xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Lanai/LanaiISelLowering.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LanaiTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LanaiISelLowering.h"
14 #include "Lanai.h"
15 #include "LanaiCondCode.h"
16 #include "LanaiMachineFunctionInfo.h"
17 #include "LanaiSubtarget.h"
18 #include "LanaiTargetObjectFile.h"
19 #include "MCTargetDesc/LanaiBaseInfo.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/MachineValueType.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/TargetCallingConv.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CodeGen.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cmath>
51 #include <cstdint>
52 #include <cstdlib>
53 #include <utility>
54 
55 #define DEBUG_TYPE "lanai-lower"
56 
57 using namespace llvm;
58 
59 // Limit on number of instructions the lowered multiplication may have before a
60 // call to the library function should be generated instead. The threshold is
61 // currently set to 14 as this was the smallest threshold that resulted in all
62 // constant multiplications being lowered. A threshold of 5 covered all cases
63 // except for one multiplication which required 14. mulsi3 requires 16
64 // instructions (including the prologue and epilogue but excluding instructions
65 // at call site). Until we can inline mulsi3, generating at most 14 instructions
66 // will be faster than invoking mulsi3.
67 static cl::opt<int> LanaiLowerConstantMulThreshold(
68     "lanai-constant-mul-threshold", cl::Hidden,
69     cl::desc("Maximum number of instruction to generate when lowering constant "
70              "multiplication instead of calling library function [default=14]"),
71     cl::init(14));
72 
73 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
74                                          const LanaiSubtarget &STI)
75     : TargetLowering(TM) {
76   // Set up the register classes.
77   addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
78 
79   // Compute derived properties from the register classes
80   TRI = STI.getRegisterInfo();
81   computeRegisterProperties(TRI);
82 
83   setStackPointerRegisterToSaveRestore(Lanai::SP);
84 
85   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
86   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
88   setOperationAction(ISD::SETCC, MVT::i32, Custom);
89   setOperationAction(ISD::SELECT, MVT::i32, Expand);
90   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
91 
92   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
93   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
94   setOperationAction(ISD::JumpTable, MVT::i32, Custom);
95   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
96 
97   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
98   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
99   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
100 
101   setOperationAction(ISD::VASTART, MVT::Other, Custom);
102   setOperationAction(ISD::VAARG, MVT::Other, Expand);
103   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
104   setOperationAction(ISD::VAEND, MVT::Other, Expand);
105 
106   setOperationAction(ISD::SDIV, MVT::i32, Expand);
107   setOperationAction(ISD::UDIV, MVT::i32, Expand);
108   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
109   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
110   setOperationAction(ISD::SREM, MVT::i32, Expand);
111   setOperationAction(ISD::UREM, MVT::i32, Expand);
112 
113   setOperationAction(ISD::MUL, MVT::i32, Custom);
114   setOperationAction(ISD::MULHU, MVT::i32, Expand);
115   setOperationAction(ISD::MULHS, MVT::i32, Expand);
116   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
118 
119   setOperationAction(ISD::ROTR, MVT::i32, Expand);
120   setOperationAction(ISD::ROTL, MVT::i32, Expand);
121   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
122   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
123   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
124 
125   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
126   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
127   setOperationAction(ISD::CTLZ, MVT::i32, Legal);
128   setOperationAction(ISD::CTTZ, MVT::i32, Legal);
129 
130   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
131   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
133 
134   // Extended load operations for i1 types must be promoted
135   for (MVT VT : MVT::integer_valuetypes()) {
136     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
137     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
139   }
140 
141   setTargetDAGCombine({ISD::ADD, ISD::SUB, ISD::AND, ISD::OR, ISD::XOR});
142 
143   // Function alignments
144   setMinFunctionAlignment(Align(4));
145   setPrefFunctionAlignment(Align(4));
146 
147   setJumpIsExpensive(true);
148 
149   // TODO: Setting the minimum jump table entries needed before a
150   // switch is transformed to a jump table to 100 to avoid creating jump tables
151   // as this was causing bad performance compared to a large group of if
152   // statements. Re-evaluate this on new benchmarks.
153   setMinimumJumpTableEntries(100);
154 
155   // Use fast calling convention for library functions.
156   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
157     setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
158   }
159 
160   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
161   MaxStoresPerMemsetOptSize = 8;
162   MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
163   MaxStoresPerMemcpyOptSize = 8;
164   MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
165   MaxStoresPerMemmoveOptSize = 8;
166 
167   // Booleans always contain 0 or 1.
168   setBooleanContents(ZeroOrOneBooleanContent);
169 
170   setMaxAtomicSizeInBitsSupported(0);
171 }
172 
173 SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
174                                             SelectionDAG &DAG) const {
175   switch (Op.getOpcode()) {
176   case ISD::MUL:
177     return LowerMUL(Op, DAG);
178   case ISD::BR_CC:
179     return LowerBR_CC(Op, DAG);
180   case ISD::ConstantPool:
181     return LowerConstantPool(Op, DAG);
182   case ISD::GlobalAddress:
183     return LowerGlobalAddress(Op, DAG);
184   case ISD::BlockAddress:
185     return LowerBlockAddress(Op, DAG);
186   case ISD::JumpTable:
187     return LowerJumpTable(Op, DAG);
188   case ISD::SELECT_CC:
189     return LowerSELECT_CC(Op, DAG);
190   case ISD::SETCC:
191     return LowerSETCC(Op, DAG);
192   case ISD::SHL_PARTS:
193     return LowerSHL_PARTS(Op, DAG);
194   case ISD::SRL_PARTS:
195     return LowerSRL_PARTS(Op, DAG);
196   case ISD::VASTART:
197     return LowerVASTART(Op, DAG);
198   case ISD::DYNAMIC_STACKALLOC:
199     return LowerDYNAMIC_STACKALLOC(Op, DAG);
200   case ISD::RETURNADDR:
201     return LowerRETURNADDR(Op, DAG);
202   case ISD::FRAMEADDR:
203     return LowerFRAMEADDR(Op, DAG);
204   default:
205     llvm_unreachable("unimplemented operand");
206   }
207 }
208 
209 //===----------------------------------------------------------------------===//
210 //                       Lanai Inline Assembly Support
211 //===----------------------------------------------------------------------===//
212 
213 Register LanaiTargetLowering::getRegisterByName(
214   const char *RegName, LLT /*VT*/,
215   const MachineFunction & /*MF*/) const {
216   // Only unallocatable registers should be matched here.
217   Register Reg = StringSwitch<unsigned>(RegName)
218                      .Case("pc", Lanai::PC)
219                      .Case("sp", Lanai::SP)
220                      .Case("fp", Lanai::FP)
221                      .Case("rr1", Lanai::RR1)
222                      .Case("r10", Lanai::R10)
223                      .Case("rr2", Lanai::RR2)
224                      .Case("r11", Lanai::R11)
225                      .Case("rca", Lanai::RCA)
226                      .Default(0);
227 
228   if (Reg)
229     return Reg;
230   report_fatal_error("Invalid register name global variable");
231 }
232 
233 std::pair<unsigned, const TargetRegisterClass *>
234 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
235                                                   StringRef Constraint,
236                                                   MVT VT) const {
237   if (Constraint.size() == 1)
238     // GCC Constraint Letters
239     switch (Constraint[0]) {
240     case 'r': // GENERAL_REGS
241       return std::make_pair(0U, &Lanai::GPRRegClass);
242     default:
243       break;
244     }
245 
246   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
247 }
248 
249 // Examine constraint type and operand type and determine a weight value.
250 // This object must already have been set up with the operand type
251 // and the current alternative constraint selected.
252 TargetLowering::ConstraintWeight
253 LanaiTargetLowering::getSingleConstraintMatchWeight(
254     AsmOperandInfo &Info, const char *Constraint) const {
255   ConstraintWeight Weight = CW_Invalid;
256   Value *CallOperandVal = Info.CallOperandVal;
257   // If we don't have a value, we can't do a match,
258   // but allow it at the lowest weight.
259   if (CallOperandVal == nullptr)
260     return CW_Default;
261   // Look at the constraint type.
262   switch (*Constraint) {
263   case 'I': // signed 16 bit immediate
264   case 'J': // integer zero
265   case 'K': // unsigned 16 bit immediate
266   case 'L': // immediate in the range 0 to 31
267   case 'M': // signed 32 bit immediate where lower 16 bits are 0
268   case 'N': // signed 26 bit immediate
269   case 'O': // integer zero
270     if (isa<ConstantInt>(CallOperandVal))
271       Weight = CW_Constant;
272     break;
273   default:
274     Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
275     break;
276   }
277   return Weight;
278 }
279 
280 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops
281 // vector.  If it is invalid, don't add anything to Ops.
282 void LanaiTargetLowering::LowerAsmOperandForConstraint(
283     SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
284     SelectionDAG &DAG) const {
285   SDValue Result;
286 
287   // Only support length 1 constraints for now.
288   if (Constraint.size() > 1)
289     return;
290 
291   char ConstraintLetter = Constraint[0];
292   switch (ConstraintLetter) {
293   case 'I': // Signed 16 bit constant
294     // If this fails, the parent routine will give an error
295     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
296       if (isInt<16>(C->getSExtValue())) {
297         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
298                                        Op.getValueType());
299         break;
300       }
301     }
302     return;
303   case 'J': // integer zero
304   case 'O':
305     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
306       if (C->getZExtValue() == 0) {
307         Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
308         break;
309       }
310     }
311     return;
312   case 'K': // unsigned 16 bit immediate
313     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
314       if (isUInt<16>(C->getZExtValue())) {
315         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
316                                        Op.getValueType());
317         break;
318       }
319     }
320     return;
321   case 'L': // immediate in the range 0 to 31
322     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
323       if (C->getZExtValue() <= 31) {
324         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
325                                        Op.getValueType());
326         break;
327       }
328     }
329     return;
330   case 'M': // signed 32 bit immediate where lower 16 bits are 0
331     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
332       int64_t Val = C->getSExtValue();
333       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
334         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
335         break;
336       }
337     }
338     return;
339   case 'N': // signed 26 bit immediate
340     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
341       int64_t Val = C->getSExtValue();
342       if ((Val >= -33554432) && (Val <= 33554431)) {
343         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
344         break;
345       }
346     }
347     return;
348   default:
349     break; // This will fall through to the generic implementation
350   }
351 
352   if (Result.getNode()) {
353     Ops.push_back(Result);
354     return;
355   }
356 
357   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
358 }
359 
360 //===----------------------------------------------------------------------===//
361 //                      Calling Convention Implementation
362 //===----------------------------------------------------------------------===//
363 
364 #include "LanaiGenCallingConv.inc"
365 
366 static unsigned NumFixedArgs;
367 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
368                               CCValAssign::LocInfo LocInfo,
369                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
370   // Handle fixed arguments with default CC.
371   // Note: Both the default and fast CC handle VarArg the same and hence the
372   // calling convention of the function is not considered here.
373   if (ValNo < NumFixedArgs) {
374     return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
375   }
376 
377   // Promote i8/i16 args to i32
378   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
379     LocVT = MVT::i32;
380     if (ArgFlags.isSExt())
381       LocInfo = CCValAssign::SExt;
382     else if (ArgFlags.isZExt())
383       LocInfo = CCValAssign::ZExt;
384     else
385       LocInfo = CCValAssign::AExt;
386   }
387 
388   // VarArgs get passed on stack
389   unsigned Offset = State.AllocateStack(4, Align(4));
390   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
391   return false;
392 }
393 
394 SDValue LanaiTargetLowering::LowerFormalArguments(
395     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
396     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
397     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
398   switch (CallConv) {
399   case CallingConv::C:
400   case CallingConv::Fast:
401     return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
402   default:
403     report_fatal_error("Unsupported calling convention");
404   }
405 }
406 
407 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
408                                        SmallVectorImpl<SDValue> &InVals) const {
409   SelectionDAG &DAG = CLI.DAG;
410   SDLoc &DL = CLI.DL;
411   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
412   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
413   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
414   SDValue Chain = CLI.Chain;
415   SDValue Callee = CLI.Callee;
416   bool &IsTailCall = CLI.IsTailCall;
417   CallingConv::ID CallConv = CLI.CallConv;
418   bool IsVarArg = CLI.IsVarArg;
419 
420   // Lanai target does not yet support tail call optimization.
421   IsTailCall = false;
422 
423   switch (CallConv) {
424   case CallingConv::Fast:
425   case CallingConv::C:
426     return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
427                           OutVals, Ins, DL, DAG, InVals);
428   default:
429     report_fatal_error("Unsupported calling convention");
430   }
431 }
432 
433 // LowerCCCArguments - transform physical registers into virtual registers and
434 // generate load operations for arguments places on the stack.
435 SDValue LanaiTargetLowering::LowerCCCArguments(
436     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
437     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
438     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
439   MachineFunction &MF = DAG.getMachineFunction();
440   MachineFrameInfo &MFI = MF.getFrameInfo();
441   MachineRegisterInfo &RegInfo = MF.getRegInfo();
442   LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
443 
444   // Assign locations to all of the incoming arguments.
445   SmallVector<CCValAssign, 16> ArgLocs;
446   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
447                  *DAG.getContext());
448   if (CallConv == CallingConv::Fast) {
449     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
450   } else {
451     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
452   }
453 
454   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
455     CCValAssign &VA = ArgLocs[i];
456     if (VA.isRegLoc()) {
457       // Arguments passed in registers
458       EVT RegVT = VA.getLocVT();
459       switch (RegVT.getSimpleVT().SimpleTy) {
460       case MVT::i32: {
461         Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
462         RegInfo.addLiveIn(VA.getLocReg(), VReg);
463         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
464 
465         // If this is an 8/16-bit value, it is really passed promoted to 32
466         // bits. Insert an assert[sz]ext to capture this, then truncate to the
467         // right size.
468         if (VA.getLocInfo() == CCValAssign::SExt)
469           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
470                                  DAG.getValueType(VA.getValVT()));
471         else if (VA.getLocInfo() == CCValAssign::ZExt)
472           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
473                                  DAG.getValueType(VA.getValVT()));
474 
475         if (VA.getLocInfo() != CCValAssign::Full)
476           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
477 
478         InVals.push_back(ArgValue);
479         break;
480       }
481       default:
482         LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
483                           << RegVT << "\n");
484         llvm_unreachable("unhandled argument type");
485       }
486     } else {
487       // Only arguments passed on the stack should make it here.
488       assert(VA.isMemLoc());
489       // Load the argument to a virtual register
490       unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
491       // Check that the argument fits in stack slot
492       if (ObjSize > 4) {
493         errs() << "LowerFormalArguments Unhandled argument type: "
494                << VA.getLocVT() << "\n";
495       }
496       // Create the frame index object for this incoming parameter...
497       int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
498 
499       // Create the SelectionDAG nodes corresponding to a load
500       // from this parameter
501       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
502       InVals.push_back(DAG.getLoad(
503           VA.getLocVT(), DL, Chain, FIN,
504           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
505     }
506   }
507 
508   // The Lanai ABI for returning structs by value requires that we copy
509   // the sret argument into rv for the return. Save the argument into
510   // a virtual register so that we can access it from the return points.
511   if (MF.getFunction().hasStructRetAttr()) {
512     Register Reg = LanaiMFI->getSRetReturnReg();
513     if (!Reg) {
514       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
515       LanaiMFI->setSRetReturnReg(Reg);
516     }
517     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
518     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
519   }
520 
521   if (IsVarArg) {
522     // Record the frame index of the first variable argument
523     // which is a value necessary to VASTART.
524     int FI = MFI.CreateFixedObject(4, CCInfo.getStackSize(), true);
525     LanaiMFI->setVarArgsFrameIndex(FI);
526   }
527 
528   return Chain;
529 }
530 
531 bool LanaiTargetLowering::CanLowerReturn(
532     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
533     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
534   SmallVector<CCValAssign, 16> RVLocs;
535   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
536 
537   return CCInfo.CheckReturn(Outs, RetCC_Lanai32);
538 }
539 
540 SDValue
541 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
542                                  bool IsVarArg,
543                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
544                                  const SmallVectorImpl<SDValue> &OutVals,
545                                  const SDLoc &DL, SelectionDAG &DAG) const {
546   // CCValAssign - represent the assignment of the return value to a location
547   SmallVector<CCValAssign, 16> RVLocs;
548 
549   // CCState - Info about the registers and stack slot.
550   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
551                  *DAG.getContext());
552 
553   // Analize return values.
554   CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
555 
556   SDValue Glue;
557   SmallVector<SDValue, 4> RetOps(1, Chain);
558 
559   // Copy the result values into the output registers.
560   for (unsigned i = 0; i != RVLocs.size(); ++i) {
561     CCValAssign &VA = RVLocs[i];
562     assert(VA.isRegLoc() && "Can only return in registers!");
563 
564     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Glue);
565 
566     // Guarantee that all emitted copies are stuck together with flags.
567     Glue = Chain.getValue(1);
568     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
569   }
570 
571   // The Lanai ABI for returning structs by value requires that we copy
572   // the sret argument into rv for the return. We saved the argument into
573   // a virtual register in the entry block, so now we copy the value out
574   // and into rv.
575   if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) {
576     MachineFunction &MF = DAG.getMachineFunction();
577     LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
578     Register Reg = LanaiMFI->getSRetReturnReg();
579     assert(Reg &&
580            "SRetReturnReg should have been set in LowerFormalArguments().");
581     SDValue Val =
582         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
583 
584     Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Glue);
585     Glue = Chain.getValue(1);
586     RetOps.push_back(
587         DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
588   }
589 
590   RetOps[0] = Chain; // Update chain
591 
592   unsigned Opc = LanaiISD::RET_GLUE;
593   if (Glue.getNode())
594     RetOps.push_back(Glue);
595 
596   // Return Void
597   return DAG.getNode(Opc, DL, MVT::Other,
598                      ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
599 }
600 
601 // LowerCCCCallTo - functions arguments are copied from virtual regs to
602 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
603 SDValue LanaiTargetLowering::LowerCCCCallTo(
604     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
605     bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs,
606     const SmallVectorImpl<SDValue> &OutVals,
607     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
608     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
609   // Analyze operands of the call, assigning locations to each operand.
610   SmallVector<CCValAssign, 16> ArgLocs;
611   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
612                  *DAG.getContext());
613   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
614   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
615 
616   NumFixedArgs = 0;
617   if (IsVarArg && G) {
618     const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
619     if (CalleeFn)
620       NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
621   }
622   if (NumFixedArgs)
623     CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
624   else {
625     if (CallConv == CallingConv::Fast)
626       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
627     else
628       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
629   }
630 
631   // Get a count of how many bytes are to be pushed on the stack.
632   unsigned NumBytes = CCInfo.getStackSize();
633 
634   // Create local copies for byval args.
635   SmallVector<SDValue, 8> ByValArgs;
636   for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
637     ISD::ArgFlagsTy Flags = Outs[I].Flags;
638     if (!Flags.isByVal())
639       continue;
640 
641     SDValue Arg = OutVals[I];
642     unsigned Size = Flags.getByValSize();
643     Align Alignment = Flags.getNonZeroByValAlign();
644 
645     int FI = MFI.CreateStackObject(Size, Alignment, false);
646     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
647     SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
648 
649     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
650                           /*IsVolatile=*/false,
651                           /*AlwaysInline=*/false,
652                           /*isTailCall=*/false, MachinePointerInfo(),
653                           MachinePointerInfo());
654     ByValArgs.push_back(FIPtr);
655   }
656 
657   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
658 
659   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
660   SmallVector<SDValue, 12> MemOpChains;
661   SDValue StackPtr;
662 
663   // Walk the register/memloc assignments, inserting copies/loads.
664   for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
665     CCValAssign &VA = ArgLocs[I];
666     SDValue Arg = OutVals[I];
667     ISD::ArgFlagsTy Flags = Outs[I].Flags;
668 
669     // Promote the value if needed.
670     switch (VA.getLocInfo()) {
671     case CCValAssign::Full:
672       break;
673     case CCValAssign::SExt:
674       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
675       break;
676     case CCValAssign::ZExt:
677       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
678       break;
679     case CCValAssign::AExt:
680       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
681       break;
682     default:
683       llvm_unreachable("Unknown loc info!");
684     }
685 
686     // Use local copy if it is a byval arg.
687     if (Flags.isByVal())
688       Arg = ByValArgs[J++];
689 
690     // Arguments that can be passed on register must be kept at RegsToPass
691     // vector
692     if (VA.isRegLoc()) {
693       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
694     } else {
695       assert(VA.isMemLoc());
696 
697       if (StackPtr.getNode() == nullptr)
698         StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
699                                       getPointerTy(DAG.getDataLayout()));
700 
701       SDValue PtrOff =
702           DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
703                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
704 
705       MemOpChains.push_back(
706           DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
707     }
708   }
709 
710   // Transform all store nodes into one single node because all store nodes are
711   // independent of each other.
712   if (!MemOpChains.empty())
713     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
714                         ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
715 
716   SDValue InGlue;
717 
718   // Build a sequence of copy-to-reg nodes chained together with token chain and
719   // flag operands which copy the outgoing args into registers.  The InGlue in
720   // necessary since all emitted instructions must be stuck together.
721   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
722     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
723                              RegsToPass[I].second, InGlue);
724     InGlue = Chain.getValue(1);
725   }
726 
727   // If the callee is a GlobalAddress node (quite common, every direct call is)
728   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
729   // Likewise ExternalSymbol -> TargetExternalSymbol.
730   uint8_t OpFlag = LanaiII::MO_NO_FLAG;
731   if (G) {
732     Callee = DAG.getTargetGlobalAddress(
733         G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
734   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
735     Callee = DAG.getTargetExternalSymbol(
736         E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
737   }
738 
739   // Returns a chain & a flag for retval copy to use.
740   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
741   SmallVector<SDValue, 8> Ops;
742   Ops.push_back(Chain);
743   Ops.push_back(Callee);
744 
745   // Add a register mask operand representing the call-preserved registers.
746   // TODO: Should return-twice functions be handled?
747   const uint32_t *Mask =
748       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
749   assert(Mask && "Missing call preserved mask for calling convention");
750   Ops.push_back(DAG.getRegisterMask(Mask));
751 
752   // Add argument registers to the end of the list so that they are
753   // known live into the call.
754   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
755     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
756                                   RegsToPass[I].second.getValueType()));
757 
758   if (InGlue.getNode())
759     Ops.push_back(InGlue);
760 
761   Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
762                       ArrayRef<SDValue>(&Ops[0], Ops.size()));
763   InGlue = Chain.getValue(1);
764 
765   // Create the CALLSEQ_END node.
766   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
767   InGlue = Chain.getValue(1);
768 
769   // Handle result values, copying them out of physregs into vregs that we
770   // return.
771   return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
772                          InVals);
773 }
774 
775 // LowerCallResult - Lower the result values of a call into the
776 // appropriate copies out of appropriate physical registers.
777 SDValue LanaiTargetLowering::LowerCallResult(
778     SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
779     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
780     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
781   // Assign locations to each value returned by this call.
782   SmallVector<CCValAssign, 16> RVLocs;
783   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
784                  *DAG.getContext());
785 
786   CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
787 
788   // Copy all of the result registers out of their specified physreg.
789   for (unsigned I = 0; I != RVLocs.size(); ++I) {
790     Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
791                                RVLocs[I].getValVT(), InGlue)
792                 .getValue(1);
793     InGlue = Chain.getValue(2);
794     InVals.push_back(Chain.getValue(0));
795   }
796 
797   return Chain;
798 }
799 
800 //===----------------------------------------------------------------------===//
801 //                      Custom Lowerings
802 //===----------------------------------------------------------------------===//
803 
804 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
805                                         SDValue &RHS, SelectionDAG &DAG) {
806   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
807 
808   // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
809   // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
810   // and Lanai only supports integer comparisons, so only provide definitions
811   // for them.
812   switch (SetCCOpcode) {
813   case ISD::SETEQ:
814     return LPCC::ICC_EQ;
815   case ISD::SETGT:
816     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
817       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
818         // X > -1 -> X >= 0 -> is_plus(X)
819         RHS = DAG.getConstant(0, DL, RHS.getValueType());
820         return LPCC::ICC_PL;
821       }
822     return LPCC::ICC_GT;
823   case ISD::SETUGT:
824     return LPCC::ICC_UGT;
825   case ISD::SETLT:
826     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
827       if (RHSC->getZExtValue() == 0)
828         // X < 0 -> is_minus(X)
829         return LPCC::ICC_MI;
830     return LPCC::ICC_LT;
831   case ISD::SETULT:
832     return LPCC::ICC_ULT;
833   case ISD::SETLE:
834     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
835       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
836         // X <= -1 -> X < 0 -> is_minus(X)
837         RHS = DAG.getConstant(0, DL, RHS.getValueType());
838         return LPCC::ICC_MI;
839       }
840     return LPCC::ICC_LE;
841   case ISD::SETULE:
842     return LPCC::ICC_ULE;
843   case ISD::SETGE:
844     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
845       if (RHSC->getZExtValue() == 0)
846         // X >= 0 -> is_plus(X)
847         return LPCC::ICC_PL;
848     return LPCC::ICC_GE;
849   case ISD::SETUGE:
850     return LPCC::ICC_UGE;
851   case ISD::SETNE:
852     return LPCC::ICC_NE;
853   case ISD::SETONE:
854   case ISD::SETUNE:
855   case ISD::SETOGE:
856   case ISD::SETOLE:
857   case ISD::SETOLT:
858   case ISD::SETOGT:
859   case ISD::SETOEQ:
860   case ISD::SETUEQ:
861   case ISD::SETO:
862   case ISD::SETUO:
863     llvm_unreachable("Unsupported comparison.");
864   default:
865     llvm_unreachable("Unknown integer condition code!");
866   }
867 }
868 
869 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
870   SDValue Chain = Op.getOperand(0);
871   SDValue Cond = Op.getOperand(1);
872   SDValue LHS = Op.getOperand(2);
873   SDValue RHS = Op.getOperand(3);
874   SDValue Dest = Op.getOperand(4);
875   SDLoc DL(Op);
876 
877   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
878   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
879   SDValue Glue =
880       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
881 
882   return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
883                      TargetCC, Glue);
884 }
885 
886 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
887   EVT VT = Op->getValueType(0);
888   if (VT != MVT::i32)
889     return SDValue();
890 
891   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
892   if (!C)
893     return SDValue();
894 
895   int64_t MulAmt = C->getSExtValue();
896   int32_t HighestOne = -1;
897   uint32_t NonzeroEntries = 0;
898   int SignedDigit[32] = {0};
899 
900   // Convert to non-adjacent form (NAF) signed-digit representation.
901   // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
902   // minimal Hamming weight representation of a number (on average 1/3 of the
903   // digits will be non-zero vs 1/2 for regular binary representation). And as
904   // the non-zero digits will be the only digits contributing to the instruction
905   // count, this is desirable. The next loop converts it to NAF (following the
906   // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
907   // choosing the non-zero coefficients such that the resulting quotient is
908   // divisible by 2 which will cause the next coefficient to be zero.
909   int64_t E = std::abs(MulAmt);
910   int S = (MulAmt < 0 ? -1 : 1);
911   int I = 0;
912   while (E > 0) {
913     int ZI = 0;
914     if (E % 2 == 1) {
915       ZI = 2 - (E % 4);
916       if (ZI != 0)
917         ++NonzeroEntries;
918     }
919     SignedDigit[I] = S * ZI;
920     if (SignedDigit[I] == 1)
921       HighestOne = I;
922     E = (E - ZI) / 2;
923     ++I;
924   }
925 
926   // Compute number of instructions required. Due to differences in lowering
927   // between the different processors this count is not exact.
928   // Start by assuming a shift and a add/sub for every non-zero entry (hence
929   // every non-zero entry requires 1 shift and 1 add/sub except for the first
930   // entry).
931   int32_t InstrRequired = 2 * NonzeroEntries - 1;
932   // Correct possible over-adding due to shift by 0 (which is not emitted).
933   if (std::abs(MulAmt) % 2 == 1)
934     --InstrRequired;
935   // Return if the form generated would exceed the instruction threshold.
936   if (InstrRequired > LanaiLowerConstantMulThreshold)
937     return SDValue();
938 
939   SDValue Res;
940   SDLoc DL(Op);
941   SDValue V = Op->getOperand(0);
942 
943   // Initialize the running sum. Set the running sum to the maximal shifted
944   // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
945   // term NAF).
946   if (HighestOne == -1)
947     Res = DAG.getConstant(0, DL, MVT::i32);
948   else {
949     Res = DAG.getNode(ISD::SHL, DL, VT, V,
950                       DAG.getConstant(HighestOne, DL, MVT::i32));
951     SignedDigit[HighestOne] = 0;
952   }
953 
954   // Assemble multiplication from shift, add, sub using NAF form and running
955   // sum.
956   for (unsigned int I = 0; I < std::size(SignedDigit); ++I) {
957     if (SignedDigit[I] == 0)
958       continue;
959 
960     // Shifted multiplicand (v<<i).
961     SDValue Op =
962         DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
963     if (SignedDigit[I] == 1)
964       Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
965     else if (SignedDigit[I] == -1)
966       Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
967   }
968   return Res;
969 }
970 
971 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
972   SDValue LHS = Op.getOperand(0);
973   SDValue RHS = Op.getOperand(1);
974   SDValue Cond = Op.getOperand(2);
975   SDLoc DL(Op);
976 
977   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
978   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
979   SDValue Glue =
980       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
981 
982   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Glue);
983 }
984 
985 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
986                                             SelectionDAG &DAG) const {
987   SDValue LHS = Op.getOperand(0);
988   SDValue RHS = Op.getOperand(1);
989   SDValue TrueV = Op.getOperand(2);
990   SDValue FalseV = Op.getOperand(3);
991   SDValue Cond = Op.getOperand(4);
992   SDLoc DL(Op);
993 
994   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
995   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
996   SDValue Glue =
997       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
998 
999   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1000   return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
1001                      Glue);
1002 }
1003 
1004 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1005   MachineFunction &MF = DAG.getMachineFunction();
1006   LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1007 
1008   SDLoc DL(Op);
1009   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1010                                  getPointerTy(DAG.getDataLayout()));
1011 
1012   // vastart just stores the address of the VarArgsFrameIndex slot into the
1013   // memory location argument.
1014   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1015   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1016                       MachinePointerInfo(SV));
1017 }
1018 
1019 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1020                                                      SelectionDAG &DAG) const {
1021   SDValue Chain = Op.getOperand(0);
1022   SDValue Size = Op.getOperand(1);
1023   SDLoc DL(Op);
1024 
1025   Register SPReg = getStackPointerRegisterToSaveRestore();
1026 
1027   // Get a reference to the stack pointer.
1028   SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1029 
1030   // Subtract the dynamic size from the actual stack size to
1031   // obtain the new stack size.
1032   SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1033 
1034   // For Lanai, the outgoing memory arguments area should be on top of the
1035   // alloca area on the stack i.e., the outgoing memory arguments should be
1036   // at a lower address than the alloca area. Move the alloca area down the
1037   // stack by adding back the space reserved for outgoing arguments to SP
1038   // here.
1039   //
1040   // We do not know what the size of the outgoing args is at this point.
1041   // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1042   // stack pointer. We replace this instruction with on that has the correct,
1043   // known offset in emitPrologue().
1044   SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1045 
1046   // The Sub result contains the new stack start address, so it
1047   // must be placed in the stack pointer register.
1048   SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1049 
1050   SDValue Ops[2] = {ArgAdjust, CopyChain};
1051   return DAG.getMergeValues(Ops, DL);
1052 }
1053 
1054 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1055                                              SelectionDAG &DAG) const {
1056   MachineFunction &MF = DAG.getMachineFunction();
1057   MachineFrameInfo &MFI = MF.getFrameInfo();
1058   MFI.setReturnAddressIsTaken(true);
1059 
1060   EVT VT = Op.getValueType();
1061   SDLoc DL(Op);
1062   unsigned Depth = Op.getConstantOperandVal(0);
1063   if (Depth) {
1064     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1065     const unsigned Offset = -4;
1066     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1067                               DAG.getIntPtrConstant(Offset, DL));
1068     return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1069   }
1070 
1071   // Return the link register, which contains the return address.
1072   // Mark it an implicit live-in.
1073   Register Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1074   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1075 }
1076 
1077 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1078                                             SelectionDAG &DAG) const {
1079   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1080   MFI.setFrameAddressIsTaken(true);
1081 
1082   EVT VT = Op.getValueType();
1083   SDLoc DL(Op);
1084   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1085   unsigned Depth = Op.getConstantOperandVal(0);
1086   while (Depth--) {
1087     const unsigned Offset = -8;
1088     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1089                               DAG.getIntPtrConstant(Offset, DL));
1090     FrameAddr =
1091         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1092   }
1093   return FrameAddr;
1094 }
1095 
1096 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1097   switch (Opcode) {
1098   case LanaiISD::ADJDYNALLOC:
1099     return "LanaiISD::ADJDYNALLOC";
1100   case LanaiISD::RET_GLUE:
1101     return "LanaiISD::RET_GLUE";
1102   case LanaiISD::CALL:
1103     return "LanaiISD::CALL";
1104   case LanaiISD::SELECT_CC:
1105     return "LanaiISD::SELECT_CC";
1106   case LanaiISD::SETCC:
1107     return "LanaiISD::SETCC";
1108   case LanaiISD::SUBBF:
1109     return "LanaiISD::SUBBF";
1110   case LanaiISD::SET_FLAG:
1111     return "LanaiISD::SET_FLAG";
1112   case LanaiISD::BR_CC:
1113     return "LanaiISD::BR_CC";
1114   case LanaiISD::Wrapper:
1115     return "LanaiISD::Wrapper";
1116   case LanaiISD::HI:
1117     return "LanaiISD::HI";
1118   case LanaiISD::LO:
1119     return "LanaiISD::LO";
1120   case LanaiISD::SMALL:
1121     return "LanaiISD::SMALL";
1122   default:
1123     return nullptr;
1124   }
1125 }
1126 
1127 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1128                                                SelectionDAG &DAG) const {
1129   SDLoc DL(Op);
1130   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1131   const Constant *C = N->getConstVal();
1132   const LanaiTargetObjectFile *TLOF =
1133       static_cast<const LanaiTargetObjectFile *>(
1134           getTargetMachine().getObjFileLowering());
1135 
1136   // If the code model is small or constant will be placed in the small section,
1137   // then assume address will fit in 21-bits.
1138   if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1139       TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1140     SDValue Small = DAG.getTargetConstantPool(
1141         C, MVT::i32, N->getAlign(), N->getOffset(), LanaiII::MO_NO_FLAG);
1142     return DAG.getNode(ISD::OR, DL, MVT::i32,
1143                        DAG.getRegister(Lanai::R0, MVT::i32),
1144                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1145   } else {
1146     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1147     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1148 
1149     SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(),
1150                                            N->getOffset(), OpFlagHi);
1151     SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(),
1152                                            N->getOffset(), OpFlagLo);
1153     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1154     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1155     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1156     return Result;
1157   }
1158 }
1159 
1160 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1161                                                 SelectionDAG &DAG) const {
1162   SDLoc DL(Op);
1163   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1164   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1165 
1166   const LanaiTargetObjectFile *TLOF =
1167       static_cast<const LanaiTargetObjectFile *>(
1168           getTargetMachine().getObjFileLowering());
1169 
1170   // If the code model is small or global variable will be placed in the small
1171   // section, then assume address will fit in 21-bits.
1172   const GlobalObject *GO = GV->getAliaseeObject();
1173   if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) {
1174     SDValue Small = DAG.getTargetGlobalAddress(
1175         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1176     return DAG.getNode(ISD::OR, DL, MVT::i32,
1177                        DAG.getRegister(Lanai::R0, MVT::i32),
1178                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1179   } else {
1180     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1181     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1182 
1183     // Create the TargetGlobalAddress node, folding in the constant offset.
1184     SDValue Hi = DAG.getTargetGlobalAddress(
1185         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1186     SDValue Lo = DAG.getTargetGlobalAddress(
1187         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1188     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1189     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1190     return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1191   }
1192 }
1193 
1194 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1195                                                SelectionDAG &DAG) const {
1196   SDLoc DL(Op);
1197   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1198 
1199   uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1200   uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1201 
1202   SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1203   SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1204   Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1205   Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1206   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1207   return Result;
1208 }
1209 
1210 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1211                                             SelectionDAG &DAG) const {
1212   SDLoc DL(Op);
1213   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1214 
1215   // If the code model is small assume address will fit in 21-bits.
1216   if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1217     SDValue Small = DAG.getTargetJumpTable(
1218         JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1219     return DAG.getNode(ISD::OR, DL, MVT::i32,
1220                        DAG.getRegister(Lanai::R0, MVT::i32),
1221                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1222   } else {
1223     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1224     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1225 
1226     SDValue Hi = DAG.getTargetJumpTable(
1227         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1228     SDValue Lo = DAG.getTargetJumpTable(
1229         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1230     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1231     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1232     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1233     return Result;
1234   }
1235 }
1236 
1237 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op,
1238                                             SelectionDAG &DAG) const {
1239   EVT VT = Op.getValueType();
1240   unsigned VTBits = VT.getSizeInBits();
1241   SDLoc dl(Op);
1242   assert(Op.getNumOperands() == 3 && "Unexpected SHL!");
1243   SDValue ShOpLo = Op.getOperand(0);
1244   SDValue ShOpHi = Op.getOperand(1);
1245   SDValue ShAmt = Op.getOperand(2);
1246 
1247   // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt:
1248   //   LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt))
1249   //   HiBitsForHi = ShOpHi << ShAmt
1250   //   Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi)
1251   //   Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt)
1252   //   return (Hi << 32) | Lo;
1253 
1254   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1255                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1256   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1257 
1258   // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We
1259   // wanted 0, so CSEL it directly.
1260   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1261   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1262   LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi);
1263 
1264   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1265                                    DAG.getConstant(VTBits, dl, MVT::i32));
1266   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1267   SDValue HiForNormalShift =
1268       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
1269 
1270   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1271 
1272   SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE);
1273   SDValue Hi =
1274       DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift);
1275 
1276   // Lanai shifts of larger than register sizes are wrapped rather than
1277   // clamped, so we can't just emit "lo << b" if b is too big.
1278   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1279   SDValue Lo = DAG.getSelect(
1280       dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift);
1281 
1282   SDValue Ops[2] = {Lo, Hi};
1283   return DAG.getMergeValues(Ops, dl);
1284 }
1285 
1286 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1287                                             SelectionDAG &DAG) const {
1288   MVT VT = Op.getSimpleValueType();
1289   unsigned VTBits = VT.getSizeInBits();
1290   SDLoc dl(Op);
1291   SDValue ShOpLo = Op.getOperand(0);
1292   SDValue ShOpHi = Op.getOperand(1);
1293   SDValue ShAmt = Op.getOperand(2);
1294 
1295   // Performs the following for a >> b:
1296   //   unsigned r_high = a_high >> b;
1297   //   r_high = (32 - b <= 0) ? 0 : r_high;
1298   //
1299   //   unsigned r_low = a_low >> b;
1300   //   r_low = (32 - b <= 0) ? r_high : r_low;
1301   //   r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1302   //   return (unsigned long long)r_high << 32 | r_low;
1303   // Note: This takes advantage of Lanai's shift behavior to avoid needing to
1304   // mask the shift amount.
1305 
1306   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1307   SDValue NegatedPlus32 = DAG.getNode(
1308       ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1309   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1310 
1311   SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1312   Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1313 
1314   SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1315   Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1316   SDValue CarryBits =
1317       DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1318   SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1319   Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1320                      DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1321 
1322   SDValue Ops[2] = {Lo, Hi};
1323   return DAG.getMergeValues(Ops, dl);
1324 }
1325 
1326 // Helper function that checks if N is a null or all ones constant.
1327 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1328   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1329 }
1330 
1331 // Return true if N is conditionally 0 or all ones.
1332 // Detects these expressions where cc is an i1 value:
1333 //
1334 //   (select cc 0, y)   [AllOnes=0]
1335 //   (select cc y, 0)   [AllOnes=0]
1336 //   (zext cc)          [AllOnes=0]
1337 //   (sext cc)          [AllOnes=0/1]
1338 //   (select cc -1, y)  [AllOnes=1]
1339 //   (select cc y, -1)  [AllOnes=1]
1340 //
1341 // * AllOnes determines whether to check for an all zero (AllOnes false) or an
1342 //   all ones operand (AllOnes true).
1343 // * Invert is set when N is the all zero/ones constant when CC is false.
1344 // * OtherOp is set to the alternative value of N.
1345 //
1346 // For example, for (select cc X, Y) and AllOnes = 0 if:
1347 // * X = 0, Invert = False and OtherOp = Y
1348 // * Y = 0, Invert = True and OtherOp = X
1349 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1350                                        bool &Invert, SDValue &OtherOp,
1351                                        SelectionDAG &DAG) {
1352   switch (N->getOpcode()) {
1353   default:
1354     return false;
1355   case ISD::SELECT: {
1356     CC = N->getOperand(0);
1357     SDValue N1 = N->getOperand(1);
1358     SDValue N2 = N->getOperand(2);
1359     if (isZeroOrAllOnes(N1, AllOnes)) {
1360       Invert = false;
1361       OtherOp = N2;
1362       return true;
1363     }
1364     if (isZeroOrAllOnes(N2, AllOnes)) {
1365       Invert = true;
1366       OtherOp = N1;
1367       return true;
1368     }
1369     return false;
1370   }
1371   case ISD::ZERO_EXTEND: {
1372     // (zext cc) can never be the all ones value.
1373     if (AllOnes)
1374       return false;
1375     CC = N->getOperand(0);
1376     if (CC.getValueType() != MVT::i1)
1377       return false;
1378     SDLoc dl(N);
1379     EVT VT = N->getValueType(0);
1380     OtherOp = DAG.getConstant(1, dl, VT);
1381     Invert = true;
1382     return true;
1383   }
1384   case ISD::SIGN_EXTEND: {
1385     CC = N->getOperand(0);
1386     if (CC.getValueType() != MVT::i1)
1387       return false;
1388     SDLoc dl(N);
1389     EVT VT = N->getValueType(0);
1390     Invert = !AllOnes;
1391     if (AllOnes)
1392       // When looking for an AllOnes constant, N is an sext, and the 'other'
1393       // value is 0.
1394       OtherOp = DAG.getConstant(0, dl, VT);
1395     else
1396       OtherOp = DAG.getAllOnesConstant(dl, VT);
1397     return true;
1398   }
1399   }
1400 }
1401 
1402 // Combine a constant select operand into its use:
1403 //
1404 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
1405 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
1406 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
1407 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
1408 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
1409 //
1410 // The transform is rejected if the select doesn't have a constant operand that
1411 // is null, or all ones when AllOnes is set.
1412 //
1413 // Also recognize sext/zext from i1:
1414 //
1415 //   (add (zext cc), x) -> (select cc (add x, 1), x)
1416 //   (add (sext cc), x) -> (select cc (add x, -1), x)
1417 //
1418 // These transformations eventually create predicated instructions.
1419 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1420                                    TargetLowering::DAGCombinerInfo &DCI,
1421                                    bool AllOnes) {
1422   SelectionDAG &DAG = DCI.DAG;
1423   EVT VT = N->getValueType(0);
1424   SDValue NonConstantVal;
1425   SDValue CCOp;
1426   bool SwapSelectOps;
1427   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1428                                   NonConstantVal, DAG))
1429     return SDValue();
1430 
1431   // Slct is now know to be the desired identity constant when CC is true.
1432   SDValue TrueVal = OtherOp;
1433   SDValue FalseVal =
1434       DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1435   // Unless SwapSelectOps says CC should be false.
1436   if (SwapSelectOps)
1437     std::swap(TrueVal, FalseVal);
1438 
1439   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1440 }
1441 
1442 // Attempt combineSelectAndUse on each operand of a commutative operator N.
1443 static SDValue
1444 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1445                                bool AllOnes) {
1446   SDValue N0 = N->getOperand(0);
1447   SDValue N1 = N->getOperand(1);
1448   if (N0.getNode()->hasOneUse())
1449     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1450       return Result;
1451   if (N1.getNode()->hasOneUse())
1452     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1453       return Result;
1454   return SDValue();
1455 }
1456 
1457 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
1458 static SDValue PerformSUBCombine(SDNode *N,
1459                                  TargetLowering::DAGCombinerInfo &DCI) {
1460   SDValue N0 = N->getOperand(0);
1461   SDValue N1 = N->getOperand(1);
1462 
1463   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1464   if (N1.getNode()->hasOneUse())
1465     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1466       return Result;
1467 
1468   return SDValue();
1469 }
1470 
1471 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1472                                                DAGCombinerInfo &DCI) const {
1473   switch (N->getOpcode()) {
1474   default:
1475     break;
1476   case ISD::ADD:
1477   case ISD::OR:
1478   case ISD::XOR:
1479     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1480   case ISD::AND:
1481     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1482   case ISD::SUB:
1483     return PerformSUBCombine(N, DCI);
1484   }
1485 
1486   return SDValue();
1487 }
1488 
1489 void LanaiTargetLowering::computeKnownBitsForTargetNode(
1490     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1491     const SelectionDAG &DAG, unsigned Depth) const {
1492   unsigned BitWidth = Known.getBitWidth();
1493   switch (Op.getOpcode()) {
1494   default:
1495     break;
1496   case LanaiISD::SETCC:
1497     Known = KnownBits(BitWidth);
1498     Known.Zero.setBits(1, BitWidth);
1499     break;
1500   case LanaiISD::SELECT_CC:
1501     KnownBits Known2;
1502     Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1503     Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1504     Known = Known.intersectWith(Known2);
1505     break;
1506   }
1507 }
1508