1 //===- HexagonVectorLoopCarriedReuse.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass removes the computation of provably redundant expressions that have 10 // been computed earlier in a previous iteration. It relies on the use of PHIs 11 // to identify loop carried dependences. This is scalar replacement for vector 12 // types. 13 // 14 //----------------------------------------------------------------------------- 15 // Motivation: Consider the case where we have the following loop structure. 16 // 17 // Loop: 18 // t0 = a[i]; 19 // t1 = f(t0); 20 // t2 = g(t1); 21 // ... 22 // t3 = a[i+1]; 23 // t4 = f(t3); 24 // t5 = g(t4); 25 // t6 = op(t2, t5) 26 // cond_branch <Loop> 27 // 28 // This can be converted to 29 // t00 = a[0]; 30 // t10 = f(t00); 31 // t20 = g(t10); 32 // Loop: 33 // t2 = t20; 34 // t3 = a[i+1]; 35 // t4 = f(t3); 36 // t5 = g(t4); 37 // t6 = op(t2, t5) 38 // t20 = t5 39 // cond_branch <Loop> 40 // 41 // SROA does a good job of reusing a[i+1] as a[i] in the next iteration. 42 // Such a loop comes to this pass in the following form. 43 // 44 // LoopPreheader: 45 // X0 = a[0]; 46 // Loop: 47 // X2 = PHI<(X0, LoopPreheader), (X1, Loop)> 48 // t1 = f(X2) <-- I1 49 // t2 = g(t1) 50 // ... 51 // X1 = a[i+1] 52 // t4 = f(X1) <-- I2 53 // t5 = g(t4) 54 // t6 = op(t2, t5) 55 // cond_branch <Loop> 56 // 57 // In this pass, we look for PHIs such as X2 whose incoming values come only 58 // from the Loop Preheader and over the backedge and additionaly, both these 59 // values are the results of the same operation in terms of opcode. We call such 60 // a PHI node a dependence chain or DepChain. In this case, the dependence of X2 61 // over X1 is carried over only one iteration and so the DepChain is only one 62 // PHI node long. 63 // 64 // Then, we traverse the uses of the PHI (X2) and the uses of the value of the 65 // PHI coming over the backedge (X1). We stop at the first pair of such users 66 // I1 (of X2) and I2 (of X1) that meet the following conditions. 67 // 1. I1 and I2 are the same operation, but with different operands. 68 // 2. X2 and X1 are used at the same operand number in the two instructions. 69 // 3. All other operands Op1 of I1 and Op2 of I2 are also such that there is a 70 // a DepChain from Op1 to Op2 of the same length as that between X2 and X1. 71 // 72 // We then make the following transformation 73 // LoopPreheader: 74 // X0 = a[0]; 75 // Y0 = f(X0); 76 // Loop: 77 // X2 = PHI<(X0, LoopPreheader), (X1, Loop)> 78 // Y2 = PHI<(Y0, LoopPreheader), (t4, Loop)> 79 // t1 = f(X2) <-- Will be removed by DCE. 80 // t2 = g(Y2) 81 // ... 82 // X1 = a[i+1] 83 // t4 = f(X1) 84 // t5 = g(t4) 85 // t6 = op(t2, t5) 86 // cond_branch <Loop> 87 // 88 // We proceed until we cannot find any more such instructions I1 and I2. 89 // 90 // --- DepChains & Loop carried dependences --- 91 // Consider a single basic block loop such as 92 // 93 // LoopPreheader: 94 // X0 = ... 95 // Y0 = ... 96 // Loop: 97 // X2 = PHI<(X0, LoopPreheader), (X1, Loop)> 98 // Y2 = PHI<(Y0, LoopPreheader), (X2, Loop)> 99 // ... 100 // X1 = ... 101 // ... 102 // cond_branch <Loop> 103 // 104 // Then there is a dependence between X2 and X1 that goes back one iteration, 105 // i.e. X1 is used as X2 in the very next iteration. We represent this as a 106 // DepChain from X2 to X1 (X2->X1). 107 // Similarly, there is a dependence between Y2 and X1 that goes back two 108 // iterations. X1 is used as Y2 two iterations after it is computed. This is 109 // represented by a DepChain as (Y2->X2->X1). 110 // 111 // A DepChain has the following properties. 112 // 1. Num of edges in DepChain = Number of Instructions in DepChain = Number of 113 // iterations of carried dependence + 1. 114 // 2. All instructions in the DepChain except the last are PHIs. 115 // 116 //===----------------------------------------------------------------------===// 117 118 #include "llvm/ADT/SetVector.h" 119 #include "llvm/ADT/SmallVector.h" 120 #include "llvm/ADT/Statistic.h" 121 #include "llvm/Analysis/LoopInfo.h" 122 #include "llvm/Analysis/LoopPass.h" 123 #include "llvm/IR/BasicBlock.h" 124 #include "llvm/IR/DerivedTypes.h" 125 #include "llvm/IR/IRBuilder.h" 126 #include "llvm/IR/Instruction.h" 127 #include "llvm/IR/Instructions.h" 128 #include "llvm/IR/IntrinsicInst.h" 129 #include "llvm/IR/Intrinsics.h" 130 #include "llvm/IR/Use.h" 131 #include "llvm/IR/User.h" 132 #include "llvm/IR/Value.h" 133 #include "llvm/Pass.h" 134 #include "llvm/Support/Casting.h" 135 #include "llvm/Support/CommandLine.h" 136 #include "llvm/Support/Compiler.h" 137 #include "llvm/Support/Debug.h" 138 #include "llvm/Support/raw_ostream.h" 139 #include "llvm/Transforms/Scalar.h" 140 #include "llvm/Transforms/Utils.h" 141 #include <algorithm> 142 #include <cassert> 143 #include <cstddef> 144 #include <map> 145 #include <memory> 146 #include <set> 147 148 using namespace llvm; 149 150 #define DEBUG_TYPE "hexagon-vlcr" 151 152 STATISTIC(HexagonNumVectorLoopCarriedReuse, 153 "Number of values that were reused from a previous iteration."); 154 155 static cl::opt<int> HexagonVLCRIterationLim("hexagon-vlcr-iteration-lim", 156 cl::Hidden, 157 cl::desc("Maximum distance of loop carried dependences that are handled"), 158 cl::init(2), cl::ZeroOrMore); 159 160 namespace llvm { 161 162 void initializeHexagonVectorLoopCarriedReusePass(PassRegistry&); 163 Pass *createHexagonVectorLoopCarriedReusePass(); 164 165 } // end namespace llvm 166 167 namespace { 168 169 // See info about DepChain in the comments at the top of this file. 170 using ChainOfDependences = SmallVector<Instruction *, 4>; 171 172 class DepChain { 173 ChainOfDependences Chain; 174 175 public: 176 bool isIdentical(DepChain &Other) const { 177 if (Other.size() != size()) 178 return false; 179 ChainOfDependences &OtherChain = Other.getChain(); 180 for (int i = 0; i < size(); ++i) { 181 if (Chain[i] != OtherChain[i]) 182 return false; 183 } 184 return true; 185 } 186 187 ChainOfDependences &getChain() { 188 return Chain; 189 } 190 191 int size() const { 192 return Chain.size(); 193 } 194 195 void clear() { 196 Chain.clear(); 197 } 198 199 void push_back(Instruction *I) { 200 Chain.push_back(I); 201 } 202 203 int iterations() const { 204 return size() - 1; 205 } 206 207 Instruction *front() const { 208 return Chain.front(); 209 } 210 211 Instruction *back() const { 212 return Chain.back(); 213 } 214 215 Instruction *&operator[](const int index) { 216 return Chain[index]; 217 } 218 219 friend raw_ostream &operator<< (raw_ostream &OS, const DepChain &D); 220 }; 221 222 LLVM_ATTRIBUTE_UNUSED 223 raw_ostream &operator<<(raw_ostream &OS, const DepChain &D) { 224 const ChainOfDependences &CD = D.Chain; 225 int ChainSize = CD.size(); 226 OS << "**DepChain Start::**\n"; 227 for (int i = 0; i < ChainSize -1; ++i) { 228 OS << *(CD[i]) << " -->\n"; 229 } 230 OS << *CD[ChainSize-1] << "\n"; 231 return OS; 232 } 233 234 struct ReuseValue { 235 Instruction *Inst2Replace = nullptr; 236 237 // In the new PHI node that we'll construct this is the value that'll be 238 // used over the backedge. This is teh value that gets reused from a 239 // previous iteration. 240 Instruction *BackedgeInst = nullptr; 241 std::map<Instruction *, DepChain *> DepChains; 242 int Iterations = -1; 243 244 ReuseValue() = default; 245 246 void reset() { 247 Inst2Replace = nullptr; 248 BackedgeInst = nullptr; 249 DepChains.clear(); 250 Iterations = -1; 251 } 252 bool isDefined() { return Inst2Replace != nullptr; } 253 }; 254 255 LLVM_ATTRIBUTE_UNUSED 256 raw_ostream &operator<<(raw_ostream &OS, const ReuseValue &RU) { 257 OS << "** ReuseValue ***\n"; 258 OS << "Instruction to Replace: " << *(RU.Inst2Replace) << "\n"; 259 OS << "Backedge Instruction: " << *(RU.BackedgeInst) << "\n"; 260 return OS; 261 } 262 263 class HexagonVectorLoopCarriedReuse : public LoopPass { 264 public: 265 static char ID; 266 267 explicit HexagonVectorLoopCarriedReuse() : LoopPass(ID) { 268 PassRegistry *PR = PassRegistry::getPassRegistry(); 269 initializeHexagonVectorLoopCarriedReusePass(*PR); 270 } 271 272 StringRef getPassName() const override { 273 return "Hexagon-specific loop carried reuse for HVX vectors"; 274 } 275 276 void getAnalysisUsage(AnalysisUsage &AU) const override { 277 AU.addRequired<LoopInfoWrapperPass>(); 278 AU.addRequiredID(LoopSimplifyID); 279 AU.addRequiredID(LCSSAID); 280 AU.addPreservedID(LCSSAID); 281 AU.setPreservesCFG(); 282 } 283 284 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 285 286 private: 287 SetVector<DepChain *> Dependences; 288 std::set<Instruction *> ReplacedInsts; 289 Loop *CurLoop; 290 ReuseValue ReuseCandidate; 291 292 bool doVLCR(); 293 void findLoopCarriedDeps(); 294 void findValueToReuse(); 295 void findDepChainFromPHI(Instruction *I, DepChain &D); 296 void reuseValue(); 297 Value *findValueInBlock(Value *Op, BasicBlock *BB); 298 DepChain *getDepChainBtwn(Instruction *I1, Instruction *I2, int Iters); 299 bool isEquivalentOperation(Instruction *I1, Instruction *I2); 300 bool canReplace(Instruction *I); 301 bool isCallInstCommutative(CallInst *C); 302 }; 303 304 } // end anonymous namespace 305 306 char HexagonVectorLoopCarriedReuse::ID = 0; 307 308 INITIALIZE_PASS_BEGIN(HexagonVectorLoopCarriedReuse, "hexagon-vlcr", 309 "Hexagon-specific predictive commoning for HVX vectors", false, false) 310 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 311 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 312 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 313 INITIALIZE_PASS_END(HexagonVectorLoopCarriedReuse, "hexagon-vlcr", 314 "Hexagon-specific predictive commoning for HVX vectors", false, false) 315 316 bool HexagonVectorLoopCarriedReuse::runOnLoop(Loop *L, LPPassManager &LPM) { 317 if (skipLoop(L)) 318 return false; 319 320 if (!L->getLoopPreheader()) 321 return false; 322 323 // Work only on innermost loops. 324 if (!L->getSubLoops().empty()) 325 return false; 326 327 // Work only on single basic blocks loops. 328 if (L->getNumBlocks() != 1) 329 return false; 330 331 CurLoop = L; 332 333 return doVLCR(); 334 } 335 336 bool HexagonVectorLoopCarriedReuse::isCallInstCommutative(CallInst *C) { 337 switch (C->getCalledFunction()->getIntrinsicID()) { 338 case Intrinsic::hexagon_V6_vaddb: 339 case Intrinsic::hexagon_V6_vaddb_128B: 340 case Intrinsic::hexagon_V6_vaddh: 341 case Intrinsic::hexagon_V6_vaddh_128B: 342 case Intrinsic::hexagon_V6_vaddw: 343 case Intrinsic::hexagon_V6_vaddw_128B: 344 case Intrinsic::hexagon_V6_vaddubh: 345 case Intrinsic::hexagon_V6_vaddubh_128B: 346 case Intrinsic::hexagon_V6_vadduhw: 347 case Intrinsic::hexagon_V6_vadduhw_128B: 348 case Intrinsic::hexagon_V6_vaddhw: 349 case Intrinsic::hexagon_V6_vaddhw_128B: 350 case Intrinsic::hexagon_V6_vmaxb: 351 case Intrinsic::hexagon_V6_vmaxb_128B: 352 case Intrinsic::hexagon_V6_vmaxh: 353 case Intrinsic::hexagon_V6_vmaxh_128B: 354 case Intrinsic::hexagon_V6_vmaxw: 355 case Intrinsic::hexagon_V6_vmaxw_128B: 356 case Intrinsic::hexagon_V6_vmaxub: 357 case Intrinsic::hexagon_V6_vmaxub_128B: 358 case Intrinsic::hexagon_V6_vmaxuh: 359 case Intrinsic::hexagon_V6_vmaxuh_128B: 360 case Intrinsic::hexagon_V6_vminub: 361 case Intrinsic::hexagon_V6_vminub_128B: 362 case Intrinsic::hexagon_V6_vminuh: 363 case Intrinsic::hexagon_V6_vminuh_128B: 364 case Intrinsic::hexagon_V6_vminb: 365 case Intrinsic::hexagon_V6_vminb_128B: 366 case Intrinsic::hexagon_V6_vminh: 367 case Intrinsic::hexagon_V6_vminh_128B: 368 case Intrinsic::hexagon_V6_vminw: 369 case Intrinsic::hexagon_V6_vminw_128B: 370 case Intrinsic::hexagon_V6_vmpyub: 371 case Intrinsic::hexagon_V6_vmpyub_128B: 372 case Intrinsic::hexagon_V6_vmpyuh: 373 case Intrinsic::hexagon_V6_vmpyuh_128B: 374 case Intrinsic::hexagon_V6_vavgub: 375 case Intrinsic::hexagon_V6_vavgub_128B: 376 case Intrinsic::hexagon_V6_vavgh: 377 case Intrinsic::hexagon_V6_vavgh_128B: 378 case Intrinsic::hexagon_V6_vavguh: 379 case Intrinsic::hexagon_V6_vavguh_128B: 380 case Intrinsic::hexagon_V6_vavgw: 381 case Intrinsic::hexagon_V6_vavgw_128B: 382 case Intrinsic::hexagon_V6_vavgb: 383 case Intrinsic::hexagon_V6_vavgb_128B: 384 case Intrinsic::hexagon_V6_vavguw: 385 case Intrinsic::hexagon_V6_vavguw_128B: 386 case Intrinsic::hexagon_V6_vabsdiffh: 387 case Intrinsic::hexagon_V6_vabsdiffh_128B: 388 case Intrinsic::hexagon_V6_vabsdiffub: 389 case Intrinsic::hexagon_V6_vabsdiffub_128B: 390 case Intrinsic::hexagon_V6_vabsdiffuh: 391 case Intrinsic::hexagon_V6_vabsdiffuh_128B: 392 case Intrinsic::hexagon_V6_vabsdiffw: 393 case Intrinsic::hexagon_V6_vabsdiffw_128B: 394 return true; 395 default: 396 return false; 397 } 398 } 399 400 bool HexagonVectorLoopCarriedReuse::isEquivalentOperation(Instruction *I1, 401 Instruction *I2) { 402 if (!I1->isSameOperationAs(I2)) 403 return false; 404 // This check is in place specifically for intrinsics. isSameOperationAs will 405 // return two for any two hexagon intrinsics because they are essentially the 406 // same instruciton (CallInst). We need to scratch the surface to see if they 407 // are calls to the same function. 408 if (CallInst *C1 = dyn_cast<CallInst>(I1)) { 409 if (CallInst *C2 = dyn_cast<CallInst>(I2)) { 410 if (C1->getCalledFunction() != C2->getCalledFunction()) 411 return false; 412 } 413 } 414 415 // If both the Instructions are of Vector Type and any of the element 416 // is integer constant, check their values too for equivalence. 417 if (I1->getType()->isVectorTy() && I2->getType()->isVectorTy()) { 418 unsigned NumOperands = I1->getNumOperands(); 419 for (unsigned i = 0; i < NumOperands; ++i) { 420 ConstantInt *C1 = dyn_cast<ConstantInt>(I1->getOperand(i)); 421 ConstantInt *C2 = dyn_cast<ConstantInt>(I2->getOperand(i)); 422 if(!C1) continue; 423 assert(C2); 424 if (C1->getSExtValue() != C2->getSExtValue()) 425 return false; 426 } 427 } 428 429 return true; 430 } 431 432 bool HexagonVectorLoopCarriedReuse::canReplace(Instruction *I) { 433 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 434 if (!II) 435 return true; 436 437 switch (II->getIntrinsicID()) { 438 case Intrinsic::hexagon_V6_hi: 439 case Intrinsic::hexagon_V6_lo: 440 case Intrinsic::hexagon_V6_hi_128B: 441 case Intrinsic::hexagon_V6_lo_128B: 442 LLVM_DEBUG(dbgs() << "Not considering for reuse: " << *II << "\n"); 443 return false; 444 default: 445 return true; 446 } 447 } 448 void HexagonVectorLoopCarriedReuse::findValueToReuse() { 449 for (auto *D : Dependences) { 450 LLVM_DEBUG(dbgs() << "Processing dependence " << *(D->front()) << "\n"); 451 if (D->iterations() > HexagonVLCRIterationLim) { 452 LLVM_DEBUG( 453 dbgs() 454 << ".. Skipping because number of iterations > than the limit\n"); 455 continue; 456 } 457 458 PHINode *PN = cast<PHINode>(D->front()); 459 Instruction *BEInst = D->back(); 460 int Iters = D->iterations(); 461 BasicBlock *BB = PN->getParent(); 462 LLVM_DEBUG(dbgs() << "Checking if any uses of " << *PN 463 << " can be reused\n"); 464 465 SmallVector<Instruction *, 4> PNUsers; 466 for (auto UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) { 467 Use &U = *UI; 468 Instruction *User = cast<Instruction>(U.getUser()); 469 470 if (User->getParent() != BB) 471 continue; 472 if (ReplacedInsts.count(User)) { 473 LLVM_DEBUG(dbgs() << *User 474 << " has already been replaced. Skipping...\n"); 475 continue; 476 } 477 if (isa<PHINode>(User)) 478 continue; 479 if (User->mayHaveSideEffects()) 480 continue; 481 if (!canReplace(User)) 482 continue; 483 484 PNUsers.push_back(User); 485 } 486 LLVM_DEBUG(dbgs() << PNUsers.size() << " use(s) of the PHI in the block\n"); 487 488 // For each interesting use I of PN, find an Instruction BEUser that 489 // performs the same operation as I on BEInst and whose other operands, 490 // if any, can also be rematerialized in OtherBB. We stop when we find the 491 // first such Instruction BEUser. This is because once BEUser is 492 // rematerialized in OtherBB, we may find more such "fixup" opportunities 493 // in this block. So, we'll start over again. 494 for (Instruction *I : PNUsers) { 495 for (auto UI = BEInst->use_begin(), E = BEInst->use_end(); UI != E; 496 ++UI) { 497 Use &U = *UI; 498 Instruction *BEUser = cast<Instruction>(U.getUser()); 499 500 if (BEUser->getParent() != BB) 501 continue; 502 if (!isEquivalentOperation(I, BEUser)) 503 continue; 504 505 int NumOperands = I->getNumOperands(); 506 507 // Take operands of each PNUser one by one and try to find DepChain 508 // with every operand of the BEUser. If any of the operands of BEUser 509 // has DepChain with current operand of the PNUser, break the matcher 510 // loop. Keep doing this for Every PNUser operand. If PNUser operand 511 // does not have DepChain with any of the BEUser operand, break the 512 // outer matcher loop, mark the BEUser as null and reset the ReuseCandidate. 513 // This ensures that DepChain exist for all the PNUser operand with 514 // BEUser operand. This also ensures that DepChains are independent of 515 // the positions in PNUser and BEUser. 516 std::map<Instruction *, DepChain *> DepChains; 517 CallInst *C1 = dyn_cast<CallInst>(I); 518 if ((I && I->isCommutative()) || (C1 && isCallInstCommutative(C1))) { 519 bool Found = false; 520 for (int OpNo = 0; OpNo < NumOperands; ++OpNo) { 521 Value *Op = I->getOperand(OpNo); 522 Instruction *OpInst = dyn_cast<Instruction>(Op); 523 Found = false; 524 for (int T = 0; T < NumOperands; ++T) { 525 Value *BEOp = BEUser->getOperand(T); 526 Instruction *BEOpInst = dyn_cast<Instruction>(BEOp); 527 if (!OpInst && !BEOpInst) { 528 if (Op == BEOp) { 529 Found = true; 530 break; 531 } 532 } 533 534 if ((OpInst && !BEOpInst) || (!OpInst && BEOpInst)) 535 continue; 536 537 DepChain *D = getDepChainBtwn(OpInst, BEOpInst, Iters); 538 539 if (D) { 540 Found = true; 541 DepChains[OpInst] = D; 542 break; 543 } 544 } 545 if (!Found) { 546 BEUser = nullptr; 547 break; 548 } 549 } 550 } else { 551 552 for (int OpNo = 0; OpNo < NumOperands; ++OpNo) { 553 Value *Op = I->getOperand(OpNo); 554 Value *BEOp = BEUser->getOperand(OpNo); 555 556 Instruction *OpInst = dyn_cast<Instruction>(Op); 557 if (!OpInst) { 558 if (Op == BEOp) 559 continue; 560 // Do not allow reuse to occur when the operands may be different 561 // values. 562 BEUser = nullptr; 563 break; 564 } 565 566 Instruction *BEOpInst = dyn_cast<Instruction>(BEOp); 567 DepChain *D = getDepChainBtwn(OpInst, BEOpInst, Iters); 568 569 if (D) { 570 DepChains[OpInst] = D; 571 } else { 572 BEUser = nullptr; 573 break; 574 } 575 } 576 } 577 if (BEUser) { 578 LLVM_DEBUG(dbgs() << "Found Value for reuse.\n"); 579 ReuseCandidate.Inst2Replace = I; 580 ReuseCandidate.BackedgeInst = BEUser; 581 ReuseCandidate.DepChains = DepChains; 582 ReuseCandidate.Iterations = Iters; 583 return; 584 } 585 ReuseCandidate.reset(); 586 } 587 } 588 } 589 ReuseCandidate.reset(); 590 } 591 592 Value *HexagonVectorLoopCarriedReuse::findValueInBlock(Value *Op, 593 BasicBlock *BB) { 594 PHINode *PN = dyn_cast<PHINode>(Op); 595 assert(PN); 596 Value *ValueInBlock = PN->getIncomingValueForBlock(BB); 597 return ValueInBlock; 598 } 599 600 void HexagonVectorLoopCarriedReuse::reuseValue() { 601 LLVM_DEBUG(dbgs() << ReuseCandidate); 602 Instruction *Inst2Replace = ReuseCandidate.Inst2Replace; 603 Instruction *BEInst = ReuseCandidate.BackedgeInst; 604 int NumOperands = Inst2Replace->getNumOperands(); 605 std::map<Instruction *, DepChain *> &DepChains = ReuseCandidate.DepChains; 606 int Iterations = ReuseCandidate.Iterations; 607 BasicBlock *LoopPH = CurLoop->getLoopPreheader(); 608 assert(!DepChains.empty() && "No DepChains"); 609 LLVM_DEBUG(dbgs() << "reuseValue is making the following changes\n"); 610 611 SmallVector<Instruction *, 4> InstsInPreheader; 612 for (int i = 0; i < Iterations; ++i) { 613 Instruction *InstInPreheader = Inst2Replace->clone(); 614 SmallVector<Value *, 4> Ops; 615 for (int j = 0; j < NumOperands; ++j) { 616 Instruction *I = dyn_cast<Instruction>(Inst2Replace->getOperand(j)); 617 if (!I) 618 continue; 619 // Get the DepChain corresponding to this operand. 620 DepChain &D = *DepChains[I]; 621 // Get the PHI for the iteration number and find 622 // the incoming value from the Loop Preheader for 623 // that PHI. 624 Value *ValInPreheader = findValueInBlock(D[i], LoopPH); 625 InstInPreheader->setOperand(j, ValInPreheader); 626 } 627 InstsInPreheader.push_back(InstInPreheader); 628 InstInPreheader->setName(Inst2Replace->getName() + ".hexagon.vlcr"); 629 InstInPreheader->insertBefore(LoopPH->getTerminator()); 630 LLVM_DEBUG(dbgs() << "Added " << *InstInPreheader << " to " 631 << LoopPH->getName() << "\n"); 632 } 633 BasicBlock *BB = BEInst->getParent(); 634 IRBuilder<> IRB(BB); 635 IRB.SetInsertPoint(BB->getFirstNonPHI()); 636 Value *BEVal = BEInst; 637 PHINode *NewPhi; 638 for (int i = Iterations-1; i >=0 ; --i) { 639 Instruction *InstInPreheader = InstsInPreheader[i]; 640 NewPhi = IRB.CreatePHI(InstInPreheader->getType(), 2); 641 NewPhi->addIncoming(InstInPreheader, LoopPH); 642 NewPhi->addIncoming(BEVal, BB); 643 LLVM_DEBUG(dbgs() << "Adding " << *NewPhi << " to " << BB->getName() 644 << "\n"); 645 BEVal = NewPhi; 646 } 647 // We are in LCSSA form. So, a value defined inside the Loop is used only 648 // inside the loop. So, the following is safe. 649 Inst2Replace->replaceAllUsesWith(NewPhi); 650 ReplacedInsts.insert(Inst2Replace); 651 ++HexagonNumVectorLoopCarriedReuse; 652 } 653 654 bool HexagonVectorLoopCarriedReuse::doVLCR() { 655 assert(CurLoop->getSubLoops().empty() && 656 "Can do VLCR on the innermost loop only"); 657 assert((CurLoop->getNumBlocks() == 1) && 658 "Can do VLCR only on single block loops"); 659 660 bool Changed = false; 661 bool Continue; 662 663 LLVM_DEBUG(dbgs() << "Working on Loop: " << *CurLoop->getHeader() << "\n"); 664 do { 665 // Reset datastructures. 666 Dependences.clear(); 667 Continue = false; 668 669 findLoopCarriedDeps(); 670 findValueToReuse(); 671 if (ReuseCandidate.isDefined()) { 672 reuseValue(); 673 Changed = true; 674 Continue = true; 675 } 676 llvm::for_each(Dependences, std::default_delete<DepChain>()); 677 } while (Continue); 678 return Changed; 679 } 680 681 void HexagonVectorLoopCarriedReuse::findDepChainFromPHI(Instruction *I, 682 DepChain &D) { 683 PHINode *PN = dyn_cast<PHINode>(I); 684 if (!PN) { 685 D.push_back(I); 686 return; 687 } else { 688 auto NumIncomingValues = PN->getNumIncomingValues(); 689 if (NumIncomingValues != 2) { 690 D.clear(); 691 return; 692 } 693 694 BasicBlock *BB = PN->getParent(); 695 if (BB != CurLoop->getHeader()) { 696 D.clear(); 697 return; 698 } 699 700 Value *BEVal = PN->getIncomingValueForBlock(BB); 701 Instruction *BEInst = dyn_cast<Instruction>(BEVal); 702 // This is a single block loop with a preheader, so at least 703 // one value should come over the backedge. 704 assert(BEInst && "There should be a value over the backedge"); 705 706 Value *PreHdrVal = 707 PN->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 708 if(!PreHdrVal || !isa<Instruction>(PreHdrVal)) { 709 D.clear(); 710 return; 711 } 712 D.push_back(PN); 713 findDepChainFromPHI(BEInst, D); 714 } 715 } 716 717 DepChain *HexagonVectorLoopCarriedReuse::getDepChainBtwn(Instruction *I1, 718 Instruction *I2, 719 int Iters) { 720 for (auto *D : Dependences) { 721 if (D->front() == I1 && D->back() == I2 && D->iterations() == Iters) 722 return D; 723 } 724 return nullptr; 725 } 726 727 void HexagonVectorLoopCarriedReuse::findLoopCarriedDeps() { 728 BasicBlock *BB = CurLoop->getHeader(); 729 for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) { 730 auto *PN = cast<PHINode>(I); 731 if (!isa<VectorType>(PN->getType())) 732 continue; 733 734 DepChain *D = new DepChain(); 735 findDepChainFromPHI(PN, *D); 736 if (D->size() != 0) 737 Dependences.insert(D); 738 else 739 delete D; 740 } 741 LLVM_DEBUG(dbgs() << "Found " << Dependences.size() << " dependences\n"); 742 LLVM_DEBUG(for (size_t i = 0; i < Dependences.size(); 743 ++i) { dbgs() << *Dependences[i] << "\n"; }); 744 } 745 746 Pass *llvm::createHexagonVectorLoopCarriedReusePass() { 747 return new HexagonVectorLoopCarriedReuse(); 748 } 749