xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/RDFDeadCode.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===--- RDFDeadCode.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // RDF-based generic dead code elimination.
10 
11 #include "RDFDeadCode.h"
12 
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/RDFGraph.h"
18 #include "llvm/CodeGen/RDFLiveness.h"
19 #include "llvm/Support/Debug.h"
20 
21 #include <queue>
22 
23 using namespace llvm;
24 using namespace rdf;
25 
26 // This drastically improves execution time in "collect" over using
27 // SetVector as a work queue, and popping the first element from it.
28 template<typename T> struct DeadCodeElimination::SetQueue {
29   SetQueue() : Set(), Queue() {}
30 
31   bool empty() const {
32     return Queue.empty();
33   }
34   T pop_front() {
35     T V = Queue.front();
36     Queue.pop();
37     Set.erase(V);
38     return V;
39   }
40   void push_back(T V) {
41     if (Set.count(V))
42       return;
43     Queue.push(V);
44     Set.insert(V);
45   }
46 
47 private:
48   DenseSet<T> Set;
49   std::queue<T> Queue;
50 };
51 
52 
53 // Check if the given instruction has observable side-effects, i.e. if
54 // it should be considered "live". It is safe for this function to be
55 // overly conservative (i.e. return "true" for all instructions), but it
56 // is not safe to return "false" for an instruction that should not be
57 // considered removable.
58 bool DeadCodeElimination::isLiveInstr(NodeAddr<StmtNode *> S) const {
59   const MachineInstr *MI = S.Addr->getCode();
60   if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn())
61     return true;
62   if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() ||
63       MI->isPosition())
64     return true;
65   if (MI->isPHI())
66     return false;
67   for (auto &Op : MI->operands()) {
68     if (Op.isReg() && MRI.isReserved(Op.getReg()))
69       return true;
70     if (Op.isRegMask()) {
71       const uint32_t *BM = Op.getRegMask();
72       for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) {
73         if (BM[R/32] & (1u << (R%32)))
74           continue;
75         if (MRI.isReserved(R))
76           return true;
77       }
78     }
79   }
80   return false;
81 }
82 
83 void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA,
84       SetQueue<NodeId> &WorkQ) {
85   if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
86     return;
87   if (!isLiveInstr(IA))
88     return;
89   for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) {
90     if (!LiveNodes.count(RA.Id))
91       WorkQ.push_back(RA.Id);
92   }
93 }
94 
95 void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA,
96       SetQueue<NodeId> &WorkQ) {
97   NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
98   for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
99     if (!LiveNodes.count(UA.Id))
100       WorkQ.push_back(UA.Id);
101   }
102   for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA))
103     LiveNodes.insert(TA.Id);
104 }
105 
106 void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA,
107       SetQueue<NodeId> &WorkQ) {
108   for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) {
109     if (!LiveNodes.count(DA.Id))
110       WorkQ.push_back(DA.Id);
111   }
112 }
113 
114 // Traverse the DFG and collect the set dead RefNodes and the set of
115 // dead instructions. Return "true" if any of these sets is non-empty,
116 // "false" otherwise.
117 bool DeadCodeElimination::collect() {
118   // This function works by first finding all live nodes. The dead nodes
119   // are then the complement of the set of live nodes.
120   //
121   // Assume that all nodes are dead. Identify instructions which must be
122   // considered live, i.e. instructions with observable side-effects, such
123   // as calls and stores. All arguments of such instructions are considered
124   // live. For each live def, all operands used in the corresponding
125   // instruction are considered live. For each live use, all its reaching
126   // defs are considered live.
127   LiveNodes.clear();
128   SetQueue<NodeId> WorkQ;
129   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG))
130     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG))
131       scanInstr(IA, WorkQ);
132 
133   while (!WorkQ.empty()) {
134     NodeId N = WorkQ.pop_front();
135     LiveNodes.insert(N);
136     auto RA = DFG.addr<RefNode*>(N);
137     if (DFG.IsDef(RA))
138       processDef(RA, WorkQ);
139     else
140       processUse(RA, WorkQ);
141   }
142 
143   if (trace()) {
144     dbgs() << "Live nodes:\n";
145     for (NodeId N : LiveNodes) {
146       auto RA = DFG.addr<RefNode*>(N);
147       dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n";
148     }
149   }
150 
151   auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool {
152     for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG))
153       if (LiveNodes.count(DA.Id))
154         return false;
155     return true;
156   };
157 
158   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
159     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
160       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
161         if (!LiveNodes.count(RA.Id))
162           DeadNodes.insert(RA.Id);
163       if (DFG.IsCode<NodeAttrs::Stmt>(IA))
164         if (isLiveInstr(IA) || DFG.hasUntrackedRef(IA))
165           continue;
166       if (IsDead(IA)) {
167         DeadInstrs.insert(IA.Id);
168         if (trace())
169           dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n";
170       }
171     }
172   }
173 
174   return !DeadNodes.empty();
175 }
176 
177 // Erase the nodes given in the Nodes set from DFG. In addition to removing
178 // them from the DFG, if a node corresponds to a statement, the corresponding
179 // machine instruction is erased from the function.
180 bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) {
181   if (Nodes.empty())
182     return false;
183 
184   // Prepare the actual set of ref nodes to remove: ref nodes from Nodes
185   // are included directly, for each InstrNode in Nodes, include the set
186   // of all RefNodes from it.
187   NodeList DRNs, DINs;
188   for (auto I : Nodes) {
189     auto BA = DFG.addr<NodeBase*>(I);
190     uint16_t Type = BA.Addr->getType();
191     if (Type == NodeAttrs::Ref) {
192       DRNs.push_back(DFG.addr<RefNode*>(I));
193       continue;
194     }
195 
196     // If it's a code node, add all ref nodes from it.
197     uint16_t Kind = BA.Addr->getKind();
198     if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) {
199       append_range(DRNs, NodeAddr<CodeNode*>(BA).Addr->members(DFG));
200       DINs.push_back(DFG.addr<InstrNode*>(I));
201     } else {
202       llvm_unreachable("Unexpected code node");
203       return false;
204     }
205   }
206 
207   // Sort the list so that use nodes are removed first. This makes the
208   // "unlink" functions a bit faster.
209   auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool {
210     uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind();
211     if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def)
212       return true;
213     if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use)
214       return false;
215     return A.Id < B.Id;
216   };
217   llvm::sort(DRNs, UsesFirst);
218 
219   if (trace())
220     dbgs() << "Removing dead ref nodes:\n";
221   for (NodeAddr<RefNode*> RA : DRNs) {
222     if (trace())
223       dbgs() << "  " << PrintNode<RefNode*>(RA, DFG) << '\n';
224     if (DFG.IsUse(RA))
225       DFG.unlinkUse(RA, true);
226     else if (DFG.IsDef(RA))
227       DFG.unlinkDef(RA, true);
228   }
229 
230   // Now, remove all dead instruction nodes.
231   for (NodeAddr<InstrNode*> IA : DINs) {
232     NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
233     BA.Addr->removeMember(IA, DFG);
234     if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
235       continue;
236 
237     MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
238     if (trace())
239       dbgs() << "erasing: " << *MI;
240     MI->eraseFromParent();
241   }
242   return true;
243 }
244