1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LanaiTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LanaiISelLowering.h" 14 #include "Lanai.h" 15 #include "LanaiCondCode.h" 16 #include "LanaiMachineFunctionInfo.h" 17 #include "LanaiSubtarget.h" 18 #include "LanaiTargetObjectFile.h" 19 #include "MCTargetDesc/LanaiBaseInfo.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/MachineValueType.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/TargetCallingConv.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CodeGen.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/KnownBits.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cmath> 51 #include <cstdint> 52 #include <cstdlib> 53 #include <utility> 54 55 #define DEBUG_TYPE "lanai-lower" 56 57 using namespace llvm; 58 59 // Limit on number of instructions the lowered multiplication may have before a 60 // call to the library function should be generated instead. The threshold is 61 // currently set to 14 as this was the smallest threshold that resulted in all 62 // constant multiplications being lowered. A threshold of 5 covered all cases 63 // except for one multiplication which required 14. mulsi3 requires 16 64 // instructions (including the prologue and epilogue but excluding instructions 65 // at call site). Until we can inline mulsi3, generating at most 14 instructions 66 // will be faster than invoking mulsi3. 67 static cl::opt<int> LanaiLowerConstantMulThreshold( 68 "lanai-constant-mul-threshold", cl::Hidden, 69 cl::desc("Maximum number of instruction to generate when lowering constant " 70 "multiplication instead of calling library function [default=14]"), 71 cl::init(14)); 72 73 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, 74 const LanaiSubtarget &STI) 75 : TargetLowering(TM) { 76 // Set up the register classes. 77 addRegisterClass(MVT::i32, &Lanai::GPRRegClass); 78 79 // Compute derived properties from the register classes 80 TRI = STI.getRegisterInfo(); 81 computeRegisterProperties(TRI); 82 83 setStackPointerRegisterToSaveRestore(Lanai::SP); 84 85 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 88 setOperationAction(ISD::SETCC, MVT::i32, Custom); 89 setOperationAction(ISD::SELECT, MVT::i32, Expand); 90 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 91 92 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 93 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 94 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 95 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 96 97 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 98 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 99 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 100 101 setOperationAction(ISD::VASTART, MVT::Other, Custom); 102 setOperationAction(ISD::VAARG, MVT::Other, Expand); 103 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 104 setOperationAction(ISD::VAEND, MVT::Other, Expand); 105 106 setOperationAction(ISD::SDIV, MVT::i32, Expand); 107 setOperationAction(ISD::UDIV, MVT::i32, Expand); 108 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 109 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 110 setOperationAction(ISD::SREM, MVT::i32, Expand); 111 setOperationAction(ISD::UREM, MVT::i32, Expand); 112 113 setOperationAction(ISD::MUL, MVT::i32, Custom); 114 setOperationAction(ISD::MULHU, MVT::i32, Expand); 115 setOperationAction(ISD::MULHS, MVT::i32, Expand); 116 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 117 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 118 119 setOperationAction(ISD::ROTR, MVT::i32, Expand); 120 setOperationAction(ISD::ROTL, MVT::i32, Expand); 121 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 122 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 123 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 124 125 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 126 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 127 setOperationAction(ISD::CTLZ, MVT::i32, Legal); 128 setOperationAction(ISD::CTTZ, MVT::i32, Legal); 129 130 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 131 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 132 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 133 134 // Extended load operations for i1 types must be promoted 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 139 } 140 141 setTargetDAGCombine({ISD::ADD, ISD::SUB, ISD::AND, ISD::OR, ISD::XOR}); 142 143 // Function alignments 144 setMinFunctionAlignment(Align(4)); 145 setPrefFunctionAlignment(Align(4)); 146 147 setJumpIsExpensive(true); 148 149 // TODO: Setting the minimum jump table entries needed before a 150 // switch is transformed to a jump table to 100 to avoid creating jump tables 151 // as this was causing bad performance compared to a large group of if 152 // statements. Re-evaluate this on new benchmarks. 153 setMinimumJumpTableEntries(100); 154 155 // Use fast calling convention for library functions. 156 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { 157 setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast); 158 } 159 160 MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 161 MaxStoresPerMemsetOptSize = 8; 162 MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores 163 MaxStoresPerMemcpyOptSize = 8; 164 MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores 165 MaxStoresPerMemmoveOptSize = 8; 166 167 // Booleans always contain 0 or 1. 168 setBooleanContents(ZeroOrOneBooleanContent); 169 170 setMaxAtomicSizeInBitsSupported(0); 171 } 172 173 SDValue LanaiTargetLowering::LowerOperation(SDValue Op, 174 SelectionDAG &DAG) const { 175 switch (Op.getOpcode()) { 176 case ISD::MUL: 177 return LowerMUL(Op, DAG); 178 case ISD::BR_CC: 179 return LowerBR_CC(Op, DAG); 180 case ISD::ConstantPool: 181 return LowerConstantPool(Op, DAG); 182 case ISD::GlobalAddress: 183 return LowerGlobalAddress(Op, DAG); 184 case ISD::BlockAddress: 185 return LowerBlockAddress(Op, DAG); 186 case ISD::JumpTable: 187 return LowerJumpTable(Op, DAG); 188 case ISD::SELECT_CC: 189 return LowerSELECT_CC(Op, DAG); 190 case ISD::SETCC: 191 return LowerSETCC(Op, DAG); 192 case ISD::SHL_PARTS: 193 return LowerSHL_PARTS(Op, DAG); 194 case ISD::SRL_PARTS: 195 return LowerSRL_PARTS(Op, DAG); 196 case ISD::VASTART: 197 return LowerVASTART(Op, DAG); 198 case ISD::DYNAMIC_STACKALLOC: 199 return LowerDYNAMIC_STACKALLOC(Op, DAG); 200 case ISD::RETURNADDR: 201 return LowerRETURNADDR(Op, DAG); 202 case ISD::FRAMEADDR: 203 return LowerFRAMEADDR(Op, DAG); 204 default: 205 llvm_unreachable("unimplemented operand"); 206 } 207 } 208 209 //===----------------------------------------------------------------------===// 210 // Lanai Inline Assembly Support 211 //===----------------------------------------------------------------------===// 212 213 Register LanaiTargetLowering::getRegisterByName( 214 const char *RegName, LLT /*VT*/, 215 const MachineFunction & /*MF*/) const { 216 // Only unallocatable registers should be matched here. 217 Register Reg = StringSwitch<unsigned>(RegName) 218 .Case("pc", Lanai::PC) 219 .Case("sp", Lanai::SP) 220 .Case("fp", Lanai::FP) 221 .Case("rr1", Lanai::RR1) 222 .Case("r10", Lanai::R10) 223 .Case("rr2", Lanai::RR2) 224 .Case("r11", Lanai::R11) 225 .Case("rca", Lanai::RCA) 226 .Default(0); 227 228 if (Reg) 229 return Reg; 230 report_fatal_error("Invalid register name global variable"); 231 } 232 233 std::pair<unsigned, const TargetRegisterClass *> 234 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 235 StringRef Constraint, 236 MVT VT) const { 237 if (Constraint.size() == 1) 238 // GCC Constraint Letters 239 switch (Constraint[0]) { 240 case 'r': // GENERAL_REGS 241 return std::make_pair(0U, &Lanai::GPRRegClass); 242 default: 243 break; 244 } 245 246 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 247 } 248 249 // Examine constraint type and operand type and determine a weight value. 250 // This object must already have been set up with the operand type 251 // and the current alternative constraint selected. 252 TargetLowering::ConstraintWeight 253 LanaiTargetLowering::getSingleConstraintMatchWeight( 254 AsmOperandInfo &Info, const char *Constraint) const { 255 ConstraintWeight Weight = CW_Invalid; 256 Value *CallOperandVal = Info.CallOperandVal; 257 // If we don't have a value, we can't do a match, 258 // but allow it at the lowest weight. 259 if (CallOperandVal == nullptr) 260 return CW_Default; 261 // Look at the constraint type. 262 switch (*Constraint) { 263 case 'I': // signed 16 bit immediate 264 case 'J': // integer zero 265 case 'K': // unsigned 16 bit immediate 266 case 'L': // immediate in the range 0 to 31 267 case 'M': // signed 32 bit immediate where lower 16 bits are 0 268 case 'N': // signed 26 bit immediate 269 case 'O': // integer zero 270 if (isa<ConstantInt>(CallOperandVal)) 271 Weight = CW_Constant; 272 break; 273 default: 274 Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); 275 break; 276 } 277 return Weight; 278 } 279 280 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops 281 // vector. If it is invalid, don't add anything to Ops. 282 void LanaiTargetLowering::LowerAsmOperandForConstraint( 283 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 284 SelectionDAG &DAG) const { 285 SDValue Result; 286 287 // Only support length 1 constraints for now. 288 if (Constraint.size() > 1) 289 return; 290 291 char ConstraintLetter = Constraint[0]; 292 switch (ConstraintLetter) { 293 case 'I': // Signed 16 bit constant 294 // If this fails, the parent routine will give an error 295 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 296 if (isInt<16>(C->getSExtValue())) { 297 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 298 Op.getValueType()); 299 break; 300 } 301 } 302 return; 303 case 'J': // integer zero 304 case 'O': 305 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 306 if (C->getZExtValue() == 0) { 307 Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); 308 break; 309 } 310 } 311 return; 312 case 'K': // unsigned 16 bit immediate 313 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 314 if (isUInt<16>(C->getZExtValue())) { 315 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 316 Op.getValueType()); 317 break; 318 } 319 } 320 return; 321 case 'L': // immediate in the range 0 to 31 322 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 323 if (C->getZExtValue() <= 31) { 324 Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), 325 Op.getValueType()); 326 break; 327 } 328 } 329 return; 330 case 'M': // signed 32 bit immediate where lower 16 bits are 0 331 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 332 int64_t Val = C->getSExtValue(); 333 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { 334 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 335 break; 336 } 337 } 338 return; 339 case 'N': // signed 26 bit immediate 340 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 341 int64_t Val = C->getSExtValue(); 342 if ((Val >= -33554432) && (Val <= 33554431)) { 343 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 344 break; 345 } 346 } 347 return; 348 default: 349 break; // This will fall through to the generic implementation 350 } 351 352 if (Result.getNode()) { 353 Ops.push_back(Result); 354 return; 355 } 356 357 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 358 } 359 360 //===----------------------------------------------------------------------===// 361 // Calling Convention Implementation 362 //===----------------------------------------------------------------------===// 363 364 #include "LanaiGenCallingConv.inc" 365 366 static unsigned NumFixedArgs; 367 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, 368 CCValAssign::LocInfo LocInfo, 369 ISD::ArgFlagsTy ArgFlags, CCState &State) { 370 // Handle fixed arguments with default CC. 371 // Note: Both the default and fast CC handle VarArg the same and hence the 372 // calling convention of the function is not considered here. 373 if (ValNo < NumFixedArgs) { 374 return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); 375 } 376 377 // Promote i8/i16 args to i32 378 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 379 LocVT = MVT::i32; 380 if (ArgFlags.isSExt()) 381 LocInfo = CCValAssign::SExt; 382 else if (ArgFlags.isZExt()) 383 LocInfo = CCValAssign::ZExt; 384 else 385 LocInfo = CCValAssign::AExt; 386 } 387 388 // VarArgs get passed on stack 389 unsigned Offset = State.AllocateStack(4, Align(4)); 390 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 391 return false; 392 } 393 394 SDValue LanaiTargetLowering::LowerFormalArguments( 395 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 396 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 397 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 398 switch (CallConv) { 399 case CallingConv::C: 400 case CallingConv::Fast: 401 return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); 402 default: 403 report_fatal_error("Unsupported calling convention"); 404 } 405 } 406 407 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 408 SmallVectorImpl<SDValue> &InVals) const { 409 SelectionDAG &DAG = CLI.DAG; 410 SDLoc &DL = CLI.DL; 411 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 412 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 413 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 414 SDValue Chain = CLI.Chain; 415 SDValue Callee = CLI.Callee; 416 bool &IsTailCall = CLI.IsTailCall; 417 CallingConv::ID CallConv = CLI.CallConv; 418 bool IsVarArg = CLI.IsVarArg; 419 420 // Lanai target does not yet support tail call optimization. 421 IsTailCall = false; 422 423 switch (CallConv) { 424 case CallingConv::Fast: 425 case CallingConv::C: 426 return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, 427 OutVals, Ins, DL, DAG, InVals); 428 default: 429 report_fatal_error("Unsupported calling convention"); 430 } 431 } 432 433 // LowerCCCArguments - transform physical registers into virtual registers and 434 // generate load operations for arguments places on the stack. 435 SDValue LanaiTargetLowering::LowerCCCArguments( 436 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 437 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 438 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 439 MachineFunction &MF = DAG.getMachineFunction(); 440 MachineFrameInfo &MFI = MF.getFrameInfo(); 441 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 442 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 443 444 // Assign locations to all of the incoming arguments. 445 SmallVector<CCValAssign, 16> ArgLocs; 446 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 447 *DAG.getContext()); 448 if (CallConv == CallingConv::Fast) { 449 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); 450 } else { 451 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); 452 } 453 454 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 455 CCValAssign &VA = ArgLocs[i]; 456 if (VA.isRegLoc()) { 457 // Arguments passed in registers 458 EVT RegVT = VA.getLocVT(); 459 switch (RegVT.getSimpleVT().SimpleTy) { 460 case MVT::i32: { 461 Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); 462 RegInfo.addLiveIn(VA.getLocReg(), VReg); 463 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); 464 465 // If this is an 8/16-bit value, it is really passed promoted to 32 466 // bits. Insert an assert[sz]ext to capture this, then truncate to the 467 // right size. 468 if (VA.getLocInfo() == CCValAssign::SExt) 469 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, 470 DAG.getValueType(VA.getValVT())); 471 else if (VA.getLocInfo() == CCValAssign::ZExt) 472 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, 473 DAG.getValueType(VA.getValVT())); 474 475 if (VA.getLocInfo() != CCValAssign::Full) 476 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); 477 478 InVals.push_back(ArgValue); 479 break; 480 } 481 default: 482 LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " 483 << RegVT << "\n"); 484 llvm_unreachable("unhandled argument type"); 485 } 486 } else { 487 // Only arguments passed on the stack should make it here. 488 assert(VA.isMemLoc()); 489 // Load the argument to a virtual register 490 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 491 // Check that the argument fits in stack slot 492 if (ObjSize > 4) { 493 errs() << "LowerFormalArguments Unhandled argument type: " 494 << VA.getLocVT() << "\n"; 495 } 496 // Create the frame index object for this incoming parameter... 497 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 498 499 // Create the SelectionDAG nodes corresponding to a load 500 // from this parameter 501 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 502 InVals.push_back(DAG.getLoad( 503 VA.getLocVT(), DL, Chain, FIN, 504 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 505 } 506 } 507 508 // The Lanai ABI for returning structs by value requires that we copy 509 // the sret argument into rv for the return. Save the argument into 510 // a virtual register so that we can access it from the return points. 511 if (MF.getFunction().hasStructRetAttr()) { 512 Register Reg = LanaiMFI->getSRetReturnReg(); 513 if (!Reg) { 514 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); 515 LanaiMFI->setSRetReturnReg(Reg); 516 } 517 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); 518 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 519 } 520 521 if (IsVarArg) { 522 // Record the frame index of the first variable argument 523 // which is a value necessary to VASTART. 524 int FI = MFI.CreateFixedObject(4, CCInfo.getStackSize(), true); 525 LanaiMFI->setVarArgsFrameIndex(FI); 526 } 527 528 return Chain; 529 } 530 531 bool LanaiTargetLowering::CanLowerReturn( 532 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 533 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 534 SmallVector<CCValAssign, 16> RVLocs; 535 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 536 537 return CCInfo.CheckReturn(Outs, RetCC_Lanai32); 538 } 539 540 SDValue 541 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 542 bool IsVarArg, 543 const SmallVectorImpl<ISD::OutputArg> &Outs, 544 const SmallVectorImpl<SDValue> &OutVals, 545 const SDLoc &DL, SelectionDAG &DAG) const { 546 // CCValAssign - represent the assignment of the return value to a location 547 SmallVector<CCValAssign, 16> RVLocs; 548 549 // CCState - Info about the registers and stack slot. 550 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 551 *DAG.getContext()); 552 553 // Analize return values. 554 CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); 555 556 SDValue Glue; 557 SmallVector<SDValue, 4> RetOps(1, Chain); 558 559 // Copy the result values into the output registers. 560 for (unsigned i = 0; i != RVLocs.size(); ++i) { 561 CCValAssign &VA = RVLocs[i]; 562 assert(VA.isRegLoc() && "Can only return in registers!"); 563 564 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Glue); 565 566 // Guarantee that all emitted copies are stuck together with flags. 567 Glue = Chain.getValue(1); 568 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 569 } 570 571 // The Lanai ABI for returning structs by value requires that we copy 572 // the sret argument into rv for the return. We saved the argument into 573 // a virtual register in the entry block, so now we copy the value out 574 // and into rv. 575 if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) { 576 MachineFunction &MF = DAG.getMachineFunction(); 577 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 578 Register Reg = LanaiMFI->getSRetReturnReg(); 579 assert(Reg && 580 "SRetReturnReg should have been set in LowerFormalArguments()."); 581 SDValue Val = 582 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 583 584 Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Glue); 585 Glue = Chain.getValue(1); 586 RetOps.push_back( 587 DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); 588 } 589 590 RetOps[0] = Chain; // Update chain 591 592 unsigned Opc = LanaiISD::RET_GLUE; 593 if (Glue.getNode()) 594 RetOps.push_back(Glue); 595 596 // Return Void 597 return DAG.getNode(Opc, DL, MVT::Other, 598 ArrayRef<SDValue>(&RetOps[0], RetOps.size())); 599 } 600 601 // LowerCCCCallTo - functions arguments are copied from virtual regs to 602 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 603 SDValue LanaiTargetLowering::LowerCCCCallTo( 604 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, 605 bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs, 606 const SmallVectorImpl<SDValue> &OutVals, 607 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 608 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 609 // Analyze operands of the call, assigning locations to each operand. 610 SmallVector<CCValAssign, 16> ArgLocs; 611 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 612 *DAG.getContext()); 613 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 614 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 615 616 NumFixedArgs = 0; 617 if (IsVarArg && G) { 618 const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); 619 if (CalleeFn) 620 NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); 621 } 622 if (NumFixedArgs) 623 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); 624 else { 625 if (CallConv == CallingConv::Fast) 626 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); 627 else 628 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); 629 } 630 631 // Get a count of how many bytes are to be pushed on the stack. 632 unsigned NumBytes = CCInfo.getStackSize(); 633 634 // Create local copies for byval args. 635 SmallVector<SDValue, 8> ByValArgs; 636 for (unsigned I = 0, E = Outs.size(); I != E; ++I) { 637 ISD::ArgFlagsTy Flags = Outs[I].Flags; 638 if (!Flags.isByVal()) 639 continue; 640 641 SDValue Arg = OutVals[I]; 642 unsigned Size = Flags.getByValSize(); 643 Align Alignment = Flags.getNonZeroByValAlign(); 644 645 int FI = MFI.CreateStackObject(Size, Alignment, false); 646 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 647 SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); 648 649 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 650 /*IsVolatile=*/false, 651 /*AlwaysInline=*/false, 652 /*isTailCall=*/false, MachinePointerInfo(), 653 MachinePointerInfo()); 654 ByValArgs.push_back(FIPtr); 655 } 656 657 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 658 659 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 660 SmallVector<SDValue, 12> MemOpChains; 661 SDValue StackPtr; 662 663 // Walk the register/memloc assignments, inserting copies/loads. 664 for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { 665 CCValAssign &VA = ArgLocs[I]; 666 SDValue Arg = OutVals[I]; 667 ISD::ArgFlagsTy Flags = Outs[I].Flags; 668 669 // Promote the value if needed. 670 switch (VA.getLocInfo()) { 671 case CCValAssign::Full: 672 break; 673 case CCValAssign::SExt: 674 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 675 break; 676 case CCValAssign::ZExt: 677 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 678 break; 679 case CCValAssign::AExt: 680 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 681 break; 682 default: 683 llvm_unreachable("Unknown loc info!"); 684 } 685 686 // Use local copy if it is a byval arg. 687 if (Flags.isByVal()) 688 Arg = ByValArgs[J++]; 689 690 // Arguments that can be passed on register must be kept at RegsToPass 691 // vector 692 if (VA.isRegLoc()) { 693 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 694 } else { 695 assert(VA.isMemLoc()); 696 697 if (StackPtr.getNode() == nullptr) 698 StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, 699 getPointerTy(DAG.getDataLayout())); 700 701 SDValue PtrOff = 702 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 703 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 704 705 MemOpChains.push_back( 706 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 707 } 708 } 709 710 // Transform all store nodes into one single node because all store nodes are 711 // independent of each other. 712 if (!MemOpChains.empty()) 713 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 714 ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); 715 716 SDValue InGlue; 717 718 // Build a sequence of copy-to-reg nodes chained together with token chain and 719 // flag operands which copy the outgoing args into registers. The InGlue in 720 // necessary since all emitted instructions must be stuck together. 721 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 722 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 723 RegsToPass[I].second, InGlue); 724 InGlue = Chain.getValue(1); 725 } 726 727 // If the callee is a GlobalAddress node (quite common, every direct call is) 728 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 729 // Likewise ExternalSymbol -> TargetExternalSymbol. 730 uint8_t OpFlag = LanaiII::MO_NO_FLAG; 731 if (G) { 732 Callee = DAG.getTargetGlobalAddress( 733 G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); 734 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 735 Callee = DAG.getTargetExternalSymbol( 736 E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); 737 } 738 739 // Returns a chain & a flag for retval copy to use. 740 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 741 SmallVector<SDValue, 8> Ops; 742 Ops.push_back(Chain); 743 Ops.push_back(Callee); 744 745 // Add a register mask operand representing the call-preserved registers. 746 // TODO: Should return-twice functions be handled? 747 const uint32_t *Mask = 748 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 749 assert(Mask && "Missing call preserved mask for calling convention"); 750 Ops.push_back(DAG.getRegisterMask(Mask)); 751 752 // Add argument registers to the end of the list so that they are 753 // known live into the call. 754 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 755 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 756 RegsToPass[I].second.getValueType())); 757 758 if (InGlue.getNode()) 759 Ops.push_back(InGlue); 760 761 Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, 762 ArrayRef<SDValue>(&Ops[0], Ops.size())); 763 InGlue = Chain.getValue(1); 764 765 // Create the CALLSEQ_END node. 766 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); 767 InGlue = Chain.getValue(1); 768 769 // Handle result values, copying them out of physregs into vregs that we 770 // return. 771 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, 772 InVals); 773 } 774 775 // LowerCallResult - Lower the result values of a call into the 776 // appropriate copies out of appropriate physical registers. 777 SDValue LanaiTargetLowering::LowerCallResult( 778 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, 779 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 780 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 781 // Assign locations to each value returned by this call. 782 SmallVector<CCValAssign, 16> RVLocs; 783 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 784 *DAG.getContext()); 785 786 CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); 787 788 // Copy all of the result registers out of their specified physreg. 789 for (unsigned I = 0; I != RVLocs.size(); ++I) { 790 Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), 791 RVLocs[I].getValVT(), InGlue) 792 .getValue(1); 793 InGlue = Chain.getValue(2); 794 InVals.push_back(Chain.getValue(0)); 795 } 796 797 return Chain; 798 } 799 800 //===----------------------------------------------------------------------===// 801 // Custom Lowerings 802 //===----------------------------------------------------------------------===// 803 804 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL, 805 SDValue &RHS, SelectionDAG &DAG) { 806 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 807 808 // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, 809 // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) 810 // and Lanai only supports integer comparisons, so only provide definitions 811 // for them. 812 switch (SetCCOpcode) { 813 case ISD::SETEQ: 814 return LPCC::ICC_EQ; 815 case ISD::SETGT: 816 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 817 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 818 // X > -1 -> X >= 0 -> is_plus(X) 819 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 820 return LPCC::ICC_PL; 821 } 822 return LPCC::ICC_GT; 823 case ISD::SETUGT: 824 return LPCC::ICC_UGT; 825 case ISD::SETLT: 826 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 827 if (RHSC->getZExtValue() == 0) 828 // X < 0 -> is_minus(X) 829 return LPCC::ICC_MI; 830 return LPCC::ICC_LT; 831 case ISD::SETULT: 832 return LPCC::ICC_ULT; 833 case ISD::SETLE: 834 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 835 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 836 // X <= -1 -> X < 0 -> is_minus(X) 837 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 838 return LPCC::ICC_MI; 839 } 840 return LPCC::ICC_LE; 841 case ISD::SETULE: 842 return LPCC::ICC_ULE; 843 case ISD::SETGE: 844 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 845 if (RHSC->getZExtValue() == 0) 846 // X >= 0 -> is_plus(X) 847 return LPCC::ICC_PL; 848 return LPCC::ICC_GE; 849 case ISD::SETUGE: 850 return LPCC::ICC_UGE; 851 case ISD::SETNE: 852 return LPCC::ICC_NE; 853 case ISD::SETONE: 854 case ISD::SETUNE: 855 case ISD::SETOGE: 856 case ISD::SETOLE: 857 case ISD::SETOLT: 858 case ISD::SETOGT: 859 case ISD::SETOEQ: 860 case ISD::SETUEQ: 861 case ISD::SETO: 862 case ISD::SETUO: 863 llvm_unreachable("Unsupported comparison."); 864 default: 865 llvm_unreachable("Unknown integer condition code!"); 866 } 867 } 868 869 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 870 SDValue Chain = Op.getOperand(0); 871 SDValue Cond = Op.getOperand(1); 872 SDValue LHS = Op.getOperand(2); 873 SDValue RHS = Op.getOperand(3); 874 SDValue Dest = Op.getOperand(4); 875 SDLoc DL(Op); 876 877 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 878 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 879 SDValue Glue = 880 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 881 882 return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, 883 TargetCC, Glue); 884 } 885 886 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 887 EVT VT = Op->getValueType(0); 888 if (VT != MVT::i32) 889 return SDValue(); 890 891 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 892 if (!C) 893 return SDValue(); 894 895 int64_t MulAmt = C->getSExtValue(); 896 int32_t HighestOne = -1; 897 uint32_t NonzeroEntries = 0; 898 int SignedDigit[32] = {0}; 899 900 // Convert to non-adjacent form (NAF) signed-digit representation. 901 // NAF is a signed-digit form where no adjacent digits are non-zero. It is the 902 // minimal Hamming weight representation of a number (on average 1/3 of the 903 // digits will be non-zero vs 1/2 for regular binary representation). And as 904 // the non-zero digits will be the only digits contributing to the instruction 905 // count, this is desirable. The next loop converts it to NAF (following the 906 // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by 907 // choosing the non-zero coefficients such that the resulting quotient is 908 // divisible by 2 which will cause the next coefficient to be zero. 909 int64_t E = std::abs(MulAmt); 910 int S = (MulAmt < 0 ? -1 : 1); 911 int I = 0; 912 while (E > 0) { 913 int ZI = 0; 914 if (E % 2 == 1) { 915 ZI = 2 - (E % 4); 916 if (ZI != 0) 917 ++NonzeroEntries; 918 } 919 SignedDigit[I] = S * ZI; 920 if (SignedDigit[I] == 1) 921 HighestOne = I; 922 E = (E - ZI) / 2; 923 ++I; 924 } 925 926 // Compute number of instructions required. Due to differences in lowering 927 // between the different processors this count is not exact. 928 // Start by assuming a shift and a add/sub for every non-zero entry (hence 929 // every non-zero entry requires 1 shift and 1 add/sub except for the first 930 // entry). 931 int32_t InstrRequired = 2 * NonzeroEntries - 1; 932 // Correct possible over-adding due to shift by 0 (which is not emitted). 933 if (std::abs(MulAmt) % 2 == 1) 934 --InstrRequired; 935 // Return if the form generated would exceed the instruction threshold. 936 if (InstrRequired > LanaiLowerConstantMulThreshold) 937 return SDValue(); 938 939 SDValue Res; 940 SDLoc DL(Op); 941 SDValue V = Op->getOperand(0); 942 943 // Initialize the running sum. Set the running sum to the maximal shifted 944 // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a 945 // term NAF). 946 if (HighestOne == -1) 947 Res = DAG.getConstant(0, DL, MVT::i32); 948 else { 949 Res = DAG.getNode(ISD::SHL, DL, VT, V, 950 DAG.getConstant(HighestOne, DL, MVT::i32)); 951 SignedDigit[HighestOne] = 0; 952 } 953 954 // Assemble multiplication from shift, add, sub using NAF form and running 955 // sum. 956 for (unsigned int I = 0; I < std::size(SignedDigit); ++I) { 957 if (SignedDigit[I] == 0) 958 continue; 959 960 // Shifted multiplicand (v<<i). 961 SDValue Op = 962 DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32)); 963 if (SignedDigit[I] == 1) 964 Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op); 965 else if (SignedDigit[I] == -1) 966 Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op); 967 } 968 return Res; 969 } 970 971 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 972 SDValue LHS = Op.getOperand(0); 973 SDValue RHS = Op.getOperand(1); 974 SDValue Cond = Op.getOperand(2); 975 SDLoc DL(Op); 976 977 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 978 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 979 SDValue Glue = 980 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 981 982 return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Glue); 983 } 984 985 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op, 986 SelectionDAG &DAG) const { 987 SDValue LHS = Op.getOperand(0); 988 SDValue RHS = Op.getOperand(1); 989 SDValue TrueV = Op.getOperand(2); 990 SDValue FalseV = Op.getOperand(3); 991 SDValue Cond = Op.getOperand(4); 992 SDLoc DL(Op); 993 994 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 995 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 996 SDValue Glue = 997 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); 998 999 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1000 return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC, 1001 Glue); 1002 } 1003 1004 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1005 MachineFunction &MF = DAG.getMachineFunction(); 1006 LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); 1007 1008 SDLoc DL(Op); 1009 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1010 getPointerTy(DAG.getDataLayout())); 1011 1012 // vastart just stores the address of the VarArgsFrameIndex slot into the 1013 // memory location argument. 1014 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1015 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1016 MachinePointerInfo(SV)); 1017 } 1018 1019 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1020 SelectionDAG &DAG) const { 1021 SDValue Chain = Op.getOperand(0); 1022 SDValue Size = Op.getOperand(1); 1023 SDLoc DL(Op); 1024 1025 Register SPReg = getStackPointerRegisterToSaveRestore(); 1026 1027 // Get a reference to the stack pointer. 1028 SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); 1029 1030 // Subtract the dynamic size from the actual stack size to 1031 // obtain the new stack size. 1032 SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); 1033 1034 // For Lanai, the outgoing memory arguments area should be on top of the 1035 // alloca area on the stack i.e., the outgoing memory arguments should be 1036 // at a lower address than the alloca area. Move the alloca area down the 1037 // stack by adding back the space reserved for outgoing arguments to SP 1038 // here. 1039 // 1040 // We do not know what the size of the outgoing args is at this point. 1041 // So, we add a pseudo instruction ADJDYNALLOC that will adjust the 1042 // stack pointer. We replace this instruction with on that has the correct, 1043 // known offset in emitPrologue(). 1044 SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); 1045 1046 // The Sub result contains the new stack start address, so it 1047 // must be placed in the stack pointer register. 1048 SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); 1049 1050 SDValue Ops[2] = {ArgAdjust, CopyChain}; 1051 return DAG.getMergeValues(Ops, DL); 1052 } 1053 1054 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, 1055 SelectionDAG &DAG) const { 1056 MachineFunction &MF = DAG.getMachineFunction(); 1057 MachineFrameInfo &MFI = MF.getFrameInfo(); 1058 MFI.setReturnAddressIsTaken(true); 1059 1060 EVT VT = Op.getValueType(); 1061 SDLoc DL(Op); 1062 unsigned Depth = Op.getConstantOperandVal(0); 1063 if (Depth) { 1064 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1065 const unsigned Offset = -4; 1066 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1067 DAG.getIntPtrConstant(Offset, DL)); 1068 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1069 } 1070 1071 // Return the link register, which contains the return address. 1072 // Mark it an implicit live-in. 1073 Register Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); 1074 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 1075 } 1076 1077 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, 1078 SelectionDAG &DAG) const { 1079 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1080 MFI.setFrameAddressIsTaken(true); 1081 1082 EVT VT = Op.getValueType(); 1083 SDLoc DL(Op); 1084 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); 1085 unsigned Depth = Op.getConstantOperandVal(0); 1086 while (Depth--) { 1087 const unsigned Offset = -8; 1088 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1089 DAG.getIntPtrConstant(Offset, DL)); 1090 FrameAddr = 1091 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1092 } 1093 return FrameAddr; 1094 } 1095 1096 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { 1097 switch (Opcode) { 1098 case LanaiISD::ADJDYNALLOC: 1099 return "LanaiISD::ADJDYNALLOC"; 1100 case LanaiISD::RET_GLUE: 1101 return "LanaiISD::RET_GLUE"; 1102 case LanaiISD::CALL: 1103 return "LanaiISD::CALL"; 1104 case LanaiISD::SELECT_CC: 1105 return "LanaiISD::SELECT_CC"; 1106 case LanaiISD::SETCC: 1107 return "LanaiISD::SETCC"; 1108 case LanaiISD::SUBBF: 1109 return "LanaiISD::SUBBF"; 1110 case LanaiISD::SET_FLAG: 1111 return "LanaiISD::SET_FLAG"; 1112 case LanaiISD::BR_CC: 1113 return "LanaiISD::BR_CC"; 1114 case LanaiISD::Wrapper: 1115 return "LanaiISD::Wrapper"; 1116 case LanaiISD::HI: 1117 return "LanaiISD::HI"; 1118 case LanaiISD::LO: 1119 return "LanaiISD::LO"; 1120 case LanaiISD::SMALL: 1121 return "LanaiISD::SMALL"; 1122 default: 1123 return nullptr; 1124 } 1125 } 1126 1127 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, 1128 SelectionDAG &DAG) const { 1129 SDLoc DL(Op); 1130 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1131 const Constant *C = N->getConstVal(); 1132 const LanaiTargetObjectFile *TLOF = 1133 static_cast<const LanaiTargetObjectFile *>( 1134 getTargetMachine().getObjFileLowering()); 1135 1136 // If the code model is small or constant will be placed in the small section, 1137 // then assume address will fit in 21-bits. 1138 if (getTargetMachine().getCodeModel() == CodeModel::Small || 1139 TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { 1140 SDValue Small = DAG.getTargetConstantPool( 1141 C, MVT::i32, N->getAlign(), N->getOffset(), LanaiII::MO_NO_FLAG); 1142 return DAG.getNode(ISD::OR, DL, MVT::i32, 1143 DAG.getRegister(Lanai::R0, MVT::i32), 1144 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1145 } else { 1146 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1147 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1148 1149 SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(), 1150 N->getOffset(), OpFlagHi); 1151 SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(), 1152 N->getOffset(), OpFlagLo); 1153 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1154 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1155 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1156 return Result; 1157 } 1158 } 1159 1160 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, 1161 SelectionDAG &DAG) const { 1162 SDLoc DL(Op); 1163 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 1164 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 1165 1166 const LanaiTargetObjectFile *TLOF = 1167 static_cast<const LanaiTargetObjectFile *>( 1168 getTargetMachine().getObjFileLowering()); 1169 1170 // If the code model is small or global variable will be placed in the small 1171 // section, then assume address will fit in 21-bits. 1172 const GlobalObject *GO = GV->getAliaseeObject(); 1173 if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) { 1174 SDValue Small = DAG.getTargetGlobalAddress( 1175 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); 1176 return DAG.getNode(ISD::OR, DL, MVT::i32, 1177 DAG.getRegister(Lanai::R0, MVT::i32), 1178 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1179 } else { 1180 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1181 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1182 1183 // Create the TargetGlobalAddress node, folding in the constant offset. 1184 SDValue Hi = DAG.getTargetGlobalAddress( 1185 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); 1186 SDValue Lo = DAG.getTargetGlobalAddress( 1187 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); 1188 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1189 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1190 return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1191 } 1192 } 1193 1194 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, 1195 SelectionDAG &DAG) const { 1196 SDLoc DL(Op); 1197 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1198 1199 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1200 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1201 1202 SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); 1203 SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); 1204 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1205 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1206 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1207 return Result; 1208 } 1209 1210 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, 1211 SelectionDAG &DAG) const { 1212 SDLoc DL(Op); 1213 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1214 1215 // If the code model is small assume address will fit in 21-bits. 1216 if (getTargetMachine().getCodeModel() == CodeModel::Small) { 1217 SDValue Small = DAG.getTargetJumpTable( 1218 JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); 1219 return DAG.getNode(ISD::OR, DL, MVT::i32, 1220 DAG.getRegister(Lanai::R0, MVT::i32), 1221 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1222 } else { 1223 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1224 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1225 1226 SDValue Hi = DAG.getTargetJumpTable( 1227 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); 1228 SDValue Lo = DAG.getTargetJumpTable( 1229 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); 1230 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1231 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1232 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1233 return Result; 1234 } 1235 } 1236 1237 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op, 1238 SelectionDAG &DAG) const { 1239 EVT VT = Op.getValueType(); 1240 unsigned VTBits = VT.getSizeInBits(); 1241 SDLoc dl(Op); 1242 assert(Op.getNumOperands() == 3 && "Unexpected SHL!"); 1243 SDValue ShOpLo = Op.getOperand(0); 1244 SDValue ShOpHi = Op.getOperand(1); 1245 SDValue ShAmt = Op.getOperand(2); 1246 1247 // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt: 1248 // LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt)) 1249 // HiBitsForHi = ShOpHi << ShAmt 1250 // Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi) 1251 // Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt) 1252 // return (Hi << 32) | Lo; 1253 1254 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 1255 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1256 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 1257 1258 // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We 1259 // wanted 0, so CSEL it directly. 1260 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1261 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1262 LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi); 1263 1264 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 1265 DAG.getConstant(VTBits, dl, MVT::i32)); 1266 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 1267 SDValue HiForNormalShift = 1268 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); 1269 1270 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 1271 1272 SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE); 1273 SDValue Hi = 1274 DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift); 1275 1276 // Lanai shifts of larger than register sizes are wrapped rather than 1277 // clamped, so we can't just emit "lo << b" if b is too big. 1278 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 1279 SDValue Lo = DAG.getSelect( 1280 dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift); 1281 1282 SDValue Ops[2] = {Lo, Hi}; 1283 return DAG.getMergeValues(Ops, dl); 1284 } 1285 1286 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op, 1287 SelectionDAG &DAG) const { 1288 MVT VT = Op.getSimpleValueType(); 1289 unsigned VTBits = VT.getSizeInBits(); 1290 SDLoc dl(Op); 1291 SDValue ShOpLo = Op.getOperand(0); 1292 SDValue ShOpHi = Op.getOperand(1); 1293 SDValue ShAmt = Op.getOperand(2); 1294 1295 // Performs the following for a >> b: 1296 // unsigned r_high = a_high >> b; 1297 // r_high = (32 - b <= 0) ? 0 : r_high; 1298 // 1299 // unsigned r_low = a_low >> b; 1300 // r_low = (32 - b <= 0) ? r_high : r_low; 1301 // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b)); 1302 // return (unsigned long long)r_high << 32 | r_low; 1303 // Note: This takes advantage of Lanai's shift behavior to avoid needing to 1304 // mask the shift amount. 1305 1306 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1307 SDValue NegatedPlus32 = DAG.getNode( 1308 ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1309 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE); 1310 1311 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt); 1312 Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi); 1313 1314 SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt); 1315 Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo); 1316 SDValue CarryBits = 1317 DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32); 1318 SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1319 Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo, 1320 DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits)); 1321 1322 SDValue Ops[2] = {Lo, Hi}; 1323 return DAG.getMergeValues(Ops, dl); 1324 } 1325 1326 // Helper function that checks if N is a null or all ones constant. 1327 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 1328 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 1329 } 1330 1331 // Return true if N is conditionally 0 or all ones. 1332 // Detects these expressions where cc is an i1 value: 1333 // 1334 // (select cc 0, y) [AllOnes=0] 1335 // (select cc y, 0) [AllOnes=0] 1336 // (zext cc) [AllOnes=0] 1337 // (sext cc) [AllOnes=0/1] 1338 // (select cc -1, y) [AllOnes=1] 1339 // (select cc y, -1) [AllOnes=1] 1340 // 1341 // * AllOnes determines whether to check for an all zero (AllOnes false) or an 1342 // all ones operand (AllOnes true). 1343 // * Invert is set when N is the all zero/ones constant when CC is false. 1344 // * OtherOp is set to the alternative value of N. 1345 // 1346 // For example, for (select cc X, Y) and AllOnes = 0 if: 1347 // * X = 0, Invert = False and OtherOp = Y 1348 // * Y = 0, Invert = True and OtherOp = X 1349 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, 1350 bool &Invert, SDValue &OtherOp, 1351 SelectionDAG &DAG) { 1352 switch (N->getOpcode()) { 1353 default: 1354 return false; 1355 case ISD::SELECT: { 1356 CC = N->getOperand(0); 1357 SDValue N1 = N->getOperand(1); 1358 SDValue N2 = N->getOperand(2); 1359 if (isZeroOrAllOnes(N1, AllOnes)) { 1360 Invert = false; 1361 OtherOp = N2; 1362 return true; 1363 } 1364 if (isZeroOrAllOnes(N2, AllOnes)) { 1365 Invert = true; 1366 OtherOp = N1; 1367 return true; 1368 } 1369 return false; 1370 } 1371 case ISD::ZERO_EXTEND: { 1372 // (zext cc) can never be the all ones value. 1373 if (AllOnes) 1374 return false; 1375 CC = N->getOperand(0); 1376 if (CC.getValueType() != MVT::i1) 1377 return false; 1378 SDLoc dl(N); 1379 EVT VT = N->getValueType(0); 1380 OtherOp = DAG.getConstant(1, dl, VT); 1381 Invert = true; 1382 return true; 1383 } 1384 case ISD::SIGN_EXTEND: { 1385 CC = N->getOperand(0); 1386 if (CC.getValueType() != MVT::i1) 1387 return false; 1388 SDLoc dl(N); 1389 EVT VT = N->getValueType(0); 1390 Invert = !AllOnes; 1391 if (AllOnes) 1392 // When looking for an AllOnes constant, N is an sext, and the 'other' 1393 // value is 0. 1394 OtherOp = DAG.getConstant(0, dl, VT); 1395 else 1396 OtherOp = DAG.getAllOnesConstant(dl, VT); 1397 return true; 1398 } 1399 } 1400 } 1401 1402 // Combine a constant select operand into its use: 1403 // 1404 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 1405 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1406 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 1407 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 1408 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 1409 // 1410 // The transform is rejected if the select doesn't have a constant operand that 1411 // is null, or all ones when AllOnes is set. 1412 // 1413 // Also recognize sext/zext from i1: 1414 // 1415 // (add (zext cc), x) -> (select cc (add x, 1), x) 1416 // (add (sext cc), x) -> (select cc (add x, -1), x) 1417 // 1418 // These transformations eventually create predicated instructions. 1419 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 1420 TargetLowering::DAGCombinerInfo &DCI, 1421 bool AllOnes) { 1422 SelectionDAG &DAG = DCI.DAG; 1423 EVT VT = N->getValueType(0); 1424 SDValue NonConstantVal; 1425 SDValue CCOp; 1426 bool SwapSelectOps; 1427 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 1428 NonConstantVal, DAG)) 1429 return SDValue(); 1430 1431 // Slct is now know to be the desired identity constant when CC is true. 1432 SDValue TrueVal = OtherOp; 1433 SDValue FalseVal = 1434 DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 1435 // Unless SwapSelectOps says CC should be false. 1436 if (SwapSelectOps) 1437 std::swap(TrueVal, FalseVal); 1438 1439 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); 1440 } 1441 1442 // Attempt combineSelectAndUse on each operand of a commutative operator N. 1443 static SDValue 1444 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 1445 bool AllOnes) { 1446 SDValue N0 = N->getOperand(0); 1447 SDValue N1 = N->getOperand(1); 1448 if (N0.getNode()->hasOneUse()) 1449 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) 1450 return Result; 1451 if (N1.getNode()->hasOneUse()) 1452 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) 1453 return Result; 1454 return SDValue(); 1455 } 1456 1457 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 1458 static SDValue PerformSUBCombine(SDNode *N, 1459 TargetLowering::DAGCombinerInfo &DCI) { 1460 SDValue N0 = N->getOperand(0); 1461 SDValue N1 = N->getOperand(1); 1462 1463 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1464 if (N1.getNode()->hasOneUse()) 1465 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false)) 1466 return Result; 1467 1468 return SDValue(); 1469 } 1470 1471 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N, 1472 DAGCombinerInfo &DCI) const { 1473 switch (N->getOpcode()) { 1474 default: 1475 break; 1476 case ISD::ADD: 1477 case ISD::OR: 1478 case ISD::XOR: 1479 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false); 1480 case ISD::AND: 1481 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true); 1482 case ISD::SUB: 1483 return PerformSUBCombine(N, DCI); 1484 } 1485 1486 return SDValue(); 1487 } 1488 1489 void LanaiTargetLowering::computeKnownBitsForTargetNode( 1490 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 1491 const SelectionDAG &DAG, unsigned Depth) const { 1492 unsigned BitWidth = Known.getBitWidth(); 1493 switch (Op.getOpcode()) { 1494 default: 1495 break; 1496 case LanaiISD::SETCC: 1497 Known = KnownBits(BitWidth); 1498 Known.Zero.setBits(1, BitWidth); 1499 break; 1500 case LanaiISD::SELECT_CC: 1501 KnownBits Known2; 1502 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 1503 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 1504 Known = Known.intersectWith(Known2); 1505 break; 1506 } 1507 } 1508