xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/RDFDeadCode.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===--- RDFDeadCode.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // RDF-based generic dead code elimination.
10 
11 #include "RDFDeadCode.h"
12 
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/RDFGraph.h"
18 #include "llvm/CodeGen/RDFLiveness.h"
19 #include "llvm/Support/Debug.h"
20 
21 #include <queue>
22 
23 using namespace llvm;
24 using namespace rdf;
25 
26 // This drastically improves execution time in "collect" over using
27 // SetVector as a work queue, and popping the first element from it.
28 template<typename T> struct DeadCodeElimination::SetQueue {
29   SetQueue() : Set(), Queue() {}
30 
31   bool empty() const {
32     return Queue.empty();
33   }
34   T pop_front() {
35     T V = Queue.front();
36     Queue.pop();
37     Set.erase(V);
38     return V;
39   }
40   void push_back(T V) {
41     if (Set.count(V))
42       return;
43     Queue.push(V);
44     Set.insert(V);
45   }
46 
47 private:
48   DenseSet<T> Set;
49   std::queue<T> Queue;
50 };
51 
52 
53 // Check if the given instruction has observable side-effects, i.e. if
54 // it should be considered "live". It is safe for this function to be
55 // overly conservative (i.e. return "true" for all instructions), but it
56 // is not safe to return "false" for an instruction that should not be
57 // considered removable.
58 bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const {
59   if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn())
60     return true;
61   if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() ||
62       MI->isPosition())
63     return true;
64   if (MI->isPHI())
65     return false;
66   for (auto &Op : MI->operands()) {
67     if (Op.isReg() && MRI.isReserved(Op.getReg()))
68       return true;
69     if (Op.isRegMask()) {
70       const uint32_t *BM = Op.getRegMask();
71       for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) {
72         if (BM[R/32] & (1u << (R%32)))
73           continue;
74         if (MRI.isReserved(R))
75           return true;
76       }
77     }
78   }
79   return false;
80 }
81 
82 void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA,
83       SetQueue<NodeId> &WorkQ) {
84   if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
85     return;
86   if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
87     return;
88   for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) {
89     if (!LiveNodes.count(RA.Id))
90       WorkQ.push_back(RA.Id);
91   }
92 }
93 
94 void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA,
95       SetQueue<NodeId> &WorkQ) {
96   NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
97   for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
98     if (!LiveNodes.count(UA.Id))
99       WorkQ.push_back(UA.Id);
100   }
101   for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA))
102     LiveNodes.insert(TA.Id);
103 }
104 
105 void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA,
106       SetQueue<NodeId> &WorkQ) {
107   for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) {
108     if (!LiveNodes.count(DA.Id))
109       WorkQ.push_back(DA.Id);
110   }
111 }
112 
113 // Traverse the DFG and collect the set dead RefNodes and the set of
114 // dead instructions. Return "true" if any of these sets is non-empty,
115 // "false" otherwise.
116 bool DeadCodeElimination::collect() {
117   // This function works by first finding all live nodes. The dead nodes
118   // are then the complement of the set of live nodes.
119   //
120   // Assume that all nodes are dead. Identify instructions which must be
121   // considered live, i.e. instructions with observable side-effects, such
122   // as calls and stores. All arguments of such instructions are considered
123   // live. For each live def, all operands used in the corresponding
124   // instruction are considered live. For each live use, all its reaching
125   // defs are considered live.
126   LiveNodes.clear();
127   SetQueue<NodeId> WorkQ;
128   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG))
129     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG))
130       scanInstr(IA, WorkQ);
131 
132   while (!WorkQ.empty()) {
133     NodeId N = WorkQ.pop_front();
134     LiveNodes.insert(N);
135     auto RA = DFG.addr<RefNode*>(N);
136     if (DFG.IsDef(RA))
137       processDef(RA, WorkQ);
138     else
139       processUse(RA, WorkQ);
140   }
141 
142   if (trace()) {
143     dbgs() << "Live nodes:\n";
144     for (NodeId N : LiveNodes) {
145       auto RA = DFG.addr<RefNode*>(N);
146       dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n";
147     }
148   }
149 
150   auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool {
151     for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG))
152       if (LiveNodes.count(DA.Id))
153         return false;
154     return true;
155   };
156 
157   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
158     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
159       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
160         if (!LiveNodes.count(RA.Id))
161           DeadNodes.insert(RA.Id);
162       if (DFG.IsCode<NodeAttrs::Stmt>(IA))
163         if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
164           continue;
165       if (IsDead(IA)) {
166         DeadInstrs.insert(IA.Id);
167         if (trace())
168           dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n";
169       }
170     }
171   }
172 
173   return !DeadNodes.empty();
174 }
175 
176 // Erase the nodes given in the Nodes set from DFG. In addition to removing
177 // them from the DFG, if a node corresponds to a statement, the corresponding
178 // machine instruction is erased from the function.
179 bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) {
180   if (Nodes.empty())
181     return false;
182 
183   // Prepare the actual set of ref nodes to remove: ref nodes from Nodes
184   // are included directly, for each InstrNode in Nodes, include the set
185   // of all RefNodes from it.
186   NodeList DRNs, DINs;
187   for (auto I : Nodes) {
188     auto BA = DFG.addr<NodeBase*>(I);
189     uint16_t Type = BA.Addr->getType();
190     if (Type == NodeAttrs::Ref) {
191       DRNs.push_back(DFG.addr<RefNode*>(I));
192       continue;
193     }
194 
195     // If it's a code node, add all ref nodes from it.
196     uint16_t Kind = BA.Addr->getKind();
197     if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) {
198       for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG))
199         DRNs.push_back(N);
200       DINs.push_back(DFG.addr<InstrNode*>(I));
201     } else {
202       llvm_unreachable("Unexpected code node");
203       return false;
204     }
205   }
206 
207   // Sort the list so that use nodes are removed first. This makes the
208   // "unlink" functions a bit faster.
209   auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool {
210     uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind();
211     if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def)
212       return true;
213     if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use)
214       return false;
215     return A.Id < B.Id;
216   };
217   llvm::sort(DRNs, UsesFirst);
218 
219   if (trace())
220     dbgs() << "Removing dead ref nodes:\n";
221   for (NodeAddr<RefNode*> RA : DRNs) {
222     if (trace())
223       dbgs() << "  " << PrintNode<RefNode*>(RA, DFG) << '\n';
224     if (DFG.IsUse(RA))
225       DFG.unlinkUse(RA, true);
226     else if (DFG.IsDef(RA))
227       DFG.unlinkDef(RA, true);
228   }
229 
230   // Now, remove all dead instruction nodes.
231   for (NodeAddr<InstrNode*> IA : DINs) {
232     NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
233     BA.Addr->removeMember(IA, DFG);
234     if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
235       continue;
236 
237     MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
238     if (trace())
239       dbgs() << "erasing: " << *MI;
240     MI->eraseFromParent();
241   }
242   return true;
243 }
244