1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LanaiTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LanaiISelLowering.h" 14 #include "Lanai.h" 15 #include "LanaiCondCode.h" 16 #include "LanaiMachineFunctionInfo.h" 17 #include "LanaiSubtarget.h" 18 #include "LanaiTargetObjectFile.h" 19 #include "MCTargetDesc/LanaiBaseInfo.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/TargetCallingConv.h" 34 #include "llvm/CodeGen/ValueTypes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CodeGen.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/KnownBits.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cmath> 51 #include <cstdint> 52 #include <cstdlib> 53 #include <utility> 54 55 #define DEBUG_TYPE "lanai-lower" 56 57 using namespace llvm; 58 59 // Limit on number of instructions the lowered multiplication may have before a 60 // call to the library function should be generated instead. The threshold is 61 // currently set to 14 as this was the smallest threshold that resulted in all 62 // constant multiplications being lowered. A threshold of 5 covered all cases 63 // except for one multiplication which required 14. mulsi3 requires 16 64 // instructions (including the prologue and epilogue but excluding instructions 65 // at call site). Until we can inline mulsi3, generating at most 14 instructions 66 // will be faster than invoking mulsi3. 67 static cl::opt<int> LanaiLowerConstantMulThreshold( 68 "lanai-constant-mul-threshold", cl::Hidden, 69 cl::desc("Maximum number of instruction to generate when lowering constant " 70 "multiplication instead of calling library function [default=14]"), 71 cl::init(14)); 72 73 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, 74 const LanaiSubtarget &STI) 75 : TargetLowering(TM) { 76 // Set up the register classes. 77 addRegisterClass(MVT::i32, &Lanai::GPRRegClass); 78 79 // Compute derived properties from the register classes 80 TRI = STI.getRegisterInfo(); 81 computeRegisterProperties(TRI); 82 83 setStackPointerRegisterToSaveRestore(Lanai::SP); 84 85 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 88 setOperationAction(ISD::SETCC, MVT::i32, Custom); 89 setOperationAction(ISD::SELECT, MVT::i32, Expand); 90 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 91 92 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 93 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 94 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 95 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 96 97 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 98 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 99 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 100 101 setOperationAction(ISD::VASTART, MVT::Other, Custom); 102 setOperationAction(ISD::VAARG, MVT::Other, Expand); 103 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 104 setOperationAction(ISD::VAEND, MVT::Other, Expand); 105 106 setOperationAction(ISD::SDIV, MVT::i32, Expand); 107 setOperationAction(ISD::UDIV, MVT::i32, Expand); 108 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 109 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 110 setOperationAction(ISD::SREM, MVT::i32, Expand); 111 setOperationAction(ISD::UREM, MVT::i32, Expand); 112 113 setOperationAction(ISD::MUL, MVT::i32, Custom); 114 setOperationAction(ISD::MULHU, MVT::i32, Expand); 115 setOperationAction(ISD::MULHS, MVT::i32, Expand); 116 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 117 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 118 119 setOperationAction(ISD::ROTR, MVT::i32, Expand); 120 setOperationAction(ISD::ROTL, MVT::i32, Expand); 121 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 122 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 123 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 124 125 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 126 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 127 setOperationAction(ISD::CTLZ, MVT::i32, Legal); 128 setOperationAction(ISD::CTTZ, MVT::i32, Legal); 129 130 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 131 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 132 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 133 134 // Extended load operations for i1 types must be promoted 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 139 } 140 141 setTargetDAGCombine(ISD::ADD); 142 setTargetDAGCombine(ISD::SUB); 143 setTargetDAGCombine(ISD::AND); 144 setTargetDAGCombine(ISD::OR); 145 setTargetDAGCombine(ISD::XOR); 146 147 // Function alignments 148 setMinFunctionAlignment(Align(4)); 149 setPrefFunctionAlignment(Align(4)); 150 151 setJumpIsExpensive(true); 152 153 // TODO: Setting the minimum jump table entries needed before a 154 // switch is transformed to a jump table to 100 to avoid creating jump tables 155 // as this was causing bad performance compared to a large group of if 156 // statements. Re-evaluate this on new benchmarks. 157 setMinimumJumpTableEntries(100); 158 159 // Use fast calling convention for library functions. 160 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { 161 setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast); 162 } 163 164 MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 165 MaxStoresPerMemsetOptSize = 8; 166 MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores 167 MaxStoresPerMemcpyOptSize = 8; 168 MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores 169 MaxStoresPerMemmoveOptSize = 8; 170 171 // Booleans always contain 0 or 1. 172 setBooleanContents(ZeroOrOneBooleanContent); 173 } 174 175 SDValue LanaiTargetLowering::LowerOperation(SDValue Op, 176 SelectionDAG &DAG) const { 177 switch (Op.getOpcode()) { 178 case ISD::MUL: 179 return LowerMUL(Op, DAG); 180 case ISD::BR_CC: 181 return LowerBR_CC(Op, DAG); 182 case ISD::ConstantPool: 183 return LowerConstantPool(Op, DAG); 184 case ISD::GlobalAddress: 185 return LowerGlobalAddress(Op, DAG); 186 case ISD::BlockAddress: 187 return LowerBlockAddress(Op, DAG); 188 case ISD::JumpTable: 189 return LowerJumpTable(Op, DAG); 190 case ISD::SELECT_CC: 191 return LowerSELECT_CC(Op, DAG); 192 case ISD::SETCC: 193 return LowerSETCC(Op, DAG); 194 case ISD::SHL_PARTS: 195 return LowerSHL_PARTS(Op, DAG); 196 case ISD::SRL_PARTS: 197 return LowerSRL_PARTS(Op, DAG); 198 case ISD::VASTART: 199 return LowerVASTART(Op, DAG); 200 case ISD::DYNAMIC_STACKALLOC: 201 return LowerDYNAMIC_STACKALLOC(Op, DAG); 202 case ISD::RETURNADDR: 203 return LowerRETURNADDR(Op, DAG); 204 case ISD::FRAMEADDR: 205 return LowerFRAMEADDR(Op, DAG); 206 default: 207 llvm_unreachable("unimplemented operand"); 208 } 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Lanai Inline Assembly Support 213 //===----------------------------------------------------------------------===// 214 215 Register LanaiTargetLowering::getRegisterByName( 216 const char *RegName, LLT /*VT*/, 217 const MachineFunction & /*MF*/) const { 218 // Only unallocatable registers should be matched here. 219 Register Reg = StringSwitch<unsigned>(RegName) 220 .Case("pc", Lanai::PC) 221 .Case("sp", Lanai::SP) 222 .Case("fp", Lanai::FP) 223 .Case("rr1", Lanai::RR1) 224 .Case("r10", Lanai::R10) 225 .Case("rr2", Lanai::RR2) 226 .Case("r11", Lanai::R11) 227 .Case("rca", Lanai::RCA) 228 .Default(0); 229 230 if (Reg) 231 return Reg; 232 report_fatal_error("Invalid register name global variable"); 233 } 234 235 std::pair<unsigned, const TargetRegisterClass *> 236 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 237 StringRef Constraint, 238 MVT VT) const { 239 if (Constraint.size() == 1) 240 // GCC Constraint Letters 241 switch (Constraint[0]) { 242 case 'r': // GENERAL_REGS 243 return std::make_pair(0U, &Lanai::GPRRegClass); 244 default: 245 break; 246 } 247 248 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 249 } 250 251 // Examine constraint type and operand type and determine a weight value. 252 // This object must already have been set up with the operand type 253 // and the current alternative constraint selected. 254 TargetLowering::ConstraintWeight 255 LanaiTargetLowering::getSingleConstraintMatchWeight( 256 AsmOperandInfo &Info, const char *Constraint) const { 257 ConstraintWeight Weight = CW_Invalid; 258 Value *CallOperandVal = Info.CallOperandVal; 259 // If we don't have a value, we can't do a match, 260 // but allow it at the lowest weight. 261 if (CallOperandVal == nullptr) 262 return CW_Default; 263 // Look at the constraint type. 264 switch (*Constraint) { 265 case 'I': // signed 16 bit immediate 266 case 'J': // integer zero 267 case 'K': // unsigned 16 bit immediate 268 case 'L': // immediate in the range 0 to 31 269 case 'M': // signed 32 bit immediate where lower 16 bits are 0 270 case 'N': // signed 26 bit immediate 271 case 'O': // integer zero 272 if (isa<ConstantInt>(CallOperandVal)) 273 Weight = CW_Constant; 274 break; 275 default: 276 Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); 277 break; 278 } 279 return Weight; 280 } 281 282 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops 283 // vector. If it is invalid, don't add anything to Ops. 284 void LanaiTargetLowering::LowerAsmOperandForConstraint( 285 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 286 SelectionDAG &DAG) const { 287 SDValue Result(nullptr, 0); 288 289 // Only support length 1 constraints for now. 290 if (Constraint.length() > 1) 291 return; 292 293 char ConstraintLetter = Constraint[0]; 294 switch (ConstraintLetter) { 295 case 'I': // Signed 16 bit constant 296 // If this fails, the parent routine will give an error 297 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 298 if (isInt<16>(C->getSExtValue())) { 299 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 300 Op.getValueType()); 301 break; 302 } 303 } 304 return; 305 case 'J': // integer zero 306 case 'O': 307 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 308 if (C->getZExtValue() == 0) { 309 Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); 310 break; 311 } 312 } 313 return; 314 case 'K': // unsigned 16 bit immediate 315 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 316 if (isUInt<16>(C->getZExtValue())) { 317 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 318 Op.getValueType()); 319 break; 320 } 321 } 322 return; 323 case 'L': // immediate in the range 0 to 31 324 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 325 if (C->getZExtValue() <= 31) { 326 Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), 327 Op.getValueType()); 328 break; 329 } 330 } 331 return; 332 case 'M': // signed 32 bit immediate where lower 16 bits are 0 333 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 334 int64_t Val = C->getSExtValue(); 335 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { 336 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 337 break; 338 } 339 } 340 return; 341 case 'N': // signed 26 bit immediate 342 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 343 int64_t Val = C->getSExtValue(); 344 if ((Val >= -33554432) && (Val <= 33554431)) { 345 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 346 break; 347 } 348 } 349 return; 350 default: 351 break; // This will fall through to the generic implementation 352 } 353 354 if (Result.getNode()) { 355 Ops.push_back(Result); 356 return; 357 } 358 359 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 360 } 361 362 //===----------------------------------------------------------------------===// 363 // Calling Convention Implementation 364 //===----------------------------------------------------------------------===// 365 366 #include "LanaiGenCallingConv.inc" 367 368 static unsigned NumFixedArgs; 369 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, 370 CCValAssign::LocInfo LocInfo, 371 ISD::ArgFlagsTy ArgFlags, CCState &State) { 372 // Handle fixed arguments with default CC. 373 // Note: Both the default and fast CC handle VarArg the same and hence the 374 // calling convention of the function is not considered here. 375 if (ValNo < NumFixedArgs) { 376 return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); 377 } 378 379 // Promote i8/i16 args to i32 380 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 381 LocVT = MVT::i32; 382 if (ArgFlags.isSExt()) 383 LocInfo = CCValAssign::SExt; 384 else if (ArgFlags.isZExt()) 385 LocInfo = CCValAssign::ZExt; 386 else 387 LocInfo = CCValAssign::AExt; 388 } 389 390 // VarArgs get passed on stack 391 unsigned Offset = State.AllocateStack(4, Align(4)); 392 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 393 return false; 394 } 395 396 SDValue LanaiTargetLowering::LowerFormalArguments( 397 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 398 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 399 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 400 switch (CallConv) { 401 case CallingConv::C: 402 case CallingConv::Fast: 403 return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); 404 default: 405 report_fatal_error("Unsupported calling convention"); 406 } 407 } 408 409 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 410 SmallVectorImpl<SDValue> &InVals) const { 411 SelectionDAG &DAG = CLI.DAG; 412 SDLoc &DL = CLI.DL; 413 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 414 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 415 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 416 SDValue Chain = CLI.Chain; 417 SDValue Callee = CLI.Callee; 418 bool &IsTailCall = CLI.IsTailCall; 419 CallingConv::ID CallConv = CLI.CallConv; 420 bool IsVarArg = CLI.IsVarArg; 421 422 // Lanai target does not yet support tail call optimization. 423 IsTailCall = false; 424 425 switch (CallConv) { 426 case CallingConv::Fast: 427 case CallingConv::C: 428 return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, 429 OutVals, Ins, DL, DAG, InVals); 430 default: 431 report_fatal_error("Unsupported calling convention"); 432 } 433 } 434 435 // LowerCCCArguments - transform physical registers into virtual registers and 436 // generate load operations for arguments places on the stack. 437 SDValue LanaiTargetLowering::LowerCCCArguments( 438 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 439 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 440 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 441 MachineFunction &MF = DAG.getMachineFunction(); 442 MachineFrameInfo &MFI = MF.getFrameInfo(); 443 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 444 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 445 446 // Assign locations to all of the incoming arguments. 447 SmallVector<CCValAssign, 16> ArgLocs; 448 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 449 *DAG.getContext()); 450 if (CallConv == CallingConv::Fast) { 451 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); 452 } else { 453 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); 454 } 455 456 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 457 CCValAssign &VA = ArgLocs[i]; 458 if (VA.isRegLoc()) { 459 // Arguments passed in registers 460 EVT RegVT = VA.getLocVT(); 461 switch (RegVT.getSimpleVT().SimpleTy) { 462 case MVT::i32: { 463 Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); 464 RegInfo.addLiveIn(VA.getLocReg(), VReg); 465 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); 466 467 // If this is an 8/16-bit value, it is really passed promoted to 32 468 // bits. Insert an assert[sz]ext to capture this, then truncate to the 469 // right size. 470 if (VA.getLocInfo() == CCValAssign::SExt) 471 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, 472 DAG.getValueType(VA.getValVT())); 473 else if (VA.getLocInfo() == CCValAssign::ZExt) 474 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, 475 DAG.getValueType(VA.getValVT())); 476 477 if (VA.getLocInfo() != CCValAssign::Full) 478 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); 479 480 InVals.push_back(ArgValue); 481 break; 482 } 483 default: 484 LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " 485 << RegVT.getEVTString() << "\n"); 486 llvm_unreachable("unhandled argument type"); 487 } 488 } else { 489 // Only arguments passed on the stack should make it here. 490 assert(VA.isMemLoc()); 491 // Load the argument to a virtual register 492 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 493 // Check that the argument fits in stack slot 494 if (ObjSize > 4) { 495 errs() << "LowerFormalArguments Unhandled argument type: " 496 << EVT(VA.getLocVT()).getEVTString() << "\n"; 497 } 498 // Create the frame index object for this incoming parameter... 499 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 500 501 // Create the SelectionDAG nodes corresponding to a load 502 // from this parameter 503 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 504 InVals.push_back(DAG.getLoad( 505 VA.getLocVT(), DL, Chain, FIN, 506 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 507 } 508 } 509 510 // The Lanai ABI for returning structs by value requires that we copy 511 // the sret argument into rv for the return. Save the argument into 512 // a virtual register so that we can access it from the return points. 513 if (MF.getFunction().hasStructRetAttr()) { 514 unsigned Reg = LanaiMFI->getSRetReturnReg(); 515 if (!Reg) { 516 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); 517 LanaiMFI->setSRetReturnReg(Reg); 518 } 519 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); 520 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 521 } 522 523 if (IsVarArg) { 524 // Record the frame index of the first variable argument 525 // which is a value necessary to VASTART. 526 int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true); 527 LanaiMFI->setVarArgsFrameIndex(FI); 528 } 529 530 return Chain; 531 } 532 533 bool LanaiTargetLowering::CanLowerReturn( 534 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 535 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 536 SmallVector<CCValAssign, 16> RVLocs; 537 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 538 539 return CCInfo.CheckReturn(Outs, RetCC_Lanai32); 540 } 541 542 SDValue 543 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 544 bool IsVarArg, 545 const SmallVectorImpl<ISD::OutputArg> &Outs, 546 const SmallVectorImpl<SDValue> &OutVals, 547 const SDLoc &DL, SelectionDAG &DAG) const { 548 // CCValAssign - represent the assignment of the return value to a location 549 SmallVector<CCValAssign, 16> RVLocs; 550 551 // CCState - Info about the registers and stack slot. 552 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 553 *DAG.getContext()); 554 555 // Analize return values. 556 CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); 557 558 SDValue Flag; 559 SmallVector<SDValue, 4> RetOps(1, Chain); 560 561 // Copy the result values into the output registers. 562 for (unsigned i = 0; i != RVLocs.size(); ++i) { 563 CCValAssign &VA = RVLocs[i]; 564 assert(VA.isRegLoc() && "Can only return in registers!"); 565 566 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); 567 568 // Guarantee that all emitted copies are stuck together with flags. 569 Flag = Chain.getValue(1); 570 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 571 } 572 573 // The Lanai ABI for returning structs by value requires that we copy 574 // the sret argument into rv for the return. We saved the argument into 575 // a virtual register in the entry block, so now we copy the value out 576 // and into rv. 577 if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) { 578 MachineFunction &MF = DAG.getMachineFunction(); 579 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 580 unsigned Reg = LanaiMFI->getSRetReturnReg(); 581 assert(Reg && 582 "SRetReturnReg should have been set in LowerFormalArguments()."); 583 SDValue Val = 584 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 585 586 Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag); 587 Flag = Chain.getValue(1); 588 RetOps.push_back( 589 DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); 590 } 591 592 RetOps[0] = Chain; // Update chain 593 594 unsigned Opc = LanaiISD::RET_FLAG; 595 if (Flag.getNode()) 596 RetOps.push_back(Flag); 597 598 // Return Void 599 return DAG.getNode(Opc, DL, MVT::Other, 600 ArrayRef<SDValue>(&RetOps[0], RetOps.size())); 601 } 602 603 // LowerCCCCallTo - functions arguments are copied from virtual regs to 604 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 605 SDValue LanaiTargetLowering::LowerCCCCallTo( 606 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, 607 bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs, 608 const SmallVectorImpl<SDValue> &OutVals, 609 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 610 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 611 // Analyze operands of the call, assigning locations to each operand. 612 SmallVector<CCValAssign, 16> ArgLocs; 613 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 614 *DAG.getContext()); 615 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 616 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 617 618 NumFixedArgs = 0; 619 if (IsVarArg && G) { 620 const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); 621 if (CalleeFn) 622 NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); 623 } 624 if (NumFixedArgs) 625 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); 626 else { 627 if (CallConv == CallingConv::Fast) 628 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); 629 else 630 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); 631 } 632 633 // Get a count of how many bytes are to be pushed on the stack. 634 unsigned NumBytes = CCInfo.getNextStackOffset(); 635 636 // Create local copies for byval args. 637 SmallVector<SDValue, 8> ByValArgs; 638 for (unsigned I = 0, E = Outs.size(); I != E; ++I) { 639 ISD::ArgFlagsTy Flags = Outs[I].Flags; 640 if (!Flags.isByVal()) 641 continue; 642 643 SDValue Arg = OutVals[I]; 644 unsigned Size = Flags.getByValSize(); 645 Align Alignment = Flags.getNonZeroByValAlign(); 646 647 int FI = MFI.CreateStackObject(Size, Alignment, false); 648 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 649 SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); 650 651 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 652 /*IsVolatile=*/false, 653 /*AlwaysInline=*/false, 654 /*isTailCall=*/false, MachinePointerInfo(), 655 MachinePointerInfo()); 656 ByValArgs.push_back(FIPtr); 657 } 658 659 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 660 661 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 662 SmallVector<SDValue, 12> MemOpChains; 663 SDValue StackPtr; 664 665 // Walk the register/memloc assignments, inserting copies/loads. 666 for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { 667 CCValAssign &VA = ArgLocs[I]; 668 SDValue Arg = OutVals[I]; 669 ISD::ArgFlagsTy Flags = Outs[I].Flags; 670 671 // Promote the value if needed. 672 switch (VA.getLocInfo()) { 673 case CCValAssign::Full: 674 break; 675 case CCValAssign::SExt: 676 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 677 break; 678 case CCValAssign::ZExt: 679 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 680 break; 681 case CCValAssign::AExt: 682 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 683 break; 684 default: 685 llvm_unreachable("Unknown loc info!"); 686 } 687 688 // Use local copy if it is a byval arg. 689 if (Flags.isByVal()) 690 Arg = ByValArgs[J++]; 691 692 // Arguments that can be passed on register must be kept at RegsToPass 693 // vector 694 if (VA.isRegLoc()) { 695 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 696 } else { 697 assert(VA.isMemLoc()); 698 699 if (StackPtr.getNode() == nullptr) 700 StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, 701 getPointerTy(DAG.getDataLayout())); 702 703 SDValue PtrOff = 704 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 705 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 706 707 MemOpChains.push_back( 708 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 709 } 710 } 711 712 // Transform all store nodes into one single node because all store nodes are 713 // independent of each other. 714 if (!MemOpChains.empty()) 715 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 716 ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); 717 718 SDValue InFlag; 719 720 // Build a sequence of copy-to-reg nodes chained together with token chain and 721 // flag operands which copy the outgoing args into registers. The InFlag in 722 // necessary since all emitted instructions must be stuck together. 723 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 724 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 725 RegsToPass[I].second, InFlag); 726 InFlag = Chain.getValue(1); 727 } 728 729 // If the callee is a GlobalAddress node (quite common, every direct call is) 730 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 731 // Likewise ExternalSymbol -> TargetExternalSymbol. 732 uint8_t OpFlag = LanaiII::MO_NO_FLAG; 733 if (G) { 734 Callee = DAG.getTargetGlobalAddress( 735 G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); 736 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 737 Callee = DAG.getTargetExternalSymbol( 738 E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); 739 } 740 741 // Returns a chain & a flag for retval copy to use. 742 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 743 SmallVector<SDValue, 8> Ops; 744 Ops.push_back(Chain); 745 Ops.push_back(Callee); 746 747 // Add a register mask operand representing the call-preserved registers. 748 // TODO: Should return-twice functions be handled? 749 const uint32_t *Mask = 750 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 751 assert(Mask && "Missing call preserved mask for calling convention"); 752 Ops.push_back(DAG.getRegisterMask(Mask)); 753 754 // Add argument registers to the end of the list so that they are 755 // known live into the call. 756 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 757 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 758 RegsToPass[I].second.getValueType())); 759 760 if (InFlag.getNode()) 761 Ops.push_back(InFlag); 762 763 Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, 764 ArrayRef<SDValue>(&Ops[0], Ops.size())); 765 InFlag = Chain.getValue(1); 766 767 // Create the CALLSEQ_END node. 768 Chain = DAG.getCALLSEQ_END( 769 Chain, 770 DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), 771 DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag, 772 DL); 773 InFlag = Chain.getValue(1); 774 775 // Handle result values, copying them out of physregs into vregs that we 776 // return. 777 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 778 InVals); 779 } 780 781 // LowerCallResult - Lower the result values of a call into the 782 // appropriate copies out of appropriate physical registers. 783 SDValue LanaiTargetLowering::LowerCallResult( 784 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 785 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 786 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 787 // Assign locations to each value returned by this call. 788 SmallVector<CCValAssign, 16> RVLocs; 789 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 790 *DAG.getContext()); 791 792 CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); 793 794 // Copy all of the result registers out of their specified physreg. 795 for (unsigned I = 0; I != RVLocs.size(); ++I) { 796 Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), 797 RVLocs[I].getValVT(), InFlag) 798 .getValue(1); 799 InFlag = Chain.getValue(2); 800 InVals.push_back(Chain.getValue(0)); 801 } 802 803 return Chain; 804 } 805 806 //===----------------------------------------------------------------------===// 807 // Custom Lowerings 808 //===----------------------------------------------------------------------===// 809 810 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL, 811 SDValue &RHS, SelectionDAG &DAG) { 812 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 813 814 // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, 815 // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) 816 // and Lanai only supports integer comparisons, so only provide definitions 817 // for them. 818 switch (SetCCOpcode) { 819 case ISD::SETEQ: 820 return LPCC::ICC_EQ; 821 case ISD::SETGT: 822 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 823 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 824 // X > -1 -> X >= 0 -> is_plus(X) 825 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 826 return LPCC::ICC_PL; 827 } 828 return LPCC::ICC_GT; 829 case ISD::SETUGT: 830 return LPCC::ICC_UGT; 831 case ISD::SETLT: 832 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 833 if (RHSC->getZExtValue() == 0) 834 // X < 0 -> is_minus(X) 835 return LPCC::ICC_MI; 836 return LPCC::ICC_LT; 837 case ISD::SETULT: 838 return LPCC::ICC_ULT; 839 case ISD::SETLE: 840 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 841 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 842 // X <= -1 -> X < 0 -> is_minus(X) 843 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 844 return LPCC::ICC_MI; 845 } 846 return LPCC::ICC_LE; 847 case ISD::SETULE: 848 return LPCC::ICC_ULE; 849 case ISD::SETGE: 850 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 851 if (RHSC->getZExtValue() == 0) 852 // X >= 0 -> is_plus(X) 853 return LPCC::ICC_PL; 854 return LPCC::ICC_GE; 855 case ISD::SETUGE: 856 return LPCC::ICC_UGE; 857 case ISD::SETNE: 858 return LPCC::ICC_NE; 859 case ISD::SETONE: 860 case ISD::SETUNE: 861 case ISD::SETOGE: 862 case ISD::SETOLE: 863 case ISD::SETOLT: 864 case ISD::SETOGT: 865 case ISD::SETOEQ: 866 case ISD::SETUEQ: 867 case ISD::SETO: 868 case ISD::SETUO: 869 llvm_unreachable("Unsupported comparison."); 870 default: 871 llvm_unreachable("Unknown integer condition code!"); 872 } 873 } 874 875 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 876 SDValue Chain = Op.getOperand(0); 877 SDValue Cond = Op.getOperand(1); 878 SDValue LHS = Op.getOperand(2); 879 SDValue RHS = Op.getOperand(3); 880 SDValue Dest = Op.getOperand(4); 881 SDLoc DL(Op); 882 883 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 884 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 885 SDValue Flag = 886 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 887 888 return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, 889 TargetCC, Flag); 890 } 891 892 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 893 EVT VT = Op->getValueType(0); 894 if (VT != MVT::i32) 895 return SDValue(); 896 897 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 898 if (!C) 899 return SDValue(); 900 901 int64_t MulAmt = C->getSExtValue(); 902 int32_t HighestOne = -1; 903 uint32_t NonzeroEntries = 0; 904 int SignedDigit[32] = {0}; 905 906 // Convert to non-adjacent form (NAF) signed-digit representation. 907 // NAF is a signed-digit form where no adjacent digits are non-zero. It is the 908 // minimal Hamming weight representation of a number (on average 1/3 of the 909 // digits will be non-zero vs 1/2 for regular binary representation). And as 910 // the non-zero digits will be the only digits contributing to the instruction 911 // count, this is desirable. The next loop converts it to NAF (following the 912 // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by 913 // choosing the non-zero coefficients such that the resulting quotient is 914 // divisible by 2 which will cause the next coefficient to be zero. 915 int64_t E = std::abs(MulAmt); 916 int S = (MulAmt < 0 ? -1 : 1); 917 int I = 0; 918 while (E > 0) { 919 int ZI = 0; 920 if (E % 2 == 1) { 921 ZI = 2 - (E % 4); 922 if (ZI != 0) 923 ++NonzeroEntries; 924 } 925 SignedDigit[I] = S * ZI; 926 if (SignedDigit[I] == 1) 927 HighestOne = I; 928 E = (E - ZI) / 2; 929 ++I; 930 } 931 932 // Compute number of instructions required. Due to differences in lowering 933 // between the different processors this count is not exact. 934 // Start by assuming a shift and a add/sub for every non-zero entry (hence 935 // every non-zero entry requires 1 shift and 1 add/sub except for the first 936 // entry). 937 int32_t InstrRequired = 2 * NonzeroEntries - 1; 938 // Correct possible over-adding due to shift by 0 (which is not emitted). 939 if (std::abs(MulAmt) % 2 == 1) 940 --InstrRequired; 941 // Return if the form generated would exceed the instruction threshold. 942 if (InstrRequired > LanaiLowerConstantMulThreshold) 943 return SDValue(); 944 945 SDValue Res; 946 SDLoc DL(Op); 947 SDValue V = Op->getOperand(0); 948 949 // Initialize the running sum. Set the running sum to the maximal shifted 950 // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a 951 // term NAF). 952 if (HighestOne == -1) 953 Res = DAG.getConstant(0, DL, MVT::i32); 954 else { 955 Res = DAG.getNode(ISD::SHL, DL, VT, V, 956 DAG.getConstant(HighestOne, DL, MVT::i32)); 957 SignedDigit[HighestOne] = 0; 958 } 959 960 // Assemble multiplication from shift, add, sub using NAF form and running 961 // sum. 962 for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]); 963 ++I) { 964 if (SignedDigit[I] == 0) 965 continue; 966 967 // Shifted multiplicand (v<<i). 968 SDValue Op = 969 DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32)); 970 if (SignedDigit[I] == 1) 971 Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op); 972 else if (SignedDigit[I] == -1) 973 Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op); 974 } 975 return Res; 976 } 977 978 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 979 SDValue LHS = Op.getOperand(0); 980 SDValue RHS = Op.getOperand(1); 981 SDValue Cond = Op.getOperand(2); 982 SDLoc DL(Op); 983 984 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 985 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 986 SDValue Flag = 987 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 988 989 return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag); 990 } 991 992 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op, 993 SelectionDAG &DAG) const { 994 SDValue LHS = Op.getOperand(0); 995 SDValue RHS = Op.getOperand(1); 996 SDValue TrueV = Op.getOperand(2); 997 SDValue FalseV = Op.getOperand(3); 998 SDValue Cond = Op.getOperand(4); 999 SDLoc DL(Op); 1000 1001 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 1002 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 1003 SDValue Flag = 1004 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 1005 1006 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1007 return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC, 1008 Flag); 1009 } 1010 1011 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1012 MachineFunction &MF = DAG.getMachineFunction(); 1013 LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); 1014 1015 SDLoc DL(Op); 1016 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1017 getPointerTy(DAG.getDataLayout())); 1018 1019 // vastart just stores the address of the VarArgsFrameIndex slot into the 1020 // memory location argument. 1021 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1022 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1023 MachinePointerInfo(SV)); 1024 } 1025 1026 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1027 SelectionDAG &DAG) const { 1028 SDValue Chain = Op.getOperand(0); 1029 SDValue Size = Op.getOperand(1); 1030 SDLoc DL(Op); 1031 1032 Register SPReg = getStackPointerRegisterToSaveRestore(); 1033 1034 // Get a reference to the stack pointer. 1035 SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); 1036 1037 // Subtract the dynamic size from the actual stack size to 1038 // obtain the new stack size. 1039 SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); 1040 1041 // For Lanai, the outgoing memory arguments area should be on top of the 1042 // alloca area on the stack i.e., the outgoing memory arguments should be 1043 // at a lower address than the alloca area. Move the alloca area down the 1044 // stack by adding back the space reserved for outgoing arguments to SP 1045 // here. 1046 // 1047 // We do not know what the size of the outgoing args is at this point. 1048 // So, we add a pseudo instruction ADJDYNALLOC that will adjust the 1049 // stack pointer. We replace this instruction with on that has the correct, 1050 // known offset in emitPrologue(). 1051 SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); 1052 1053 // The Sub result contains the new stack start address, so it 1054 // must be placed in the stack pointer register. 1055 SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); 1056 1057 SDValue Ops[2] = {ArgAdjust, CopyChain}; 1058 return DAG.getMergeValues(Ops, DL); 1059 } 1060 1061 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, 1062 SelectionDAG &DAG) const { 1063 MachineFunction &MF = DAG.getMachineFunction(); 1064 MachineFrameInfo &MFI = MF.getFrameInfo(); 1065 MFI.setReturnAddressIsTaken(true); 1066 1067 EVT VT = Op.getValueType(); 1068 SDLoc DL(Op); 1069 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1070 if (Depth) { 1071 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1072 const unsigned Offset = -4; 1073 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1074 DAG.getIntPtrConstant(Offset, DL)); 1075 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1076 } 1077 1078 // Return the link register, which contains the return address. 1079 // Mark it an implicit live-in. 1080 unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); 1081 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 1082 } 1083 1084 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, 1085 SelectionDAG &DAG) const { 1086 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1087 MFI.setFrameAddressIsTaken(true); 1088 1089 EVT VT = Op.getValueType(); 1090 SDLoc DL(Op); 1091 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); 1092 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1093 while (Depth--) { 1094 const unsigned Offset = -8; 1095 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1096 DAG.getIntPtrConstant(Offset, DL)); 1097 FrameAddr = 1098 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1099 } 1100 return FrameAddr; 1101 } 1102 1103 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { 1104 switch (Opcode) { 1105 case LanaiISD::ADJDYNALLOC: 1106 return "LanaiISD::ADJDYNALLOC"; 1107 case LanaiISD::RET_FLAG: 1108 return "LanaiISD::RET_FLAG"; 1109 case LanaiISD::CALL: 1110 return "LanaiISD::CALL"; 1111 case LanaiISD::SELECT_CC: 1112 return "LanaiISD::SELECT_CC"; 1113 case LanaiISD::SETCC: 1114 return "LanaiISD::SETCC"; 1115 case LanaiISD::SUBBF: 1116 return "LanaiISD::SUBBF"; 1117 case LanaiISD::SET_FLAG: 1118 return "LanaiISD::SET_FLAG"; 1119 case LanaiISD::BR_CC: 1120 return "LanaiISD::BR_CC"; 1121 case LanaiISD::Wrapper: 1122 return "LanaiISD::Wrapper"; 1123 case LanaiISD::HI: 1124 return "LanaiISD::HI"; 1125 case LanaiISD::LO: 1126 return "LanaiISD::LO"; 1127 case LanaiISD::SMALL: 1128 return "LanaiISD::SMALL"; 1129 default: 1130 return nullptr; 1131 } 1132 } 1133 1134 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, 1135 SelectionDAG &DAG) const { 1136 SDLoc DL(Op); 1137 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1138 const Constant *C = N->getConstVal(); 1139 const LanaiTargetObjectFile *TLOF = 1140 static_cast<const LanaiTargetObjectFile *>( 1141 getTargetMachine().getObjFileLowering()); 1142 1143 // If the code model is small or constant will be placed in the small section, 1144 // then assume address will fit in 21-bits. 1145 if (getTargetMachine().getCodeModel() == CodeModel::Small || 1146 TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { 1147 SDValue Small = DAG.getTargetConstantPool( 1148 C, MVT::i32, N->getAlign(), N->getOffset(), LanaiII::MO_NO_FLAG); 1149 return DAG.getNode(ISD::OR, DL, MVT::i32, 1150 DAG.getRegister(Lanai::R0, MVT::i32), 1151 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1152 } else { 1153 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1154 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1155 1156 SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(), 1157 N->getOffset(), OpFlagHi); 1158 SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(), 1159 N->getOffset(), OpFlagLo); 1160 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1161 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1162 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1163 return Result; 1164 } 1165 } 1166 1167 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, 1168 SelectionDAG &DAG) const { 1169 SDLoc DL(Op); 1170 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 1171 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 1172 1173 const LanaiTargetObjectFile *TLOF = 1174 static_cast<const LanaiTargetObjectFile *>( 1175 getTargetMachine().getObjFileLowering()); 1176 1177 // If the code model is small or global variable will be placed in the small 1178 // section, then assume address will fit in 21-bits. 1179 const GlobalObject *GO = GV->getAliaseeObject(); 1180 if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) { 1181 SDValue Small = DAG.getTargetGlobalAddress( 1182 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); 1183 return DAG.getNode(ISD::OR, DL, MVT::i32, 1184 DAG.getRegister(Lanai::R0, MVT::i32), 1185 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1186 } else { 1187 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1188 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1189 1190 // Create the TargetGlobalAddress node, folding in the constant offset. 1191 SDValue Hi = DAG.getTargetGlobalAddress( 1192 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); 1193 SDValue Lo = DAG.getTargetGlobalAddress( 1194 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); 1195 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1196 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1197 return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1198 } 1199 } 1200 1201 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, 1202 SelectionDAG &DAG) const { 1203 SDLoc DL(Op); 1204 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1205 1206 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1207 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1208 1209 SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); 1210 SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); 1211 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1212 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1213 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1214 return Result; 1215 } 1216 1217 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, 1218 SelectionDAG &DAG) const { 1219 SDLoc DL(Op); 1220 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1221 1222 // If the code model is small assume address will fit in 21-bits. 1223 if (getTargetMachine().getCodeModel() == CodeModel::Small) { 1224 SDValue Small = DAG.getTargetJumpTable( 1225 JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); 1226 return DAG.getNode(ISD::OR, DL, MVT::i32, 1227 DAG.getRegister(Lanai::R0, MVT::i32), 1228 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1229 } else { 1230 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1231 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1232 1233 SDValue Hi = DAG.getTargetJumpTable( 1234 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); 1235 SDValue Lo = DAG.getTargetJumpTable( 1236 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); 1237 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1238 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1239 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1240 return Result; 1241 } 1242 } 1243 1244 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op, 1245 SelectionDAG &DAG) const { 1246 EVT VT = Op.getValueType(); 1247 unsigned VTBits = VT.getSizeInBits(); 1248 SDLoc dl(Op); 1249 assert(Op.getNumOperands() == 3 && "Unexpected SHL!"); 1250 SDValue ShOpLo = Op.getOperand(0); 1251 SDValue ShOpHi = Op.getOperand(1); 1252 SDValue ShAmt = Op.getOperand(2); 1253 1254 // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt: 1255 // LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt)) 1256 // HiBitsForHi = ShOpHi << ShAmt 1257 // Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi) 1258 // Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt) 1259 // return (Hi << 32) | Lo; 1260 1261 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 1262 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1263 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 1264 1265 // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We 1266 // wanted 0, so CSEL it directly. 1267 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1268 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1269 LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi); 1270 1271 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 1272 DAG.getConstant(VTBits, dl, MVT::i32)); 1273 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 1274 SDValue HiForNormalShift = 1275 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); 1276 1277 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 1278 1279 SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE); 1280 SDValue Hi = 1281 DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift); 1282 1283 // Lanai shifts of larger than register sizes are wrapped rather than 1284 // clamped, so we can't just emit "lo << b" if b is too big. 1285 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 1286 SDValue Lo = DAG.getSelect( 1287 dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift); 1288 1289 SDValue Ops[2] = {Lo, Hi}; 1290 return DAG.getMergeValues(Ops, dl); 1291 } 1292 1293 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op, 1294 SelectionDAG &DAG) const { 1295 MVT VT = Op.getSimpleValueType(); 1296 unsigned VTBits = VT.getSizeInBits(); 1297 SDLoc dl(Op); 1298 SDValue ShOpLo = Op.getOperand(0); 1299 SDValue ShOpHi = Op.getOperand(1); 1300 SDValue ShAmt = Op.getOperand(2); 1301 1302 // Performs the following for a >> b: 1303 // unsigned r_high = a_high >> b; 1304 // r_high = (32 - b <= 0) ? 0 : r_high; 1305 // 1306 // unsigned r_low = a_low >> b; 1307 // r_low = (32 - b <= 0) ? r_high : r_low; 1308 // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b)); 1309 // return (unsigned long long)r_high << 32 | r_low; 1310 // Note: This takes advantage of Lanai's shift behavior to avoid needing to 1311 // mask the shift amount. 1312 1313 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1314 SDValue NegatedPlus32 = DAG.getNode( 1315 ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1316 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE); 1317 1318 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt); 1319 Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi); 1320 1321 SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt); 1322 Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo); 1323 SDValue CarryBits = 1324 DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32); 1325 SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1326 Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo, 1327 DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits)); 1328 1329 SDValue Ops[2] = {Lo, Hi}; 1330 return DAG.getMergeValues(Ops, dl); 1331 } 1332 1333 // Helper function that checks if N is a null or all ones constant. 1334 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 1335 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 1336 } 1337 1338 // Return true if N is conditionally 0 or all ones. 1339 // Detects these expressions where cc is an i1 value: 1340 // 1341 // (select cc 0, y) [AllOnes=0] 1342 // (select cc y, 0) [AllOnes=0] 1343 // (zext cc) [AllOnes=0] 1344 // (sext cc) [AllOnes=0/1] 1345 // (select cc -1, y) [AllOnes=1] 1346 // (select cc y, -1) [AllOnes=1] 1347 // 1348 // * AllOnes determines whether to check for an all zero (AllOnes false) or an 1349 // all ones operand (AllOnes true). 1350 // * Invert is set when N is the all zero/ones constant when CC is false. 1351 // * OtherOp is set to the alternative value of N. 1352 // 1353 // For example, for (select cc X, Y) and AllOnes = 0 if: 1354 // * X = 0, Invert = False and OtherOp = Y 1355 // * Y = 0, Invert = True and OtherOp = X 1356 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, 1357 bool &Invert, SDValue &OtherOp, 1358 SelectionDAG &DAG) { 1359 switch (N->getOpcode()) { 1360 default: 1361 return false; 1362 case ISD::SELECT: { 1363 CC = N->getOperand(0); 1364 SDValue N1 = N->getOperand(1); 1365 SDValue N2 = N->getOperand(2); 1366 if (isZeroOrAllOnes(N1, AllOnes)) { 1367 Invert = false; 1368 OtherOp = N2; 1369 return true; 1370 } 1371 if (isZeroOrAllOnes(N2, AllOnes)) { 1372 Invert = true; 1373 OtherOp = N1; 1374 return true; 1375 } 1376 return false; 1377 } 1378 case ISD::ZERO_EXTEND: { 1379 // (zext cc) can never be the all ones value. 1380 if (AllOnes) 1381 return false; 1382 CC = N->getOperand(0); 1383 if (CC.getValueType() != MVT::i1) 1384 return false; 1385 SDLoc dl(N); 1386 EVT VT = N->getValueType(0); 1387 OtherOp = DAG.getConstant(1, dl, VT); 1388 Invert = true; 1389 return true; 1390 } 1391 case ISD::SIGN_EXTEND: { 1392 CC = N->getOperand(0); 1393 if (CC.getValueType() != MVT::i1) 1394 return false; 1395 SDLoc dl(N); 1396 EVT VT = N->getValueType(0); 1397 Invert = !AllOnes; 1398 if (AllOnes) 1399 // When looking for an AllOnes constant, N is an sext, and the 'other' 1400 // value is 0. 1401 OtherOp = DAG.getConstant(0, dl, VT); 1402 else 1403 OtherOp = DAG.getAllOnesConstant(dl, VT); 1404 return true; 1405 } 1406 } 1407 } 1408 1409 // Combine a constant select operand into its use: 1410 // 1411 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 1412 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1413 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 1414 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 1415 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 1416 // 1417 // The transform is rejected if the select doesn't have a constant operand that 1418 // is null, or all ones when AllOnes is set. 1419 // 1420 // Also recognize sext/zext from i1: 1421 // 1422 // (add (zext cc), x) -> (select cc (add x, 1), x) 1423 // (add (sext cc), x) -> (select cc (add x, -1), x) 1424 // 1425 // These transformations eventually create predicated instructions. 1426 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 1427 TargetLowering::DAGCombinerInfo &DCI, 1428 bool AllOnes) { 1429 SelectionDAG &DAG = DCI.DAG; 1430 EVT VT = N->getValueType(0); 1431 SDValue NonConstantVal; 1432 SDValue CCOp; 1433 bool SwapSelectOps; 1434 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 1435 NonConstantVal, DAG)) 1436 return SDValue(); 1437 1438 // Slct is now know to be the desired identity constant when CC is true. 1439 SDValue TrueVal = OtherOp; 1440 SDValue FalseVal = 1441 DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 1442 // Unless SwapSelectOps says CC should be false. 1443 if (SwapSelectOps) 1444 std::swap(TrueVal, FalseVal); 1445 1446 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); 1447 } 1448 1449 // Attempt combineSelectAndUse on each operand of a commutative operator N. 1450 static SDValue 1451 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 1452 bool AllOnes) { 1453 SDValue N0 = N->getOperand(0); 1454 SDValue N1 = N->getOperand(1); 1455 if (N0.getNode()->hasOneUse()) 1456 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) 1457 return Result; 1458 if (N1.getNode()->hasOneUse()) 1459 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) 1460 return Result; 1461 return SDValue(); 1462 } 1463 1464 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 1465 static SDValue PerformSUBCombine(SDNode *N, 1466 TargetLowering::DAGCombinerInfo &DCI) { 1467 SDValue N0 = N->getOperand(0); 1468 SDValue N1 = N->getOperand(1); 1469 1470 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1471 if (N1.getNode()->hasOneUse()) 1472 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false)) 1473 return Result; 1474 1475 return SDValue(); 1476 } 1477 1478 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N, 1479 DAGCombinerInfo &DCI) const { 1480 switch (N->getOpcode()) { 1481 default: 1482 break; 1483 case ISD::ADD: 1484 case ISD::OR: 1485 case ISD::XOR: 1486 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false); 1487 case ISD::AND: 1488 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true); 1489 case ISD::SUB: 1490 return PerformSUBCombine(N, DCI); 1491 } 1492 1493 return SDValue(); 1494 } 1495 1496 void LanaiTargetLowering::computeKnownBitsForTargetNode( 1497 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 1498 const SelectionDAG &DAG, unsigned Depth) const { 1499 unsigned BitWidth = Known.getBitWidth(); 1500 switch (Op.getOpcode()) { 1501 default: 1502 break; 1503 case LanaiISD::SETCC: 1504 Known = KnownBits(BitWidth); 1505 Known.Zero.setBits(1, BitWidth); 1506 break; 1507 case LanaiISD::SELECT_CC: 1508 KnownBits Known2; 1509 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 1510 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 1511 Known = KnownBits::commonBits(Known, Known2); 1512 break; 1513 } 1514 } 1515