1380 return true; 1381 } 1382 case ISD::SIGN_EXTEND: { 1383 CC = N->getOperand(0); 1384 if (CC.getValueType() != MVT::i1) 1385 return false; 1386 SDLoc dl(N); 1387 EVT VT = N->getValueType(0); 1388 Invert = !AllOnes; 1389 if (AllOnes) 1390 // When looking for an AllOnes constant, N is an sext, and the 'other' 1391 // value is 0. 1392 OtherOp = DAG.getConstant(0, dl, VT); 1393 else 1394 OtherOp = 1395 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT); 1396 return true; 1397 } 1398 } 1399 } 1400 1401 // Combine a constant select operand into its use: 1402 // 1403 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 1404 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1405 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 1406 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 1407 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 1408 // 1409 // The transform is rejected if the select doesn't have a constant operand that 1410 // is null, or all ones when AllOnes is set. 1411 // 1412 // Also recognize sext/zext from i1: 1413 // 1414 // (add (zext cc), x) -> (select cc (add x, 1), x) 1415 // (add (sext cc), x) -> (select cc (add x, -1), x) 1416 // 1417 // These transformations eventually create predicated instructions. 1418 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 1419 TargetLowering::DAGCombinerInfo &DCI, 1420 bool AllOnes) { 1421 SelectionDAG &DAG = DCI.DAG; 1422 EVT VT = N->getValueType(0); 1423 SDValue NonConstantVal; 1424 SDValue CCOp; 1425 bool SwapSelectOps; 1426 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 1427 NonConstantVal, DAG)) 1428 return SDValue(); 1429 1430 // Slct is now know to be the desired identity constant when CC is true. 1431 SDValue TrueVal = OtherOp; 1432 SDValue FalseVal = 1433 DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 1434 // Unless SwapSelectOps says CC should be false. 1435 if (SwapSelectOps) 1436 std::swap(TrueVal, FalseVal); 1437 1438 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); 1439 } 1440 1441 // Attempt combineSelectAndUse on each operand of a commutative operator N. 1442 static SDValue 1443 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 1444 bool AllOnes) { 1445 SDValue N0 = N->getOperand(0); 1446 SDValue N1 = N->getOperand(1); 1447 if (N0.getNode()->hasOneUse()) 1448 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) 1449 return Result; 1450 if (N1.getNode()->hasOneUse()) 1451 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) 1452 return Result; 1453 return SDValue(); 1454 } 1455 1456 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 1457 static SDValue PerformSUBCombine(SDNode *N, 1458 TargetLowering::DAGCombinerInfo &DCI) { 1459 SDValue N0 = N->getOperand(0); 1460 SDValue N1 = N->getOperand(1); 1461 1462 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1463 if (N1.getNode()->hasOneUse()) 1464 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false)) 1465 return Result; 1466 1467 return SDValue(); 1468 } 1469 1470 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N, 1471 DAGCombinerInfo &DCI) const { 1472 switch (N->getOpcode()) { 1473 default: 1474 break; 1475 case ISD::ADD: 1476 case ISD::OR: 1477 case ISD::XOR: 1478 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false); 1479 case ISD::AND: 1480 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true); 1481 case ISD::SUB: 1482 return PerformSUBCombine(N, DCI); 1483 } 1484 1485 return SDValue(); 1486 } 1487 1488 void LanaiTargetLowering::computeKnownBitsForTargetNode( 1489 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 1490 const SelectionDAG &DAG, unsigned Depth) const { 1491 unsigned BitWidth = Known.getBitWidth(); 1492 switch (Op.getOpcode()) { 1493 default: 1494 break; 1495 case LanaiISD::SETCC: 1496 Known = KnownBits(BitWidth); 1497 Known.Zero.setBits(1, BitWidth); 1498 break; 1499 case LanaiISD::SELECT_CC: 1500 KnownBits Known2; 1501 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 1502 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 1503 Known.Zero &= Known2.Zero; 1504 Known.One &= Known2.One; 1505 break; 1506 } 1507 } 1508