xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCChecker.cpp (revision 9e4c35f867aca020df8d01fb7371bf5ae1cc8a2d)
1 //===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the checking of insns inside a bundle according to the
10 // packet constraint rules of the Hexagon ISA.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/HexagonMCChecker.h"
15 #include "MCTargetDesc/HexagonBaseInfo.h"
16 #include "MCTargetDesc/HexagonMCInstrInfo.h"
17 #include "MCTargetDesc/HexagonMCShuffler.h"
18 #include "MCTargetDesc/HexagonMCTargetDesc.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCInst.h"
22 #include "llvm/MC/MCInstrDesc.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/SourceMgr.h"
26 #include <cassert>
27 
28 using namespace llvm;
29 
30 static cl::opt<bool>
31     RelaxNVChecks("relax-nv-checks", cl::init(false), cl::ZeroOrMore,
32                   cl::Hidden, cl::desc("Relax checks of new-value validity"));
33 
34 const HexagonMCChecker::PredSense
35     HexagonMCChecker::Unconditional(Hexagon::NoRegister, false);
36 
37 void HexagonMCChecker::init() {
38   // Initialize read-only registers set.
39   ReadOnly.insert(Hexagon::PC);
40   ReadOnly.insert(Hexagon::C9_8);
41 
42   // Figure out the loop-registers definitions.
43   if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
44     Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0?
45     Defs[Hexagon::LC0].insert(Unconditional);
46   }
47   if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
48     Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0?
49     Defs[Hexagon::LC1].insert(Unconditional);
50   }
51 
52   if (HexagonMCInstrInfo::isBundle(MCB))
53     // Unfurl a bundle.
54     for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
55       MCInst const &Inst = *I.getInst();
56       if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
57         init(*Inst.getOperand(0).getInst());
58         init(*Inst.getOperand(1).getInst());
59       } else
60         init(Inst);
61     }
62   else
63     init(MCB);
64 }
65 
66 void HexagonMCChecker::initReg(MCInst const &MCI, unsigned R, unsigned &PredReg,
67                                bool &isTrue) {
68   if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) {
69     // Note an used predicate register.
70     PredReg = R;
71     isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI);
72 
73     // Note use of new predicate register.
74     if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
75       NewPreds.insert(PredReg);
76   } else
77     // Note register use.  Super-registers are not tracked directly,
78     // but their components.
79     for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
80          SRI.isValid(); ++SRI)
81       if (!MCSubRegIterator(*SRI, &RI).isValid())
82         // Skip super-registers used indirectly.
83         Uses.insert(*SRI);
84 
85   if (HexagonMCInstrInfo::IsReverseVecRegPair(R))
86     ReversePairs.insert(R);
87 }
88 
89 void HexagonMCChecker::init(MCInst const &MCI) {
90   const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MCI);
91   unsigned PredReg = Hexagon::NoRegister;
92   bool isTrue = false;
93 
94   // Get used registers.
95   for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
96     if (MCI.getOperand(i).isReg())
97       initReg(MCI, MCI.getOperand(i).getReg(), PredReg, isTrue);
98   for (unsigned i = 0; i < MCID.getNumImplicitUses(); ++i)
99     initReg(MCI, MCID.getImplicitUses()[i], PredReg, isTrue);
100 
101   // Get implicit register definitions.
102   if (const MCPhysReg *ImpDef = MCID.getImplicitDefs())
103     for (; *ImpDef; ++ImpDef) {
104       unsigned R = *ImpDef;
105 
106       if (Hexagon::R31 != R && MCID.isCall())
107         // Any register other than the LR and the PC are actually volatile ones
108         // as defined by the ABI, not modified implicitly by the call insn.
109         continue;
110       if (Hexagon::PC == R)
111         // Branches are the only insns that can change the PC,
112         // otherwise a read-only register.
113         continue;
114 
115       if (Hexagon::USR_OVF == R)
116         // Many insns change the USR implicitly, but only one or another flag.
117         // The instruction table models the USR.OVF flag, which can be
118         // implicitly modified more than once, but cannot be modified in the
119         // same packet with an instruction that modifies is explicitly. Deal
120         // with such situations individually.
121         SoftDefs.insert(R);
122       else if (isPredicateRegister(R) &&
123                HexagonMCInstrInfo::isPredicateLate(MCII, MCI))
124         // Include implicit late predicates.
125         LatePreds.insert(R);
126       else
127         Defs[R].insert(PredSense(PredReg, isTrue));
128     }
129 
130   // Figure out explicit register definitions.
131   for (unsigned i = 0; i < MCID.getNumDefs(); ++i) {
132     unsigned R = MCI.getOperand(i).getReg(), S = Hexagon::NoRegister;
133     // USR has subregisters (while C8 does not for technical reasons), so
134     // reset R to USR, since we know how to handle multiple defs of USR,
135     // taking into account its subregisters.
136     if (R == Hexagon::C8)
137       R = Hexagon::USR;
138 
139     if (HexagonMCInstrInfo::IsReverseVecRegPair(R))
140       ReversePairs.insert(R);
141 
142     // Note register definitions, direct ones as well as indirect side-effects.
143     // Super-registers are not tracked directly, but their components.
144     for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
145          SRI.isValid(); ++SRI) {
146       if (MCSubRegIterator(*SRI, &RI).isValid())
147         // Skip super-registers defined indirectly.
148         continue;
149 
150       if (R == *SRI) {
151         if (S == R)
152           // Avoid scoring the defined register multiple times.
153           continue;
154         else
155           // Note that the defined register has already been scored.
156           S = R;
157       }
158 
159       if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI)
160         // P3:0 is a special case, since multiple predicate register definitions
161         // in a packet is allowed as the equivalent of their logical "and".
162         // Only an explicit definition of P3:0 is noted as such; if a
163         // side-effect, then note as a soft definition.
164         SoftDefs.insert(*SRI);
165       else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) &&
166                isPredicateRegister(*SRI))
167         // Some insns produce predicates too late to be used in the same packet.
168         LatePreds.insert(*SRI);
169       else if (i == 0 && HexagonMCInstrInfo::getType(MCII, MCI) ==
170                              HexagonII::TypeCVI_VM_TMP_LD)
171         // Temporary loads should be used in the same packet, but don't commit
172         // results, so it should be disregarded if another insn changes the same
173         // register.
174         // TODO: relies on the impossibility of a current and a temporary loads
175         // in the same packet.
176         TmpDefs.insert(*SRI);
177       else if (i <= 1 && HexagonMCInstrInfo::hasNewValue2(MCII, MCI))
178         // vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and
179         // destination registers with this instruction. same for vdeal(Vx,Vy,Rx)
180         Uses.insert(*SRI);
181       else
182         Defs[*SRI].insert(PredSense(PredReg, isTrue));
183     }
184   }
185 
186   // Figure out definitions of new predicate registers.
187   if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
188     for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
189       if (MCI.getOperand(i).isReg()) {
190         unsigned P = MCI.getOperand(i).getReg();
191 
192         if (isPredicateRegister(P))
193           NewPreds.insert(P);
194       }
195 }
196 
197 HexagonMCChecker::HexagonMCChecker(MCContext &Context, MCInstrInfo const &MCII,
198                                    MCSubtargetInfo const &STI, MCInst &mcb,
199                                    MCRegisterInfo const &ri, bool ReportErrors)
200     : Context(Context), MCB(mcb), RI(ri), MCII(MCII), STI(STI),
201       ReportErrors(ReportErrors), ReversePairs() {
202   init();
203 }
204 
205 HexagonMCChecker::HexagonMCChecker(HexagonMCChecker const &Other,
206                                    MCSubtargetInfo const &STI,
207                                    bool CopyReportErrors)
208     : Context(Other.Context), MCB(Other.MCB), RI(Other.RI), MCII(Other.MCII),
209       STI(STI), ReportErrors(CopyReportErrors ? Other.ReportErrors : false),
210       ReversePairs() {
211   init();
212 }
213 
214 bool HexagonMCChecker::check(bool FullCheck) {
215   bool chkP = checkPredicates();
216   bool chkNV = checkNewValues();
217   bool chkR = checkRegisters();
218   bool chkRRO = checkRegistersReadOnly();
219   checkRegisterCurDefs();
220   bool chkS = checkSolo();
221   bool chkSh = true;
222   if (FullCheck)
223     chkSh = checkShuffle();
224   bool chkSl = true;
225   if (FullCheck)
226     chkSl = checkSlots();
227   bool chkAXOK = checkAXOK();
228   bool chkCofMax1 = checkCOFMax1();
229   bool chkHWLoop = checkHWLoop();
230   bool chkLegalVecRegPair = checkLegalVecRegPair();
231   bool chk = chkP && chkNV && chkR && chkRRO && chkS && chkSh && chkSl &&
232              chkAXOK && chkCofMax1 && chkHWLoop && chkLegalVecRegPair;
233 
234   return chk;
235 }
236 
237 static bool isDuplexAGroup(unsigned Opcode) {
238   switch (Opcode) {
239   case Hexagon::SA1_addi:
240   case Hexagon::SA1_addrx:
241   case Hexagon::SA1_addsp:
242   case Hexagon::SA1_and1:
243   case Hexagon::SA1_clrf:
244   case Hexagon::SA1_clrfnew:
245   case Hexagon::SA1_clrt:
246   case Hexagon::SA1_clrtnew:
247   case Hexagon::SA1_cmpeqi:
248   case Hexagon::SA1_combine0i:
249   case Hexagon::SA1_combine1i:
250   case Hexagon::SA1_combine2i:
251   case Hexagon::SA1_combine3i:
252   case Hexagon::SA1_combinerz:
253   case Hexagon::SA1_combinezr:
254   case Hexagon::SA1_dec:
255   case Hexagon::SA1_inc:
256   case Hexagon::SA1_seti:
257   case Hexagon::SA1_setin1:
258   case Hexagon::SA1_sxtb:
259   case Hexagon::SA1_sxth:
260   case Hexagon::SA1_tfr:
261   case Hexagon::SA1_zxtb:
262   case Hexagon::SA1_zxth:
263     return true;
264     break;
265   default:
266     return false;
267   }
268 }
269 
270 static bool isNeitherAnorX(MCInstrInfo const &MCII, MCInst const &ID) {
271   unsigned Result = 0;
272   unsigned Type = HexagonMCInstrInfo::getType(MCII, ID);
273   if (Type == HexagonII::TypeDUPLEX) {
274     unsigned subInst0Opcode = ID.getOperand(0).getInst()->getOpcode();
275     unsigned subInst1Opcode = ID.getOperand(1).getInst()->getOpcode();
276     Result += !isDuplexAGroup(subInst0Opcode);
277     Result += !isDuplexAGroup(subInst1Opcode);
278   } else
279     Result +=
280         Type != HexagonII::TypeALU32_2op && Type != HexagonII::TypeALU32_3op &&
281         Type != HexagonII::TypeALU32_ADDI && Type != HexagonII::TypeS_2op &&
282         Type != HexagonII::TypeS_3op &&
283         (Type != HexagonII::TypeALU64 || HexagonMCInstrInfo::isFloat(MCII, ID));
284   return Result != 0;
285 }
286 
287 bool HexagonMCChecker::checkAXOK() {
288   MCInst const *HasSoloAXInst = nullptr;
289   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
290     if (HexagonMCInstrInfo::isSoloAX(MCII, I)) {
291       HasSoloAXInst = &I;
292     }
293   }
294   if (!HasSoloAXInst)
295     return true;
296   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
297     if (&I != HasSoloAXInst && isNeitherAnorX(MCII, I)) {
298       reportError(
299           HasSoloAXInst->getLoc(),
300           Twine("Instruction can only be in a packet with ALU or non-FPU XTYPE "
301                 "instructions"));
302       reportError(I.getLoc(),
303                   Twine("Not an ALU or non-FPU XTYPE instruction"));
304       return false;
305     }
306   }
307   return true;
308 }
309 
310 void HexagonMCChecker::reportBranchErrors() {
311   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
312     MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
313     if (Desc.isBranch() || Desc.isCall() || Desc.isReturn())
314       reportNote(I.getLoc(), "Branching instruction");
315   }
316 }
317 
318 bool HexagonMCChecker::checkHWLoop() {
319   if (!HexagonMCInstrInfo::isInnerLoop(MCB) &&
320       !HexagonMCInstrInfo::isOuterLoop(MCB))
321     return true;
322   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
323     MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
324     if (Desc.isBranch() || Desc.isCall() || Desc.isReturn()) {
325       reportError(MCB.getLoc(),
326                   "Branches cannot be in a packet with hardware loops");
327       reportBranchErrors();
328       return false;
329     }
330   }
331   return true;
332 }
333 
334 bool HexagonMCChecker::checkCOFMax1() {
335   SmallVector<MCInst const *, 2> BranchLocations;
336   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
337     MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
338     if (Desc.isBranch() || Desc.isCall() || Desc.isReturn())
339       BranchLocations.push_back(&I);
340   }
341   for (unsigned J = 0, N = BranchLocations.size(); J < N; ++J) {
342     MCInst const &I = *BranchLocations[J];
343     if (HexagonMCInstrInfo::isCofMax1(MCII, I)) {
344       bool Relax1 = HexagonMCInstrInfo::isCofRelax1(MCII, I);
345       bool Relax2 = HexagonMCInstrInfo::isCofRelax2(MCII, I);
346       if (N > 1 && !Relax1 && !Relax2) {
347         reportError(I.getLoc(),
348                     "Instruction may not be in a packet with other branches");
349         reportBranchErrors();
350         return false;
351       }
352       if (N > 1 && J == 0 && !Relax1) {
353         reportError(I.getLoc(),
354                     "Instruction may not be the first branch in packet");
355         reportBranchErrors();
356         return false;
357       }
358       if (N > 1 && J == 1 && !Relax2) {
359         reportError(I.getLoc(),
360                     "Instruction may not be the second branch in packet");
361         reportBranchErrors();
362         return false;
363       }
364     }
365   }
366   return true;
367 }
368 
369 bool HexagonMCChecker::checkSlots() {
370   unsigned slotsUsed = 0;
371   for (auto HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
372     MCInst const &MCI = *HMI.getInst();
373     if (HexagonMCInstrInfo::isImmext(MCI))
374       continue;
375     if (HexagonMCInstrInfo::isDuplex(MCII, MCI))
376       slotsUsed += 2;
377     else
378       ++slotsUsed;
379   }
380 
381   if (slotsUsed > HEXAGON_PACKET_SIZE) {
382     reportError("invalid instruction packet: out of slots");
383     return false;
384   }
385   return true;
386 }
387 
388 // Check legal use of predicate registers.
389 bool HexagonMCChecker::checkPredicates() {
390   // Check for proper use of new predicate registers.
391   for (const auto &I : NewPreds) {
392     unsigned P = I;
393 
394     if (!Defs.count(P) || LatePreds.count(P) || Defs.count(Hexagon::P3_0)) {
395       // Error out if the new predicate register is not defined,
396       // or defined "late"
397       // (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }").
398       reportErrorNewValue(P);
399       return false;
400     }
401   }
402 
403   // Check for proper use of auto-anded of predicate registers.
404   for (const auto &I : LatePreds) {
405     unsigned P = I;
406 
407     if (LatePreds.count(P) > 1 || Defs.count(P)) {
408       // Error out if predicate register defined "late" multiple times or
409       // defined late and regularly defined
410       // (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }".
411       reportErrorRegisters(P);
412       return false;
413     }
414   }
415 
416   return true;
417 }
418 
419 // Check legal use of new values.
420 bool HexagonMCChecker::checkNewValues() {
421   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
422     if (!HexagonMCInstrInfo::isNewValue(MCII, I))
423       continue;
424     auto Consumer = HexagonMCInstrInfo::predicateInfo(MCII, I);
425     bool Branch = HexagonMCInstrInfo::getDesc(MCII, I).isBranch();
426     MCOperand const &Op = HexagonMCInstrInfo::getNewValueOperand(MCII, I);
427     assert(Op.isReg());
428     auto Producer = registerProducer(Op.getReg(), Consumer);
429     if (std::get<0>(Producer) == nullptr) {
430       reportError(I.getLoc(), "New value register consumer has no producer");
431       return false;
432     }
433     if (!RelaxNVChecks) {
434       // Checks that statically prove correct new value consumption
435       if (std::get<2>(Producer).isPredicated() &&
436           (!Consumer.isPredicated() ||
437            llvm::HexagonMCInstrInfo::getType(MCII, I) == HexagonII::TypeNCJ)) {
438         reportNote(
439             std::get<0>(Producer)->getLoc(),
440             "Register producer is predicated and consumer is unconditional");
441         reportError(I.getLoc(),
442                     "Instruction does not have a valid new register producer");
443         return false;
444       }
445       if (std::get<2>(Producer).Register != Hexagon::NoRegister &&
446           std::get<2>(Producer).Register != Consumer.Register) {
447         reportNote(std::get<0>(Producer)->getLoc(),
448                    "Register producer does not use the same predicate "
449                    "register as the consumer");
450         reportError(I.getLoc(),
451                     "Instruction does not have a valid new register producer");
452         return false;
453       }
454     }
455     if (std::get<2>(Producer).Register == Consumer.Register &&
456         Consumer.PredicatedTrue != std::get<2>(Producer).PredicatedTrue) {
457       reportNote(
458           std::get<0>(Producer)->getLoc(),
459           "Register producer has the opposite predicate sense as consumer");
460       reportError(I.getLoc(),
461                   "Instruction does not have a valid new register producer");
462       return false;
463     }
464     MCInstrDesc const &Desc =
465         HexagonMCInstrInfo::getDesc(MCII, *std::get<0>(Producer));
466     if (Desc.OpInfo[std::get<1>(Producer)].RegClass ==
467         Hexagon::DoubleRegsRegClassID) {
468       reportNote(std::get<0>(Producer)->getLoc(),
469                  "Double registers cannot be new-value producers");
470       reportError(I.getLoc(),
471                   "Instruction does not have a valid new register producer");
472       return false;
473     }
474     if ((Desc.mayLoad() && std::get<1>(Producer) == 1) ||
475         (Desc.mayStore() && std::get<1>(Producer) == 0)) {
476       unsigned Mode =
477           HexagonMCInstrInfo::getAddrMode(MCII, *std::get<0>(Producer));
478       StringRef ModeError;
479       if (Mode == HexagonII::AbsoluteSet)
480         ModeError = "Absolute-set";
481       if (Mode == HexagonII::PostInc)
482         ModeError = "Auto-increment";
483       if (!ModeError.empty()) {
484         reportNote(std::get<0>(Producer)->getLoc(),
485                    ModeError + " registers cannot be a new-value "
486                                "producer");
487         reportError(I.getLoc(),
488                     "Instruction does not have a valid new register producer");
489         return false;
490       }
491     }
492     if (Branch && HexagonMCInstrInfo::isFloat(MCII, *std::get<0>(Producer))) {
493       reportNote(std::get<0>(Producer)->getLoc(),
494                  "FPU instructions cannot be new-value producers for jumps");
495       reportError(I.getLoc(),
496                   "Instruction does not have a valid new register producer");
497       return false;
498     }
499   }
500   return true;
501 }
502 
503 bool HexagonMCChecker::checkRegistersReadOnly() {
504   for (auto I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
505     MCInst const &Inst = *I.getInst();
506     unsigned Defs = HexagonMCInstrInfo::getDesc(MCII, Inst).getNumDefs();
507     for (unsigned j = 0; j < Defs; ++j) {
508       MCOperand const &Operand = Inst.getOperand(j);
509       assert(Operand.isReg() && "Def is not a register");
510       unsigned Register = Operand.getReg();
511       if (ReadOnly.find(Register) != ReadOnly.end()) {
512         reportError(Inst.getLoc(), "Cannot write to read-only register `" +
513                                        Twine(RI.getName(Register)) + "'");
514         return false;
515       }
516     }
517   }
518   return true;
519 }
520 
521 bool HexagonMCChecker::registerUsed(unsigned Register) {
522   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB))
523     for (unsigned j = HexagonMCInstrInfo::getDesc(MCII, I).getNumDefs(),
524                   n = I.getNumOperands();
525          j < n; ++j) {
526       MCOperand const &Operand = I.getOperand(j);
527       if (Operand.isReg() && Operand.getReg() == Register)
528         return true;
529     }
530   return false;
531 }
532 
533 std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo>
534 HexagonMCChecker::registerProducer(
535     unsigned Register, HexagonMCInstrInfo::PredicateInfo ConsumerPredicate) {
536   std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo>
537       WrongSense;
538   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
539     MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
540     auto ProducerPredicate = HexagonMCInstrInfo::predicateInfo(MCII, I);
541     for (unsigned J = 0, N = Desc.getNumDefs(); J < N; ++J)
542       for (auto K = MCRegAliasIterator(I.getOperand(J).getReg(), &RI, true);
543            K.isValid(); ++K)
544         if (*K == Register) {
545           if (RelaxNVChecks ||
546               (ProducerPredicate.Register == ConsumerPredicate.Register &&
547                (ProducerPredicate.Register == Hexagon::NoRegister ||
548                 ProducerPredicate.PredicatedTrue ==
549                     ConsumerPredicate.PredicatedTrue)))
550             return std::make_tuple(&I, J, ProducerPredicate);
551           std::get<0>(WrongSense) = &I;
552           std::get<1>(WrongSense) = J;
553           std::get<2>(WrongSense) = ProducerPredicate;
554         }
555     if (Register == Hexagon::VTMP && HexagonMCInstrInfo::hasTmpDst(MCII, I))
556       return std::make_tuple(&I, 0, HexagonMCInstrInfo::PredicateInfo());
557   }
558   return WrongSense;
559 }
560 
561 void HexagonMCChecker::checkRegisterCurDefs() {
562   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
563     if (HexagonMCInstrInfo::isCVINew(MCII, I) &&
564         HexagonMCInstrInfo::getDesc(MCII, I).mayLoad()) {
565       unsigned Register = I.getOperand(0).getReg();
566       if (!registerUsed(Register))
567         reportWarning("Register `" + Twine(RI.getName(Register)) +
568                       "' used with `.cur' "
569                       "but not used in the same packet");
570     }
571   }
572 }
573 
574 // Check for legal register uses and definitions.
575 bool HexagonMCChecker::checkRegisters() {
576   // Check for proper register definitions.
577   for (const auto &I : Defs) {
578     unsigned R = I.first;
579 
580     if (isLoopRegister(R) && Defs.count(R) > 1 &&
581         (HexagonMCInstrInfo::isInnerLoop(MCB) ||
582          HexagonMCInstrInfo::isOuterLoop(MCB))) {
583       // Error out for definitions of loop registers at the end of a loop.
584       reportError("loop-setup and some branch instructions "
585                   "cannot be in the same packet");
586       return false;
587     }
588     if (SoftDefs.count(R)) {
589       // Error out for explicit changes to registers also weakly defined
590       // (e.g., "{ usr = r0; r0 = sfadd(...) }").
591       unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:.
592       unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
593       reportErrorRegisters(BadR);
594       return false;
595     }
596     if (!isPredicateRegister(R) && Defs[R].size() > 1) {
597       // Check for multiple register definitions.
598       PredSet &PM = Defs[R];
599 
600       // Check for multiple unconditional register definitions.
601       if (PM.count(Unconditional)) {
602         // Error out on an unconditional change when there are any other
603         // changes, conditional or not.
604         unsigned UsrR = Hexagon::USR;
605         unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
606         reportErrorRegisters(BadR);
607         return false;
608       }
609       // Check for multiple conditional register definitions.
610       for (const auto &J : PM) {
611         PredSense P = J;
612 
613         // Check for multiple uses of the same condition.
614         if (PM.count(P) > 1) {
615           // Error out on conditional changes based on the same predicate
616           // (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }").
617           reportErrorRegisters(R);
618           return false;
619         }
620         // Check for the use of the complementary condition.
621         P.second = !P.second;
622         if (PM.count(P) && PM.size() > 2) {
623           // Error out on conditional changes based on the same predicate
624           // multiple times
625           // (e.g., "if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =...").
626           reportErrorRegisters(R);
627           return false;
628         }
629       }
630     }
631   }
632 
633   // Check for use of temporary definitions.
634   for (const auto &I : TmpDefs) {
635     unsigned R = I;
636 
637     if (!Uses.count(R)) {
638       // special case for vhist
639       bool vHistFound = false;
640       for (auto const &HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
641         if (HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) ==
642             HexagonII::TypeCVI_HIST) {
643           vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp
644           break;
645         }
646       }
647       // Warn on an unused temporary definition.
648       if (!vHistFound) {
649         reportWarning("register `" + Twine(RI.getName(R)) +
650                       "' used with `.tmp' but not used in the same packet");
651         return true;
652       }
653     }
654   }
655 
656   return true;
657 }
658 
659 // Check for legal use of solo insns.
660 bool HexagonMCChecker::checkSolo() {
661   if (HexagonMCInstrInfo::bundleSize(MCB) > 1)
662     for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
663       if (HexagonMCInstrInfo::isSolo(MCII, I)) {
664         reportError(I.getLoc(), "Instruction is marked `isSolo' and "
665                                 "cannot have other instructions in "
666                                 "the same packet");
667         return false;
668       }
669     }
670 
671   return true;
672 }
673 
674 bool HexagonMCChecker::checkShuffle() {
675   HexagonMCShuffler MCSDX(Context, ReportErrors, MCII, STI, MCB);
676   return MCSDX.check();
677 }
678 
679 void HexagonMCChecker::compoundRegisterMap(unsigned &Register) {
680   switch (Register) {
681   default:
682     break;
683   case Hexagon::R15:
684     Register = Hexagon::R23;
685     break;
686   case Hexagon::R14:
687     Register = Hexagon::R22;
688     break;
689   case Hexagon::R13:
690     Register = Hexagon::R21;
691     break;
692   case Hexagon::R12:
693     Register = Hexagon::R20;
694     break;
695   case Hexagon::R11:
696     Register = Hexagon::R19;
697     break;
698   case Hexagon::R10:
699     Register = Hexagon::R18;
700     break;
701   case Hexagon::R9:
702     Register = Hexagon::R17;
703     break;
704   case Hexagon::R8:
705     Register = Hexagon::R16;
706     break;
707   }
708 }
709 
710 void HexagonMCChecker::reportErrorRegisters(unsigned Register) {
711   reportError("register `" + Twine(RI.getName(Register)) +
712               "' modified more than once");
713 }
714 
715 void HexagonMCChecker::reportErrorNewValue(unsigned Register) {
716   reportError("register `" + Twine(RI.getName(Register)) +
717               "' used with `.new' "
718               "but not validly modified in the same packet");
719 }
720 
721 void HexagonMCChecker::reportError(Twine const &Msg) {
722   reportError(MCB.getLoc(), Msg);
723 }
724 
725 void HexagonMCChecker::reportError(SMLoc Loc, Twine const &Msg) {
726   if (ReportErrors)
727     Context.reportError(Loc, Msg);
728 }
729 
730 void HexagonMCChecker::reportNote(SMLoc Loc, llvm::Twine const &Msg) {
731   if (ReportErrors) {
732     auto SM = Context.getSourceManager();
733     if (SM)
734       SM->PrintMessage(Loc, SourceMgr::DK_Note, Msg);
735   }
736 }
737 
738 void HexagonMCChecker::reportWarning(Twine const &Msg) {
739   if (ReportErrors)
740     Context.reportWarning(MCB.getLoc(), Msg);
741 }
742 
743 bool HexagonMCChecker::checkLegalVecRegPair() {
744   const bool IsPermitted = STI.getFeatureBits()[Hexagon::ArchV67];
745   const bool HasReversePairs = ReversePairs.size() != 0;
746 
747   if (!IsPermitted && HasReversePairs) {
748     for (auto R : ReversePairs)
749       reportError("register pair `" + Twine(RI.getName(R)) +
750                   "' is not permitted for this architecture");
751     return false;
752   }
753   return true;
754 }
755