xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp (revision 32100375a661c1e16588ddfa7b90ca8d26cb9786)
1 //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MCTargetDesc/HexagonMCInstrInfo.h"
14 #include "MCTargetDesc/HexagonBaseInfo.h"
15 #include "MCTargetDesc/HexagonMCChecker.h"
16 #include "MCTargetDesc/HexagonMCExpr.h"
17 #include "MCTargetDesc/HexagonMCShuffler.h"
18 #include "MCTargetDesc/HexagonMCTargetDesc.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/MC/MCInstrInfo.h"
24 #include "llvm/MC/MCInstrItineraries.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <cassert>
29 #include <cstdint>
30 #include <limits>
31 
32 using namespace llvm;
33 
34 bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const {
35   return Register != Hexagon::NoRegister;
36 }
37 
38 Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
39                                         MCInst const &Inst)
40     : MCII(MCII), BundleCurrent(Inst.begin() +
41                                 HexagonMCInstrInfo::bundleInstructionsOffset),
42       BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
43 
44 Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
45                                         MCInst const &Inst, std::nullptr_t)
46     : MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()),
47       DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
48 
49 Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() {
50   if (DuplexCurrent != DuplexEnd) {
51     ++DuplexCurrent;
52     if (DuplexCurrent == DuplexEnd) {
53       DuplexCurrent = BundleEnd;
54       DuplexEnd = BundleEnd;
55       ++BundleCurrent;
56     }
57     return *this;
58   }
59   ++BundleCurrent;
60   if (BundleCurrent != BundleEnd) {
61     MCInst const &Inst = *BundleCurrent->getInst();
62     if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
63       DuplexCurrent = Inst.begin();
64       DuplexEnd = Inst.end();
65     }
66   }
67   return *this;
68 }
69 
70 MCInst const &Hexagon::PacketIterator::operator*() const {
71   if (DuplexCurrent != DuplexEnd)
72     return *DuplexCurrent->getInst();
73   return *BundleCurrent->getInst();
74 }
75 
76 bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const {
77   return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd &&
78          DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd;
79 }
80 
81 void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
82                                      MCContext &Context) {
83   MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
84 }
85 
86 void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
87                                           MCInstrInfo const &MCII, MCInst &MCB,
88                                           MCInst const &MCI) {
89   assert(HexagonMCInstrInfo::isBundle(MCB));
90   MCOperand const &exOp =
91       MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
92 
93   // Create the extender.
94   MCInst *XMCI =
95       new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
96   XMCI->setLoc(MCI.getLoc());
97 
98   MCB.addOperand(MCOperand::createInst(XMCI));
99 }
100 
101 iterator_range<Hexagon::PacketIterator>
102 HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII,
103                                        MCInst const &MCI) {
104   assert(isBundle(MCI));
105   return make_range(Hexagon::PacketIterator(MCII, MCI),
106                     Hexagon::PacketIterator(MCII, MCI, nullptr));
107 }
108 
109 iterator_range<MCInst::const_iterator>
110 HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
111   assert(isBundle(MCI));
112   return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
113 }
114 
115 size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
116   if (HexagonMCInstrInfo::isBundle(MCI))
117     return (MCI.size() - bundleInstructionsOffset);
118   else
119     return (1);
120 }
121 
122 bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
123                                             MCSubtargetInfo const &STI,
124                                             MCContext &Context, MCInst &MCB,
125                                             HexagonMCChecker *Check) {
126   // Check the bundle for errors.
127   bool CheckOk = Check ? Check->check(false) : true;
128   if (!CheckOk)
129     return false;
130   // Examine the packet and convert pairs of instructions to compound
131   // instructions when possible.
132   if (!HexagonDisableCompound)
133     HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCB);
134   HexagonMCShuffle(Context, false, MCII, STI, MCB);
135   // Examine the packet and convert pairs of instructions to duplex
136   // instructions when possible.
137   MCInst InstBundlePreDuplex = MCInst(MCB);
138   if (STI.getFeatureBits() [Hexagon::FeatureDuplex]) {
139     SmallVector<DuplexCandidate, 8> possibleDuplexes;
140     possibleDuplexes =
141         HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB);
142     HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes);
143   }
144   // Examines packet and pad the packet, if needed, when an
145   // end-loop is in the bundle.
146   HexagonMCInstrInfo::padEndloop(MCB, Context);
147   // If compounding and duplexing didn't reduce the size below
148   // 4 or less we have a packet that is too big.
149   if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
150     return false;
151   // Check the bundle for errors.
152   CheckOk = Check ? Check->check(true) : true;
153   if (!CheckOk)
154     return false;
155   HexagonMCShuffle(Context, true, MCII, STI, MCB);
156   return true;
157 }
158 
159 MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
160                                           MCInst const &Inst,
161                                           MCOperand const &MO) {
162   assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
163          HexagonMCInstrInfo::isExtended(MCII, Inst));
164 
165   MCInst XMI;
166   XMI.setOpcode(Hexagon::A4_ext);
167   if (MO.isImm())
168     XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
169   else if (MO.isExpr())
170     XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
171   else
172     llvm_unreachable("invalid extendable operand");
173   return XMI;
174 }
175 
176 MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
177                                          MCInst const &inst0,
178                                          MCInst const &inst1) {
179   assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
180   MCInst *duplexInst = new (Context) MCInst;
181   duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
182 
183   MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
184   MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
185   duplexInst->addOperand(MCOperand::createInst(SubInst0));
186   duplexInst->addOperand(MCOperand::createInst(SubInst1));
187   return duplexInst;
188 }
189 
190 MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
191                                                    size_t Index) {
192   assert(Index <= bundleSize(MCB));
193   if (Index == 0)
194     return nullptr;
195   MCInst const *Inst =
196       MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
197   if (isImmext(*Inst))
198     return Inst;
199   return nullptr;
200 }
201 
202 void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
203                                         MCInstrInfo const &MCII, MCInst &MCB,
204                                         MCInst const &MCI) {
205   if (isConstExtended(MCII, MCI))
206     addConstExtender(Context, MCII, MCB, MCI);
207 }
208 
209 unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII,
210       MCInst const &MCI) {
211   uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
212   unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
213   return HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(S));
214 }
215 
216 unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII,
217                                          MCInst const &MCI) {
218   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
219   return static_cast<unsigned>((F >> HexagonII::AddrModePos) &
220                                HexagonII::AddrModeMask);
221 }
222 
223 MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
224                                                MCInst const &MCI) {
225   return MCII.get(MCI.getOpcode());
226 }
227 
228 unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) {
229   using namespace Hexagon;
230 
231   switch (Reg) {
232   default:
233     llvm_unreachable("unknown duplex register");
234   // Rs       Rss
235   case R0:
236   case D0:
237     return 0;
238   case R1:
239   case D1:
240     return 1;
241   case R2:
242   case D2:
243     return 2;
244   case R3:
245   case D3:
246     return 3;
247   case R4:
248   case D8:
249     return 4;
250   case R5:
251   case D9:
252     return 5;
253   case R6:
254   case D10:
255     return 6;
256   case R7:
257   case D11:
258     return 7;
259   case R16:
260     return 8;
261   case R17:
262     return 9;
263   case R18:
264     return 10;
265   case R19:
266     return 11;
267   case R20:
268     return 12;
269   case R21:
270     return 13;
271   case R22:
272     return 14;
273   case R23:
274     return 15;
275   }
276 }
277 
278 MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) {
279   const auto &HExpr = cast<HexagonMCExpr>(Expr);
280   assert(HExpr.getExpr());
281   return *HExpr.getExpr();
282 }
283 
284 unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
285                                                    MCInst const &MCI) {
286   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
287   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
288 }
289 
290 MCOperand const &
291 HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
292                                          MCInst const &MCI) {
293   unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
294   MCOperand const &MO = MCI.getOperand(O);
295 
296   assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
297           HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
298          (MO.isImm() || MO.isExpr()));
299   return (MO);
300 }
301 
302 unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
303                                                 MCInst const &MCI) {
304   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
305   return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
306 }
307 
308 unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
309                                            MCInst const &MCI) {
310   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
311   return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
312 }
313 
314 bool HexagonMCInstrInfo::isExtentSigned(MCInstrInfo const &MCII,
315                                         MCInst const &MCI) {
316   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
317   return (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
318 }
319 
320 /// Return the maximum value of an extendable operand.
321 int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
322                                     MCInst const &MCI) {
323   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
324          HexagonMCInstrInfo::isExtended(MCII, MCI));
325 
326   if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
327     return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1;
328   return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1;
329 }
330 
331 /// Return the minimum value of an extendable operand.
332 int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
333                                     MCInst const &MCI) {
334   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
335          HexagonMCInstrInfo::isExtended(MCII, MCI));
336 
337   if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
338     return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1));
339   return 0;
340 }
341 
342 StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
343                                       MCInst const &MCI) {
344   return MCII.getName(MCI.getOpcode());
345 }
346 
347 unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
348                                                  MCInst const &MCI) {
349   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
350   return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
351 }
352 
353 MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
354                                                         MCInst const &MCI) {
355   if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) {
356     // VTMP doesn't actually exist in the encodings for these 184
357     // 3 instructions so go ahead and create it here.
358     static MCOperand MCO = MCOperand::createReg(Hexagon::VTMP);
359     return (MCO);
360   } else {
361     unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI);
362     MCOperand const &MCO = MCI.getOperand(O);
363 
364     assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
365             HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
366            MCO.isReg());
367     return (MCO);
368   }
369 }
370 
371 /// Return the new value or the newly produced value.
372 unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
373                                                   MCInst const &MCI) {
374   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
375   return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
376 }
377 
378 MCOperand const &
379 HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
380                                         MCInst const &MCI) {
381   unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
382   MCOperand const &MCO = MCI.getOperand(O);
383 
384   assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
385           HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
386          MCO.isReg());
387   return (MCO);
388 }
389 
390 /// Return the Hexagon ISA class for the insn.
391 unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
392                                      MCInst const &MCI) {
393   const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
394   return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
395 }
396 
397 /// Return the slots this instruction can execute out of
398 unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
399                                       MCSubtargetInfo const &STI,
400                                       MCInst const &MCI) {
401   const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
402   int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
403   return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
404 }
405 
406 /// Return the slots this instruction consumes in addition to
407 /// the slot(s) it can execute out of
408 
409 unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII,
410                                                    MCSubtargetInfo const &STI,
411                                                    MCInst const &MCI) {
412   const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
413   int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
414   unsigned Slots = 0;
415 
416   // FirstStage are slots that this instruction can execute in.
417   // FirstStage+1 are slots that are also consumed by this instruction.
418   // For example: vmemu can only execute in slot 0 but also consumes slot 1.
419   for (unsigned Stage = II[SchedClass].FirstStage + 1;
420        Stage < II[SchedClass].LastStage; ++Stage) {
421     unsigned Units = (Stage + HexagonStages)->getUnits();
422     if (Units > HexagonGetLastSlot())
423       break;
424     // fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8
425     Slots |= Units;
426   }
427 
428   // if 0 is returned, then no additional slots are consumed by this inst.
429   return Slots;
430 }
431 
432 bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
433   if (!HexagonMCInstrInfo::isBundle(MCI))
434     return false;
435 
436   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
437     if (HexagonMCInstrInfo::isDuplex(MCII, *I.getInst()))
438       return true;
439   }
440 
441   return false;
442 }
443 
444 bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
445   return extenderForIndex(MCB, Index) != nullptr;
446 }
447 
448 bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
449   if (!HexagonMCInstrInfo::isBundle(MCI))
450     return false;
451 
452   for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
453     if (isImmext(*I.getInst()))
454       return true;
455   }
456 
457   return false;
458 }
459 
460 /// Return whether the insn produces a value.
461 bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
462                                      MCInst const &MCI) {
463   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
464   return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
465 }
466 
467 /// Return whether the insn produces a second value.
468 bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
469                                       MCInst const &MCI) {
470   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
471   return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
472 }
473 
474 MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
475   assert(isBundle(MCB));
476   assert(Index < HEXAGON_PACKET_SIZE);
477   return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
478 }
479 
480 /// Return where the instruction is an accumulator.
481 bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII,
482                                        MCInst const &MCI) {
483   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
484   return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
485 }
486 
487 bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
488   auto Result = Hexagon::BUNDLE == MCI.getOpcode();
489   assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
490   return Result;
491 }
492 
493 bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
494                                          MCInst const &MCI) {
495   if (HexagonMCInstrInfo::isExtended(MCII, MCI))
496     return true;
497   if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
498     return false;
499   MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
500   if (isa<HexagonMCExpr>(MO.getExpr()) &&
501       HexagonMCInstrInfo::mustExtend(*MO.getExpr()))
502     return true;
503   // Branch insns are handled as necessary by relaxation.
504   if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
505       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ &&
506        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
507       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ &&
508        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
509     return false;
510   // Otherwise loop instructions and other CR insts are handled by relaxation
511   else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
512            (MCI.getOpcode() != Hexagon::C4_addipc))
513     return false;
514 
515   assert(!MO.isImm());
516   if (isa<HexagonMCExpr>(MO.getExpr()) &&
517       HexagonMCInstrInfo::mustNotExtend(*MO.getExpr()))
518     return false;
519   int64_t Value;
520   if (!MO.getExpr()->evaluateAsAbsolute(Value))
521     return true;
522   int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
523   int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
524   return (MinValue > Value || Value > MaxValue);
525 }
526 
527 bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
528   return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
529          !HexagonMCInstrInfo::isPrefix(MCII, MCI);
530 }
531 
532 bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) {
533   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
534   return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask);
535 }
536 
537 bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII,
538                                      MCInst const &MCI) {
539   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
540   return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask);
541 }
542 
543 bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII,
544                                      MCInst const &MCI) {
545   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
546   return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask);
547 }
548 
549 bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
550                                     MCInst const &MCI) {
551   return (getType(MCII, MCI) == HexagonII::TypeCJ);
552 }
553 
554 bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) {
555   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
556   return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask);
557 }
558 
559 bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
560   return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
561           (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
562 }
563 
564 bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
565   return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
566 }
567 
568 bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
569                                       MCInst const &MCI) {
570   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
571   return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
572 }
573 
574 bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
575                                     MCInst const &MCI) {
576   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
577   return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
578 }
579 
580 bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
581   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
582   return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
583 }
584 
585 bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) {
586   const uint64_t V = getType(MCII, MCI);
587   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
588 }
589 
590 bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
591   return MCI.getOpcode() == Hexagon::A4_ext;
592 }
593 
594 bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
595   assert(isBundle(MCI));
596   int64_t Flags = MCI.getOperand(0).getImm();
597   return (Flags & innerLoopMask) != 0;
598 }
599 
600 bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
601   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
602 }
603 
604 bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
605   return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
606           (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
607 }
608 
609 /// Return whether the insn expects newly produced value.
610 bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
611                                     MCInst const &MCI) {
612   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
613   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
614 }
615 
616 /// Return whether the operand is extendable.
617 bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII,
618                                         MCInst const &MCI, unsigned short O) {
619   return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
620 }
621 
622 bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
623   assert(isBundle(MCI));
624   int64_t Flags = MCI.getOperand(0).getImm();
625   return (Flags & outerLoopMask) != 0;
626 }
627 
628 bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
629                                       MCInst const &MCI) {
630   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
631   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
632 }
633 
634 bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
635   return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI);
636 }
637 
638 bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
639                                          MCInst const &MCI) {
640   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
641   return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
642 }
643 
644 /// Return whether the insn is newly predicated.
645 bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
646                                          MCInst const &MCI) {
647   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
648   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
649 }
650 
651 bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
652                                           MCInst const &MCI) {
653   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
654   return (
655       !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
656 }
657 
658 bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
659   return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
660 }
661 
662 /// Return whether the insn can be packaged only with A and X-type insns.
663 bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
664   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
665   return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
666 }
667 
668 /// Return whether the insn can be packaged only with an A-type insn in slot #1.
669 bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII,
670                                             MCInst const &MCI) {
671   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
672   return ((F >> HexagonII::RestrictSlot1AOKPos) &
673           HexagonII::RestrictSlot1AOKMask);
674 }
675 
676 bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII,
677                                                 MCInst const &MCI) {
678   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
679   return ((F >> HexagonII::RestrictNoSlot1StorePos) &
680           HexagonII::RestrictNoSlot1StoreMask);
681 }
682 
683 /// Return whether the insn is solo, i.e., cannot be in a packet.
684 bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
685   const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
686   return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
687 }
688 
689 bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
690   assert(isBundle(MCI));
691   auto Flags = MCI.getOperand(0).getImm();
692   return (Flags & memReorderDisabledMask) != 0;
693 }
694 
695 bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) {
696   switch (MCI.getOpcode()) {
697   default:
698     return false;
699   case Hexagon::SA1_addi:
700   case Hexagon::SA1_addrx:
701   case Hexagon::SA1_addsp:
702   case Hexagon::SA1_and1:
703   case Hexagon::SA1_clrf:
704   case Hexagon::SA1_clrfnew:
705   case Hexagon::SA1_clrt:
706   case Hexagon::SA1_clrtnew:
707   case Hexagon::SA1_cmpeqi:
708   case Hexagon::SA1_combine0i:
709   case Hexagon::SA1_combine1i:
710   case Hexagon::SA1_combine2i:
711   case Hexagon::SA1_combine3i:
712   case Hexagon::SA1_combinerz:
713   case Hexagon::SA1_combinezr:
714   case Hexagon::SA1_dec:
715   case Hexagon::SA1_inc:
716   case Hexagon::SA1_seti:
717   case Hexagon::SA1_setin1:
718   case Hexagon::SA1_sxtb:
719   case Hexagon::SA1_sxth:
720   case Hexagon::SA1_tfr:
721   case Hexagon::SA1_zxtb:
722   case Hexagon::SA1_zxth:
723   case Hexagon::SL1_loadri_io:
724   case Hexagon::SL1_loadrub_io:
725   case Hexagon::SL2_deallocframe:
726   case Hexagon::SL2_jumpr31:
727   case Hexagon::SL2_jumpr31_f:
728   case Hexagon::SL2_jumpr31_fnew:
729   case Hexagon::SL2_jumpr31_t:
730   case Hexagon::SL2_jumpr31_tnew:
731   case Hexagon::SL2_loadrb_io:
732   case Hexagon::SL2_loadrd_sp:
733   case Hexagon::SL2_loadrh_io:
734   case Hexagon::SL2_loadri_sp:
735   case Hexagon::SL2_loadruh_io:
736   case Hexagon::SL2_return:
737   case Hexagon::SL2_return_f:
738   case Hexagon::SL2_return_fnew:
739   case Hexagon::SL2_return_t:
740   case Hexagon::SL2_return_tnew:
741   case Hexagon::SS1_storeb_io:
742   case Hexagon::SS1_storew_io:
743   case Hexagon::SS2_allocframe:
744   case Hexagon::SS2_storebi0:
745   case Hexagon::SS2_storebi1:
746   case Hexagon::SS2_stored_sp:
747   case Hexagon::SS2_storeh_io:
748   case Hexagon::SS2_storew_sp:
749   case Hexagon::SS2_storewi0:
750   case Hexagon::SS2_storewi1:
751     return true;
752   }
753 }
754 
755 bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
756   if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
757       (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
758     return true;
759   return false;
760 }
761 
762 int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
763   auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
764                   << 8;
765   if (MCI.size() <= Index)
766     return Sentinal;
767   MCOperand const &MCO = MCI.getOperand(Index);
768   if (!MCO.isExpr())
769     return Sentinal;
770   int64_t Value;
771   if (!MCO.getExpr()->evaluateAsAbsolute(Value))
772     return Sentinal;
773   return Value;
774 }
775 
776 void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) {
777   HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
778   HExpr.setMustExtend(Val);
779 }
780 
781 bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) {
782   HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
783   return HExpr.mustExtend();
784 }
785 void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) {
786   HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
787   HExpr.setMustNotExtend(Val);
788 }
789 bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) {
790   HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
791   return HExpr.mustNotExtend();
792 }
793 void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) {
794   HexagonMCExpr &HExpr =
795       const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(&Expr));
796   HExpr.setS27_2_reloc(Val);
797 }
798 bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) {
799   HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(&Expr);
800   if (!HExpr)
801     return false;
802   return HExpr->s27_2_reloc();
803 }
804 
805 void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) {
806   MCInst Nop;
807   Nop.setOpcode(Hexagon::A2_nop);
808   assert(isBundle(MCB));
809   while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
810           (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
811          ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
812            (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
813     MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
814 }
815 
816 HexagonMCInstrInfo::PredicateInfo
817 HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) {
818   if (!isPredicated(MCII, MCI))
819     return {0, 0, false};
820   MCInstrDesc const &Desc = getDesc(MCII, MCI);
821   for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I)
822     if (Desc.OpInfo[I].RegClass == Hexagon::PredRegsRegClassID)
823       return {MCI.getOperand(I).getReg(), I, isPredicatedTrue(MCII, MCI)};
824   return {0, 0, false};
825 }
826 
827 bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
828                                       MCInst const &MCI) {
829   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
830   return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask;
831 }
832 
833 /// return true if instruction has hasTmpDst attribute.
834 bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) {
835   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
836   return (F >> HexagonII::HasTmpDstPos) & HexagonII::HasTmpDstMask;
837 }
838 
839 void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
840                                        DuplexCandidate Candidate) {
841   assert(Candidate.packetIndexI < MCB.size());
842   assert(Candidate.packetIndexJ < MCB.size());
843   assert(isBundle(MCB));
844   MCInst *Duplex =
845       deriveDuplex(Context, Candidate.iClass,
846                    *MCB.getOperand(Candidate.packetIndexJ).getInst(),
847                    *MCB.getOperand(Candidate.packetIndexI).getInst());
848   assert(Duplex != nullptr);
849   MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
850   MCB.erase(MCB.begin() + Candidate.packetIndexJ);
851 }
852 
853 void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
854   assert(isBundle(MCI));
855   MCOperand &Operand = MCI.getOperand(0);
856   Operand.setImm(Operand.getImm() | innerLoopMask);
857 }
858 
859 void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
860   assert(isBundle(MCI));
861   MCOperand &Operand = MCI.getOperand(0);
862   Operand.setImm(Operand.getImm() | memReorderDisabledMask);
863   assert(isMemReorderDisabled(MCI));
864 }
865 
866 void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
867   assert(isBundle(MCI));
868   MCOperand &Operand = MCI.getOperand(0);
869   Operand.setImm(Operand.getImm() | outerLoopMask);
870 }
871 
872 unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer,
873                                             unsigned Producer,
874                                             unsigned Producer2) {
875   // If we're a single vector consumer of a double producer, set subreg bit
876   // based on if we're accessing the lower or upper register component
877   if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
878     if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31)
879       return (Consumer - Hexagon::V0) & 0x1;
880   if (Producer2 != Hexagon::NoRegister)
881     return Consumer == Producer;
882   return 0;
883 }
884