xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Lanai/LanaiISelLowering.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LanaiTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LanaiISelLowering.h"
14 #include "Lanai.h"
15 #include "LanaiCondCode.h"
16 #include "LanaiMachineFunctionInfo.h"
17 #include "LanaiSubtarget.h"
18 #include "LanaiTargetObjectFile.h"
19 #include "MCTargetDesc/LanaiBaseInfo.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetCallingConv.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/CodeGenTypes/MachineValueType.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CodeGen.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cmath>
51 #include <cstdint>
52 #include <cstdlib>
53 #include <utility>
54 
55 #define DEBUG_TYPE "lanai-lower"
56 
57 using namespace llvm;
58 
59 // Limit on number of instructions the lowered multiplication may have before a
60 // call to the library function should be generated instead. The threshold is
61 // currently set to 14 as this was the smallest threshold that resulted in all
62 // constant multiplications being lowered. A threshold of 5 covered all cases
63 // except for one multiplication which required 14. mulsi3 requires 16
64 // instructions (including the prologue and epilogue but excluding instructions
65 // at call site). Until we can inline mulsi3, generating at most 14 instructions
66 // will be faster than invoking mulsi3.
67 static cl::opt<int> LanaiLowerConstantMulThreshold(
68     "lanai-constant-mul-threshold", cl::Hidden,
69     cl::desc("Maximum number of instruction to generate when lowering constant "
70              "multiplication instead of calling library function [default=14]"),
71     cl::init(14));
72 
73 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
74                                          const LanaiSubtarget &STI)
75     : TargetLowering(TM) {
76   // Set up the register classes.
77   addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
78 
79   // Compute derived properties from the register classes
80   TRI = STI.getRegisterInfo();
81   computeRegisterProperties(TRI);
82 
83   setStackPointerRegisterToSaveRestore(Lanai::SP);
84 
85   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
86   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
88   setOperationAction(ISD::SETCC, MVT::i32, Custom);
89   setOperationAction(ISD::SELECT, MVT::i32, Expand);
90   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
91 
92   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
93   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
94   setOperationAction(ISD::JumpTable, MVT::i32, Custom);
95   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
96 
97   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
98   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
99   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
100 
101   setOperationAction(ISD::VASTART, MVT::Other, Custom);
102   setOperationAction(ISD::VAARG, MVT::Other, Expand);
103   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
104   setOperationAction(ISD::VAEND, MVT::Other, Expand);
105 
106   setOperationAction(ISD::SDIV, MVT::i32, Expand);
107   setOperationAction(ISD::UDIV, MVT::i32, Expand);
108   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
109   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
110   setOperationAction(ISD::SREM, MVT::i32, Expand);
111   setOperationAction(ISD::UREM, MVT::i32, Expand);
112 
113   setOperationAction(ISD::MUL, MVT::i32, Custom);
114   setOperationAction(ISD::MULHU, MVT::i32, Expand);
115   setOperationAction(ISD::MULHS, MVT::i32, Expand);
116   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
118 
119   setOperationAction(ISD::ROTR, MVT::i32, Expand);
120   setOperationAction(ISD::ROTL, MVT::i32, Expand);
121   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
122   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
123   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
124 
125   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
126   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
127   setOperationAction(ISD::CTLZ, MVT::i32, Legal);
128   setOperationAction(ISD::CTTZ, MVT::i32, Legal);
129 
130   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
131   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
133 
134   // Extended load operations for i1 types must be promoted
135   for (MVT VT : MVT::integer_valuetypes()) {
136     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
137     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
139   }
140 
141   setTargetDAGCombine({ISD::ADD, ISD::SUB, ISD::AND, ISD::OR, ISD::XOR});
142 
143   // Function alignments
144   setMinFunctionAlignment(Align(4));
145   setPrefFunctionAlignment(Align(4));
146 
147   setJumpIsExpensive(true);
148 
149   // TODO: Setting the minimum jump table entries needed before a
150   // switch is transformed to a jump table to 100 to avoid creating jump tables
151   // as this was causing bad performance compared to a large group of if
152   // statements. Re-evaluate this on new benchmarks.
153   setMinimumJumpTableEntries(100);
154 
155   // Use fast calling convention for library functions.
156   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
157     setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
158   }
159 
160   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
161   MaxStoresPerMemsetOptSize = 8;
162   MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
163   MaxStoresPerMemcpyOptSize = 8;
164   MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
165   MaxStoresPerMemmoveOptSize = 8;
166 
167   // Booleans always contain 0 or 1.
168   setBooleanContents(ZeroOrOneBooleanContent);
169 
170   setMaxAtomicSizeInBitsSupported(0);
171 }
172 
173 SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
174                                             SelectionDAG &DAG) const {
175   switch (Op.getOpcode()) {
176   case ISD::MUL:
177     return LowerMUL(Op, DAG);
178   case ISD::BR_CC:
179     return LowerBR_CC(Op, DAG);
180   case ISD::ConstantPool:
181     return LowerConstantPool(Op, DAG);
182   case ISD::GlobalAddress:
183     return LowerGlobalAddress(Op, DAG);
184   case ISD::BlockAddress:
185     return LowerBlockAddress(Op, DAG);
186   case ISD::JumpTable:
187     return LowerJumpTable(Op, DAG);
188   case ISD::SELECT_CC:
189     return LowerSELECT_CC(Op, DAG);
190   case ISD::SETCC:
191     return LowerSETCC(Op, DAG);
192   case ISD::SHL_PARTS:
193     return LowerSHL_PARTS(Op, DAG);
194   case ISD::SRL_PARTS:
195     return LowerSRL_PARTS(Op, DAG);
196   case ISD::VASTART:
197     return LowerVASTART(Op, DAG);
198   case ISD::DYNAMIC_STACKALLOC:
199     return LowerDYNAMIC_STACKALLOC(Op, DAG);
200   case ISD::RETURNADDR:
201     return LowerRETURNADDR(Op, DAG);
202   case ISD::FRAMEADDR:
203     return LowerFRAMEADDR(Op, DAG);
204   default:
205     llvm_unreachable("unimplemented operand");
206   }
207 }
208 
209 //===----------------------------------------------------------------------===//
210 //                       Lanai Inline Assembly Support
211 //===----------------------------------------------------------------------===//
212 
213 Register LanaiTargetLowering::getRegisterByName(
214   const char *RegName, LLT /*VT*/,
215   const MachineFunction & /*MF*/) const {
216   // Only unallocatable registers should be matched here.
217   Register Reg = StringSwitch<unsigned>(RegName)
218                      .Case("pc", Lanai::PC)
219                      .Case("sp", Lanai::SP)
220                      .Case("fp", Lanai::FP)
221                      .Case("rr1", Lanai::RR1)
222                      .Case("r10", Lanai::R10)
223                      .Case("rr2", Lanai::RR2)
224                      .Case("r11", Lanai::R11)
225                      .Case("rca", Lanai::RCA)
226                      .Default(0);
227 
228   if (Reg)
229     return Reg;
230   report_fatal_error("Invalid register name global variable");
231 }
232 
233 std::pair<unsigned, const TargetRegisterClass *>
234 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
235                                                   StringRef Constraint,
236                                                   MVT VT) const {
237   if (Constraint.size() == 1)
238     // GCC Constraint Letters
239     switch (Constraint[0]) {
240     case 'r': // GENERAL_REGS
241       return std::make_pair(0U, &Lanai::GPRRegClass);
242     default:
243       break;
244     }
245 
246   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
247 }
248 
249 // Examine constraint type and operand type and determine a weight value.
250 // This object must already have been set up with the operand type
251 // and the current alternative constraint selected.
252 TargetLowering::ConstraintWeight
253 LanaiTargetLowering::getSingleConstraintMatchWeight(
254     AsmOperandInfo &Info, const char *Constraint) const {
255   ConstraintWeight Weight = CW_Invalid;
256   Value *CallOperandVal = Info.CallOperandVal;
257   // If we don't have a value, we can't do a match,
258   // but allow it at the lowest weight.
259   if (CallOperandVal == nullptr)
260     return CW_Default;
261   // Look at the constraint type.
262   switch (*Constraint) {
263   case 'I': // signed 16 bit immediate
264   case 'J': // integer zero
265   case 'K': // unsigned 16 bit immediate
266   case 'L': // immediate in the range 0 to 31
267   case 'M': // signed 32 bit immediate where lower 16 bits are 0
268   case 'N': // signed 26 bit immediate
269   case 'O': // integer zero
270     if (isa<ConstantInt>(CallOperandVal))
271       Weight = CW_Constant;
272     break;
273   default:
274     Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
275     break;
276   }
277   return Weight;
278 }
279 
280 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops
281 // vector.  If it is invalid, don't add anything to Ops.
282 void LanaiTargetLowering::LowerAsmOperandForConstraint(
283     SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
284     SelectionDAG &DAG) const {
285   SDValue Result;
286 
287   // Only support length 1 constraints for now.
288   if (Constraint.size() > 1)
289     return;
290 
291   char ConstraintLetter = Constraint[0];
292   switch (ConstraintLetter) {
293   case 'I': // Signed 16 bit constant
294     // If this fails, the parent routine will give an error
295     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
296       if (isInt<16>(C->getSExtValue())) {
297         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
298                                        Op.getValueType());
299         break;
300       }
301     }
302     return;
303   case 'J': // integer zero
304   case 'O':
305     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
306       if (C->getZExtValue() == 0) {
307         Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
308         break;
309       }
310     }
311     return;
312   case 'K': // unsigned 16 bit immediate
313     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
314       if (isUInt<16>(C->getZExtValue())) {
315         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
316                                        Op.getValueType());
317         break;
318       }
319     }
320     return;
321   case 'L': // immediate in the range 0 to 31
322     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
323       if (C->getZExtValue() <= 31) {
324         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
325                                        Op.getValueType());
326         break;
327       }
328     }
329     return;
330   case 'M': // signed 32 bit immediate where lower 16 bits are 0
331     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
332       int64_t Val = C->getSExtValue();
333       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
334         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
335         break;
336       }
337     }
338     return;
339   case 'N': // signed 26 bit immediate
340     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
341       int64_t Val = C->getSExtValue();
342       if ((Val >= -33554432) && (Val <= 33554431)) {
343         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
344         break;
345       }
346     }
347     return;
348   default:
349     break; // This will fall through to the generic implementation
350   }
351 
352   if (Result.getNode()) {
353     Ops.push_back(Result);
354     return;
355   }
356 
357   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
358 }
359 
360 //===----------------------------------------------------------------------===//
361 //                      Calling Convention Implementation
362 //===----------------------------------------------------------------------===//
363 
364 #include "LanaiGenCallingConv.inc"
365 
366 static unsigned NumFixedArgs;
367 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
368                               CCValAssign::LocInfo LocInfo,
369                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
370   // Handle fixed arguments with default CC.
371   // Note: Both the default and fast CC handle VarArg the same and hence the
372   // calling convention of the function is not considered here.
373   if (ValNo < NumFixedArgs) {
374     return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
375   }
376 
377   // Promote i8/i16 args to i32
378   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
379     LocVT = MVT::i32;
380     if (ArgFlags.isSExt())
381       LocInfo = CCValAssign::SExt;
382     else if (ArgFlags.isZExt())
383       LocInfo = CCValAssign::ZExt;
384     else
385       LocInfo = CCValAssign::AExt;
386   }
387 
388   // VarArgs get passed on stack
389   unsigned Offset = State.AllocateStack(4, Align(4));
390   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
391   return false;
392 }
393 
394 SDValue LanaiTargetLowering::LowerFormalArguments(
395     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
396     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
397     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
398   switch (CallConv) {
399   case CallingConv::C:
400   case CallingConv::Fast:
401     return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
402   default:
403     report_fatal_error("Unsupported calling convention");
404   }
405 }
406 
407 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
408                                        SmallVectorImpl<SDValue> &InVals) const {
409   SelectionDAG &DAG = CLI.DAG;
410   SDLoc &DL = CLI.DL;
411   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
412   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
413   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
414   SDValue Chain = CLI.Chain;
415   SDValue Callee = CLI.Callee;
416   bool &IsTailCall = CLI.IsTailCall;
417   CallingConv::ID CallConv = CLI.CallConv;
418   bool IsVarArg = CLI.IsVarArg;
419 
420   // Lanai target does not yet support tail call optimization.
421   IsTailCall = false;
422 
423   switch (CallConv) {
424   case CallingConv::Fast:
425   case CallingConv::C:
426     return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
427                           OutVals, Ins, DL, DAG, InVals);
428   default:
429     report_fatal_error("Unsupported calling convention");
430   }
431 }
432 
433 // LowerCCCArguments - transform physical registers into virtual registers and
434 // generate load operations for arguments places on the stack.
435 SDValue LanaiTargetLowering::LowerCCCArguments(
436     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
437     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
438     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
439   MachineFunction &MF = DAG.getMachineFunction();
440   MachineFrameInfo &MFI = MF.getFrameInfo();
441   MachineRegisterInfo &RegInfo = MF.getRegInfo();
442   LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
443 
444   // Assign locations to all of the incoming arguments.
445   SmallVector<CCValAssign, 16> ArgLocs;
446   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
447                  *DAG.getContext());
448   if (CallConv == CallingConv::Fast) {
449     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
450   } else {
451     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
452   }
453 
454   for (const CCValAssign &VA : ArgLocs) {
455     if (VA.isRegLoc()) {
456       // Arguments passed in registers
457       EVT RegVT = VA.getLocVT();
458       switch (RegVT.getSimpleVT().SimpleTy) {
459       case MVT::i32: {
460         Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
461         RegInfo.addLiveIn(VA.getLocReg(), VReg);
462         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
463 
464         // If this is an 8/16-bit value, it is really passed promoted to 32
465         // bits. Insert an assert[sz]ext to capture this, then truncate to the
466         // right size.
467         if (VA.getLocInfo() == CCValAssign::SExt)
468           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
469                                  DAG.getValueType(VA.getValVT()));
470         else if (VA.getLocInfo() == CCValAssign::ZExt)
471           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
472                                  DAG.getValueType(VA.getValVT()));
473 
474         if (VA.getLocInfo() != CCValAssign::Full)
475           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
476 
477         InVals.push_back(ArgValue);
478         break;
479       }
480       default:
481         LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
482                           << RegVT << "\n");
483         llvm_unreachable("unhandled argument type");
484       }
485     } else {
486       // Only arguments passed on the stack should make it here.
487       assert(VA.isMemLoc());
488       // Load the argument to a virtual register
489       unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
490       // Check that the argument fits in stack slot
491       if (ObjSize > 4) {
492         errs() << "LowerFormalArguments Unhandled argument type: "
493                << VA.getLocVT() << "\n";
494       }
495       // Create the frame index object for this incoming parameter...
496       int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
497 
498       // Create the SelectionDAG nodes corresponding to a load
499       // from this parameter
500       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
501       InVals.push_back(DAG.getLoad(
502           VA.getLocVT(), DL, Chain, FIN,
503           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
504     }
505   }
506 
507   // The Lanai ABI for returning structs by value requires that we copy
508   // the sret argument into rv for the return. Save the argument into
509   // a virtual register so that we can access it from the return points.
510   if (MF.getFunction().hasStructRetAttr()) {
511     Register Reg = LanaiMFI->getSRetReturnReg();
512     if (!Reg) {
513       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
514       LanaiMFI->setSRetReturnReg(Reg);
515     }
516     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
517     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
518   }
519 
520   if (IsVarArg) {
521     // Record the frame index of the first variable argument
522     // which is a value necessary to VASTART.
523     int FI = MFI.CreateFixedObject(4, CCInfo.getStackSize(), true);
524     LanaiMFI->setVarArgsFrameIndex(FI);
525   }
526 
527   return Chain;
528 }
529 
530 bool LanaiTargetLowering::CanLowerReturn(
531     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
532     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
533   SmallVector<CCValAssign, 16> RVLocs;
534   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
535 
536   return CCInfo.CheckReturn(Outs, RetCC_Lanai32);
537 }
538 
539 SDValue
540 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
541                                  bool IsVarArg,
542                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
543                                  const SmallVectorImpl<SDValue> &OutVals,
544                                  const SDLoc &DL, SelectionDAG &DAG) const {
545   // CCValAssign - represent the assignment of the return value to a location
546   SmallVector<CCValAssign, 16> RVLocs;
547 
548   // CCState - Info about the registers and stack slot.
549   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
550                  *DAG.getContext());
551 
552   // Analize return values.
553   CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
554 
555   SDValue Glue;
556   SmallVector<SDValue, 4> RetOps(1, Chain);
557 
558   // Copy the result values into the output registers.
559   for (unsigned i = 0; i != RVLocs.size(); ++i) {
560     CCValAssign &VA = RVLocs[i];
561     assert(VA.isRegLoc() && "Can only return in registers!");
562 
563     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Glue);
564 
565     // Guarantee that all emitted copies are stuck together with flags.
566     Glue = Chain.getValue(1);
567     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
568   }
569 
570   // The Lanai ABI for returning structs by value requires that we copy
571   // the sret argument into rv for the return. We saved the argument into
572   // a virtual register in the entry block, so now we copy the value out
573   // and into rv.
574   if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) {
575     MachineFunction &MF = DAG.getMachineFunction();
576     LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
577     Register Reg = LanaiMFI->getSRetReturnReg();
578     assert(Reg &&
579            "SRetReturnReg should have been set in LowerFormalArguments().");
580     SDValue Val =
581         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
582 
583     Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Glue);
584     Glue = Chain.getValue(1);
585     RetOps.push_back(
586         DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
587   }
588 
589   RetOps[0] = Chain; // Update chain
590 
591   unsigned Opc = LanaiISD::RET_GLUE;
592   if (Glue.getNode())
593     RetOps.push_back(Glue);
594 
595   // Return Void
596   return DAG.getNode(Opc, DL, MVT::Other,
597                      ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
598 }
599 
600 // LowerCCCCallTo - functions arguments are copied from virtual regs to
601 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
602 SDValue LanaiTargetLowering::LowerCCCCallTo(
603     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
604     bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs,
605     const SmallVectorImpl<SDValue> &OutVals,
606     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
607     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
608   // Analyze operands of the call, assigning locations to each operand.
609   SmallVector<CCValAssign, 16> ArgLocs;
610   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
611                  *DAG.getContext());
612   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
613   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
614 
615   NumFixedArgs = 0;
616   if (IsVarArg && G) {
617     const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
618     if (CalleeFn)
619       NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
620   }
621   if (NumFixedArgs)
622     CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
623   else {
624     if (CallConv == CallingConv::Fast)
625       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
626     else
627       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
628   }
629 
630   // Get a count of how many bytes are to be pushed on the stack.
631   unsigned NumBytes = CCInfo.getStackSize();
632 
633   // Create local copies for byval args.
634   SmallVector<SDValue, 8> ByValArgs;
635   for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
636     ISD::ArgFlagsTy Flags = Outs[I].Flags;
637     if (!Flags.isByVal())
638       continue;
639 
640     SDValue Arg = OutVals[I];
641     unsigned Size = Flags.getByValSize();
642     Align Alignment = Flags.getNonZeroByValAlign();
643 
644     int FI = MFI.CreateStackObject(Size, Alignment, false);
645     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
646     SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
647 
648     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
649                           /*IsVolatile=*/false,
650                           /*AlwaysInline=*/false,
651                           /*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
652                           MachinePointerInfo());
653     ByValArgs.push_back(FIPtr);
654   }
655 
656   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
657 
658   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
659   SmallVector<SDValue, 12> MemOpChains;
660   SDValue StackPtr;
661 
662   // Walk the register/memloc assignments, inserting copies/loads.
663   for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
664     CCValAssign &VA = ArgLocs[I];
665     SDValue Arg = OutVals[I];
666     ISD::ArgFlagsTy Flags = Outs[I].Flags;
667 
668     // Promote the value if needed.
669     switch (VA.getLocInfo()) {
670     case CCValAssign::Full:
671       break;
672     case CCValAssign::SExt:
673       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
674       break;
675     case CCValAssign::ZExt:
676       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
677       break;
678     case CCValAssign::AExt:
679       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
680       break;
681     default:
682       llvm_unreachable("Unknown loc info!");
683     }
684 
685     // Use local copy if it is a byval arg.
686     if (Flags.isByVal())
687       Arg = ByValArgs[J++];
688 
689     // Arguments that can be passed on register must be kept at RegsToPass
690     // vector
691     if (VA.isRegLoc()) {
692       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
693     } else {
694       assert(VA.isMemLoc());
695 
696       if (StackPtr.getNode() == nullptr)
697         StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
698                                       getPointerTy(DAG.getDataLayout()));
699 
700       SDValue PtrOff =
701           DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
702                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
703 
704       MemOpChains.push_back(
705           DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
706     }
707   }
708 
709   // Transform all store nodes into one single node because all store nodes are
710   // independent of each other.
711   if (!MemOpChains.empty())
712     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
713                         ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
714 
715   SDValue InGlue;
716 
717   // Build a sequence of copy-to-reg nodes chained together with token chain and
718   // flag operands which copy the outgoing args into registers.  The InGlue in
719   // necessary since all emitted instructions must be stuck together.
720   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
721     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
722                              RegsToPass[I].second, InGlue);
723     InGlue = Chain.getValue(1);
724   }
725 
726   // If the callee is a GlobalAddress node (quite common, every direct call is)
727   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
728   // Likewise ExternalSymbol -> TargetExternalSymbol.
729   uint8_t OpFlag = LanaiII::MO_NO_FLAG;
730   if (G) {
731     Callee = DAG.getTargetGlobalAddress(
732         G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
733   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
734     Callee = DAG.getTargetExternalSymbol(
735         E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
736   }
737 
738   // Returns a chain & a flag for retval copy to use.
739   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
740   SmallVector<SDValue, 8> Ops;
741   Ops.push_back(Chain);
742   Ops.push_back(Callee);
743 
744   // Add a register mask operand representing the call-preserved registers.
745   // TODO: Should return-twice functions be handled?
746   const uint32_t *Mask =
747       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
748   assert(Mask && "Missing call preserved mask for calling convention");
749   Ops.push_back(DAG.getRegisterMask(Mask));
750 
751   // Add argument registers to the end of the list so that they are
752   // known live into the call.
753   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
754     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
755                                   RegsToPass[I].second.getValueType()));
756 
757   if (InGlue.getNode())
758     Ops.push_back(InGlue);
759 
760   Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
761                       ArrayRef<SDValue>(&Ops[0], Ops.size()));
762   InGlue = Chain.getValue(1);
763 
764   // Create the CALLSEQ_END node.
765   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
766   InGlue = Chain.getValue(1);
767 
768   // Handle result values, copying them out of physregs into vregs that we
769   // return.
770   return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
771                          InVals);
772 }
773 
774 // LowerCallResult - Lower the result values of a call into the
775 // appropriate copies out of appropriate physical registers.
776 SDValue LanaiTargetLowering::LowerCallResult(
777     SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
778     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
779     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
780   // Assign locations to each value returned by this call.
781   SmallVector<CCValAssign, 16> RVLocs;
782   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
783                  *DAG.getContext());
784 
785   CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
786 
787   // Copy all of the result registers out of their specified physreg.
788   for (unsigned I = 0; I != RVLocs.size(); ++I) {
789     Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
790                                RVLocs[I].getValVT(), InGlue)
791                 .getValue(1);
792     InGlue = Chain.getValue(2);
793     InVals.push_back(Chain.getValue(0));
794   }
795 
796   return Chain;
797 }
798 
799 //===----------------------------------------------------------------------===//
800 //                      Custom Lowerings
801 //===----------------------------------------------------------------------===//
802 
803 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
804                                         SDValue &RHS, SelectionDAG &DAG) {
805   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
806 
807   // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
808   // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
809   // and Lanai only supports integer comparisons, so only provide definitions
810   // for them.
811   switch (SetCCOpcode) {
812   case ISD::SETEQ:
813     return LPCC::ICC_EQ;
814   case ISD::SETGT:
815     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
816       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
817         // X > -1 -> X >= 0 -> is_plus(X)
818         RHS = DAG.getConstant(0, DL, RHS.getValueType());
819         return LPCC::ICC_PL;
820       }
821     return LPCC::ICC_GT;
822   case ISD::SETUGT:
823     return LPCC::ICC_UGT;
824   case ISD::SETLT:
825     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
826       if (RHSC->getZExtValue() == 0)
827         // X < 0 -> is_minus(X)
828         return LPCC::ICC_MI;
829     return LPCC::ICC_LT;
830   case ISD::SETULT:
831     return LPCC::ICC_ULT;
832   case ISD::SETLE:
833     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
834       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
835         // X <= -1 -> X < 0 -> is_minus(X)
836         RHS = DAG.getConstant(0, DL, RHS.getValueType());
837         return LPCC::ICC_MI;
838       }
839     return LPCC::ICC_LE;
840   case ISD::SETULE:
841     return LPCC::ICC_ULE;
842   case ISD::SETGE:
843     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
844       if (RHSC->getZExtValue() == 0)
845         // X >= 0 -> is_plus(X)
846         return LPCC::ICC_PL;
847     return LPCC::ICC_GE;
848   case ISD::SETUGE:
849     return LPCC::ICC_UGE;
850   case ISD::SETNE:
851     return LPCC::ICC_NE;
852   case ISD::SETONE:
853   case ISD::SETUNE:
854   case ISD::SETOGE:
855   case ISD::SETOLE:
856   case ISD::SETOLT:
857   case ISD::SETOGT:
858   case ISD::SETOEQ:
859   case ISD::SETUEQ:
860   case ISD::SETO:
861   case ISD::SETUO:
862     llvm_unreachable("Unsupported comparison.");
863   default:
864     llvm_unreachable("Unknown integer condition code!");
865   }
866 }
867 
868 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
869   SDValue Chain = Op.getOperand(0);
870   SDValue Cond = Op.getOperand(1);
871   SDValue LHS = Op.getOperand(2);
872   SDValue RHS = Op.getOperand(3);
873   SDValue Dest = Op.getOperand(4);
874   SDLoc DL(Op);
875 
876   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
877   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
878   SDValue Glue =
879       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
880 
881   return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
882                      TargetCC, Glue);
883 }
884 
885 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
886   EVT VT = Op->getValueType(0);
887   if (VT != MVT::i32)
888     return SDValue();
889 
890   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
891   if (!C)
892     return SDValue();
893 
894   int64_t MulAmt = C->getSExtValue();
895   int32_t HighestOne = -1;
896   uint32_t NonzeroEntries = 0;
897   int SignedDigit[32] = {0};
898 
899   // Convert to non-adjacent form (NAF) signed-digit representation.
900   // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
901   // minimal Hamming weight representation of a number (on average 1/3 of the
902   // digits will be non-zero vs 1/2 for regular binary representation). And as
903   // the non-zero digits will be the only digits contributing to the instruction
904   // count, this is desirable. The next loop converts it to NAF (following the
905   // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
906   // choosing the non-zero coefficients such that the resulting quotient is
907   // divisible by 2 which will cause the next coefficient to be zero.
908   int64_t E = std::abs(MulAmt);
909   int S = (MulAmt < 0 ? -1 : 1);
910   int I = 0;
911   while (E > 0) {
912     int ZI = 0;
913     if (E % 2 == 1) {
914       ZI = 2 - (E % 4);
915       if (ZI != 0)
916         ++NonzeroEntries;
917     }
918     SignedDigit[I] = S * ZI;
919     if (SignedDigit[I] == 1)
920       HighestOne = I;
921     E = (E - ZI) / 2;
922     ++I;
923   }
924 
925   // Compute number of instructions required. Due to differences in lowering
926   // between the different processors this count is not exact.
927   // Start by assuming a shift and a add/sub for every non-zero entry (hence
928   // every non-zero entry requires 1 shift and 1 add/sub except for the first
929   // entry).
930   int32_t InstrRequired = 2 * NonzeroEntries - 1;
931   // Correct possible over-adding due to shift by 0 (which is not emitted).
932   if (std::abs(MulAmt) % 2 == 1)
933     --InstrRequired;
934   // Return if the form generated would exceed the instruction threshold.
935   if (InstrRequired > LanaiLowerConstantMulThreshold)
936     return SDValue();
937 
938   SDValue Res;
939   SDLoc DL(Op);
940   SDValue V = Op->getOperand(0);
941 
942   // Initialize the running sum. Set the running sum to the maximal shifted
943   // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
944   // term NAF).
945   if (HighestOne == -1)
946     Res = DAG.getConstant(0, DL, MVT::i32);
947   else {
948     Res = DAG.getNode(ISD::SHL, DL, VT, V,
949                       DAG.getConstant(HighestOne, DL, MVT::i32));
950     SignedDigit[HighestOne] = 0;
951   }
952 
953   // Assemble multiplication from shift, add, sub using NAF form and running
954   // sum.
955   for (unsigned int I = 0; I < std::size(SignedDigit); ++I) {
956     if (SignedDigit[I] == 0)
957       continue;
958 
959     // Shifted multiplicand (v<<i).
960     SDValue Op =
961         DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
962     if (SignedDigit[I] == 1)
963       Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
964     else if (SignedDigit[I] == -1)
965       Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
966   }
967   return Res;
968 }
969 
970 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
971   SDValue LHS = Op.getOperand(0);
972   SDValue RHS = Op.getOperand(1);
973   SDValue Cond = Op.getOperand(2);
974   SDLoc DL(Op);
975 
976   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
977   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
978   SDValue Glue =
979       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
980 
981   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Glue);
982 }
983 
984 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
985                                             SelectionDAG &DAG) const {
986   SDValue LHS = Op.getOperand(0);
987   SDValue RHS = Op.getOperand(1);
988   SDValue TrueV = Op.getOperand(2);
989   SDValue FalseV = Op.getOperand(3);
990   SDValue Cond = Op.getOperand(4);
991   SDLoc DL(Op);
992 
993   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
994   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
995   SDValue Glue =
996       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
997 
998   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
999   return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
1000                      Glue);
1001 }
1002 
1003 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1004   MachineFunction &MF = DAG.getMachineFunction();
1005   LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1006 
1007   SDLoc DL(Op);
1008   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1009                                  getPointerTy(DAG.getDataLayout()));
1010 
1011   // vastart just stores the address of the VarArgsFrameIndex slot into the
1012   // memory location argument.
1013   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1014   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1015                       MachinePointerInfo(SV));
1016 }
1017 
1018 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1019                                                      SelectionDAG &DAG) const {
1020   SDValue Chain = Op.getOperand(0);
1021   SDValue Size = Op.getOperand(1);
1022   SDLoc DL(Op);
1023 
1024   Register SPReg = getStackPointerRegisterToSaveRestore();
1025 
1026   // Get a reference to the stack pointer.
1027   SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1028 
1029   // Subtract the dynamic size from the actual stack size to
1030   // obtain the new stack size.
1031   SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1032 
1033   // For Lanai, the outgoing memory arguments area should be on top of the
1034   // alloca area on the stack i.e., the outgoing memory arguments should be
1035   // at a lower address than the alloca area. Move the alloca area down the
1036   // stack by adding back the space reserved for outgoing arguments to SP
1037   // here.
1038   //
1039   // We do not know what the size of the outgoing args is at this point.
1040   // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1041   // stack pointer. We replace this instruction with on that has the correct,
1042   // known offset in emitPrologue().
1043   SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1044 
1045   // The Sub result contains the new stack start address, so it
1046   // must be placed in the stack pointer register.
1047   SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1048 
1049   SDValue Ops[2] = {ArgAdjust, CopyChain};
1050   return DAG.getMergeValues(Ops, DL);
1051 }
1052 
1053 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1054                                              SelectionDAG &DAG) const {
1055   MachineFunction &MF = DAG.getMachineFunction();
1056   MachineFrameInfo &MFI = MF.getFrameInfo();
1057   MFI.setReturnAddressIsTaken(true);
1058 
1059   EVT VT = Op.getValueType();
1060   SDLoc DL(Op);
1061   unsigned Depth = Op.getConstantOperandVal(0);
1062   if (Depth) {
1063     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1064     const unsigned Offset = -4;
1065     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1066                               DAG.getIntPtrConstant(Offset, DL));
1067     return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1068   }
1069 
1070   // Return the link register, which contains the return address.
1071   // Mark it an implicit live-in.
1072   Register Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1073   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1074 }
1075 
1076 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1077                                             SelectionDAG &DAG) const {
1078   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1079   MFI.setFrameAddressIsTaken(true);
1080 
1081   EVT VT = Op.getValueType();
1082   SDLoc DL(Op);
1083   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1084   unsigned Depth = Op.getConstantOperandVal(0);
1085   while (Depth--) {
1086     const unsigned Offset = -8;
1087     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1088                               DAG.getIntPtrConstant(Offset, DL));
1089     FrameAddr =
1090         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1091   }
1092   return FrameAddr;
1093 }
1094 
1095 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1096   switch (Opcode) {
1097   case LanaiISD::ADJDYNALLOC:
1098     return "LanaiISD::ADJDYNALLOC";
1099   case LanaiISD::RET_GLUE:
1100     return "LanaiISD::RET_GLUE";
1101   case LanaiISD::CALL:
1102     return "LanaiISD::CALL";
1103   case LanaiISD::SELECT_CC:
1104     return "LanaiISD::SELECT_CC";
1105   case LanaiISD::SETCC:
1106     return "LanaiISD::SETCC";
1107   case LanaiISD::SUBBF:
1108     return "LanaiISD::SUBBF";
1109   case LanaiISD::SET_FLAG:
1110     return "LanaiISD::SET_FLAG";
1111   case LanaiISD::BR_CC:
1112     return "LanaiISD::BR_CC";
1113   case LanaiISD::Wrapper:
1114     return "LanaiISD::Wrapper";
1115   case LanaiISD::HI:
1116     return "LanaiISD::HI";
1117   case LanaiISD::LO:
1118     return "LanaiISD::LO";
1119   case LanaiISD::SMALL:
1120     return "LanaiISD::SMALL";
1121   default:
1122     return nullptr;
1123   }
1124 }
1125 
1126 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1127                                                SelectionDAG &DAG) const {
1128   SDLoc DL(Op);
1129   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1130   const Constant *C = N->getConstVal();
1131   const LanaiTargetObjectFile *TLOF =
1132       static_cast<const LanaiTargetObjectFile *>(
1133           getTargetMachine().getObjFileLowering());
1134 
1135   // If the code model is small or constant will be placed in the small section,
1136   // then assume address will fit in 21-bits.
1137   if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1138       TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1139     SDValue Small = DAG.getTargetConstantPool(
1140         C, MVT::i32, N->getAlign(), N->getOffset(), LanaiII::MO_NO_FLAG);
1141     return DAG.getNode(ISD::OR, DL, MVT::i32,
1142                        DAG.getRegister(Lanai::R0, MVT::i32),
1143                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1144   } else {
1145     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1146     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1147 
1148     SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(),
1149                                            N->getOffset(), OpFlagHi);
1150     SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(),
1151                                            N->getOffset(), OpFlagLo);
1152     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1153     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1154     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1155     return Result;
1156   }
1157 }
1158 
1159 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1160                                                 SelectionDAG &DAG) const {
1161   SDLoc DL(Op);
1162   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1163   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1164 
1165   const LanaiTargetObjectFile *TLOF =
1166       static_cast<const LanaiTargetObjectFile *>(
1167           getTargetMachine().getObjFileLowering());
1168 
1169   // If the code model is small or global variable will be placed in the small
1170   // section, then assume address will fit in 21-bits.
1171   const GlobalObject *GO = GV->getAliaseeObject();
1172   if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) {
1173     SDValue Small = DAG.getTargetGlobalAddress(
1174         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1175     return DAG.getNode(ISD::OR, DL, MVT::i32,
1176                        DAG.getRegister(Lanai::R0, MVT::i32),
1177                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1178   } else {
1179     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1180     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1181 
1182     // Create the TargetGlobalAddress node, folding in the constant offset.
1183     SDValue Hi = DAG.getTargetGlobalAddress(
1184         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1185     SDValue Lo = DAG.getTargetGlobalAddress(
1186         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1187     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1188     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1189     return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1190   }
1191 }
1192 
1193 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1194                                                SelectionDAG &DAG) const {
1195   SDLoc DL(Op);
1196   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1197 
1198   uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1199   uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1200 
1201   SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1202   SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1203   Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1204   Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1205   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1206   return Result;
1207 }
1208 
1209 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1210                                             SelectionDAG &DAG) const {
1211   SDLoc DL(Op);
1212   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1213 
1214   // If the code model is small assume address will fit in 21-bits.
1215   if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1216     SDValue Small = DAG.getTargetJumpTable(
1217         JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1218     return DAG.getNode(ISD::OR, DL, MVT::i32,
1219                        DAG.getRegister(Lanai::R0, MVT::i32),
1220                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1221   } else {
1222     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1223     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1224 
1225     SDValue Hi = DAG.getTargetJumpTable(
1226         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1227     SDValue Lo = DAG.getTargetJumpTable(
1228         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1229     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1230     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1231     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1232     return Result;
1233   }
1234 }
1235 
1236 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op,
1237                                             SelectionDAG &DAG) const {
1238   EVT VT = Op.getValueType();
1239   unsigned VTBits = VT.getSizeInBits();
1240   SDLoc dl(Op);
1241   assert(Op.getNumOperands() == 3 && "Unexpected SHL!");
1242   SDValue ShOpLo = Op.getOperand(0);
1243   SDValue ShOpHi = Op.getOperand(1);
1244   SDValue ShAmt = Op.getOperand(2);
1245 
1246   // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt:
1247   //   LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt))
1248   //   HiBitsForHi = ShOpHi << ShAmt
1249   //   Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi)
1250   //   Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt)
1251   //   return (Hi << 32) | Lo;
1252 
1253   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1254                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1255   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1256 
1257   // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We
1258   // wanted 0, so CSEL it directly.
1259   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1260   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1261   LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi);
1262 
1263   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1264                                    DAG.getConstant(VTBits, dl, MVT::i32));
1265   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1266   SDValue HiForNormalShift =
1267       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
1268 
1269   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1270 
1271   SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE);
1272   SDValue Hi =
1273       DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift);
1274 
1275   // Lanai shifts of larger than register sizes are wrapped rather than
1276   // clamped, so we can't just emit "lo << b" if b is too big.
1277   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1278   SDValue Lo = DAG.getSelect(
1279       dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift);
1280 
1281   SDValue Ops[2] = {Lo, Hi};
1282   return DAG.getMergeValues(Ops, dl);
1283 }
1284 
1285 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1286                                             SelectionDAG &DAG) const {
1287   MVT VT = Op.getSimpleValueType();
1288   unsigned VTBits = VT.getSizeInBits();
1289   SDLoc dl(Op);
1290   SDValue ShOpLo = Op.getOperand(0);
1291   SDValue ShOpHi = Op.getOperand(1);
1292   SDValue ShAmt = Op.getOperand(2);
1293 
1294   // Performs the following for a >> b:
1295   //   unsigned r_high = a_high >> b;
1296   //   r_high = (32 - b <= 0) ? 0 : r_high;
1297   //
1298   //   unsigned r_low = a_low >> b;
1299   //   r_low = (32 - b <= 0) ? r_high : r_low;
1300   //   r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1301   //   return (unsigned long long)r_high << 32 | r_low;
1302   // Note: This takes advantage of Lanai's shift behavior to avoid needing to
1303   // mask the shift amount.
1304 
1305   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1306   SDValue NegatedPlus32 = DAG.getNode(
1307       ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1308   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1309 
1310   SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1311   Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1312 
1313   SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1314   Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1315   SDValue CarryBits =
1316       DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1317   SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1318   Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1319                      DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1320 
1321   SDValue Ops[2] = {Lo, Hi};
1322   return DAG.getMergeValues(Ops, dl);
1323 }
1324 
1325 // Helper function that checks if N is a null or all ones constant.
1326 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1327   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1328 }
1329 
1330 // Return true if N is conditionally 0 or all ones.
1331 // Detects these expressions where cc is an i1 value:
1332 //
1333 //   (select cc 0, y)   [AllOnes=0]
1334 //   (select cc y, 0)   [AllOnes=0]
1335 //   (zext cc)          [AllOnes=0]
1336 //   (sext cc)          [AllOnes=0/1]
1337 //   (select cc -1, y)  [AllOnes=1]
1338 //   (select cc y, -1)  [AllOnes=1]
1339 //
1340 // * AllOnes determines whether to check for an all zero (AllOnes false) or an
1341 //   all ones operand (AllOnes true).
1342 // * Invert is set when N is the all zero/ones constant when CC is false.
1343 // * OtherOp is set to the alternative value of N.
1344 //
1345 // For example, for (select cc X, Y) and AllOnes = 0 if:
1346 // * X = 0, Invert = False and OtherOp = Y
1347 // * Y = 0, Invert = True and OtherOp = X
1348 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1349                                        bool &Invert, SDValue &OtherOp,
1350                                        SelectionDAG &DAG) {
1351   switch (N->getOpcode()) {
1352   default:
1353     return false;
1354   case ISD::SELECT: {
1355     CC = N->getOperand(0);
1356     SDValue N1 = N->getOperand(1);
1357     SDValue N2 = N->getOperand(2);
1358     if (isZeroOrAllOnes(N1, AllOnes)) {
1359       Invert = false;
1360       OtherOp = N2;
1361       return true;
1362     }
1363     if (isZeroOrAllOnes(N2, AllOnes)) {
1364       Invert = true;
1365       OtherOp = N1;
1366       return true;
1367     }
1368     return false;
1369   }
1370   case ISD::ZERO_EXTEND: {
1371     // (zext cc) can never be the all ones value.
1372     if (AllOnes)
1373       return false;
1374     CC = N->getOperand(0);
1375     if (CC.getValueType() != MVT::i1)
1376       return false;
1377     SDLoc dl(N);
1378     EVT VT = N->getValueType(0);
1379     OtherOp = DAG.getConstant(1, dl, VT);
1380     Invert = true;
1381     return true;
1382   }
1383   case ISD::SIGN_EXTEND: {
1384     CC = N->getOperand(0);
1385     if (CC.getValueType() != MVT::i1)
1386       return false;
1387     SDLoc dl(N);
1388     EVT VT = N->getValueType(0);
1389     Invert = !AllOnes;
1390     if (AllOnes)
1391       // When looking for an AllOnes constant, N is an sext, and the 'other'
1392       // value is 0.
1393       OtherOp = DAG.getConstant(0, dl, VT);
1394     else
1395       OtherOp = DAG.getAllOnesConstant(dl, VT);
1396     return true;
1397   }
1398   }
1399 }
1400 
1401 // Combine a constant select operand into its use:
1402 //
1403 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
1404 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
1405 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
1406 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
1407 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
1408 //
1409 // The transform is rejected if the select doesn't have a constant operand that
1410 // is null, or all ones when AllOnes is set.
1411 //
1412 // Also recognize sext/zext from i1:
1413 //
1414 //   (add (zext cc), x) -> (select cc (add x, 1), x)
1415 //   (add (sext cc), x) -> (select cc (add x, -1), x)
1416 //
1417 // These transformations eventually create predicated instructions.
1418 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1419                                    TargetLowering::DAGCombinerInfo &DCI,
1420                                    bool AllOnes) {
1421   SelectionDAG &DAG = DCI.DAG;
1422   EVT VT = N->getValueType(0);
1423   SDValue NonConstantVal;
1424   SDValue CCOp;
1425   bool SwapSelectOps;
1426   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1427                                   NonConstantVal, DAG))
1428     return SDValue();
1429 
1430   // Slct is now know to be the desired identity constant when CC is true.
1431   SDValue TrueVal = OtherOp;
1432   SDValue FalseVal =
1433       DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1434   // Unless SwapSelectOps says CC should be false.
1435   if (SwapSelectOps)
1436     std::swap(TrueVal, FalseVal);
1437 
1438   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1439 }
1440 
1441 // Attempt combineSelectAndUse on each operand of a commutative operator N.
1442 static SDValue
1443 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1444                                bool AllOnes) {
1445   SDValue N0 = N->getOperand(0);
1446   SDValue N1 = N->getOperand(1);
1447   if (N0.getNode()->hasOneUse())
1448     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1449       return Result;
1450   if (N1.getNode()->hasOneUse())
1451     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1452       return Result;
1453   return SDValue();
1454 }
1455 
1456 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
1457 static SDValue PerformSUBCombine(SDNode *N,
1458                                  TargetLowering::DAGCombinerInfo &DCI) {
1459   SDValue N0 = N->getOperand(0);
1460   SDValue N1 = N->getOperand(1);
1461 
1462   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1463   if (N1.getNode()->hasOneUse())
1464     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1465       return Result;
1466 
1467   return SDValue();
1468 }
1469 
1470 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1471                                                DAGCombinerInfo &DCI) const {
1472   switch (N->getOpcode()) {
1473   default:
1474     break;
1475   case ISD::ADD:
1476   case ISD::OR:
1477   case ISD::XOR:
1478     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1479   case ISD::AND:
1480     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1481   case ISD::SUB:
1482     return PerformSUBCombine(N, DCI);
1483   }
1484 
1485   return SDValue();
1486 }
1487 
1488 void LanaiTargetLowering::computeKnownBitsForTargetNode(
1489     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1490     const SelectionDAG &DAG, unsigned Depth) const {
1491   unsigned BitWidth = Known.getBitWidth();
1492   switch (Op.getOpcode()) {
1493   default:
1494     break;
1495   case LanaiISD::SETCC:
1496     Known = KnownBits(BitWidth);
1497     Known.Zero.setBits(1, BitWidth);
1498     break;
1499   case LanaiISD::SELECT_CC:
1500     KnownBits Known2;
1501     Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1502     Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1503     Known = Known.intersectWith(Known2);
1504     break;
1505   }
1506 }
1507