xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // HexagonVectorCombine is a utility class implementing a variety of functions
9 // that assist in vector-based optimizations.
10 //
11 // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsHexagon.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 
40 #include "HexagonSubtarget.h"
41 #include "HexagonTargetMachine.h"
42 
43 #include <algorithm>
44 #include <deque>
45 #include <map>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #define DEBUG_TYPE "hexagon-vc"
51 
52 using namespace llvm;
53 
54 namespace {
55 class HexagonVectorCombine {
56 public:
57   HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
58                        DominatorTree &DT_, TargetLibraryInfo &TLI_,
59                        const TargetMachine &TM_)
60       : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
61         TLI(TLI_),
62         HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
63 
64   bool run();
65 
66   // Common integer type.
67   IntegerType *getIntTy() const;
68   // Byte type: either scalar (when Length = 0), or vector with given
69   // element count.
70   Type *getByteTy(int ElemCount = 0) const;
71   // Boolean type: either scalar (when Length = 0), or vector with given
72   // element count.
73   Type *getBoolTy(int ElemCount = 0) const;
74   // Create a ConstantInt of type returned by getIntTy with the value Val.
75   ConstantInt *getConstInt(int Val) const;
76   // Get the integer value of V, if it exists.
77   Optional<APInt> getIntValue(const Value *Val) const;
78   // Is V a constant 0, or a vector of 0s?
79   bool isZero(const Value *Val) const;
80   // Is V an undef value?
81   bool isUndef(const Value *Val) const;
82 
83   int getSizeOf(const Value *Val) const;
84   int getSizeOf(const Type *Ty) const;
85   int getAllocSizeOf(const Type *Ty) const;
86   int getTypeAlignment(Type *Ty) const;
87 
88   VectorType *getByteVectorTy(int ScLen) const;
89   Constant *getNullValue(Type *Ty) const;
90   Constant *getFullValue(Type *Ty) const;
91 
92   Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start,
93                  int Length, int Where) const;
94   Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
95   Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
96   Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const;
97   Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize,
98                  Value *Pad) const;
99   Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy,
100                  Type *ToTy) const;
101   Value *vlsb(IRBuilder<> &Builder, Value *Val) const;
102   Value *vbytes(IRBuilder<> &Builder, Value *Val) const;
103 
104   Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID,
105                             Type *RetTy, ArrayRef<Value *> Args) const;
106 
107   Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
108 
109   template <typename T = std::vector<Instruction *>>
110   bool isSafeToMoveBeforeInBB(const Instruction &In,
111                               BasicBlock::const_iterator To,
112                               const T &Ignore = {}) const;
113 
114   Function &F;
115   const DataLayout &DL;
116   AliasAnalysis &AA;
117   AssumptionCache &AC;
118   DominatorTree &DT;
119   TargetLibraryInfo &TLI;
120   const HexagonSubtarget &HST;
121 
122 private:
123 #ifndef NDEBUG
124   // These two functions are only used for assertions at the moment.
125   bool isByteVecTy(Type *Ty) const;
126   bool isSectorTy(Type *Ty) const;
127 #endif
128   Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start,
129                          int Length) const;
130 };
131 
132 class AlignVectors {
133 public:
134   AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {}
135 
136   bool run();
137 
138 private:
139   using InstList = std::vector<Instruction *>;
140 
141   struct Segment {
142     void *Data;
143     int Start;
144     int Size;
145   };
146 
147   struct AddrInfo {
148     AddrInfo(const AddrInfo &) = default;
149     AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
150              Align H)
151         : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
152           NeedAlign(HVC.getTypeAlignment(ValTy)) {}
153 
154     // XXX: add Size member?
155     Instruction *Inst;
156     Value *Addr;
157     Type *ValTy;
158     Align HaveAlign;
159     Align NeedAlign;
160     int Offset = 0; // Offset (in bytes) from the first member of the
161                     // containing AddrList.
162   };
163   using AddrList = std::vector<AddrInfo>;
164 
165   struct InstrLess {
166     bool operator()(const Instruction *A, const Instruction *B) const {
167       return A->comesBefore(B);
168     }
169   };
170   using DepList = std::set<Instruction *, InstrLess>;
171 
172   struct MoveGroup {
173     MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
174         : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
175     Instruction *Base; // Base instruction of the parent address group.
176     InstList Main;     // Main group of instructions.
177     InstList Deps;     // List of dependencies.
178     bool IsHvx;        // Is this group of HVX instructions?
179     bool IsLoad;       // Is this a load group?
180   };
181   using MoveList = std::vector<MoveGroup>;
182 
183   struct ByteSpan {
184     struct Segment {
185       // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
186       Segment(Value *Val, int Begin, int Len)
187           : Val(Val), Start(Begin), Size(Len) {}
188       Segment(const Segment &Seg) = default;
189       Value *Val; // Value representable as a sequence of bytes.
190       int Start;  // First byte of the value that belongs to the segment.
191       int Size;   // Number of bytes in the segment.
192     };
193 
194     struct Block {
195       Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
196       Block(Value *Val, int Off, int Len, int Pos)
197           : Seg(Val, Off, Len), Pos(Pos) {}
198       Block(const Block &Blk) = default;
199       Segment Seg; // Value segment.
200       int Pos;     // Position (offset) of the segment in the Block.
201     };
202 
203     int extent() const;
204     ByteSpan section(int Start, int Length) const;
205     ByteSpan &shift(int Offset);
206     SmallVector<Value *, 8> values() const;
207 
208     int size() const { return Blocks.size(); }
209     Block &operator[](int i) { return Blocks[i]; }
210 
211     std::vector<Block> Blocks;
212 
213     using iterator = decltype(Blocks)::iterator;
214     iterator begin() { return Blocks.begin(); }
215     iterator end() { return Blocks.end(); }
216     using const_iterator = decltype(Blocks)::const_iterator;
217     const_iterator begin() const { return Blocks.begin(); }
218     const_iterator end() const { return Blocks.end(); }
219   };
220 
221   Align getAlignFromValue(const Value *V) const;
222   Optional<MemoryLocation> getLocation(const Instruction &In) const;
223   Optional<AddrInfo> getAddrInfo(Instruction &In) const;
224   bool isHvx(const AddrInfo &AI) const;
225 
226   Value *getPayload(Value *Val) const;
227   Value *getMask(Value *Val) const;
228   Value *getPassThrough(Value *Val) const;
229 
230   Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
231                                int Adjust) const;
232   Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
233                               int Alignment) const;
234   Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr,
235                            int Alignment, Value *Mask, Value *PassThru) const;
236   Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr,
237                             int Alignment, Value *Mask) const;
238 
239   bool createAddressGroups();
240   MoveList createLoadGroups(const AddrList &Group) const;
241   MoveList createStoreGroups(const AddrList &Group) const;
242   bool move(const MoveGroup &Move) const;
243   bool realignGroup(const MoveGroup &Move) const;
244 
245   friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
246   friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
247   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
248 
249   std::map<Instruction *, AddrList> AddrGroups;
250   HexagonVectorCombine &HVC;
251 };
252 
253 LLVM_ATTRIBUTE_UNUSED
254 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
255   OS << "Inst: " << AI.Inst << "  " << *AI.Inst << '\n';
256   OS << "Addr: " << *AI.Addr << '\n';
257   OS << "Type: " << *AI.ValTy << '\n';
258   OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
259   OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
260   OS << "Offset: " << AI.Offset;
261   return OS;
262 }
263 
264 LLVM_ATTRIBUTE_UNUSED
265 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
266   OS << "Main\n";
267   for (Instruction *I : MG.Main)
268     OS << "  " << *I << '\n';
269   OS << "Deps\n";
270   for (Instruction *I : MG.Deps)
271     OS << "  " << *I << '\n';
272   return OS;
273 }
274 
275 LLVM_ATTRIBUTE_UNUSED
276 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
277   OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
278   for (const AlignVectors::ByteSpan::Block &B : BS) {
279     OS << "  @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
280        << *B.Seg.Val << '\n';
281   }
282   OS << ']';
283   return OS;
284 }
285 
286 } // namespace
287 
288 namespace {
289 
290 template <typename T> T *getIfUnordered(T *MaybeT) {
291   return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
292 }
293 template <typename T> T *isCandidate(Instruction *In) {
294   return dyn_cast<T>(In);
295 }
296 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
297   return getIfUnordered(dyn_cast<LoadInst>(In));
298 }
299 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
300   return getIfUnordered(dyn_cast<StoreInst>(In));
301 }
302 
303 #if !defined(_MSC_VER) || _MSC_VER >= 1926
304 // VS2017 and some versions of VS2019 have trouble compiling this:
305 // error C2976: 'std::map': too few template arguments
306 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
307 template <typename Pred, typename... Ts>
308 void erase_if(std::map<Ts...> &map, Pred p)
309 #else
310 template <typename Pred, typename T, typename U>
311 void erase_if(std::map<T, U> &map, Pred p)
312 #endif
313 {
314   for (auto i = map.begin(), e = map.end(); i != e;) {
315     if (p(*i))
316       i = map.erase(i);
317     else
318       i = std::next(i);
319   }
320 }
321 
322 // Forward other erase_ifs to the LLVM implementations.
323 template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
324   llvm::erase_if(std::forward<T>(container), p);
325 }
326 
327 } // namespace
328 
329 // --- Begin AlignVectors
330 
331 auto AlignVectors::ByteSpan::extent() const -> int {
332   if (size() == 0)
333     return 0;
334   int Min = Blocks[0].Pos;
335   int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
336   for (int i = 1, e = size(); i != e; ++i) {
337     Min = std::min(Min, Blocks[i].Pos);
338     Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
339   }
340   return Max - Min;
341 }
342 
343 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
344   ByteSpan Section;
345   for (const ByteSpan::Block &B : Blocks) {
346     int L = std::max(B.Pos, Start);                       // Left end.
347     int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
348     if (L < R) {
349       // How much to chop off the beginning of the segment:
350       int Off = L > B.Pos ? L - B.Pos : 0;
351       Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
352     }
353   }
354   return Section;
355 }
356 
357 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
358   for (Block &B : Blocks)
359     B.Pos += Offset;
360   return *this;
361 }
362 
363 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
364   SmallVector<Value *, 8> Values(Blocks.size());
365   for (int i = 0, e = Blocks.size(); i != e; ++i)
366     Values[i] = Blocks[i].Seg.Val;
367   return Values;
368 }
369 
370 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
371   const auto *C = dyn_cast<ConstantInt>(V);
372   assert(C && "Alignment must be a compile-time constant integer");
373   return C->getAlignValue();
374 }
375 
376 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> {
377   if (auto *L = isCandidate<LoadInst>(&In))
378     return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
379                     L->getAlign());
380   if (auto *S = isCandidate<StoreInst>(&In))
381     return AddrInfo(HVC, S, S->getPointerOperand(),
382                     S->getValueOperand()->getType(), S->getAlign());
383   if (auto *II = isCandidate<IntrinsicInst>(&In)) {
384     Intrinsic::ID ID = II->getIntrinsicID();
385     switch (ID) {
386     case Intrinsic::masked_load:
387       return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
388                       getAlignFromValue(II->getArgOperand(1)));
389     case Intrinsic::masked_store:
390       return AddrInfo(HVC, II, II->getArgOperand(1),
391                       II->getArgOperand(0)->getType(),
392                       getAlignFromValue(II->getArgOperand(2)));
393     }
394   }
395   return Optional<AddrInfo>();
396 }
397 
398 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
399   return HVC.HST.isTypeForHVX(AI.ValTy);
400 }
401 
402 auto AlignVectors::getPayload(Value *Val) const -> Value * {
403   if (auto *In = dyn_cast<Instruction>(Val)) {
404     Intrinsic::ID ID = 0;
405     if (auto *II = dyn_cast<IntrinsicInst>(In))
406       ID = II->getIntrinsicID();
407     if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
408       return In->getOperand(0);
409   }
410   return Val;
411 }
412 
413 auto AlignVectors::getMask(Value *Val) const -> Value * {
414   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
415     switch (II->getIntrinsicID()) {
416     case Intrinsic::masked_load:
417       return II->getArgOperand(2);
418     case Intrinsic::masked_store:
419       return II->getArgOperand(3);
420     }
421   }
422 
423   Type *ValTy = getPayload(Val)->getType();
424   if (auto *VecTy = dyn_cast<VectorType>(ValTy)) {
425     int ElemCount = VecTy->getElementCount().getFixedValue();
426     return HVC.getFullValue(HVC.getBoolTy(ElemCount));
427   }
428   return HVC.getFullValue(HVC.getBoolTy());
429 }
430 
431 auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
432   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
433     if (II->getIntrinsicID() == Intrinsic::masked_load)
434       return II->getArgOperand(3);
435   }
436   return UndefValue::get(getPayload(Val)->getType());
437 }
438 
439 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr,
440                                          Type *ValTy, int Adjust) const
441     -> Value * {
442   // The adjustment is in bytes, but if it's a multiple of the type size,
443   // we don't need to do pointer casts.
444   auto *PtrTy = cast<PointerType>(Ptr->getType());
445   if (!PtrTy->isOpaque()) {
446     Type *ElemTy = PtrTy->getNonOpaquePointerElementType();
447     int ElemSize = HVC.getAllocSizeOf(ElemTy);
448     if (Adjust % ElemSize == 0 && Adjust != 0) {
449       Value *Tmp0 =
450           Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize));
451       return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
452     }
453   }
454 
455   PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
456   Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
457   Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0,
458                                   HVC.getConstInt(Adjust));
459   return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
460 }
461 
462 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr,
463                                         Type *ValTy, int Alignment) const
464     -> Value * {
465   Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
466   Value *Mask = HVC.getConstInt(-Alignment);
467   Value *And = Builder.CreateAnd(AsInt, Mask);
468   return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
469 }
470 
471 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy,
472                                      Value *Ptr, int Alignment, Value *Mask,
473                                      Value *PassThru) const -> Value * {
474   assert(!HVC.isUndef(Mask)); // Should this be allowed?
475   if (HVC.isZero(Mask))
476     return PassThru;
477   if (Mask == ConstantInt::getTrue(Mask->getType()))
478     return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
479   return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru);
480 }
481 
482 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val,
483                                       Value *Ptr, int Alignment,
484                                       Value *Mask) const -> Value * {
485   if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
486     return UndefValue::get(Val->getType());
487   if (Mask == ConstantInt::getTrue(Mask->getType()))
488     return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
489   return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
490 }
491 
492 auto AlignVectors::createAddressGroups() -> bool {
493   // An address group created here may contain instructions spanning
494   // multiple basic blocks.
495   AddrList WorkStack;
496 
497   auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
498     for (AddrInfo &W : WorkStack) {
499       if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
500         return std::make_pair(W.Inst, *D);
501     }
502     return std::make_pair(nullptr, 0);
503   };
504 
505   auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
506     BasicBlock &Block = *DomN->getBlock();
507     for (Instruction &I : Block) {
508       auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
509       if (!AI)
510         continue;
511       auto F = findBaseAndOffset(*AI);
512       Instruction *GroupInst;
513       if (Instruction *BI = F.first) {
514         AI->Offset = F.second;
515         GroupInst = BI;
516       } else {
517         WorkStack.push_back(*AI);
518         GroupInst = AI->Inst;
519       }
520       AddrGroups[GroupInst].push_back(*AI);
521     }
522 
523     for (DomTreeNode *C : DomN->children())
524       Visit(C, Visit);
525 
526     while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
527       WorkStack.pop_back();
528   };
529 
530   traverseBlock(HVC.DT.getRootNode(), traverseBlock);
531   assert(WorkStack.empty());
532 
533   // AddrGroups are formed.
534 
535   // Remove groups of size 1.
536   erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
537   // Remove groups that don't use HVX types.
538   erase_if(AddrGroups, [&](auto &G) {
539     return llvm::none_of(
540         G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
541   });
542 
543   return !AddrGroups.empty();
544 }
545 
546 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
547   // Form load groups.
548   // To avoid complications with moving code across basic blocks, only form
549   // groups that are contained within a single basic block.
550 
551   auto getUpwardDeps = [](Instruction *In, Instruction *Base) {
552     BasicBlock *Parent = Base->getParent();
553     assert(In->getParent() == Parent &&
554            "Base and In should be in the same block");
555     assert(Base->comesBefore(In) && "Base should come before In");
556 
557     DepList Deps;
558     std::deque<Instruction *> WorkQ = {In};
559     while (!WorkQ.empty()) {
560       Instruction *D = WorkQ.front();
561       WorkQ.pop_front();
562       Deps.insert(D);
563       for (Value *Op : D->operands()) {
564         if (auto *I = dyn_cast<Instruction>(Op)) {
565           if (I->getParent() == Parent && Base->comesBefore(I))
566             WorkQ.push_back(I);
567         }
568       }
569     }
570     return Deps;
571   };
572 
573   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
574     assert(!Move.Main.empty() && "Move group should have non-empty Main");
575     // Don't mix HVX and non-HVX instructions.
576     if (Move.IsHvx != isHvx(Info))
577       return false;
578     // Leading instruction in the load group.
579     Instruction *Base = Move.Main.front();
580     if (Base->getParent() != Info.Inst->getParent())
581       return false;
582 
583     auto isSafeToMoveToBase = [&](const Instruction *I) {
584       return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
585     };
586     DepList Deps = getUpwardDeps(Info.Inst, Base);
587     if (!llvm::all_of(Deps, isSafeToMoveToBase))
588       return false;
589 
590     // The dependencies will be moved together with the load, so make sure
591     // that none of them could be moved independently in another group.
592     Deps.erase(Info.Inst);
593     auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
594     if (llvm::any_of(Deps, inAddrMap))
595       return false;
596     Move.Main.push_back(Info.Inst);
597     llvm::append_range(Move.Deps, Deps);
598     return true;
599   };
600 
601   MoveList LoadGroups;
602 
603   for (const AddrInfo &Info : Group) {
604     if (!Info.Inst->mayReadFromMemory())
605       continue;
606     if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
607       LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
608   }
609 
610   // Erase singleton groups.
611   erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
612   return LoadGroups;
613 }
614 
615 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
616   // Form store groups.
617   // To avoid complications with moving code across basic blocks, only form
618   // groups that are contained within a single basic block.
619 
620   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
621     assert(!Move.Main.empty() && "Move group should have non-empty Main");
622     // For stores with return values we'd have to collect downward depenencies.
623     // There are no such stores that we handle at the moment, so omit that.
624     assert(Info.Inst->getType()->isVoidTy() &&
625            "Not handling stores with return values");
626     // Don't mix HVX and non-HVX instructions.
627     if (Move.IsHvx != isHvx(Info))
628       return false;
629     // For stores we need to be careful whether it's safe to move them.
630     // Stores that are otherwise safe to move together may not appear safe
631     // to move over one another (i.e. isSafeToMoveBefore may return false).
632     Instruction *Base = Move.Main.front();
633     if (Base->getParent() != Info.Inst->getParent())
634       return false;
635     if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
636       return false;
637     Move.Main.push_back(Info.Inst);
638     return true;
639   };
640 
641   MoveList StoreGroups;
642 
643   for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
644     const AddrInfo &Info = *I;
645     if (!Info.Inst->mayWriteToMemory())
646       continue;
647     if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
648       StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
649   }
650 
651   // Erase singleton groups.
652   erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
653   return StoreGroups;
654 }
655 
656 auto AlignVectors::move(const MoveGroup &Move) const -> bool {
657   assert(!Move.Main.empty() && "Move group should have non-empty Main");
658   Instruction *Where = Move.Main.front();
659 
660   if (Move.IsLoad) {
661     // Move all deps to before Where, keeping order.
662     for (Instruction *D : Move.Deps)
663       D->moveBefore(Where);
664     // Move all main instructions to after Where, keeping order.
665     ArrayRef<Instruction *> Main(Move.Main);
666     for (Instruction *M : Main.drop_front(1)) {
667       M->moveAfter(Where);
668       Where = M;
669     }
670   } else {
671     // NOTE: Deps are empty for "store" groups. If they need to be
672     // non-empty, decide on the order.
673     assert(Move.Deps.empty());
674     // Move all main instructions to before Where, inverting order.
675     ArrayRef<Instruction *> Main(Move.Main);
676     for (Instruction *M : Main.drop_front(1)) {
677       M->moveBefore(Where);
678       Where = M;
679     }
680   }
681 
682   return Move.Main.size() + Move.Deps.size() > 1;
683 }
684 
685 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
686   // TODO: Needs support for masked loads/stores of "scalar" vectors.
687   if (!Move.IsHvx)
688     return false;
689 
690   // Return the element with the maximum alignment from Range,
691   // where GetValue obtains the value to compare from an element.
692   auto getMaxOf = [](auto Range, auto GetValue) {
693     return *std::max_element(
694         Range.begin(), Range.end(),
695         [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
696   };
697 
698   const AddrList &BaseInfos = AddrGroups.at(Move.Base);
699 
700   // Conceptually, there is a vector of N bytes covering the addresses
701   // starting from the minimum offset (i.e. Base.Addr+Start). This vector
702   // represents a contiguous memory region that spans all accessed memory
703   // locations.
704   // The correspondence between loaded or stored values will be expressed
705   // in terms of this vector. For example, the 0th element of the vector
706   // from the Base address info will start at byte Start from the beginning
707   // of this conceptual vector.
708   //
709   // This vector will be loaded/stored starting at the nearest down-aligned
710   // address and the amount od the down-alignment will be AlignVal:
711   //   valign(load_vector(align_down(Base+Start)), AlignVal)
712 
713   std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
714   AddrList MoveInfos;
715   llvm::copy_if(
716       BaseInfos, std::back_inserter(MoveInfos),
717       [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
718 
719   // Maximum alignment present in the whole address group.
720   const AddrInfo &WithMaxAlign =
721       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
722   Align MaxGiven = WithMaxAlign.HaveAlign;
723 
724   // Minimum alignment present in the move address group.
725   const AddrInfo &WithMinOffset =
726       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
727 
728   const AddrInfo &WithMaxNeeded =
729       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
730   Align MinNeeded = WithMaxNeeded.NeedAlign;
731 
732   // Set the builder at the top instruction in the move group.
733   Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back();
734   IRBuilder<> Builder(TopIn);
735   Value *AlignAddr = nullptr; // Actual aligned address.
736   Value *AlignVal = nullptr;  // Right-shift amount (for valign).
737 
738   if (MinNeeded <= MaxGiven) {
739     int Start = WithMinOffset.Offset;
740     int OffAtMax = WithMaxAlign.Offset;
741     // Shift the offset of the maximally aligned instruction (OffAtMax)
742     // back by just enough multiples of the required alignment to cover the
743     // distance from Start to OffAtMax.
744     // Calculate the address adjustment amount based on the address with the
745     // maximum alignment. This is to allow a simple gep instruction instead
746     // of potential bitcasts to i8*.
747     int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
748     AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
749                                       WithMaxAlign.ValTy, Adjust);
750     int Diff = Start - (OffAtMax + Adjust);
751     AlignVal = HVC.getConstInt(Diff);
752     assert(Diff >= 0);
753     assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
754   } else {
755     // WithMinOffset is the lowest address in the group,
756     //   WithMinOffset.Addr = Base+Start.
757     // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
758     // mask off unnecessary bits, so it's ok to just the original pointer as
759     // the alignment amount.
760     // Do an explicit down-alignment of the address to avoid creating an
761     // aligned instruction with an address that is not really aligned.
762     AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
763                                      WithMinOffset.ValTy, MinNeeded.value());
764     AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
765   }
766 
767   ByteSpan VSpan;
768   for (const AddrInfo &AI : MoveInfos) {
769     VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
770                               AI.Offset - WithMinOffset.Offset);
771   }
772 
773   // The aligned loads/stores will use blocks that are either scalars,
774   // or HVX vectors. Let "sector" be the unified term for such a block.
775   // blend(scalar, vector) -> sector...
776   int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
777                          : std::max<int>(MinNeeded.value(), 4);
778   assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
779   assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
780 
781   Type *SecTy = HVC.getByteTy(ScLen);
782   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
783   bool DoAlign = !HVC.isZero(AlignVal);
784 
785   if (Move.IsLoad) {
786     ByteSpan ASpan;
787     auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
788     auto *Undef = UndefValue::get(SecTy);
789 
790     for (int i = 0; i != NumSectors + DoAlign; ++i) {
791       Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
792       // FIXME: generate a predicated load?
793       Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
794       // If vector shifting is potentially needed, accumulate metadata
795       // from source sections of twice the load width.
796       int Start = (i - DoAlign) * ScLen;
797       int Width = (1 + DoAlign) * ScLen;
798       propagateMetadata(cast<Instruction>(Load),
799                         VSpan.section(Start, Width).values());
800       ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen);
801     }
802 
803     if (DoAlign) {
804       for (int j = 0; j != NumSectors; ++j) {
805         ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val,
806                                         ASpan[j + 1].Seg.Val, AlignVal);
807       }
808     }
809 
810     for (ByteSpan::Block &B : VSpan) {
811       ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
812       Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
813       for (ByteSpan::Block &S : ASection) {
814         Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
815         Accum =
816             HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
817       }
818       // Instead of casting everything to bytes for the vselect, cast to the
819       // original value type. This will avoid complications with casting masks.
820       // For example, in cases when the original mask applied to i32, it could
821       // be converted to a mask applicable to i8 via pred_typecast intrinsic,
822       // but if the mask is not exactly of HVX length, extra handling would be
823       // needed to make it work.
824       Type *ValTy = getPayload(B.Seg.Val)->getType();
825       Value *Cast = Builder.CreateBitCast(Accum, ValTy);
826       Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
827                                         getPassThrough(B.Seg.Val));
828       B.Seg.Val->replaceAllUsesWith(Sel);
829     }
830   } else {
831     // Stores.
832     ByteSpan ASpanV, ASpanM;
833 
834     // Return a vector value corresponding to the input value Val:
835     // either <1 x Val> for scalar Val, or Val itself for vector Val.
836     auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * {
837       Type *Ty = Val->getType();
838       if (Ty->isVectorTy())
839         return Val;
840       auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false);
841       return Builder.CreateBitCast(Val, VecTy);
842     };
843 
844     // Create an extra "undef" sector at the beginning and at the end.
845     // They will be used as the left/right filler in the vlalign step.
846     for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
847       // For stores, the size of each section is an aligned vector length.
848       // Adjust the store offsets relative to the section start offset.
849       ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
850       Value *AccumV = UndefValue::get(SecTy);
851       Value *AccumM = HVC.getNullValue(SecTy);
852       for (ByteSpan::Block &S : VSection) {
853         Value *Pay = getPayload(S.Seg.Val);
854         Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
855                                   Pay->getType(), HVC.getByteTy());
856         AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
857                              S.Seg.Start, S.Seg.Size, S.Pos);
858         AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
859                              S.Seg.Start, S.Seg.Size, S.Pos);
860       }
861       ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
862       ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
863     }
864 
865     // vlalign
866     if (DoAlign) {
867       for (int j = 1; j != NumSectors + 2; ++j) {
868         ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val,
869                                              ASpanV[j].Seg.Val, AlignVal);
870         ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val,
871                                              ASpanM[j].Seg.Val, AlignVal);
872       }
873     }
874 
875     for (int i = 0; i != NumSectors + DoAlign; ++i) {
876       Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
877       Value *Val = ASpanV[i].Seg.Val;
878       Value *Mask = ASpanM[i].Seg.Val; // bytes
879       if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
880         Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen,
881                                           HVC.vlsb(Builder, Mask));
882         // If vector shifting is potentially needed, accumulate metadata
883         // from source sections of twice the store width.
884         int Start = (i - DoAlign) * ScLen;
885         int Width = (1 + DoAlign) * ScLen;
886         propagateMetadata(cast<Instruction>(Store),
887                           VSpan.section(Start, Width).values());
888       }
889     }
890   }
891 
892   for (auto *Inst : Move.Main)
893     Inst->eraseFromParent();
894 
895   return true;
896 }
897 
898 auto AlignVectors::run() -> bool {
899   if (!createAddressGroups())
900     return false;
901 
902   bool Changed = false;
903   MoveList LoadGroups, StoreGroups;
904 
905   for (auto &G : AddrGroups) {
906     llvm::append_range(LoadGroups, createLoadGroups(G.second));
907     llvm::append_range(StoreGroups, createStoreGroups(G.second));
908   }
909 
910   for (auto &M : LoadGroups)
911     Changed |= move(M);
912   for (auto &M : StoreGroups)
913     Changed |= move(M);
914 
915   for (auto &M : LoadGroups)
916     Changed |= realignGroup(M);
917   for (auto &M : StoreGroups)
918     Changed |= realignGroup(M);
919 
920   return Changed;
921 }
922 
923 // --- End AlignVectors
924 
925 auto HexagonVectorCombine::run() -> bool {
926   if (!HST.useHVXOps())
927     return false;
928 
929   bool Changed = AlignVectors(*this).run();
930   return Changed;
931 }
932 
933 auto HexagonVectorCombine::getIntTy() const -> IntegerType * {
934   return Type::getInt32Ty(F.getContext());
935 }
936 
937 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
938   assert(ElemCount >= 0);
939   IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
940   if (ElemCount == 0)
941     return ByteTy;
942   return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false);
943 }
944 
945 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
946   assert(ElemCount >= 0);
947   IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
948   if (ElemCount == 0)
949     return BoolTy;
950   return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false);
951 }
952 
953 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * {
954   return ConstantInt::getSigned(getIntTy(), Val);
955 }
956 
957 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
958   if (auto *C = dyn_cast<Constant>(Val))
959     return C->isZeroValue();
960   return false;
961 }
962 
963 auto HexagonVectorCombine::getIntValue(const Value *Val) const
964     -> Optional<APInt> {
965   if (auto *CI = dyn_cast<ConstantInt>(Val))
966     return CI->getValue();
967   return None;
968 }
969 
970 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
971   return isa<UndefValue>(Val);
972 }
973 
974 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int {
975   return getSizeOf(Val->getType());
976 }
977 
978 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int {
979   return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue();
980 }
981 
982 auto HexagonVectorCombine::getAllocSizeOf(const Type *Ty) const -> int {
983   return DL.getTypeAllocSize(const_cast<Type *>(Ty)).getFixedValue();
984 }
985 
986 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
987   // The actual type may be shorter than the HVX vector, so determine
988   // the alignment based on subtarget info.
989   if (HST.isTypeForHVX(Ty))
990     return HST.getVectorLength();
991   return DL.getABITypeAlign(Ty).value();
992 }
993 
994 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
995   assert(Ty->isIntOrIntVectorTy());
996   auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
997   if (auto *VecTy = dyn_cast<VectorType>(Ty))
998     return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
999   return Zero;
1000 }
1001 
1002 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
1003   assert(Ty->isIntOrIntVectorTy());
1004   auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
1005   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1006     return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
1007   return Minus1;
1008 }
1009 
1010 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
1011 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src,
1012                                    int Start, int Length, int Where) const
1013     -> Value * {
1014   assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
1015   int SrcLen = getSizeOf(Src);
1016   int DstLen = getSizeOf(Dst);
1017   assert(0 <= Start && Start + Length <= SrcLen);
1018   assert(0 <= Where && Where + Length <= DstLen);
1019 
1020   int P2Len = PowerOf2Ceil(SrcLen | DstLen);
1021   auto *Undef = UndefValue::get(getByteTy());
1022   Value *P2Src = vresize(Builder, Src, P2Len, Undef);
1023   Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
1024 
1025   SmallVector<int, 256> SMask(P2Len);
1026   for (int i = 0; i != P2Len; ++i) {
1027     // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
1028     // Otherwise, pick Dst[i];
1029     SMask[i] =
1030         (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
1031   }
1032 
1033   Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
1034   return vresize(Builder, P2Insert, DstLen, Undef);
1035 }
1036 
1037 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1038                                     Value *Amt) const -> Value * {
1039   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1040   assert(isSectorTy(Hi->getType()));
1041   if (isZero(Amt))
1042     return Hi;
1043   int VecLen = getSizeOf(Hi);
1044   if (auto IntAmt = getIntValue(Amt))
1045     return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
1046                            VecLen);
1047 
1048   if (HST.isTypeForHVX(Hi->getType())) {
1049     int HwLen = HST.getVectorLength();
1050     assert(VecLen == HwLen && "Expecting an exact HVX type");
1051     Intrinsic::ID V6_vlalignb = HwLen == 64
1052                                     ? Intrinsic::hexagon_V6_vlalignb
1053                                     : Intrinsic::hexagon_V6_vlalignb_128B;
1054     return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(),
1055                               {Hi, Lo, Amt});
1056   }
1057 
1058   if (VecLen == 4) {
1059     Value *Pair = concat(Builder, {Lo, Hi});
1060     Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
1061     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1062     return Builder.CreateBitCast(Trunc, Hi->getType());
1063   }
1064   if (VecLen == 8) {
1065     Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
1066     return vralignb(Builder, Lo, Hi, Sub);
1067   }
1068   llvm_unreachable("Unexpected vector length");
1069 }
1070 
1071 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1072                                     Value *Amt) const -> Value * {
1073   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1074   assert(isSectorTy(Lo->getType()));
1075   if (isZero(Amt))
1076     return Lo;
1077   int VecLen = getSizeOf(Lo);
1078   if (auto IntAmt = getIntValue(Amt))
1079     return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
1080 
1081   if (HST.isTypeForHVX(Lo->getType())) {
1082     int HwLen = HST.getVectorLength();
1083     assert(VecLen == HwLen && "Expecting an exact HVX type");
1084     Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb
1085                                            : Intrinsic::hexagon_V6_valignb_128B;
1086     return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(),
1087                               {Hi, Lo, Amt});
1088   }
1089 
1090   if (VecLen == 4) {
1091     Value *Pair = concat(Builder, {Lo, Hi});
1092     Value *Shift = Builder.CreateLShr(Pair, Amt);
1093     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1094     return Builder.CreateBitCast(Trunc, Lo->getType());
1095   }
1096   if (VecLen == 8) {
1097     Type *Int64Ty = Type::getInt64Ty(F.getContext());
1098     Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
1099     Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
1100     Function *FI = Intrinsic::getDeclaration(F.getParent(),
1101                                              Intrinsic::hexagon_S2_valignrb);
1102     Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
1103     return Builder.CreateBitCast(Call, Lo->getType());
1104   }
1105   llvm_unreachable("Unexpected vector length");
1106 }
1107 
1108 // Concatenates a sequence of vectors of the same type.
1109 auto HexagonVectorCombine::concat(IRBuilder<> &Builder,
1110                                   ArrayRef<Value *> Vecs) const -> Value * {
1111   assert(!Vecs.empty());
1112   SmallVector<int, 256> SMask;
1113   std::vector<Value *> Work[2];
1114   int ThisW = 0, OtherW = 1;
1115 
1116   Work[ThisW].assign(Vecs.begin(), Vecs.end());
1117   while (Work[ThisW].size() > 1) {
1118     auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
1119     int ElemCount = Ty->getElementCount().getFixedValue();
1120     SMask.resize(ElemCount * 2);
1121     std::iota(SMask.begin(), SMask.end(), 0);
1122 
1123     Work[OtherW].clear();
1124     if (Work[ThisW].size() % 2 != 0)
1125       Work[ThisW].push_back(UndefValue::get(Ty));
1126     for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
1127       Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
1128                                                   Work[ThisW][i + 1], SMask);
1129       Work[OtherW].push_back(Joined);
1130     }
1131     std::swap(ThisW, OtherW);
1132   }
1133 
1134   // Since there may have been some undefs appended to make shuffle operands
1135   // have the same type, perform the last shuffle to only pick the original
1136   // elements.
1137   SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType()));
1138   std::iota(SMask.begin(), SMask.end(), 0);
1139   Value *Total = Work[OtherW].front();
1140   return Builder.CreateShuffleVector(Total, SMask);
1141 }
1142 
1143 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val,
1144                                    int NewSize, Value *Pad) const -> Value * {
1145   assert(isa<VectorType>(Val->getType()));
1146   auto *ValTy = cast<VectorType>(Val->getType());
1147   assert(ValTy->getElementType() == Pad->getType());
1148 
1149   int CurSize = ValTy->getElementCount().getFixedValue();
1150   if (CurSize == NewSize)
1151     return Val;
1152   // Truncate?
1153   if (CurSize > NewSize)
1154     return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize);
1155   // Extend.
1156   SmallVector<int, 128> SMask(NewSize);
1157   std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
1158   std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
1159   Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
1160   return Builder.CreateShuffleVector(Val, PadVec, SMask);
1161 }
1162 
1163 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask,
1164                                    Type *FromTy, Type *ToTy) const -> Value * {
1165   // Mask is a vector <N x i1>, where each element corresponds to an
1166   // element of FromTy. Remap it so that each element will correspond
1167   // to an element of ToTy.
1168   assert(isa<VectorType>(Mask->getType()));
1169 
1170   Type *FromSTy = FromTy->getScalarType();
1171   Type *ToSTy = ToTy->getScalarType();
1172   if (FromSTy == ToSTy)
1173     return Mask;
1174 
1175   int FromSize = getSizeOf(FromSTy);
1176   int ToSize = getSizeOf(ToSTy);
1177   assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
1178 
1179   auto *MaskTy = cast<VectorType>(Mask->getType());
1180   int FromCount = MaskTy->getElementCount().getFixedValue();
1181   int ToCount = (FromCount * FromSize) / ToSize;
1182   assert((FromCount * FromSize) % ToSize == 0);
1183 
1184   auto *FromITy = IntegerType::get(F.getContext(), FromSize * 8);
1185   auto *ToITy = IntegerType::get(F.getContext(), ToSize * 8);
1186 
1187   // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
1188   // -> trunc to <M x i1>.
1189   Value *Ext = Builder.CreateSExt(
1190       Mask, VectorType::get(FromITy, FromCount, /*Scalable*/ false));
1191   Value *Cast = Builder.CreateBitCast(
1192       Ext, VectorType::get(ToITy, ToCount, /*Scalable*/ false));
1193   return Builder.CreateTrunc(
1194       Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false));
1195 }
1196 
1197 // Bitcast to bytes, and return least significant bits.
1198 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const
1199     -> Value * {
1200   Type *ScalarTy = Val->getType()->getScalarType();
1201   if (ScalarTy == getBoolTy())
1202     return Val;
1203 
1204   Value *Bytes = vbytes(Builder, Val);
1205   if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
1206     return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
1207   // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
1208   // <1 x i1>.
1209   return Builder.CreateTrunc(Bytes, getBoolTy());
1210 }
1211 
1212 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
1213 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const
1214     -> Value * {
1215   Type *ScalarTy = Val->getType()->getScalarType();
1216   if (ScalarTy == getByteTy())
1217     return Val;
1218 
1219   if (ScalarTy != getBoolTy())
1220     return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
1221   // For bool, return a sext from i1 to i8.
1222   if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
1223     return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
1224   return Builder.CreateSExt(Val, getByteTy());
1225 }
1226 
1227 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder,
1228                                               Intrinsic::ID IntID, Type *RetTy,
1229                                               ArrayRef<Value *> Args) const
1230     -> Value * {
1231   int HwLen = HST.getVectorLength();
1232   Type *BoolTy = Type::getInt1Ty(F.getContext());
1233   Type *Int32Ty = Type::getInt32Ty(F.getContext());
1234   // HVX vector -> v16i32/v32i32
1235   // HVX vector predicate -> v512i1/v1024i1
1236   auto getTypeForIntrin = [&](Type *Ty) -> Type * {
1237     if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) {
1238       Type *ElemTy = cast<VectorType>(Ty)->getElementType();
1239       if (ElemTy == Int32Ty)
1240         return Ty;
1241       if (ElemTy == BoolTy)
1242         return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false);
1243       return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false);
1244     }
1245     // Non-HVX type. It should be a scalar.
1246     assert(Ty == Int32Ty || Ty->isIntegerTy(64));
1247     return Ty;
1248   };
1249 
1250   auto getCast = [&](IRBuilder<> &Builder, Value *Val,
1251                      Type *DestTy) -> Value * {
1252     Type *SrcTy = Val->getType();
1253     if (SrcTy == DestTy)
1254       return Val;
1255     if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) {
1256       if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) {
1257         // This should take care of casts the other way too, for example
1258         // v1024i1 -> v32i1.
1259         Intrinsic::ID TC = HwLen == 64
1260                                ? Intrinsic::hexagon_V6_pred_typecast
1261                                : Intrinsic::hexagon_V6_pred_typecast_128B;
1262         Function *FI = Intrinsic::getDeclaration(F.getParent(), TC,
1263                                                  {DestTy, Val->getType()});
1264         return Builder.CreateCall(FI, {Val});
1265       }
1266       // Non-predicate HVX vector.
1267       return Builder.CreateBitCast(Val, DestTy);
1268     }
1269     // Non-HVX type. It should be a scalar, and it should already have
1270     // a valid type.
1271     llvm_unreachable("Unexpected type");
1272   };
1273 
1274   SmallVector<Value *, 4> IntOps;
1275   for (Value *A : Args)
1276     IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType())));
1277   Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID);
1278   Value *Call = Builder.CreateCall(FI, IntOps);
1279 
1280   Type *CallTy = Call->getType();
1281   if (CallTy == RetTy)
1282     return Call;
1283   // Scalar types should have RetTy matching the call return type.
1284   assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true));
1285   if (cast<VectorType>(CallTy)->getElementType() == BoolTy)
1286     return getCast(Builder, Call, RetTy);
1287   return Builder.CreateBitCast(Call, RetTy);
1288 }
1289 
1290 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
1291                                                       Value *Ptr1) const
1292     -> Optional<int> {
1293   struct Builder : IRBuilder<> {
1294     Builder(BasicBlock *B) : IRBuilder<>(B) {}
1295     ~Builder() {
1296       for (Instruction *I : llvm::reverse(ToErase))
1297         I->eraseFromParent();
1298     }
1299     SmallVector<Instruction *, 8> ToErase;
1300   };
1301 
1302 #define CallBuilder(B, F)                                                      \
1303   [&](auto &B_) {                                                              \
1304     Value *V = B_.F;                                                           \
1305     if (auto *I = dyn_cast<Instruction>(V))                                    \
1306       B_.ToErase.push_back(I);                                                 \
1307     return V;                                                                  \
1308   }(B)
1309 
1310   auto Simplify = [&](Value *V) {
1311     if (auto *I = dyn_cast<Instruction>(V)) {
1312       SimplifyQuery Q(DL, &TLI, &DT, &AC, I);
1313       if (Value *S = SimplifyInstruction(I, Q))
1314         return S;
1315     }
1316     return V;
1317   };
1318 
1319   auto StripBitCast = [](Value *V) {
1320     while (auto *C = dyn_cast<BitCastInst>(V))
1321       V = C->getOperand(0);
1322     return V;
1323   };
1324 
1325   Ptr0 = StripBitCast(Ptr0);
1326   Ptr1 = StripBitCast(Ptr1);
1327   if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
1328     return None;
1329 
1330   auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
1331   auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
1332   if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
1333     return None;
1334 
1335   Builder B(Gep0->getParent());
1336   int Scale = getAllocSizeOf(Gep0->getSourceElementType());
1337 
1338   // FIXME: for now only check GEPs with a single index.
1339   if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
1340     return None;
1341 
1342   Value *Idx0 = Gep0->getOperand(1);
1343   Value *Idx1 = Gep1->getOperand(1);
1344 
1345   // First, try to simplify the subtraction directly.
1346   if (auto *Diff = dyn_cast<ConstantInt>(
1347           Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
1348     return Diff->getSExtValue() * Scale;
1349 
1350   KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT);
1351   KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT);
1352   APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
1353   if (Unknown.isAllOnes())
1354     return None;
1355 
1356   Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
1357   Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
1358   Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
1359   Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
1360   int Diff0 = 0;
1361   if (auto *C = dyn_cast<ConstantInt>(SubU)) {
1362     Diff0 = C->getSExtValue();
1363   } else {
1364     return None;
1365   }
1366 
1367   Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
1368   Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
1369   Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
1370   Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
1371   int Diff1 = 0;
1372   if (auto *C = dyn_cast<ConstantInt>(SubK)) {
1373     Diff1 = C->getSExtValue();
1374   } else {
1375     return None;
1376   }
1377 
1378   return (Diff0 + Diff1) * Scale;
1379 
1380 #undef CallBuilder
1381 }
1382 
1383 template <typename T>
1384 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
1385                                                   BasicBlock::const_iterator To,
1386                                                   const T &Ignore) const
1387     -> bool {
1388   auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
1389     if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
1390       switch (II->getIntrinsicID()) {
1391       case Intrinsic::masked_load:
1392         return MemoryLocation::getForArgument(II, 0, TLI);
1393       case Intrinsic::masked_store:
1394         return MemoryLocation::getForArgument(II, 1, TLI);
1395       }
1396     }
1397     return MemoryLocation::getOrNone(&I);
1398   };
1399 
1400   // The source and the destination must be in the same basic block.
1401   const BasicBlock &Block = *In.getParent();
1402   assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
1403   // No PHIs.
1404   if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
1405     return false;
1406 
1407   if (!mayBeMemoryDependent(In))
1408     return true;
1409   bool MayWrite = In.mayWriteToMemory();
1410   auto MaybeLoc = getLocOrNone(In);
1411 
1412   auto From = In.getIterator();
1413   if (From == To)
1414     return true;
1415   bool MoveUp = (To != Block.end() && To->comesBefore(&In));
1416   auto Range =
1417       MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
1418   for (auto It = Range.first; It != Range.second; ++It) {
1419     const Instruction &I = *It;
1420     if (llvm::is_contained(Ignore, &I))
1421       continue;
1422     // assume intrinsic can be ignored
1423     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1424       if (II->getIntrinsicID() == Intrinsic::assume)
1425         continue;
1426     }
1427     // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
1428     if (I.mayThrow())
1429       return false;
1430     if (auto *CB = dyn_cast<CallBase>(&I)) {
1431       if (!CB->hasFnAttr(Attribute::WillReturn))
1432         return false;
1433       if (!CB->hasFnAttr(Attribute::NoSync))
1434         return false;
1435     }
1436     if (I.mayReadOrWriteMemory()) {
1437       auto MaybeLocI = getLocOrNone(I);
1438       if (MayWrite || I.mayWriteToMemory()) {
1439         if (!MaybeLoc || !MaybeLocI)
1440           return false;
1441         if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
1442           return false;
1443       }
1444     }
1445   }
1446   return true;
1447 }
1448 
1449 #ifndef NDEBUG
1450 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
1451   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1452     return VecTy->getElementType() == getByteTy();
1453   return false;
1454 }
1455 
1456 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool {
1457   if (!isByteVecTy(Ty))
1458     return false;
1459   int Size = getSizeOf(Ty);
1460   if (HST.isTypeForHVX(Ty))
1461     return Size == static_cast<int>(HST.getVectorLength());
1462   return Size == 4 || Size == 8;
1463 }
1464 #endif
1465 
1466 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo,
1467                                            Value *Hi, int Start,
1468                                            int Length) const -> Value * {
1469   assert(0 <= Start && Start < Length);
1470   SmallVector<int, 128> SMask(Length);
1471   std::iota(SMask.begin(), SMask.end(), Start);
1472   return Builder.CreateShuffleVector(Lo, Hi, SMask);
1473 }
1474 
1475 // Pass management.
1476 
1477 namespace llvm {
1478 void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
1479 FunctionPass *createHexagonVectorCombineLegacyPass();
1480 } // namespace llvm
1481 
1482 namespace {
1483 class HexagonVectorCombineLegacy : public FunctionPass {
1484 public:
1485   static char ID;
1486 
1487   HexagonVectorCombineLegacy() : FunctionPass(ID) {}
1488 
1489   StringRef getPassName() const override { return "Hexagon Vector Combine"; }
1490 
1491   void getAnalysisUsage(AnalysisUsage &AU) const override {
1492     AU.setPreservesCFG();
1493     AU.addRequired<AAResultsWrapperPass>();
1494     AU.addRequired<AssumptionCacheTracker>();
1495     AU.addRequired<DominatorTreeWrapperPass>();
1496     AU.addRequired<TargetLibraryInfoWrapperPass>();
1497     AU.addRequired<TargetPassConfig>();
1498     FunctionPass::getAnalysisUsage(AU);
1499   }
1500 
1501   bool runOnFunction(Function &F) override {
1502     if (skipFunction(F))
1503       return false;
1504     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1505     AssumptionCache &AC =
1506         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1507     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1508     TargetLibraryInfo &TLI =
1509         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1510     auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
1511     HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
1512     return HVC.run();
1513   }
1514 };
1515 } // namespace
1516 
1517 char HexagonVectorCombineLegacy::ID = 0;
1518 
1519 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
1520                       "Hexagon Vector Combine", false, false)
1521 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1522 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1523 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1524 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1525 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1526 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
1527                     "Hexagon Vector Combine", false, false)
1528 
1529 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
1530   return new HexagonVectorCombineLegacy();
1531 }
1532