xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp (revision 7ef62cebc2f965b0f640263e179276928885e33d)
1 //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // HexagonVectorCombine is a utility class implementing a variety of functions
9 // that assist in vector-based optimizations.
10 //
11 // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstSimplifyFolder.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsHexagon.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 
43 #include "HexagonSubtarget.h"
44 #include "HexagonTargetMachine.h"
45 
46 #include <algorithm>
47 #include <deque>
48 #include <map>
49 #include <optional>
50 #include <set>
51 #include <utility>
52 #include <vector>
53 
54 #define DEBUG_TYPE "hexagon-vc"
55 
56 using namespace llvm;
57 
58 namespace {
59 class HexagonVectorCombine {
60 public:
61   HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
62                        DominatorTree &DT_, TargetLibraryInfo &TLI_,
63                        const TargetMachine &TM_)
64       : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
65         TLI(TLI_),
66         HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
67 
68   bool run();
69 
70   // Common integer type.
71   IntegerType *getIntTy(unsigned Width = 32) const;
72   // Byte type: either scalar (when Length = 0), or vector with given
73   // element count.
74   Type *getByteTy(int ElemCount = 0) const;
75   // Boolean type: either scalar (when Length = 0), or vector with given
76   // element count.
77   Type *getBoolTy(int ElemCount = 0) const;
78   // Create a ConstantInt of type returned by getIntTy with the value Val.
79   ConstantInt *getConstInt(int Val, unsigned Width = 32) const;
80   // Get the integer value of V, if it exists.
81   std::optional<APInt> getIntValue(const Value *Val) const;
82   // Is V a constant 0, or a vector of 0s?
83   bool isZero(const Value *Val) const;
84   // Is V an undef value?
85   bool isUndef(const Value *Val) const;
86 
87   // Get HVX vector type with the given element type.
88   VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const;
89 
90   enum SizeKind {
91     Store, // Store size
92     Alloc, // Alloc size
93   };
94   int getSizeOf(const Value *Val, SizeKind Kind = Store) const;
95   int getSizeOf(const Type *Ty, SizeKind Kind = Store) const;
96   int getTypeAlignment(Type *Ty) const;
97   size_t length(Value *Val) const;
98   size_t length(Type *Ty) const;
99 
100   Constant *getNullValue(Type *Ty) const;
101   Constant *getFullValue(Type *Ty) const;
102   Constant *getConstSplat(Type *Ty, int Val) const;
103 
104   Value *simplify(Value *Val) const;
105 
106   Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start,
107                  int Length, int Where) const;
108   Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
109                   Value *Amt) const;
110   Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
111                   Value *Amt) const;
112   Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const;
113   Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize,
114                  Value *Pad) const;
115   Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy,
116                  Type *ToTy) const;
117   Value *vlsb(IRBuilderBase &Builder, Value *Val) const;
118   Value *vbytes(IRBuilderBase &Builder, Value *Val) const;
119   Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start,
120                    unsigned Length) const;
121   Value *sublo(IRBuilderBase &Builder, Value *Val) const;
122   Value *subhi(IRBuilderBase &Builder, Value *Val) const;
123   Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
124   Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
125 
126   Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID,
127                             Type *RetTy, ArrayRef<Value *> Args,
128                             ArrayRef<Type *> ArgTys = std::nullopt) const;
129   SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec,
130                                            unsigned ToWidth) const;
131   Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values,
132                             VectorType *ToType) const;
133 
134   std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
135 
136   unsigned getNumSignificantBits(const Value *V,
137                                  const Instruction *CtxI = nullptr) const;
138   KnownBits getKnownBits(const Value *V,
139                          const Instruction *CtxI = nullptr) const;
140 
141   template <typename T = std::vector<Instruction *>>
142   bool isSafeToMoveBeforeInBB(const Instruction &In,
143                               BasicBlock::const_iterator To,
144                               const T &IgnoreInsts = {}) const;
145 
146   // This function is only used for assertions at the moment.
147   [[maybe_unused]] bool isByteVecTy(Type *Ty) const;
148 
149   Function &F;
150   const DataLayout &DL;
151   AliasAnalysis &AA;
152   AssumptionCache &AC;
153   DominatorTree &DT;
154   TargetLibraryInfo &TLI;
155   const HexagonSubtarget &HST;
156 
157 private:
158   Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi,
159                          int Start, int Length) const;
160 };
161 
162 class AlignVectors {
163 public:
164   AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {}
165 
166   bool run();
167 
168 private:
169   using InstList = std::vector<Instruction *>;
170 
171   struct Segment {
172     void *Data;
173     int Start;
174     int Size;
175   };
176 
177   struct AddrInfo {
178     AddrInfo(const AddrInfo &) = default;
179     AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
180              Align H)
181         : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
182           NeedAlign(HVC.getTypeAlignment(ValTy)) {}
183     AddrInfo &operator=(const AddrInfo &) = default;
184 
185     // XXX: add Size member?
186     Instruction *Inst;
187     Value *Addr;
188     Type *ValTy;
189     Align HaveAlign;
190     Align NeedAlign;
191     int Offset = 0; // Offset (in bytes) from the first member of the
192                     // containing AddrList.
193   };
194   using AddrList = std::vector<AddrInfo>;
195 
196   struct InstrLess {
197     bool operator()(const Instruction *A, const Instruction *B) const {
198       return A->comesBefore(B);
199     }
200   };
201   using DepList = std::set<Instruction *, InstrLess>;
202 
203   struct MoveGroup {
204     MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
205         : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
206     Instruction *Base; // Base instruction of the parent address group.
207     InstList Main;     // Main group of instructions.
208     InstList Deps;     // List of dependencies.
209     bool IsHvx;        // Is this group of HVX instructions?
210     bool IsLoad;       // Is this a load group?
211   };
212   using MoveList = std::vector<MoveGroup>;
213 
214   struct ByteSpan {
215     struct Segment {
216       // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
217       Segment(Value *Val, int Begin, int Len)
218           : Val(Val), Start(Begin), Size(Len) {}
219       Segment(const Segment &Seg) = default;
220       Segment &operator=(const Segment &Seg) = default;
221       Value *Val; // Value representable as a sequence of bytes.
222       int Start;  // First byte of the value that belongs to the segment.
223       int Size;   // Number of bytes in the segment.
224     };
225 
226     struct Block {
227       Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
228       Block(Value *Val, int Off, int Len, int Pos)
229           : Seg(Val, Off, Len), Pos(Pos) {}
230       Block(const Block &Blk) = default;
231       Block &operator=(const Block &Blk) = default;
232       Segment Seg; // Value segment.
233       int Pos;     // Position (offset) of the segment in the Block.
234     };
235 
236     int extent() const;
237     ByteSpan section(int Start, int Length) const;
238     ByteSpan &shift(int Offset);
239     SmallVector<Value *, 8> values() const;
240 
241     int size() const { return Blocks.size(); }
242     Block &operator[](int i) { return Blocks[i]; }
243 
244     std::vector<Block> Blocks;
245 
246     using iterator = decltype(Blocks)::iterator;
247     iterator begin() { return Blocks.begin(); }
248     iterator end() { return Blocks.end(); }
249     using const_iterator = decltype(Blocks)::const_iterator;
250     const_iterator begin() const { return Blocks.begin(); }
251     const_iterator end() const { return Blocks.end(); }
252   };
253 
254   Align getAlignFromValue(const Value *V) const;
255   std::optional<MemoryLocation> getLocation(const Instruction &In) const;
256   std::optional<AddrInfo> getAddrInfo(Instruction &In) const;
257   bool isHvx(const AddrInfo &AI) const;
258   // This function is only used for assertions at the moment.
259   [[maybe_unused]] bool isSectorTy(Type *Ty) const;
260 
261   Value *getPayload(Value *Val) const;
262   Value *getMask(Value *Val) const;
263   Value *getPassThrough(Value *Val) const;
264 
265   Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
266                                int Adjust) const;
267   Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
268                               int Alignment) const;
269   Value *createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
270                            int Alignment, Value *Mask, Value *PassThru) const;
271   Value *createAlignedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
272                             int Alignment, Value *Mask) const;
273 
274   DepList getUpwardDeps(Instruction *In, Instruction *Base) const;
275   bool createAddressGroups();
276   MoveList createLoadGroups(const AddrList &Group) const;
277   MoveList createStoreGroups(const AddrList &Group) const;
278   bool move(const MoveGroup &Move) const;
279   void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
280                         int ScLen, Value *AlignVal, Value *AlignAddr) const;
281   void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
282                          int ScLen, Value *AlignVal, Value *AlignAddr) const;
283   bool realignGroup(const MoveGroup &Move) const;
284 
285   friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
286   friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
287   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B);
288   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
289 
290   std::map<Instruction *, AddrList> AddrGroups;
291   const HexagonVectorCombine &HVC;
292 };
293 
294 LLVM_ATTRIBUTE_UNUSED
295 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
296   OS << "Inst: " << AI.Inst << "  " << *AI.Inst << '\n';
297   OS << "Addr: " << *AI.Addr << '\n';
298   OS << "Type: " << *AI.ValTy << '\n';
299   OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
300   OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
301   OS << "Offset: " << AI.Offset;
302   return OS;
303 }
304 
305 LLVM_ATTRIBUTE_UNUSED
306 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
307   OS << "Main\n";
308   for (Instruction *I : MG.Main)
309     OS << "  " << *I << '\n';
310   OS << "Deps\n";
311   for (Instruction *I : MG.Deps)
312     OS << "  " << *I << '\n';
313   return OS;
314 }
315 
316 LLVM_ATTRIBUTE_UNUSED
317 raw_ostream &operator<<(raw_ostream &OS,
318                         const AlignVectors::ByteSpan::Block &B) {
319   OS << "  @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
320      << *B.Seg.Val;
321   return OS;
322 }
323 
324 LLVM_ATTRIBUTE_UNUSED
325 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
326   OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
327   for (const AlignVectors::ByteSpan::Block &B : BS)
328     OS << B << '\n';
329   OS << ']';
330   return OS;
331 }
332 
333 class HvxIdioms {
334 public:
335   HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) {
336     auto *Int32Ty = HVC.getIntTy(32);
337     HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false);
338     HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true);
339   }
340 
341   bool run();
342 
343 private:
344   enum Signedness { Positive, Signed, Unsigned };
345 
346   // Value + sign
347   // This is to keep track of whether the value should be treated as signed
348   // or unsigned, or is known to be positive.
349   struct SValue {
350     Value *Val;
351     Signedness Sgn;
352   };
353 
354   struct FxpOp {
355     unsigned Opcode;
356     unsigned Frac; // Number of fraction bits
357     SValue X, Y;
358     // If present, add 1 << RoundAt before shift:
359     std::optional<unsigned> RoundAt;
360     VectorType *ResTy;
361   };
362 
363   auto getNumSignificantBits(Value *V, Instruction *In) const
364       -> std::pair<unsigned, Signedness>;
365   auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>;
366 
367   auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>;
368   auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *;
369 
370   auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
371                             const FxpOp &Op) const -> Value *;
372   auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
373                     bool Rounding) const -> Value *;
374   auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
375                     bool Rounding) const -> Value *;
376   // Return {Result, Carry}, where Carry is a vector predicate.
377   auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
378                       Value *CarryIn = nullptr) const
379       -> std::pair<Value *, Value *>;
380   auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *;
381   auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
382       -> Value *;
383   auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
384       -> std::pair<Value *, Value *>;
385   auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
386                      ArrayRef<Value *> WordY) const -> SmallVector<Value *>;
387   auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
388                      Signedness SgnX, ArrayRef<Value *> WordY,
389                      Signedness SgnY) const -> SmallVector<Value *>;
390 
391   VectorType *HvxI32Ty;
392   VectorType *HvxP32Ty;
393   const HexagonVectorCombine &HVC;
394 
395   friend raw_ostream &operator<<(raw_ostream &, const FxpOp &);
396 };
397 
398 [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS,
399                                          const HvxIdioms::FxpOp &Op) {
400   static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"};
401   OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac;
402   if (Op.RoundAt.has_value()) {
403     if (Op.Frac != 0 && *Op.RoundAt == Op.Frac - 1) {
404       OS << ":rnd";
405     } else {
406       OS << " + 1<<" << *Op.RoundAt;
407     }
408   }
409   OS << "\n  X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n"
410      << "  Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val;
411   return OS;
412 }
413 
414 } // namespace
415 
416 namespace {
417 
418 template <typename T> T *getIfUnordered(T *MaybeT) {
419   return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
420 }
421 template <typename T> T *isCandidate(Instruction *In) {
422   return dyn_cast<T>(In);
423 }
424 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
425   return getIfUnordered(dyn_cast<LoadInst>(In));
426 }
427 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
428   return getIfUnordered(dyn_cast<StoreInst>(In));
429 }
430 
431 #if !defined(_MSC_VER) || _MSC_VER >= 1926
432 // VS2017 and some versions of VS2019 have trouble compiling this:
433 // error C2976: 'std::map': too few template arguments
434 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
435 template <typename Pred, typename... Ts>
436 void erase_if(std::map<Ts...> &map, Pred p)
437 #else
438 template <typename Pred, typename T, typename U>
439 void erase_if(std::map<T, U> &map, Pred p)
440 #endif
441 {
442   for (auto i = map.begin(), e = map.end(); i != e;) {
443     if (p(*i))
444       i = map.erase(i);
445     else
446       i = std::next(i);
447   }
448 }
449 
450 // Forward other erase_ifs to the LLVM implementations.
451 template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
452   llvm::erase_if(std::forward<T>(container), p);
453 }
454 
455 } // namespace
456 
457 // --- Begin AlignVectors
458 
459 auto AlignVectors::ByteSpan::extent() const -> int {
460   if (size() == 0)
461     return 0;
462   int Min = Blocks[0].Pos;
463   int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
464   for (int i = 1, e = size(); i != e; ++i) {
465     Min = std::min(Min, Blocks[i].Pos);
466     Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
467   }
468   return Max - Min;
469 }
470 
471 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
472   ByteSpan Section;
473   for (const ByteSpan::Block &B : Blocks) {
474     int L = std::max(B.Pos, Start);                       // Left end.
475     int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
476     if (L < R) {
477       // How much to chop off the beginning of the segment:
478       int Off = L > B.Pos ? L - B.Pos : 0;
479       Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
480     }
481   }
482   return Section;
483 }
484 
485 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
486   for (Block &B : Blocks)
487     B.Pos += Offset;
488   return *this;
489 }
490 
491 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
492   SmallVector<Value *, 8> Values(Blocks.size());
493   for (int i = 0, e = Blocks.size(); i != e; ++i)
494     Values[i] = Blocks[i].Seg.Val;
495   return Values;
496 }
497 
498 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
499   const auto *C = dyn_cast<ConstantInt>(V);
500   assert(C && "Alignment must be a compile-time constant integer");
501   return C->getAlignValue();
502 }
503 
504 auto AlignVectors::getAddrInfo(Instruction &In) const
505     -> std::optional<AddrInfo> {
506   if (auto *L = isCandidate<LoadInst>(&In))
507     return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
508                     L->getAlign());
509   if (auto *S = isCandidate<StoreInst>(&In))
510     return AddrInfo(HVC, S, S->getPointerOperand(),
511                     S->getValueOperand()->getType(), S->getAlign());
512   if (auto *II = isCandidate<IntrinsicInst>(&In)) {
513     Intrinsic::ID ID = II->getIntrinsicID();
514     switch (ID) {
515     case Intrinsic::masked_load:
516       return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
517                       getAlignFromValue(II->getArgOperand(1)));
518     case Intrinsic::masked_store:
519       return AddrInfo(HVC, II, II->getArgOperand(1),
520                       II->getArgOperand(0)->getType(),
521                       getAlignFromValue(II->getArgOperand(2)));
522     }
523   }
524   return std::nullopt;
525 }
526 
527 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
528   return HVC.HST.isTypeForHVX(AI.ValTy);
529 }
530 
531 auto AlignVectors::getPayload(Value *Val) const -> Value * {
532   if (auto *In = dyn_cast<Instruction>(Val)) {
533     Intrinsic::ID ID = 0;
534     if (auto *II = dyn_cast<IntrinsicInst>(In))
535       ID = II->getIntrinsicID();
536     if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
537       return In->getOperand(0);
538   }
539   return Val;
540 }
541 
542 auto AlignVectors::getMask(Value *Val) const -> Value * {
543   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
544     switch (II->getIntrinsicID()) {
545     case Intrinsic::masked_load:
546       return II->getArgOperand(2);
547     case Intrinsic::masked_store:
548       return II->getArgOperand(3);
549     }
550   }
551 
552   Type *ValTy = getPayload(Val)->getType();
553   if (auto *VecTy = dyn_cast<VectorType>(ValTy))
554     return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy)));
555   return HVC.getFullValue(HVC.getBoolTy());
556 }
557 
558 auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
559   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
560     if (II->getIntrinsicID() == Intrinsic::masked_load)
561       return II->getArgOperand(3);
562   }
563   return UndefValue::get(getPayload(Val)->getType());
564 }
565 
566 auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr,
567                                          Type *ValTy, int Adjust) const
568     -> Value * {
569   // The adjustment is in bytes, but if it's a multiple of the type size,
570   // we don't need to do pointer casts.
571   auto *PtrTy = cast<PointerType>(Ptr->getType());
572   if (!PtrTy->isOpaque()) {
573     Type *ElemTy = PtrTy->getNonOpaquePointerElementType();
574     int ElemSize = HVC.getSizeOf(ElemTy, HVC.Alloc);
575     if (Adjust % ElemSize == 0 && Adjust != 0) {
576       Value *Tmp0 =
577           Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize));
578       return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
579     }
580   }
581 
582   PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
583   Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
584   Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0,
585                                   HVC.getConstInt(Adjust));
586   return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
587 }
588 
589 auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr,
590                                         Type *ValTy, int Alignment) const
591     -> Value * {
592   Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
593   Value *Mask = HVC.getConstInt(-Alignment);
594   Value *And = Builder.CreateAnd(AsInt, Mask);
595   return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
596 }
597 
598 auto AlignVectors::createAlignedLoad(IRBuilderBase &Builder, Type *ValTy,
599                                      Value *Ptr, int Alignment, Value *Mask,
600                                      Value *PassThru) const -> Value * {
601   assert(!HVC.isUndef(Mask)); // Should this be allowed?
602   if (HVC.isZero(Mask))
603     return PassThru;
604   if (Mask == ConstantInt::getTrue(Mask->getType()))
605     return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
606   return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru);
607 }
608 
609 auto AlignVectors::createAlignedStore(IRBuilderBase &Builder, Value *Val,
610                                       Value *Ptr, int Alignment,
611                                       Value *Mask) const -> Value * {
612   if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
613     return UndefValue::get(Val->getType());
614   if (Mask == ConstantInt::getTrue(Mask->getType()))
615     return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
616   return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
617 }
618 
619 auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const
620     -> DepList {
621   BasicBlock *Parent = Base->getParent();
622   assert(In->getParent() == Parent &&
623          "Base and In should be in the same block");
624   assert(Base->comesBefore(In) && "Base should come before In");
625 
626   DepList Deps;
627   std::deque<Instruction *> WorkQ = {In};
628   while (!WorkQ.empty()) {
629     Instruction *D = WorkQ.front();
630     WorkQ.pop_front();
631     Deps.insert(D);
632     for (Value *Op : D->operands()) {
633       if (auto *I = dyn_cast<Instruction>(Op)) {
634         if (I->getParent() == Parent && Base->comesBefore(I))
635           WorkQ.push_back(I);
636       }
637     }
638   }
639   return Deps;
640 }
641 
642 auto AlignVectors::createAddressGroups() -> bool {
643   // An address group created here may contain instructions spanning
644   // multiple basic blocks.
645   AddrList WorkStack;
646 
647   auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
648     for (AddrInfo &W : WorkStack) {
649       if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
650         return std::make_pair(W.Inst, *D);
651     }
652     return std::make_pair(nullptr, 0);
653   };
654 
655   auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
656     BasicBlock &Block = *DomN->getBlock();
657     for (Instruction &I : Block) {
658       auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
659       if (!AI)
660         continue;
661       auto F = findBaseAndOffset(*AI);
662       Instruction *GroupInst;
663       if (Instruction *BI = F.first) {
664         AI->Offset = F.second;
665         GroupInst = BI;
666       } else {
667         WorkStack.push_back(*AI);
668         GroupInst = AI->Inst;
669       }
670       AddrGroups[GroupInst].push_back(*AI);
671     }
672 
673     for (DomTreeNode *C : DomN->children())
674       Visit(C, Visit);
675 
676     while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
677       WorkStack.pop_back();
678   };
679 
680   traverseBlock(HVC.DT.getRootNode(), traverseBlock);
681   assert(WorkStack.empty());
682 
683   // AddrGroups are formed.
684 
685   // Remove groups of size 1.
686   erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
687   // Remove groups that don't use HVX types.
688   erase_if(AddrGroups, [&](auto &G) {
689     return llvm::none_of(
690         G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
691   });
692 
693   return !AddrGroups.empty();
694 }
695 
696 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
697   // Form load groups.
698   // To avoid complications with moving code across basic blocks, only form
699   // groups that are contained within a single basic block.
700 
701   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
702     assert(!Move.Main.empty() && "Move group should have non-empty Main");
703     // Don't mix HVX and non-HVX instructions.
704     if (Move.IsHvx != isHvx(Info))
705       return false;
706     // Leading instruction in the load group.
707     Instruction *Base = Move.Main.front();
708     if (Base->getParent() != Info.Inst->getParent())
709       return false;
710 
711     auto isSafeToMoveToBase = [&](const Instruction *I) {
712       return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
713     };
714     DepList Deps = getUpwardDeps(Info.Inst, Base);
715     if (!llvm::all_of(Deps, isSafeToMoveToBase))
716       return false;
717 
718     // The dependencies will be moved together with the load, so make sure
719     // that none of them could be moved independently in another group.
720     Deps.erase(Info.Inst);
721     auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
722     if (llvm::any_of(Deps, inAddrMap))
723       return false;
724     Move.Main.push_back(Info.Inst);
725     llvm::append_range(Move.Deps, Deps);
726     return true;
727   };
728 
729   MoveList LoadGroups;
730 
731   for (const AddrInfo &Info : Group) {
732     if (!Info.Inst->mayReadFromMemory())
733       continue;
734     if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
735       LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
736   }
737 
738   // Erase singleton groups.
739   erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
740   return LoadGroups;
741 }
742 
743 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
744   // Form store groups.
745   // To avoid complications with moving code across basic blocks, only form
746   // groups that are contained within a single basic block.
747 
748   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
749     assert(!Move.Main.empty() && "Move group should have non-empty Main");
750     // For stores with return values we'd have to collect downward depenencies.
751     // There are no such stores that we handle at the moment, so omit that.
752     assert(Info.Inst->getType()->isVoidTy() &&
753            "Not handling stores with return values");
754     // Don't mix HVX and non-HVX instructions.
755     if (Move.IsHvx != isHvx(Info))
756       return false;
757     // For stores we need to be careful whether it's safe to move them.
758     // Stores that are otherwise safe to move together may not appear safe
759     // to move over one another (i.e. isSafeToMoveBefore may return false).
760     Instruction *Base = Move.Main.front();
761     if (Base->getParent() != Info.Inst->getParent())
762       return false;
763     if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
764       return false;
765     Move.Main.push_back(Info.Inst);
766     return true;
767   };
768 
769   MoveList StoreGroups;
770 
771   for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
772     const AddrInfo &Info = *I;
773     if (!Info.Inst->mayWriteToMemory())
774       continue;
775     if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
776       StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
777   }
778 
779   // Erase singleton groups.
780   erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
781   return StoreGroups;
782 }
783 
784 auto AlignVectors::move(const MoveGroup &Move) const -> bool {
785   assert(!Move.Main.empty() && "Move group should have non-empty Main");
786   Instruction *Where = Move.Main.front();
787 
788   if (Move.IsLoad) {
789     // Move all deps to before Where, keeping order.
790     for (Instruction *D : Move.Deps)
791       D->moveBefore(Where);
792     // Move all main instructions to after Where, keeping order.
793     ArrayRef<Instruction *> Main(Move.Main);
794     for (Instruction *M : Main.drop_front(1)) {
795       M->moveAfter(Where);
796       Where = M;
797     }
798   } else {
799     // NOTE: Deps are empty for "store" groups. If they need to be
800     // non-empty, decide on the order.
801     assert(Move.Deps.empty());
802     // Move all main instructions to before Where, inverting order.
803     ArrayRef<Instruction *> Main(Move.Main);
804     for (Instruction *M : Main.drop_front(1)) {
805       M->moveBefore(Where);
806       Where = M;
807     }
808   }
809 
810   return Move.Main.size() + Move.Deps.size() > 1;
811 }
812 
813 auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder,
814                                     const ByteSpan &VSpan, int ScLen,
815                                     Value *AlignVal, Value *AlignAddr) const
816     -> void {
817   Type *SecTy = HVC.getByteTy(ScLen);
818   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
819   bool DoAlign = !HVC.isZero(AlignVal);
820   BasicBlock::iterator BasePos = Builder.GetInsertPoint();
821   BasicBlock *BaseBlock = Builder.GetInsertBlock();
822 
823   ByteSpan ASpan;
824   auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
825   auto *Undef = UndefValue::get(SecTy);
826 
827   SmallVector<Instruction *> Loads(NumSectors + DoAlign, nullptr);
828 
829   // We could create all of the aligned loads, and generate the valigns
830   // at the location of the first load, but for large load groups, this
831   // could create highly suboptimal code (there have been groups of 140+
832   // loads in real code).
833   // Instead, place the loads/valigns as close to the users as possible.
834   // In any case we need to have a mapping from the blocks of VSpan (the
835   // span covered by the pre-existing loads) to ASpan (the span covered
836   // by the aligned loads). There is a small problem, though: ASpan needs
837   // to have pointers to the loads/valigns, but we don't know where to put
838   // them yet. We can't use nullptr, because when we create sections of
839   // ASpan (corresponding to blocks from VSpan), for each block in the
840   // section we need to know which blocks of ASpan they are a part of.
841   // To have 1-1 mapping between blocks of ASpan and the temporary value
842   // pointers, use the addresses of the blocks themselves.
843 
844   // Populate the blocks first, to avoid reallocations of the vector
845   // interfering with generating the placeholder addresses.
846   for (int Index = 0; Index != NumSectors; ++Index)
847     ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen);
848   for (int Index = 0; Index != NumSectors; ++Index) {
849     ASpan.Blocks[Index].Seg.Val =
850         reinterpret_cast<Value *>(&ASpan.Blocks[Index]);
851   }
852 
853   // Multiple values from VSpan can map to the same value in ASpan. Since we
854   // try to create loads lazily, we need to find the earliest use for each
855   // value from ASpan.
856   DenseMap<void *, Instruction *> EarliestUser;
857   auto isEarlier = [](Instruction *A, Instruction *B) {
858     if (B == nullptr)
859       return true;
860     if (A == nullptr)
861       return false;
862     assert(A->getParent() == B->getParent());
863     return A->comesBefore(B);
864   };
865   auto earliestUser = [&](const auto &Uses) {
866     Instruction *User = nullptr;
867     for (const Use &U : Uses) {
868       auto *I = dyn_cast<Instruction>(U.getUser());
869       assert(I != nullptr && "Load used in a non-instruction?");
870       // Make sure we only consider at users in this block, but we need
871       // to remember if there were users outside the block too. This is
872       // because if there are no users, aligned loads will not be created.
873       if (I->getParent() == BaseBlock) {
874         if (!isa<PHINode>(I))
875           User = std::min(User, I, isEarlier);
876       } else {
877         User = std::min(User, BaseBlock->getTerminator(), isEarlier);
878       }
879     }
880     return User;
881   };
882 
883   for (const ByteSpan::Block &B : VSpan) {
884     ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size);
885     for (const ByteSpan::Block &S : ASection) {
886       EarliestUser[S.Seg.Val] = std::min(
887           EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier);
888     }
889   }
890 
891   auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan,
892                         int Index) {
893     Value *Ptr =
894         createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
895     // FIXME: generate a predicated load?
896     Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
897     // If vector shifting is potentially needed, accumulate metadata
898     // from source sections of twice the load width.
899     int Start = (Index - DoAlign) * ScLen;
900     int Width = (1 + DoAlign) * ScLen;
901     propagateMetadata(cast<Instruction>(Load),
902                       VSpan.section(Start, Width).values());
903     return cast<Instruction>(Load);
904   };
905 
906   auto moveBefore = [this](Instruction *In, Instruction *To) {
907     // Move In and its upward dependencies to before To.
908     assert(In->getParent() == To->getParent());
909     DepList Deps = getUpwardDeps(In, To);
910     // DepList is sorted with respect to positions in the basic block.
911     for (Instruction *I : Deps)
912       I->moveBefore(To);
913   };
914 
915   // Generate necessary loads at appropriate locations.
916   for (int Index = 0; Index != NumSectors + 1; ++Index) {
917     // In ASpan, each block will be either a single aligned load, or a
918     // valign of a pair of loads. In the latter case, an aligned load j
919     // will belong to the current valign, and the one in the previous
920     // block (for j > 0).
921     Instruction *PrevAt =
922         DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr;
923     Instruction *ThisAt =
924         Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr;
925     if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) {
926       Builder.SetInsertPoint(Where);
927       Loads[Index] = createLoad(Builder, VSpan, Index);
928       // We know it's safe to put the load at BasePos, so if it's not safe
929       // to move it from this location to BasePos, then the current location
930       // is not valid.
931       // We can't do this check proactively because we need the load to exist
932       // in order to check legality.
933       if (!HVC.isSafeToMoveBeforeInBB(*Loads[Index], BasePos))
934         moveBefore(Loads[Index], &*BasePos);
935     }
936   }
937   // Generate valigns if needed, and fill in proper values in ASpan
938   for (int Index = 0; Index != NumSectors; ++Index) {
939     ASpan[Index].Seg.Val = nullptr;
940     if (auto *Where = EarliestUser[&ASpan[Index]]) {
941       Builder.SetInsertPoint(Where);
942       Value *Val = Loads[Index];
943       assert(Val != nullptr);
944       if (DoAlign) {
945         Value *NextLoad = Loads[Index + 1];
946         assert(NextLoad != nullptr);
947         Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal);
948       }
949       ASpan[Index].Seg.Val = Val;
950     }
951   }
952 
953   for (const ByteSpan::Block &B : VSpan) {
954     ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
955     Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
956     Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val));
957 
958     for (ByteSpan::Block &S : ASection) {
959       if (S.Seg.Val == nullptr)
960         continue;
961       // The processing of the data loaded by the aligned loads
962       // needs to be inserted after the data is available.
963       Instruction *SegI = cast<Instruction>(S.Seg.Val);
964       Builder.SetInsertPoint(&*std::next(SegI->getIterator()));
965       Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
966       Accum = HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
967     }
968     // Instead of casting everything to bytes for the vselect, cast to the
969     // original value type. This will avoid complications with casting masks.
970     // For example, in cases when the original mask applied to i32, it could
971     // be converted to a mask applicable to i8 via pred_typecast intrinsic,
972     // but if the mask is not exactly of HVX length, extra handling would be
973     // needed to make it work.
974     Type *ValTy = getPayload(B.Seg.Val)->getType();
975     Value *Cast = Builder.CreateBitCast(Accum, ValTy);
976     Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
977                                       getPassThrough(B.Seg.Val));
978     B.Seg.Val->replaceAllUsesWith(Sel);
979   }
980 }
981 
982 auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder,
983                                      const ByteSpan &VSpan, int ScLen,
984                                      Value *AlignVal, Value *AlignAddr) const
985     -> void {
986   Type *SecTy = HVC.getByteTy(ScLen);
987   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
988   bool DoAlign = !HVC.isZero(AlignVal);
989 
990   // Stores.
991   ByteSpan ASpanV, ASpanM;
992 
993   // Return a vector value corresponding to the input value Val:
994   // either <1 x Val> for scalar Val, or Val itself for vector Val.
995   auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * {
996     Type *Ty = Val->getType();
997     if (Ty->isVectorTy())
998       return Val;
999     auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false);
1000     return Builder.CreateBitCast(Val, VecTy);
1001   };
1002 
1003   // Create an extra "undef" sector at the beginning and at the end.
1004   // They will be used as the left/right filler in the vlalign step.
1005   for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
1006     // For stores, the size of each section is an aligned vector length.
1007     // Adjust the store offsets relative to the section start offset.
1008     ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
1009     Value *AccumV = UndefValue::get(SecTy);
1010     Value *AccumM = HVC.getNullValue(SecTy);
1011     for (ByteSpan::Block &S : VSection) {
1012       Value *Pay = getPayload(S.Seg.Val);
1013       Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
1014                                 Pay->getType(), HVC.getByteTy());
1015       AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
1016                            S.Seg.Start, S.Seg.Size, S.Pos);
1017       AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
1018                            S.Seg.Start, S.Seg.Size, S.Pos);
1019     }
1020     ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
1021     ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
1022   }
1023 
1024   // vlalign
1025   if (DoAlign) {
1026     for (int j = 1; j != NumSectors + 2; ++j) {
1027       Value *PrevV = ASpanV[j - 1].Seg.Val, *ThisV = ASpanV[j].Seg.Val;
1028       Value *PrevM = ASpanM[j - 1].Seg.Val, *ThisM = ASpanM[j].Seg.Val;
1029       assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType()));
1030       ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal);
1031       ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal);
1032     }
1033   }
1034 
1035   for (int i = 0; i != NumSectors + DoAlign; ++i) {
1036     Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
1037     Value *Val = ASpanV[i].Seg.Val;
1038     Value *Mask = ASpanM[i].Seg.Val; // bytes
1039     if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
1040       Value *Store =
1041           createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask));
1042       // If vector shifting is potentially needed, accumulate metadata
1043       // from source sections of twice the store width.
1044       int Start = (i - DoAlign) * ScLen;
1045       int Width = (1 + DoAlign) * ScLen;
1046       propagateMetadata(cast<Instruction>(Store),
1047                         VSpan.section(Start, Width).values());
1048     }
1049   }
1050 }
1051 
1052 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
1053   // TODO: Needs support for masked loads/stores of "scalar" vectors.
1054   if (!Move.IsHvx)
1055     return false;
1056 
1057   // Return the element with the maximum alignment from Range,
1058   // where GetValue obtains the value to compare from an element.
1059   auto getMaxOf = [](auto Range, auto GetValue) {
1060     return *std::max_element(
1061         Range.begin(), Range.end(),
1062         [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
1063   };
1064 
1065   const AddrList &BaseInfos = AddrGroups.at(Move.Base);
1066 
1067   // Conceptually, there is a vector of N bytes covering the addresses
1068   // starting from the minimum offset (i.e. Base.Addr+Start). This vector
1069   // represents a contiguous memory region that spans all accessed memory
1070   // locations.
1071   // The correspondence between loaded or stored values will be expressed
1072   // in terms of this vector. For example, the 0th element of the vector
1073   // from the Base address info will start at byte Start from the beginning
1074   // of this conceptual vector.
1075   //
1076   // This vector will be loaded/stored starting at the nearest down-aligned
1077   // address and the amount od the down-alignment will be AlignVal:
1078   //   valign(load_vector(align_down(Base+Start)), AlignVal)
1079 
1080   std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
1081   AddrList MoveInfos;
1082   llvm::copy_if(
1083       BaseInfos, std::back_inserter(MoveInfos),
1084       [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
1085 
1086   // Maximum alignment present in the whole address group.
1087   const AddrInfo &WithMaxAlign =
1088       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
1089   Align MaxGiven = WithMaxAlign.HaveAlign;
1090 
1091   // Minimum alignment present in the move address group.
1092   const AddrInfo &WithMinOffset =
1093       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
1094 
1095   const AddrInfo &WithMaxNeeded =
1096       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
1097   Align MinNeeded = WithMaxNeeded.NeedAlign;
1098 
1099   // Set the builder's insertion point right before the load group, or
1100   // immediately after the store group. (Instructions in a store group are
1101   // listed in reverse order.)
1102   Instruction *InsertAt = Move.Main.front();
1103   if (!Move.IsLoad) {
1104     // There should be a terminator (which store isn't, but check anyways).
1105     assert(InsertAt->getIterator() != InsertAt->getParent()->end());
1106     InsertAt = &*std::next(InsertAt->getIterator());
1107   }
1108 
1109   IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(),
1110                     InstSimplifyFolder(HVC.DL));
1111   Value *AlignAddr = nullptr; // Actual aligned address.
1112   Value *AlignVal = nullptr;  // Right-shift amount (for valign).
1113 
1114   if (MinNeeded <= MaxGiven) {
1115     int Start = WithMinOffset.Offset;
1116     int OffAtMax = WithMaxAlign.Offset;
1117     // Shift the offset of the maximally aligned instruction (OffAtMax)
1118     // back by just enough multiples of the required alignment to cover the
1119     // distance from Start to OffAtMax.
1120     // Calculate the address adjustment amount based on the address with the
1121     // maximum alignment. This is to allow a simple gep instruction instead
1122     // of potential bitcasts to i8*.
1123     int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
1124     AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
1125                                       WithMaxAlign.ValTy, Adjust);
1126     int Diff = Start - (OffAtMax + Adjust);
1127     AlignVal = HVC.getConstInt(Diff);
1128     assert(Diff >= 0);
1129     assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
1130   } else {
1131     // WithMinOffset is the lowest address in the group,
1132     //   WithMinOffset.Addr = Base+Start.
1133     // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
1134     // mask off unnecessary bits, so it's ok to just the original pointer as
1135     // the alignment amount.
1136     // Do an explicit down-alignment of the address to avoid creating an
1137     // aligned instruction with an address that is not really aligned.
1138     AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
1139                                      WithMinOffset.ValTy, MinNeeded.value());
1140     AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
1141   }
1142 
1143   ByteSpan VSpan;
1144   for (const AddrInfo &AI : MoveInfos) {
1145     VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
1146                               AI.Offset - WithMinOffset.Offset);
1147   }
1148 
1149   // The aligned loads/stores will use blocks that are either scalars,
1150   // or HVX vectors. Let "sector" be the unified term for such a block.
1151   // blend(scalar, vector) -> sector...
1152   int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
1153                          : std::max<int>(MinNeeded.value(), 4);
1154   assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
1155   assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
1156 
1157   if (Move.IsLoad)
1158     realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
1159   else
1160     realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
1161 
1162   for (auto *Inst : Move.Main)
1163     Inst->eraseFromParent();
1164 
1165   return true;
1166 }
1167 
1168 auto AlignVectors::isSectorTy(Type *Ty) const -> bool {
1169   if (!HVC.isByteVecTy(Ty))
1170     return false;
1171   int Size = HVC.getSizeOf(Ty);
1172   if (HVC.HST.isTypeForHVX(Ty))
1173     return Size == static_cast<int>(HVC.HST.getVectorLength());
1174   return Size == 4 || Size == 8;
1175 }
1176 
1177 auto AlignVectors::run() -> bool {
1178   if (!createAddressGroups())
1179     return false;
1180 
1181   bool Changed = false;
1182   MoveList LoadGroups, StoreGroups;
1183 
1184   for (auto &G : AddrGroups) {
1185     llvm::append_range(LoadGroups, createLoadGroups(G.second));
1186     llvm::append_range(StoreGroups, createStoreGroups(G.second));
1187   }
1188 
1189   for (auto &M : LoadGroups)
1190     Changed |= move(M);
1191   for (auto &M : StoreGroups)
1192     Changed |= move(M);
1193 
1194   for (auto &M : LoadGroups)
1195     Changed |= realignGroup(M);
1196   for (auto &M : StoreGroups)
1197     Changed |= realignGroup(M);
1198 
1199   return Changed;
1200 }
1201 
1202 // --- End AlignVectors
1203 
1204 // --- Begin HvxIdioms
1205 
1206 auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const
1207     -> std::pair<unsigned, Signedness> {
1208   unsigned Bits = HVC.getNumSignificantBits(V, In);
1209   // The significant bits are calculated including the sign bit. This may
1210   // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may
1211   // result in 33 significant bits. To avoid extra words, skip the extra
1212   // sign bit, but keep information that the value is to be treated as
1213   // unsigned.
1214   KnownBits Known = HVC.getKnownBits(V, In);
1215   Signedness Sign = Signed;
1216   unsigned NumToTest = 0; // Number of bits used in test for unsignedness.
1217   if (isPowerOf2_32(Bits))
1218     NumToTest = Bits;
1219   else if (Bits > 1 && isPowerOf2_32(Bits - 1))
1220     NumToTest = Bits - 1;
1221 
1222   if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) {
1223     Sign = Unsigned;
1224     Bits = NumToTest;
1225   }
1226 
1227   // If the top bit of the nearest power-of-2 is zero, this value is
1228   // positive. It could be treated as either signed or unsigned.
1229   if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) {
1230     if (Known.Zero.ashr(Pow2 - 1).isAllOnes())
1231       Sign = Positive;
1232   }
1233   return {Bits, Sign};
1234 }
1235 
1236 auto HvxIdioms::canonSgn(SValue X, SValue Y) const
1237     -> std::pair<SValue, SValue> {
1238   // Canonicalize the signedness of X and Y, so that the result is one of:
1239   //   S, S
1240   //   U/P, S
1241   //   U/P, U/P
1242   if (X.Sgn == Signed && Y.Sgn != Signed)
1243     std::swap(X, Y);
1244   return {X, Y};
1245 }
1246 
1247 // Match
1248 //   (X * Y) [>> N], or
1249 //   ((X * Y) + (1 << M)) >> N
1250 auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> {
1251   using namespace PatternMatch;
1252   auto *Ty = In.getType();
1253 
1254   if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy())
1255     return std::nullopt;
1256 
1257   unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth();
1258 
1259   FxpOp Op;
1260   Value *Exp = &In;
1261 
1262   // Fixed-point multiplication is always shifted right (except when the
1263   // fraction is 0 bits).
1264   auto m_Shr = [](auto &&V, auto &&S) {
1265     return m_CombineOr(m_LShr(V, S), m_AShr(V, S));
1266   };
1267 
1268   const APInt *Qn = nullptr;
1269   if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) {
1270     Op.Frac = Qn->getZExtValue();
1271     Exp = T;
1272   } else {
1273     Op.Frac = 0;
1274   }
1275 
1276   if (Op.Frac > Width)
1277     return std::nullopt;
1278 
1279   // Check if there is rounding added.
1280   const APInt *C = nullptr;
1281   if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) {
1282     uint64_t CV = C->getZExtValue();
1283     if (CV != 0 && !isPowerOf2_64(CV))
1284       return std::nullopt;
1285     if (CV != 0)
1286       Op.RoundAt = Log2_64(CV);
1287     Exp = T;
1288   }
1289 
1290   // Check if the rest is a multiplication.
1291   if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) {
1292     Op.Opcode = Instruction::Mul;
1293     // FIXME: The information below is recomputed.
1294     Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second;
1295     Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second;
1296     Op.ResTy = cast<VectorType>(Ty);
1297     return Op;
1298   }
1299 
1300   return std::nullopt;
1301 }
1302 
1303 auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const
1304     -> Value * {
1305   assert(Op.X.Val->getType() == Op.Y.Val->getType());
1306 
1307   auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType());
1308   if (VecTy == nullptr)
1309     return nullptr;
1310   auto *ElemTy = cast<IntegerType>(VecTy->getElementType());
1311   unsigned ElemWidth = ElemTy->getBitWidth();
1312 
1313   // TODO: This can be relaxed after legalization is done pre-isel.
1314   if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0)
1315     return nullptr;
1316 
1317   // There are no special intrinsics that should be used for multiplying
1318   // signed 8-bit values, so just skip them. Normal codegen should handle
1319   // this just fine.
1320   if (ElemWidth <= 8)
1321     return nullptr;
1322   // Similarly, if this is just a multiplication that can be handled without
1323   // intervention, then leave it alone.
1324   if (ElemWidth <= 32 && Op.Frac == 0)
1325     return nullptr;
1326 
1327   auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In);
1328   auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In);
1329 
1330   // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes).
1331 
1332   Value *X = Op.X.Val, *Y = Op.Y.Val;
1333   IRBuilder Builder(In.getParent(), In.getIterator(),
1334                     InstSimplifyFolder(HVC.DL));
1335 
1336   auto roundUpWidth = [](unsigned Width) -> unsigned {
1337     if (Width <= 32 && !isPowerOf2_32(Width)) {
1338       // If the element width is not a power of 2, round it up
1339       // to the next one. Do this for widths not exceeding 32.
1340       return PowerOf2Ceil(Width);
1341     }
1342     if (Width > 32 && Width % 32 != 0) {
1343       // For wider elements, round it up to the multiple of 32.
1344       return alignTo(Width, 32u);
1345     }
1346     return Width;
1347   };
1348 
1349   BitsX = roundUpWidth(BitsX);
1350   BitsY = roundUpWidth(BitsY);
1351 
1352   // For elementwise multiplication vectors must have the same lengths, so
1353   // resize the elements of both inputs to the same width, the max of the
1354   // calculated significant bits.
1355   unsigned Width = std::max(BitsX, BitsY);
1356 
1357   auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy);
1358   if (Width < ElemWidth) {
1359     X = Builder.CreateTrunc(X, ResizeTy);
1360     Y = Builder.CreateTrunc(Y, ResizeTy);
1361   } else if (Width > ElemWidth) {
1362     X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy)
1363                         : Builder.CreateZExt(X, ResizeTy);
1364     Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy)
1365                         : Builder.CreateZExt(Y, ResizeTy);
1366   };
1367 
1368   assert(X->getType() == Y->getType() && X->getType() == ResizeTy);
1369 
1370   unsigned VecLen = HVC.length(ResizeTy);
1371   unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u);
1372 
1373   SmallVector<Value *> Results;
1374   FxpOp ChopOp = Op;
1375   ChopOp.ResTy = VectorType::get(Op.ResTy->getElementType(), ChopLen, false);
1376 
1377   for (unsigned V = 0; V != VecLen / ChopLen; ++V) {
1378     ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen);
1379     ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen);
1380     Results.push_back(processFxpMulChopped(Builder, In, ChopOp));
1381     if (Results.back() == nullptr)
1382       break;
1383   }
1384 
1385   if (Results.empty() || Results.back() == nullptr)
1386     return nullptr;
1387 
1388   Value *Cat = HVC.concat(Builder, Results);
1389   Value *Ext = SignX == Signed || SignY == Signed
1390                    ? Builder.CreateSExt(Cat, VecTy)
1391                    : Builder.CreateZExt(Cat, VecTy);
1392   return Ext;
1393 }
1394 
1395 auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
1396                                      const FxpOp &Op) const -> Value * {
1397   assert(Op.X.Val->getType() == Op.Y.Val->getType());
1398   auto *InpTy = cast<VectorType>(Op.X.Val->getType());
1399   unsigned Width = InpTy->getScalarSizeInBits();
1400   bool Rounding = Op.RoundAt.has_value();
1401 
1402   if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) {
1403     // The fixed-point intrinsics do signed multiplication.
1404     if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) {
1405       Value *QMul = nullptr;
1406       if (Width == 16) {
1407         QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding);
1408       } else if (Width == 32) {
1409         QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding);
1410       }
1411       if (QMul != nullptr)
1412         return QMul;
1413     }
1414   }
1415 
1416   assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n
1417   assert(Width < 32 || Width % 32 == 0);       // Width > 32 => Width is 32*k
1418 
1419   // If Width < 32, then it should really be 16.
1420   if (Width < 32) {
1421     if (Width < 16)
1422       return nullptr;
1423     // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we
1424     // generate a full precision products, which is unnecessary if there is
1425     // no shift.
1426     assert(Width == 16);
1427     assert(Op.Frac != 0 && "Unshifted mul should have been skipped");
1428     if (Op.Frac == 16) {
1429       // Multiply high
1430       if (Value *MulH = createMulH16(Builder, Op.X, Op.Y))
1431         return MulH;
1432     }
1433     // Do full-precision multiply and shift.
1434     Value *Prod32 = createMul16(Builder, Op.X, Op.Y);
1435     if (Rounding) {
1436       Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt);
1437       Prod32 = Builder.CreateAdd(Prod32, RoundVal);
1438     }
1439 
1440     Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac);
1441     Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed
1442                ? Builder.CreateAShr(Prod32, ShiftAmt)
1443                : Builder.CreateLShr(Prod32, ShiftAmt);
1444     return Builder.CreateTrunc(Shifted, InpTy);
1445   }
1446 
1447   // Width >= 32
1448 
1449   // Break up the arguments Op.X and Op.Y into vectors of smaller widths
1450   // in preparation of doing the multiplication by 32-bit parts.
1451   auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32);
1452   auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32);
1453   auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn);
1454 
1455   auto *HvxWordTy = cast<VectorType>(WordP.front()->getType());
1456 
1457   // Add the optional rounding to the proper word.
1458   if (Op.RoundAt.has_value()) {
1459     Value *Zero = HVC.getNullValue(WordX[0]->getType());
1460     SmallVector<Value *> RoundV(WordP.size(), Zero);
1461     RoundV[*Op.RoundAt / 32] =
1462         HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32));
1463     WordP = createAddLong(Builder, WordP, RoundV);
1464   }
1465 
1466   // createRightShiftLong?
1467 
1468   // Shift all products right by Op.Frac.
1469   unsigned SkipWords = Op.Frac / 32;
1470   Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32);
1471 
1472   for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) {
1473     int Src = Dst + SkipWords;
1474     Value *Lo = WordP[Src];
1475     if (Src + 1 < End) {
1476       Value *Hi = WordP[Src + 1];
1477       WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr,
1478                                            {Hi, Lo, ShiftAmt});
1479     } else {
1480       // The shift of the most significant word.
1481       WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt);
1482     }
1483   }
1484   if (SkipWords != 0)
1485     WordP.resize(WordP.size() - SkipWords);
1486 
1487   return HVC.joinVectorElements(Builder, WordP, Op.ResTy);
1488 }
1489 
1490 auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
1491                              bool Rounding) const -> Value * {
1492   assert(X.Val->getType() == Y.Val->getType());
1493   assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16));
1494   assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false)));
1495 
1496   // There is no non-rounding intrinsic for i16.
1497   if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned)
1498     return nullptr;
1499 
1500   auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs);
1501   return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(),
1502                                 {X.Val, Y.Val});
1503 }
1504 
1505 auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
1506                              bool Rounding) const -> Value * {
1507   Type *InpTy = X.Val->getType();
1508   assert(InpTy == Y.Val->getType());
1509   assert(InpTy->getScalarType() == HVC.getIntTy(32));
1510   assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false)));
1511 
1512   if (X.Sgn == Unsigned || Y.Sgn == Unsigned)
1513     return nullptr;
1514 
1515   auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh);
1516   auto V6_vmpyo_acc = Rounding
1517                           ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc)
1518                           : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc);
1519   Value *V1 =
1520       HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val});
1521   return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy,
1522                                 {V1, X.Val, Y.Val});
1523 }
1524 
1525 auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
1526                                Value *CarryIn) const
1527     -> std::pair<Value *, Value *> {
1528   assert(X->getType() == Y->getType());
1529   auto VecTy = cast<VectorType>(X->getType());
1530   if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) {
1531     SmallVector<Value *> Args = {X, Y};
1532     Intrinsic::ID AddCarry;
1533     if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) {
1534       AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo);
1535     } else {
1536       AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry);
1537       if (CarryIn == nullptr)
1538         CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy)));
1539       Args.push_back(CarryIn);
1540     }
1541     Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry,
1542                                         /*RetTy=*/nullptr, Args);
1543     Value *Result = Builder.CreateExtractValue(Ret, {0});
1544     Value *CarryOut = Builder.CreateExtractValue(Ret, {1});
1545     return {Result, CarryOut};
1546   }
1547 
1548   // In other cases, do a regular add, and unsigned compare-less-than.
1549   // The carry-out can originate in two places: adding the carry-in or adding
1550   // the two input values.
1551   Value *Result1 = X; // Result1 = X + CarryIn
1552   if (CarryIn != nullptr) {
1553     unsigned Width = VecTy->getScalarSizeInBits();
1554     uint32_t Mask = 1;
1555     if (Width < 32) {
1556       for (unsigned i = 0, e = 32 / Width; i != e; ++i)
1557         Mask = (Mask << Width) | 1;
1558     }
1559     auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt);
1560     Value *ValueIn =
1561         HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr,
1562                                {CarryIn, HVC.getConstInt(Mask)});
1563     Result1 = Builder.CreateAdd(X, ValueIn);
1564   }
1565 
1566   Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X);
1567   Value *Result2 = Builder.CreateAdd(Result1, Y);
1568   Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y);
1569   return {Result2, Builder.CreateOr(CarryOut1, CarryOut2)};
1570 }
1571 
1572 auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const
1573     -> Value * {
1574   Intrinsic::ID V6_vmpyh = 0;
1575   std::tie(X, Y) = canonSgn(X, Y);
1576 
1577   if (X.Sgn == Signed) {
1578     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv);
1579   } else if (Y.Sgn == Signed) {
1580     // In vmpyhus the second operand is unsigned
1581     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus);
1582   } else {
1583     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv);
1584   }
1585 
1586   // i16*i16 -> i32 / interleaved
1587   Value *P =
1588       HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val});
1589   // Deinterleave
1590   return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P));
1591 }
1592 
1593 auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
1594     -> Value * {
1595   Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false);
1596 
1597   if (HVC.HST.useHVXV69Ops()) {
1598     if (X.Sgn != Signed && Y.Sgn != Signed) {
1599       auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs);
1600       return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty,
1601                                     {X.Val, Y.Val});
1602     }
1603   }
1604 
1605   Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true);
1606   Value *Pair16 = Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty);
1607   unsigned Len = HVC.length(HvxP16Ty) / 2;
1608 
1609   SmallVector<int, 128> PickOdd(Len);
1610   for (int i = 0; i != static_cast<int>(Len); ++i)
1611     PickOdd[i] = 2 * i + 1;
1612 
1613   return Builder.CreateShuffleVector(HVC.sublo(Builder, Pair16),
1614                                      HVC.subhi(Builder, Pair16), PickOdd);
1615 }
1616 
1617 auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
1618     -> std::pair<Value *, Value *> {
1619   assert(X.Val->getType() == Y.Val->getType());
1620   assert(X.Val->getType() == HvxI32Ty);
1621 
1622   Intrinsic::ID V6_vmpy_parts;
1623   std::tie(X, Y) = canonSgn(X, Y);
1624 
1625   if (X.Sgn == Signed) {
1626     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts;
1627   } else if (Y.Sgn == Signed) {
1628     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts;
1629   } else {
1630     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts;
1631   }
1632 
1633   Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr,
1634                                         {X.Val, Y.Val}, {HvxI32Ty});
1635   Value *Hi = Builder.CreateExtractValue(Parts, {0});
1636   Value *Lo = Builder.CreateExtractValue(Parts, {1});
1637   return {Lo, Hi};
1638 }
1639 
1640 auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
1641                               ArrayRef<Value *> WordY) const
1642     -> SmallVector<Value *> {
1643   assert(WordX.size() == WordY.size());
1644   unsigned Idx = 0, Length = WordX.size();
1645   SmallVector<Value *> Sum(Length);
1646 
1647   while (Idx != Length) {
1648     if (HVC.isZero(WordX[Idx]))
1649       Sum[Idx] = WordY[Idx];
1650     else if (HVC.isZero(WordY[Idx]))
1651       Sum[Idx] = WordX[Idx];
1652     else
1653       break;
1654     ++Idx;
1655   }
1656 
1657   Value *Carry = nullptr;
1658   for (; Idx != Length; ++Idx) {
1659     std::tie(Sum[Idx], Carry) =
1660         createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry);
1661   }
1662 
1663   // This drops the final carry beyond the highest word.
1664   return Sum;
1665 }
1666 
1667 auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
1668                               Signedness SgnX, ArrayRef<Value *> WordY,
1669                               Signedness SgnY) const -> SmallVector<Value *> {
1670   SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size());
1671 
1672   // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results,
1673   // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3.
1674   for (int i = 0, e = WordX.size(); i != e; ++i) {
1675     for (int j = 0, f = WordY.size(); j != f; ++j) {
1676       // Check the 4 halves that this multiplication can generate.
1677       Signedness SX = (i + 1 == e) ? SgnX : Unsigned;
1678       Signedness SY = (j + 1 == f) ? SgnY : Unsigned;
1679       auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY});
1680       Products[i + j + 0].push_back(Lo);
1681       Products[i + j + 1].push_back(Hi);
1682     }
1683   }
1684 
1685   Value *Zero = HVC.getNullValue(WordX[0]->getType());
1686 
1687   auto pop_back_or_zero = [Zero](auto &Vector) -> Value * {
1688     if (Vector.empty())
1689       return Zero;
1690     auto Last = Vector.back();
1691     Vector.pop_back();
1692     return Last;
1693   };
1694 
1695   for (int i = 0, e = Products.size(); i != e; ++i) {
1696     while (Products[i].size() > 1) {
1697       Value *Carry = nullptr; // no carry-in
1698       for (int j = i; j != e; ++j) {
1699         auto &ProdJ = Products[j];
1700         auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ),
1701                                               pop_back_or_zero(ProdJ), Carry);
1702         ProdJ.insert(ProdJ.begin(), Sum);
1703         Carry = CarryOut;
1704       }
1705     }
1706   }
1707 
1708   SmallVector<Value *> WordP;
1709   for (auto &P : Products) {
1710     assert(P.size() == 1 && "Should have been added together");
1711     WordP.push_back(P.front());
1712   }
1713 
1714   return WordP;
1715 }
1716 
1717 auto HvxIdioms::run() -> bool {
1718   bool Changed = false;
1719 
1720   for (BasicBlock &B : HVC.F) {
1721     for (auto It = B.rbegin(); It != B.rend(); ++It) {
1722       if (auto Fxm = matchFxpMul(*It)) {
1723         Value *New = processFxpMul(*It, *Fxm);
1724         // Always report "changed" for now.
1725         Changed = true;
1726         if (!New)
1727           continue;
1728         bool StartOver = !isa<Instruction>(New);
1729         It->replaceAllUsesWith(New);
1730         RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI);
1731         It = StartOver ? B.rbegin()
1732                        : cast<Instruction>(New)->getReverseIterator();
1733         Changed = true;
1734       }
1735     }
1736   }
1737 
1738   return Changed;
1739 }
1740 
1741 // --- End HvxIdioms
1742 
1743 auto HexagonVectorCombine::run() -> bool {
1744   if (!HST.useHVXOps())
1745     return false;
1746 
1747   bool Changed = false;
1748   Changed |= AlignVectors(*this).run();
1749   Changed |= HvxIdioms(*this).run();
1750 
1751   return Changed;
1752 }
1753 
1754 auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * {
1755   return IntegerType::get(F.getContext(), Width);
1756 }
1757 
1758 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
1759   assert(ElemCount >= 0);
1760   IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
1761   if (ElemCount == 0)
1762     return ByteTy;
1763   return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false);
1764 }
1765 
1766 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
1767   assert(ElemCount >= 0);
1768   IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
1769   if (ElemCount == 0)
1770     return BoolTy;
1771   return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false);
1772 }
1773 
1774 auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const
1775     -> ConstantInt * {
1776   return ConstantInt::getSigned(getIntTy(Width), Val);
1777 }
1778 
1779 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
1780   if (auto *C = dyn_cast<Constant>(Val))
1781     return C->isZeroValue();
1782   return false;
1783 }
1784 
1785 auto HexagonVectorCombine::getIntValue(const Value *Val) const
1786     -> std::optional<APInt> {
1787   if (auto *CI = dyn_cast<ConstantInt>(Val))
1788     return CI->getValue();
1789   return std::nullopt;
1790 }
1791 
1792 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
1793   return isa<UndefValue>(Val);
1794 }
1795 
1796 auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const
1797     -> VectorType * {
1798   EVT ETy = EVT::getEVT(ElemTy, false);
1799   assert(ETy.isSimple() && "Invalid HVX element type");
1800   // Do not allow boolean types here: they don't have a fixed length.
1801   assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) &&
1802          "Invalid HVX element type");
1803   unsigned HwLen = HST.getVectorLength();
1804   unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits();
1805   return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems,
1806                          /*Scalable=*/false);
1807 }
1808 
1809 auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const
1810     -> int {
1811   return getSizeOf(Val->getType(), Kind);
1812 }
1813 
1814 auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const
1815     -> int {
1816   auto *NcTy = const_cast<Type *>(Ty);
1817   switch (Kind) {
1818   case Store:
1819     return DL.getTypeStoreSize(NcTy).getFixedValue();
1820   case Alloc:
1821     return DL.getTypeAllocSize(NcTy).getFixedValue();
1822   }
1823   llvm_unreachable("Unhandled SizeKind enum");
1824 }
1825 
1826 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
1827   // The actual type may be shorter than the HVX vector, so determine
1828   // the alignment based on subtarget info.
1829   if (HST.isTypeForHVX(Ty))
1830     return HST.getVectorLength();
1831   return DL.getABITypeAlign(Ty).value();
1832 }
1833 
1834 auto HexagonVectorCombine::length(Value *Val) const -> size_t {
1835   return length(Val->getType());
1836 }
1837 
1838 auto HexagonVectorCombine::length(Type *Ty) const -> size_t {
1839   auto *VecTy = dyn_cast<VectorType>(Ty);
1840   assert(VecTy && "Must be a vector type");
1841   return VecTy->getElementCount().getFixedValue();
1842 }
1843 
1844 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
1845   assert(Ty->isIntOrIntVectorTy());
1846   auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
1847   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1848     return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
1849   return Zero;
1850 }
1851 
1852 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
1853   assert(Ty->isIntOrIntVectorTy());
1854   auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
1855   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1856     return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
1857   return Minus1;
1858 }
1859 
1860 auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const
1861     -> Constant * {
1862   assert(Ty->isVectorTy());
1863   auto VecTy = cast<VectorType>(Ty);
1864   Type *ElemTy = VecTy->getElementType();
1865   // Add support for floats if needed.
1866   auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(),
1867                                          ConstantInt::get(ElemTy, Val));
1868   return Splat;
1869 }
1870 
1871 auto HexagonVectorCombine::simplify(Value *V) const -> Value * {
1872   if (auto *In = dyn_cast<Instruction>(V)) {
1873     SimplifyQuery Q(DL, &TLI, &DT, &AC, In);
1874     return simplifyInstruction(In, Q);
1875   }
1876   return nullptr;
1877 }
1878 
1879 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
1880 auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst,
1881                                    Value *Src, int Start, int Length,
1882                                    int Where) const -> Value * {
1883   assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
1884   int SrcLen = getSizeOf(Src);
1885   int DstLen = getSizeOf(Dst);
1886   assert(0 <= Start && Start + Length <= SrcLen);
1887   assert(0 <= Where && Where + Length <= DstLen);
1888 
1889   int P2Len = PowerOf2Ceil(SrcLen | DstLen);
1890   auto *Undef = UndefValue::get(getByteTy());
1891   Value *P2Src = vresize(Builder, Src, P2Len, Undef);
1892   Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
1893 
1894   SmallVector<int, 256> SMask(P2Len);
1895   for (int i = 0; i != P2Len; ++i) {
1896     // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
1897     // Otherwise, pick Dst[i];
1898     SMask[i] =
1899         (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
1900   }
1901 
1902   Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
1903   return vresize(Builder, P2Insert, DstLen, Undef);
1904 }
1905 
1906 auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo,
1907                                     Value *Hi, Value *Amt) const -> Value * {
1908   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1909   if (isZero(Amt))
1910     return Hi;
1911   int VecLen = getSizeOf(Hi);
1912   if (auto IntAmt = getIntValue(Amt))
1913     return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
1914                            VecLen);
1915 
1916   if (HST.isTypeForHVX(Hi->getType())) {
1917     assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
1918            "Expecting an exact HVX type");
1919     return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb),
1920                               Hi->getType(), {Hi, Lo, Amt});
1921   }
1922 
1923   if (VecLen == 4) {
1924     Value *Pair = concat(Builder, {Lo, Hi});
1925     Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
1926     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1927     return Builder.CreateBitCast(Trunc, Hi->getType());
1928   }
1929   if (VecLen == 8) {
1930     Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
1931     return vralignb(Builder, Lo, Hi, Sub);
1932   }
1933   llvm_unreachable("Unexpected vector length");
1934 }
1935 
1936 auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo,
1937                                     Value *Hi, Value *Amt) const -> Value * {
1938   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1939   if (isZero(Amt))
1940     return Lo;
1941   int VecLen = getSizeOf(Lo);
1942   if (auto IntAmt = getIntValue(Amt))
1943     return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
1944 
1945   if (HST.isTypeForHVX(Lo->getType())) {
1946     assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
1947            "Expecting an exact HVX type");
1948     return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb),
1949                               Lo->getType(), {Hi, Lo, Amt});
1950   }
1951 
1952   if (VecLen == 4) {
1953     Value *Pair = concat(Builder, {Lo, Hi});
1954     Value *Shift = Builder.CreateLShr(Pair, Amt);
1955     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1956     return Builder.CreateBitCast(Trunc, Lo->getType());
1957   }
1958   if (VecLen == 8) {
1959     Type *Int64Ty = Type::getInt64Ty(F.getContext());
1960     Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
1961     Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
1962     Function *FI = Intrinsic::getDeclaration(F.getParent(),
1963                                              Intrinsic::hexagon_S2_valignrb);
1964     Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
1965     return Builder.CreateBitCast(Call, Lo->getType());
1966   }
1967   llvm_unreachable("Unexpected vector length");
1968 }
1969 
1970 // Concatenates a sequence of vectors of the same type.
1971 auto HexagonVectorCombine::concat(IRBuilderBase &Builder,
1972                                   ArrayRef<Value *> Vecs) const -> Value * {
1973   assert(!Vecs.empty());
1974   SmallVector<int, 256> SMask;
1975   std::vector<Value *> Work[2];
1976   int ThisW = 0, OtherW = 1;
1977 
1978   Work[ThisW].assign(Vecs.begin(), Vecs.end());
1979   while (Work[ThisW].size() > 1) {
1980     auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
1981     SMask.resize(length(Ty) * 2);
1982     std::iota(SMask.begin(), SMask.end(), 0);
1983 
1984     Work[OtherW].clear();
1985     if (Work[ThisW].size() % 2 != 0)
1986       Work[ThisW].push_back(UndefValue::get(Ty));
1987     for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
1988       Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
1989                                                   Work[ThisW][i + 1], SMask);
1990       Work[OtherW].push_back(Joined);
1991     }
1992     std::swap(ThisW, OtherW);
1993   }
1994 
1995   // Since there may have been some undefs appended to make shuffle operands
1996   // have the same type, perform the last shuffle to only pick the original
1997   // elements.
1998   SMask.resize(Vecs.size() * length(Vecs.front()->getType()));
1999   std::iota(SMask.begin(), SMask.end(), 0);
2000   Value *Total = Work[ThisW].front();
2001   return Builder.CreateShuffleVector(Total, SMask);
2002 }
2003 
2004 auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val,
2005                                    int NewSize, Value *Pad) const -> Value * {
2006   assert(isa<VectorType>(Val->getType()));
2007   auto *ValTy = cast<VectorType>(Val->getType());
2008   assert(ValTy->getElementType() == Pad->getType());
2009 
2010   int CurSize = length(ValTy);
2011   if (CurSize == NewSize)
2012     return Val;
2013   // Truncate?
2014   if (CurSize > NewSize)
2015     return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize);
2016   // Extend.
2017   SmallVector<int, 128> SMask(NewSize);
2018   std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
2019   std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
2020   Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
2021   return Builder.CreateShuffleVector(Val, PadVec, SMask);
2022 }
2023 
2024 auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask,
2025                                    Type *FromTy, Type *ToTy) const -> Value * {
2026   // Mask is a vector <N x i1>, where each element corresponds to an
2027   // element of FromTy. Remap it so that each element will correspond
2028   // to an element of ToTy.
2029   assert(isa<VectorType>(Mask->getType()));
2030 
2031   Type *FromSTy = FromTy->getScalarType();
2032   Type *ToSTy = ToTy->getScalarType();
2033   if (FromSTy == ToSTy)
2034     return Mask;
2035 
2036   int FromSize = getSizeOf(FromSTy);
2037   int ToSize = getSizeOf(ToSTy);
2038   assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
2039 
2040   auto *MaskTy = cast<VectorType>(Mask->getType());
2041   int FromCount = length(MaskTy);
2042   int ToCount = (FromCount * FromSize) / ToSize;
2043   assert((FromCount * FromSize) % ToSize == 0);
2044 
2045   auto *FromITy = getIntTy(FromSize * 8);
2046   auto *ToITy = getIntTy(ToSize * 8);
2047 
2048   // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
2049   // -> trunc to <M x i1>.
2050   Value *Ext = Builder.CreateSExt(
2051       Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false));
2052   Value *Cast = Builder.CreateBitCast(
2053       Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false));
2054   return Builder.CreateTrunc(
2055       Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false));
2056 }
2057 
2058 // Bitcast to bytes, and return least significant bits.
2059 auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const
2060     -> Value * {
2061   Type *ScalarTy = Val->getType()->getScalarType();
2062   if (ScalarTy == getBoolTy())
2063     return Val;
2064 
2065   Value *Bytes = vbytes(Builder, Val);
2066   if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
2067     return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
2068   // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
2069   // <1 x i1>.
2070   return Builder.CreateTrunc(Bytes, getBoolTy());
2071 }
2072 
2073 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
2074 auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const
2075     -> Value * {
2076   Type *ScalarTy = Val->getType()->getScalarType();
2077   if (ScalarTy == getByteTy())
2078     return Val;
2079 
2080   if (ScalarTy != getBoolTy())
2081     return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
2082   // For bool, return a sext from i1 to i8.
2083   if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
2084     return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
2085   return Builder.CreateSExt(Val, getByteTy());
2086 }
2087 
2088 auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val,
2089                                      unsigned Start, unsigned Length) const
2090     -> Value * {
2091   assert(Start + Length <= length(Val));
2092   return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length);
2093 }
2094 
2095 auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const
2096     -> Value * {
2097   size_t Len = length(Val);
2098   assert(Len % 2 == 0 && "Length should be even");
2099   return subvector(Builder, Val, 0, Len / 2);
2100 }
2101 
2102 auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const
2103     -> Value * {
2104   size_t Len = length(Val);
2105   assert(Len % 2 == 0 && "Length should be even");
2106   return subvector(Builder, Val, Len / 2, Len / 2);
2107 }
2108 
2109 auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0,
2110                                  Value *Val1) const -> Value * {
2111   assert(Val0->getType() == Val1->getType());
2112   int Len = length(Val0);
2113   SmallVector<int, 128> Mask(2 * Len);
2114 
2115   for (int i = 0; i != Len; ++i) {
2116     Mask[i] = 2 * i;           // Even
2117     Mask[i + Len] = 2 * i + 1; // Odd
2118   }
2119   return Builder.CreateShuffleVector(Val0, Val1, Mask);
2120 }
2121 
2122 auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0,
2123                                   Value *Val1) const -> Value * { //
2124   assert(Val0->getType() == Val1->getType());
2125   int Len = length(Val0);
2126   SmallVector<int, 128> Mask(2 * Len);
2127 
2128   for (int i = 0; i != Len; ++i) {
2129     Mask[2 * i + 0] = i;       // Val0
2130     Mask[2 * i + 1] = i + Len; // Val1
2131   }
2132   return Builder.CreateShuffleVector(Val0, Val1, Mask);
2133 }
2134 
2135 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder,
2136                                               Intrinsic::ID IntID, Type *RetTy,
2137                                               ArrayRef<Value *> Args,
2138                                               ArrayRef<Type *> ArgTys) const
2139     -> Value * {
2140   auto getCast = [&](IRBuilderBase &Builder, Value *Val,
2141                      Type *DestTy) -> Value * {
2142     Type *SrcTy = Val->getType();
2143     if (SrcTy == DestTy)
2144       return Val;
2145 
2146     // Non-HVX type. It should be a scalar, and it should already have
2147     // a valid type.
2148     assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true));
2149 
2150     Type *BoolTy = Type::getInt1Ty(F.getContext());
2151     if (cast<VectorType>(SrcTy)->getElementType() != BoolTy)
2152       return Builder.CreateBitCast(Val, DestTy);
2153 
2154     // Predicate HVX vector.
2155     unsigned HwLen = HST.getVectorLength();
2156     Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast
2157                                    : Intrinsic::hexagon_V6_pred_typecast_128B;
2158     Function *FI =
2159         Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()});
2160     return Builder.CreateCall(FI, {Val});
2161   };
2162 
2163   Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys);
2164   FunctionType *IntrTy = IntrFn->getFunctionType();
2165 
2166   SmallVector<Value *, 4> IntrArgs;
2167   for (int i = 0, e = Args.size(); i != e; ++i) {
2168     Value *A = Args[i];
2169     Type *T = IntrTy->getParamType(i);
2170     if (A->getType() != T) {
2171       IntrArgs.push_back(getCast(Builder, A, T));
2172     } else {
2173       IntrArgs.push_back(A);
2174     }
2175   }
2176   Value *Call = Builder.CreateCall(IntrFn, IntrArgs);
2177 
2178   Type *CallTy = Call->getType();
2179   if (RetTy == nullptr || CallTy == RetTy)
2180     return Call;
2181   // Scalar types should have RetTy matching the call return type.
2182   assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true));
2183   return getCast(Builder, Call, RetTy);
2184 }
2185 
2186 auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder,
2187                                                Value *Vec,
2188                                                unsigned ToWidth) const
2189     -> SmallVector<Value *> {
2190   // Break a vector of wide elements into a series of vectors with narrow
2191   // elements:
2192   //   (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...)
2193   // -->
2194   //   (a0, a1, a2, ...)    // lowest "ToWidth" bits
2195   //   (b0, b1, b2, ...)    // the next lowest...
2196   //   (c0, c1, c2, ...)    // ...
2197   //   ...
2198   //
2199   // The number of elements in each resulting vector is the same as
2200   // in the original vector.
2201 
2202   auto *VecTy = cast<VectorType>(Vec->getType());
2203   assert(VecTy->getElementType()->isIntegerTy());
2204   unsigned FromWidth = VecTy->getScalarSizeInBits();
2205   assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth));
2206   assert(ToWidth <= FromWidth && "Breaking up into wider elements?");
2207   unsigned NumResults = FromWidth / ToWidth;
2208 
2209   SmallVector<Value *> Results(NumResults);
2210   Results[0] = Vec;
2211   unsigned Length = length(VecTy);
2212 
2213   // Do it by splitting in half, since those operations correspond to deal
2214   // instructions.
2215   auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void {
2216     // Take V = Results[Begin], split it in L, H.
2217     // Store Results[Begin] = L, Results[(Begin+End)/2] = H
2218     // Call itself recursively split(Begin, Half), split(Half+1, End)
2219     if (Begin + 1 == End)
2220       return;
2221 
2222     Value *Val = Results[Begin];
2223     unsigned Width = Val->getType()->getScalarSizeInBits();
2224 
2225     auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false);
2226     Value *VVal = Builder.CreateBitCast(Val, VTy);
2227 
2228     Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal));
2229 
2230     unsigned Half = (Begin + End) / 2;
2231     Results[Begin] = sublo(Builder, Res);
2232     Results[Half] = subhi(Builder, Res);
2233 
2234     splitFunc(Begin, Half, splitFunc);
2235     splitFunc(Half, End, splitFunc);
2236   };
2237 
2238   splitInHalf(0, NumResults, splitInHalf);
2239   return Results;
2240 }
2241 
2242 auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder,
2243                                               ArrayRef<Value *> Values,
2244                                               VectorType *ToType) const
2245     -> Value * {
2246   assert(ToType->getElementType()->isIntegerTy());
2247 
2248   // If the list of values does not have power-of-2 elements, append copies
2249   // of the sign bit to it, to make the size be 2^n.
2250   // The reason for this is that the values will be joined in pairs, because
2251   // otherwise the shuffles will result in convoluted code. With pairwise
2252   // joins, the shuffles will hopefully be folded into a perfect shuffle.
2253   // The output will need to be sign-extended to a type with element width
2254   // being a power-of-2 anyways.
2255   SmallVector<Value *> Inputs(Values.begin(), Values.end());
2256 
2257   unsigned ToWidth = ToType->getScalarSizeInBits();
2258   unsigned Width = Inputs.front()->getType()->getScalarSizeInBits();
2259   assert(Width <= ToWidth);
2260   assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth));
2261   unsigned Length = length(Inputs.front()->getType());
2262 
2263   unsigned NeedInputs = ToWidth / Width;
2264   if (Inputs.size() != NeedInputs) {
2265     // Having too many inputs is ok: drop the high bits (usual wrap-around).
2266     // If there are too few, fill them with the sign bit.
2267     Value *Last = Inputs.back();
2268     Value *Sign =
2269         Builder.CreateAShr(Last, getConstSplat(Last->getType(), Width - 1));
2270     Inputs.resize(NeedInputs, Sign);
2271   }
2272 
2273   while (Inputs.size() > 1) {
2274     Width *= 2;
2275     auto *VTy = VectorType::get(getIntTy(Width), Length, false);
2276     for (int i = 0, e = Inputs.size(); i < e; i += 2) {
2277       Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]);
2278       Inputs[i / 2] = Builder.CreateBitCast(Res, VTy);
2279     }
2280     Inputs.resize(Inputs.size() / 2);
2281   }
2282 
2283   assert(Inputs.front()->getType() == ToType);
2284   return Inputs.front();
2285 }
2286 
2287 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
2288                                                       Value *Ptr1) const
2289     -> std::optional<int> {
2290   struct Builder : IRBuilder<> {
2291     Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {}
2292     ~Builder() {
2293       for (Instruction *I : llvm::reverse(ToErase))
2294         I->eraseFromParent();
2295     }
2296     SmallVector<Instruction *, 8> ToErase;
2297   };
2298 
2299 #define CallBuilder(B, F)                                                      \
2300   [&](auto &B_) {                                                              \
2301     Value *V = B_.F;                                                           \
2302     if (auto *I = dyn_cast<Instruction>(V))                                    \
2303       B_.ToErase.push_back(I);                                                 \
2304     return V;                                                                  \
2305   }(B)
2306 
2307   auto Simplify = [this](Value *V) {
2308     if (Value *S = simplify(V))
2309       return S;
2310     return V;
2311   };
2312 
2313   auto StripBitCast = [](Value *V) {
2314     while (auto *C = dyn_cast<BitCastInst>(V))
2315       V = C->getOperand(0);
2316     return V;
2317   };
2318 
2319   Ptr0 = StripBitCast(Ptr0);
2320   Ptr1 = StripBitCast(Ptr1);
2321   if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
2322     return std::nullopt;
2323 
2324   auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
2325   auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
2326   if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
2327     return std::nullopt;
2328   if (Gep0->getSourceElementType() != Gep1->getSourceElementType())
2329     return std::nullopt;
2330 
2331   Builder B(Gep0->getParent());
2332   int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc);
2333 
2334   // FIXME: for now only check GEPs with a single index.
2335   if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
2336     return std::nullopt;
2337 
2338   Value *Idx0 = Gep0->getOperand(1);
2339   Value *Idx1 = Gep1->getOperand(1);
2340 
2341   // First, try to simplify the subtraction directly.
2342   if (auto *Diff = dyn_cast<ConstantInt>(
2343           Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
2344     return Diff->getSExtValue() * Scale;
2345 
2346   KnownBits Known0 = getKnownBits(Idx0, Gep0);
2347   KnownBits Known1 = getKnownBits(Idx1, Gep1);
2348   APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
2349   if (Unknown.isAllOnes())
2350     return std::nullopt;
2351 
2352   Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
2353   Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
2354   Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
2355   Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
2356   int Diff0 = 0;
2357   if (auto *C = dyn_cast<ConstantInt>(SubU)) {
2358     Diff0 = C->getSExtValue();
2359   } else {
2360     return std::nullopt;
2361   }
2362 
2363   Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
2364   Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
2365   Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
2366   Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
2367   int Diff1 = 0;
2368   if (auto *C = dyn_cast<ConstantInt>(SubK)) {
2369     Diff1 = C->getSExtValue();
2370   } else {
2371     return std::nullopt;
2372   }
2373 
2374   return (Diff0 + Diff1) * Scale;
2375 
2376 #undef CallBuilder
2377 }
2378 
2379 auto HexagonVectorCombine::getNumSignificantBits(const Value *V,
2380                                                  const Instruction *CtxI) const
2381     -> unsigned {
2382   return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
2383 }
2384 
2385 auto HexagonVectorCombine::getKnownBits(const Value *V,
2386                                         const Instruction *CtxI) const
2387     -> KnownBits {
2388   return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT, /*ORE=*/nullptr,
2389                           /*UseInstrInfo=*/true);
2390 }
2391 
2392 template <typename T>
2393 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
2394                                                   BasicBlock::const_iterator To,
2395                                                   const T &IgnoreInsts) const
2396     -> bool {
2397   auto getLocOrNone =
2398       [this](const Instruction &I) -> std::optional<MemoryLocation> {
2399     if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
2400       switch (II->getIntrinsicID()) {
2401       case Intrinsic::masked_load:
2402         return MemoryLocation::getForArgument(II, 0, TLI);
2403       case Intrinsic::masked_store:
2404         return MemoryLocation::getForArgument(II, 1, TLI);
2405       }
2406     }
2407     return MemoryLocation::getOrNone(&I);
2408   };
2409 
2410   // The source and the destination must be in the same basic block.
2411   const BasicBlock &Block = *In.getParent();
2412   assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
2413   // No PHIs.
2414   if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
2415     return false;
2416 
2417   if (!mayHaveNonDefUseDependency(In))
2418     return true;
2419   bool MayWrite = In.mayWriteToMemory();
2420   auto MaybeLoc = getLocOrNone(In);
2421 
2422   auto From = In.getIterator();
2423   if (From == To)
2424     return true;
2425   bool MoveUp = (To != Block.end() && To->comesBefore(&In));
2426   auto Range =
2427       MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
2428   for (auto It = Range.first; It != Range.second; ++It) {
2429     const Instruction &I = *It;
2430     if (llvm::is_contained(IgnoreInsts, &I))
2431       continue;
2432     // assume intrinsic can be ignored
2433     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2434       if (II->getIntrinsicID() == Intrinsic::assume)
2435         continue;
2436     }
2437     // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
2438     if (I.mayThrow())
2439       return false;
2440     if (auto *CB = dyn_cast<CallBase>(&I)) {
2441       if (!CB->hasFnAttr(Attribute::WillReturn))
2442         return false;
2443       if (!CB->hasFnAttr(Attribute::NoSync))
2444         return false;
2445     }
2446     if (I.mayReadOrWriteMemory()) {
2447       auto MaybeLocI = getLocOrNone(I);
2448       if (MayWrite || I.mayWriteToMemory()) {
2449         if (!MaybeLoc || !MaybeLocI)
2450           return false;
2451         if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
2452           return false;
2453       }
2454     }
2455   }
2456   return true;
2457 }
2458 
2459 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
2460   if (auto *VecTy = dyn_cast<VectorType>(Ty))
2461     return VecTy->getElementType() == getByteTy();
2462   return false;
2463 }
2464 
2465 auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo,
2466                                            Value *Hi, int Start,
2467                                            int Length) const -> Value * {
2468   assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi));
2469   SmallVector<int, 128> SMask(Length);
2470   std::iota(SMask.begin(), SMask.end(), Start);
2471   return Builder.CreateShuffleVector(Lo, Hi, SMask);
2472 }
2473 
2474 // Pass management.
2475 
2476 namespace llvm {
2477 void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
2478 FunctionPass *createHexagonVectorCombineLegacyPass();
2479 } // namespace llvm
2480 
2481 namespace {
2482 class HexagonVectorCombineLegacy : public FunctionPass {
2483 public:
2484   static char ID;
2485 
2486   HexagonVectorCombineLegacy() : FunctionPass(ID) {}
2487 
2488   StringRef getPassName() const override { return "Hexagon Vector Combine"; }
2489 
2490   void getAnalysisUsage(AnalysisUsage &AU) const override {
2491     AU.setPreservesCFG();
2492     AU.addRequired<AAResultsWrapperPass>();
2493     AU.addRequired<AssumptionCacheTracker>();
2494     AU.addRequired<DominatorTreeWrapperPass>();
2495     AU.addRequired<TargetLibraryInfoWrapperPass>();
2496     AU.addRequired<TargetPassConfig>();
2497     FunctionPass::getAnalysisUsage(AU);
2498   }
2499 
2500   bool runOnFunction(Function &F) override {
2501     if (skipFunction(F))
2502       return false;
2503     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2504     AssumptionCache &AC =
2505         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2506     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2507     TargetLibraryInfo &TLI =
2508         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2509     auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
2510     HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
2511     return HVC.run();
2512   }
2513 };
2514 } // namespace
2515 
2516 char HexagonVectorCombineLegacy::ID = 0;
2517 
2518 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
2519                       "Hexagon Vector Combine", false, false)
2520 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2521 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2522 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2523 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2524 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
2525 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
2526                     "Hexagon Vector Combine", false, false)
2527 
2528 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
2529   return new HexagonVectorCombineLegacy();
2530 }
2531