1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsHexagon.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 40 #include "HexagonSubtarget.h" 41 #include "HexagonTargetMachine.h" 42 43 #include <algorithm> 44 #include <deque> 45 #include <map> 46 #include <set> 47 #include <utility> 48 #include <vector> 49 50 #define DEBUG_TYPE "hexagon-vc" 51 52 using namespace llvm; 53 54 namespace { 55 class HexagonVectorCombine { 56 public: 57 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 58 DominatorTree &DT_, TargetLibraryInfo &TLI_, 59 const TargetMachine &TM_) 60 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 61 TLI(TLI_), 62 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 63 64 bool run(); 65 66 // Common integer type. 67 IntegerType *getIntTy() const; 68 // Byte type: either scalar (when Length = 0), or vector with given 69 // element count. 70 Type *getByteTy(int ElemCount = 0) const; 71 // Boolean type: either scalar (when Length = 0), or vector with given 72 // element count. 73 Type *getBoolTy(int ElemCount = 0) const; 74 // Create a ConstantInt of type returned by getIntTy with the value Val. 75 ConstantInt *getConstInt(int Val) const; 76 // Get the integer value of V, if it exists. 77 Optional<APInt> getIntValue(const Value *Val) const; 78 // Is V a constant 0, or a vector of 0s? 79 bool isZero(const Value *Val) const; 80 // Is V an undef value? 81 bool isUndef(const Value *Val) const; 82 83 int getSizeOf(const Value *Val) const; 84 int getSizeOf(const Type *Ty) const; 85 int getAllocSizeOf(const Type *Ty) const; 86 int getTypeAlignment(Type *Ty) const; 87 88 VectorType *getByteVectorTy(int ScLen) const; 89 Constant *getNullValue(Type *Ty) const; 90 Constant *getFullValue(Type *Ty) const; 91 92 Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start, 93 int Length, int Where) const; 94 Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; 95 Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; 96 Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const; 97 Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize, 98 Value *Pad) const; 99 Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy, 100 Type *ToTy) const; 101 Value *vlsb(IRBuilder<> &Builder, Value *Val) const; 102 Value *vbytes(IRBuilder<> &Builder, Value *Val) const; 103 104 Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID, 105 Type *RetTy, ArrayRef<Value *> Args) const; 106 107 Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 108 109 template <typename T = std::vector<Instruction *>> 110 bool isSafeToMoveBeforeInBB(const Instruction &In, 111 BasicBlock::const_iterator To, 112 const T &Ignore = {}) const; 113 114 Function &F; 115 const DataLayout &DL; 116 AliasAnalysis &AA; 117 AssumptionCache &AC; 118 DominatorTree &DT; 119 TargetLibraryInfo &TLI; 120 const HexagonSubtarget &HST; 121 122 private: 123 #ifndef NDEBUG 124 // These two functions are only used for assertions at the moment. 125 bool isByteVecTy(Type *Ty) const; 126 bool isSectorTy(Type *Ty) const; 127 #endif 128 Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start, 129 int Length) const; 130 }; 131 132 class AlignVectors { 133 public: 134 AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {} 135 136 bool run(); 137 138 private: 139 using InstList = std::vector<Instruction *>; 140 141 struct Segment { 142 void *Data; 143 int Start; 144 int Size; 145 }; 146 147 struct AddrInfo { 148 AddrInfo(const AddrInfo &) = default; 149 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 150 Align H) 151 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 152 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 153 154 // XXX: add Size member? 155 Instruction *Inst; 156 Value *Addr; 157 Type *ValTy; 158 Align HaveAlign; 159 Align NeedAlign; 160 int Offset = 0; // Offset (in bytes) from the first member of the 161 // containing AddrList. 162 }; 163 using AddrList = std::vector<AddrInfo>; 164 165 struct InstrLess { 166 bool operator()(const Instruction *A, const Instruction *B) const { 167 return A->comesBefore(B); 168 } 169 }; 170 using DepList = std::set<Instruction *, InstrLess>; 171 172 struct MoveGroup { 173 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 174 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 175 Instruction *Base; // Base instruction of the parent address group. 176 InstList Main; // Main group of instructions. 177 InstList Deps; // List of dependencies. 178 bool IsHvx; // Is this group of HVX instructions? 179 bool IsLoad; // Is this a load group? 180 }; 181 using MoveList = std::vector<MoveGroup>; 182 183 struct ByteSpan { 184 struct Segment { 185 // Segment of a Value: 'Len' bytes starting at byte 'Begin'. 186 Segment(Value *Val, int Begin, int Len) 187 : Val(Val), Start(Begin), Size(Len) {} 188 Segment(const Segment &Seg) = default; 189 Value *Val; // Value representable as a sequence of bytes. 190 int Start; // First byte of the value that belongs to the segment. 191 int Size; // Number of bytes in the segment. 192 }; 193 194 struct Block { 195 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 196 Block(Value *Val, int Off, int Len, int Pos) 197 : Seg(Val, Off, Len), Pos(Pos) {} 198 Block(const Block &Blk) = default; 199 Segment Seg; // Value segment. 200 int Pos; // Position (offset) of the segment in the Block. 201 }; 202 203 int extent() const; 204 ByteSpan section(int Start, int Length) const; 205 ByteSpan &shift(int Offset); 206 SmallVector<Value *, 8> values() const; 207 208 int size() const { return Blocks.size(); } 209 Block &operator[](int i) { return Blocks[i]; } 210 211 std::vector<Block> Blocks; 212 213 using iterator = decltype(Blocks)::iterator; 214 iterator begin() { return Blocks.begin(); } 215 iterator end() { return Blocks.end(); } 216 using const_iterator = decltype(Blocks)::const_iterator; 217 const_iterator begin() const { return Blocks.begin(); } 218 const_iterator end() const { return Blocks.end(); } 219 }; 220 221 Align getAlignFromValue(const Value *V) const; 222 Optional<MemoryLocation> getLocation(const Instruction &In) const; 223 Optional<AddrInfo> getAddrInfo(Instruction &In) const; 224 bool isHvx(const AddrInfo &AI) const; 225 226 Value *getPayload(Value *Val) const; 227 Value *getMask(Value *Val) const; 228 Value *getPassThrough(Value *Val) const; 229 230 Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, 231 int Adjust) const; 232 Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, 233 int Alignment) const; 234 Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr, 235 int Alignment, Value *Mask, Value *PassThru) const; 236 Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr, 237 int Alignment, Value *Mask) const; 238 239 bool createAddressGroups(); 240 MoveList createLoadGroups(const AddrList &Group) const; 241 MoveList createStoreGroups(const AddrList &Group) const; 242 bool move(const MoveGroup &Move) const; 243 bool realignGroup(const MoveGroup &Move) const; 244 245 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 246 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 247 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 248 249 std::map<Instruction *, AddrList> AddrGroups; 250 HexagonVectorCombine &HVC; 251 }; 252 253 LLVM_ATTRIBUTE_UNUSED 254 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 255 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 256 OS << "Addr: " << *AI.Addr << '\n'; 257 OS << "Type: " << *AI.ValTy << '\n'; 258 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 259 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 260 OS << "Offset: " << AI.Offset; 261 return OS; 262 } 263 264 LLVM_ATTRIBUTE_UNUSED 265 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 266 OS << "Main\n"; 267 for (Instruction *I : MG.Main) 268 OS << " " << *I << '\n'; 269 OS << "Deps\n"; 270 for (Instruction *I : MG.Deps) 271 OS << " " << *I << '\n'; 272 return OS; 273 } 274 275 LLVM_ATTRIBUTE_UNUSED 276 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 277 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 278 for (const AlignVectors::ByteSpan::Block &B : BS) { 279 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " 280 << *B.Seg.Val << '\n'; 281 } 282 OS << ']'; 283 return OS; 284 } 285 286 } // namespace 287 288 namespace { 289 290 template <typename T> T *getIfUnordered(T *MaybeT) { 291 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 292 } 293 template <typename T> T *isCandidate(Instruction *In) { 294 return dyn_cast<T>(In); 295 } 296 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 297 return getIfUnordered(dyn_cast<LoadInst>(In)); 298 } 299 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 300 return getIfUnordered(dyn_cast<StoreInst>(In)); 301 } 302 303 #if !defined(_MSC_VER) || _MSC_VER >= 1926 304 // VS2017 and some versions of VS2019 have trouble compiling this: 305 // error C2976: 'std::map': too few template arguments 306 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) 307 template <typename Pred, typename... Ts> 308 void erase_if(std::map<Ts...> &map, Pred p) 309 #else 310 template <typename Pred, typename T, typename U> 311 void erase_if(std::map<T, U> &map, Pred p) 312 #endif 313 { 314 for (auto i = map.begin(), e = map.end(); i != e;) { 315 if (p(*i)) 316 i = map.erase(i); 317 else 318 i = std::next(i); 319 } 320 } 321 322 // Forward other erase_ifs to the LLVM implementations. 323 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 324 llvm::erase_if(std::forward<T>(container), p); 325 } 326 327 } // namespace 328 329 // --- Begin AlignVectors 330 331 auto AlignVectors::ByteSpan::extent() const -> int { 332 if (size() == 0) 333 return 0; 334 int Min = Blocks[0].Pos; 335 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 336 for (int i = 1, e = size(); i != e; ++i) { 337 Min = std::min(Min, Blocks[i].Pos); 338 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 339 } 340 return Max - Min; 341 } 342 343 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 344 ByteSpan Section; 345 for (const ByteSpan::Block &B : Blocks) { 346 int L = std::max(B.Pos, Start); // Left end. 347 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 348 if (L < R) { 349 // How much to chop off the beginning of the segment: 350 int Off = L > B.Pos ? L - B.Pos : 0; 351 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 352 } 353 } 354 return Section; 355 } 356 357 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { 358 for (Block &B : Blocks) 359 B.Pos += Offset; 360 return *this; 361 } 362 363 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> { 364 SmallVector<Value *, 8> Values(Blocks.size()); 365 for (int i = 0, e = Blocks.size(); i != e; ++i) 366 Values[i] = Blocks[i].Seg.Val; 367 return Values; 368 } 369 370 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 371 const auto *C = dyn_cast<ConstantInt>(V); 372 assert(C && "Alignment must be a compile-time constant integer"); 373 return C->getAlignValue(); 374 } 375 376 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> { 377 if (auto *L = isCandidate<LoadInst>(&In)) 378 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 379 L->getAlign()); 380 if (auto *S = isCandidate<StoreInst>(&In)) 381 return AddrInfo(HVC, S, S->getPointerOperand(), 382 S->getValueOperand()->getType(), S->getAlign()); 383 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 384 Intrinsic::ID ID = II->getIntrinsicID(); 385 switch (ID) { 386 case Intrinsic::masked_load: 387 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 388 getAlignFromValue(II->getArgOperand(1))); 389 case Intrinsic::masked_store: 390 return AddrInfo(HVC, II, II->getArgOperand(1), 391 II->getArgOperand(0)->getType(), 392 getAlignFromValue(II->getArgOperand(2))); 393 } 394 } 395 return Optional<AddrInfo>(); 396 } 397 398 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 399 return HVC.HST.isTypeForHVX(AI.ValTy); 400 } 401 402 auto AlignVectors::getPayload(Value *Val) const -> Value * { 403 if (auto *In = dyn_cast<Instruction>(Val)) { 404 Intrinsic::ID ID = 0; 405 if (auto *II = dyn_cast<IntrinsicInst>(In)) 406 ID = II->getIntrinsicID(); 407 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 408 return In->getOperand(0); 409 } 410 return Val; 411 } 412 413 auto AlignVectors::getMask(Value *Val) const -> Value * { 414 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 415 switch (II->getIntrinsicID()) { 416 case Intrinsic::masked_load: 417 return II->getArgOperand(2); 418 case Intrinsic::masked_store: 419 return II->getArgOperand(3); 420 } 421 } 422 423 Type *ValTy = getPayload(Val)->getType(); 424 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) { 425 int ElemCount = VecTy->getElementCount().getFixedValue(); 426 return HVC.getFullValue(HVC.getBoolTy(ElemCount)); 427 } 428 return HVC.getFullValue(HVC.getBoolTy()); 429 } 430 431 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 432 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 433 if (II->getIntrinsicID() == Intrinsic::masked_load) 434 return II->getArgOperand(3); 435 } 436 return UndefValue::get(getPayload(Val)->getType()); 437 } 438 439 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, 440 Type *ValTy, int Adjust) const 441 -> Value * { 442 // The adjustment is in bytes, but if it's a multiple of the type size, 443 // we don't need to do pointer casts. 444 auto *PtrTy = cast<PointerType>(Ptr->getType()); 445 if (!PtrTy->isOpaque()) { 446 Type *ElemTy = PtrTy->getElementType(); 447 int ElemSize = HVC.getAllocSizeOf(ElemTy); 448 if (Adjust % ElemSize == 0 && Adjust != 0) { 449 Value *Tmp0 = 450 Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize)); 451 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); 452 } 453 } 454 455 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 456 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); 457 Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0, 458 HVC.getConstInt(Adjust)); 459 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); 460 } 461 462 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, 463 Type *ValTy, int Alignment) const 464 -> Value * { 465 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); 466 Value *Mask = HVC.getConstInt(-Alignment); 467 Value *And = Builder.CreateAnd(AsInt, Mask); 468 return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); 469 } 470 471 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, 472 Value *Ptr, int Alignment, Value *Mask, 473 Value *PassThru) const -> Value * { 474 assert(!HVC.isUndef(Mask)); // Should this be allowed? 475 if (HVC.isZero(Mask)) 476 return PassThru; 477 if (Mask == ConstantInt::getTrue(Mask->getType())) 478 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); 479 return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru); 480 } 481 482 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val, 483 Value *Ptr, int Alignment, 484 Value *Mask) const -> Value * { 485 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 486 return UndefValue::get(Val->getType()); 487 if (Mask == ConstantInt::getTrue(Mask->getType())) 488 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 489 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 490 } 491 492 auto AlignVectors::createAddressGroups() -> bool { 493 // An address group created here may contain instructions spanning 494 // multiple basic blocks. 495 AddrList WorkStack; 496 497 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 498 for (AddrInfo &W : WorkStack) { 499 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 500 return std::make_pair(W.Inst, *D); 501 } 502 return std::make_pair(nullptr, 0); 503 }; 504 505 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 506 BasicBlock &Block = *DomN->getBlock(); 507 for (Instruction &I : Block) { 508 auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 509 if (!AI) 510 continue; 511 auto F = findBaseAndOffset(*AI); 512 Instruction *GroupInst; 513 if (Instruction *BI = F.first) { 514 AI->Offset = F.second; 515 GroupInst = BI; 516 } else { 517 WorkStack.push_back(*AI); 518 GroupInst = AI->Inst; 519 } 520 AddrGroups[GroupInst].push_back(*AI); 521 } 522 523 for (DomTreeNode *C : DomN->children()) 524 Visit(C, Visit); 525 526 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 527 WorkStack.pop_back(); 528 }; 529 530 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 531 assert(WorkStack.empty()); 532 533 // AddrGroups are formed. 534 535 // Remove groups of size 1. 536 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 537 // Remove groups that don't use HVX types. 538 erase_if(AddrGroups, [&](auto &G) { 539 return !llvm::any_of( 540 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 541 }); 542 543 return !AddrGroups.empty(); 544 } 545 546 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 547 // Form load groups. 548 // To avoid complications with moving code across basic blocks, only form 549 // groups that are contained within a single basic block. 550 551 auto getUpwardDeps = [](Instruction *In, Instruction *Base) { 552 BasicBlock *Parent = Base->getParent(); 553 assert(In->getParent() == Parent && 554 "Base and In should be in the same block"); 555 assert(Base->comesBefore(In) && "Base should come before In"); 556 557 DepList Deps; 558 std::deque<Instruction *> WorkQ = {In}; 559 while (!WorkQ.empty()) { 560 Instruction *D = WorkQ.front(); 561 WorkQ.pop_front(); 562 Deps.insert(D); 563 for (Value *Op : D->operands()) { 564 if (auto *I = dyn_cast<Instruction>(Op)) { 565 if (I->getParent() == Parent && Base->comesBefore(I)) 566 WorkQ.push_back(I); 567 } 568 } 569 } 570 return Deps; 571 }; 572 573 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 574 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 575 // Don't mix HVX and non-HVX instructions. 576 if (Move.IsHvx != isHvx(Info)) 577 return false; 578 // Leading instruction in the load group. 579 Instruction *Base = Move.Main.front(); 580 if (Base->getParent() != Info.Inst->getParent()) 581 return false; 582 583 auto isSafeToMoveToBase = [&](const Instruction *I) { 584 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 585 }; 586 DepList Deps = getUpwardDeps(Info.Inst, Base); 587 if (!llvm::all_of(Deps, isSafeToMoveToBase)) 588 return false; 589 590 // The dependencies will be moved together with the load, so make sure 591 // that none of them could be moved independently in another group. 592 Deps.erase(Info.Inst); 593 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 594 if (llvm::any_of(Deps, inAddrMap)) 595 return false; 596 Move.Main.push_back(Info.Inst); 597 llvm::append_range(Move.Deps, Deps); 598 return true; 599 }; 600 601 MoveList LoadGroups; 602 603 for (const AddrInfo &Info : Group) { 604 if (!Info.Inst->mayReadFromMemory()) 605 continue; 606 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 607 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 608 } 609 610 // Erase singleton groups. 611 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 612 return LoadGroups; 613 } 614 615 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 616 // Form store groups. 617 // To avoid complications with moving code across basic blocks, only form 618 // groups that are contained within a single basic block. 619 620 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 621 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 622 // For stores with return values we'd have to collect downward depenencies. 623 // There are no such stores that we handle at the moment, so omit that. 624 assert(Info.Inst->getType()->isVoidTy() && 625 "Not handling stores with return values"); 626 // Don't mix HVX and non-HVX instructions. 627 if (Move.IsHvx != isHvx(Info)) 628 return false; 629 // For stores we need to be careful whether it's safe to move them. 630 // Stores that are otherwise safe to move together may not appear safe 631 // to move over one another (i.e. isSafeToMoveBefore may return false). 632 Instruction *Base = Move.Main.front(); 633 if (Base->getParent() != Info.Inst->getParent()) 634 return false; 635 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 636 return false; 637 Move.Main.push_back(Info.Inst); 638 return true; 639 }; 640 641 MoveList StoreGroups; 642 643 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 644 const AddrInfo &Info = *I; 645 if (!Info.Inst->mayWriteToMemory()) 646 continue; 647 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 648 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 649 } 650 651 // Erase singleton groups. 652 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 653 return StoreGroups; 654 } 655 656 auto AlignVectors::move(const MoveGroup &Move) const -> bool { 657 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 658 Instruction *Where = Move.Main.front(); 659 660 if (Move.IsLoad) { 661 // Move all deps to before Where, keeping order. 662 for (Instruction *D : Move.Deps) 663 D->moveBefore(Where); 664 // Move all main instructions to after Where, keeping order. 665 ArrayRef<Instruction *> Main(Move.Main); 666 for (Instruction *M : Main.drop_front(1)) { 667 M->moveAfter(Where); 668 Where = M; 669 } 670 } else { 671 // NOTE: Deps are empty for "store" groups. If they need to be 672 // non-empty, decide on the order. 673 assert(Move.Deps.empty()); 674 // Move all main instructions to before Where, inverting order. 675 ArrayRef<Instruction *> Main(Move.Main); 676 for (Instruction *M : Main.drop_front(1)) { 677 M->moveBefore(Where); 678 Where = M; 679 } 680 } 681 682 return Move.Main.size() + Move.Deps.size() > 1; 683 } 684 685 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 686 // TODO: Needs support for masked loads/stores of "scalar" vectors. 687 if (!Move.IsHvx) 688 return false; 689 690 // Return the element with the maximum alignment from Range, 691 // where GetValue obtains the value to compare from an element. 692 auto getMaxOf = [](auto Range, auto GetValue) { 693 return *std::max_element( 694 Range.begin(), Range.end(), 695 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 696 }; 697 698 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 699 700 // Conceptually, there is a vector of N bytes covering the addresses 701 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 702 // represents a contiguous memory region that spans all accessed memory 703 // locations. 704 // The correspondence between loaded or stored values will be expressed 705 // in terms of this vector. For example, the 0th element of the vector 706 // from the Base address info will start at byte Start from the beginning 707 // of this conceptual vector. 708 // 709 // This vector will be loaded/stored starting at the nearest down-aligned 710 // address and the amount od the down-alignment will be AlignVal: 711 // valign(load_vector(align_down(Base+Start)), AlignVal) 712 713 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 714 AddrList MoveInfos; 715 llvm::copy_if( 716 BaseInfos, std::back_inserter(MoveInfos), 717 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 718 719 // Maximum alignment present in the whole address group. 720 const AddrInfo &WithMaxAlign = 721 getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 722 Align MaxGiven = WithMaxAlign.HaveAlign; 723 724 // Minimum alignment present in the move address group. 725 const AddrInfo &WithMinOffset = 726 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 727 728 const AddrInfo &WithMaxNeeded = 729 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 730 Align MinNeeded = WithMaxNeeded.NeedAlign; 731 732 // Set the builder at the top instruction in the move group. 733 Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back(); 734 IRBuilder<> Builder(TopIn); 735 Value *AlignAddr = nullptr; // Actual aligned address. 736 Value *AlignVal = nullptr; // Right-shift amount (for valign). 737 738 if (MinNeeded <= MaxGiven) { 739 int Start = WithMinOffset.Offset; 740 int OffAtMax = WithMaxAlign.Offset; 741 // Shift the offset of the maximally aligned instruction (OffAtMax) 742 // back by just enough multiples of the required alignment to cover the 743 // distance from Start to OffAtMax. 744 // Calculate the address adjustment amount based on the address with the 745 // maximum alignment. This is to allow a simple gep instruction instead 746 // of potential bitcasts to i8*. 747 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 748 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 749 WithMaxAlign.ValTy, Adjust); 750 int Diff = Start - (OffAtMax + Adjust); 751 AlignVal = HVC.getConstInt(Diff); 752 // Sanity. 753 assert(Diff >= 0); 754 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 755 } else { 756 // WithMinOffset is the lowest address in the group, 757 // WithMinOffset.Addr = Base+Start. 758 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 759 // mask off unnecessary bits, so it's ok to just the original pointer as 760 // the alignment amount. 761 // Do an explicit down-alignment of the address to avoid creating an 762 // aligned instruction with an address that is not really aligned. 763 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 764 WithMinOffset.ValTy, MinNeeded.value()); 765 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); 766 } 767 768 ByteSpan VSpan; 769 for (const AddrInfo &AI : MoveInfos) { 770 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 771 AI.Offset - WithMinOffset.Offset); 772 } 773 774 // The aligned loads/stores will use blocks that are either scalars, 775 // or HVX vectors. Let "sector" be the unified term for such a block. 776 // blend(scalar, vector) -> sector... 777 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 778 : std::max<int>(MinNeeded.value(), 4); 779 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 780 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 781 782 Type *SecTy = HVC.getByteTy(ScLen); 783 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 784 bool DoAlign = !HVC.isZero(AlignVal); 785 786 if (Move.IsLoad) { 787 ByteSpan ASpan; 788 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 789 auto *Undef = UndefValue::get(SecTy); 790 791 for (int i = 0; i != NumSectors + DoAlign; ++i) { 792 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 793 // FIXME: generate a predicated load? 794 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); 795 // If vector shifting is potentially needed, accumulate metadata 796 // from source sections of twice the load width. 797 int Start = (i - DoAlign) * ScLen; 798 int Width = (1 + DoAlign) * ScLen; 799 propagateMetadata(cast<Instruction>(Load), 800 VSpan.section(Start, Width).values()); 801 ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen); 802 } 803 804 if (DoAlign) { 805 for (int j = 0; j != NumSectors; ++j) { 806 ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val, 807 ASpan[j + 1].Seg.Val, AlignVal); 808 } 809 } 810 811 for (ByteSpan::Block &B : VSpan) { 812 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); 813 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 814 for (ByteSpan::Block &S : ASection) { 815 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); 816 Accum = 817 HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); 818 } 819 // Instead of casting everything to bytes for the vselect, cast to the 820 // original value type. This will avoid complications with casting masks. 821 // For example, in cases when the original mask applied to i32, it could 822 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 823 // but if the mask is not exactly of HVX length, extra handling would be 824 // needed to make it work. 825 Type *ValTy = getPayload(B.Seg.Val)->getType(); 826 Value *Cast = Builder.CreateBitCast(Accum, ValTy); 827 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 828 getPassThrough(B.Seg.Val)); 829 B.Seg.Val->replaceAllUsesWith(Sel); 830 } 831 } else { 832 // Stores. 833 ByteSpan ASpanV, ASpanM; 834 835 // Return a vector value corresponding to the input value Val: 836 // either <1 x Val> for scalar Val, or Val itself for vector Val. 837 auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * { 838 Type *Ty = Val->getType(); 839 if (Ty->isVectorTy()) 840 return Val; 841 auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false); 842 return Builder.CreateBitCast(Val, VecTy); 843 }; 844 845 // Create an extra "undef" sector at the beginning and at the end. 846 // They will be used as the left/right filler in the vlalign step. 847 for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) { 848 // For stores, the size of each section is an aligned vector length. 849 // Adjust the store offsets relative to the section start offset. 850 ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen); 851 Value *AccumV = UndefValue::get(SecTy); 852 Value *AccumM = HVC.getNullValue(SecTy); 853 for (ByteSpan::Block &S : VSection) { 854 Value *Pay = getPayload(S.Seg.Val); 855 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 856 Pay->getType(), HVC.getByteTy()); 857 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 858 S.Seg.Start, S.Seg.Size, S.Pos); 859 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 860 S.Seg.Start, S.Seg.Size, S.Pos); 861 } 862 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); 863 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); 864 } 865 866 // vlalign 867 if (DoAlign) { 868 for (int j = 1; j != NumSectors + 2; ++j) { 869 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val, 870 ASpanV[j].Seg.Val, AlignVal); 871 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val, 872 ASpanM[j].Seg.Val, AlignVal); 873 } 874 } 875 876 for (int i = 0; i != NumSectors + DoAlign; ++i) { 877 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 878 Value *Val = ASpanV[i].Seg.Val; 879 Value *Mask = ASpanM[i].Seg.Val; // bytes 880 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) { 881 Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen, 882 HVC.vlsb(Builder, Mask)); 883 // If vector shifting is potentially needed, accumulate metadata 884 // from source sections of twice the store width. 885 int Start = (i - DoAlign) * ScLen; 886 int Width = (1 + DoAlign) * ScLen; 887 propagateMetadata(cast<Instruction>(Store), 888 VSpan.section(Start, Width).values()); 889 } 890 } 891 } 892 893 for (auto *Inst : Move.Main) 894 Inst->eraseFromParent(); 895 896 return true; 897 } 898 899 auto AlignVectors::run() -> bool { 900 if (!createAddressGroups()) 901 return false; 902 903 bool Changed = false; 904 MoveList LoadGroups, StoreGroups; 905 906 for (auto &G : AddrGroups) { 907 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 908 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 909 } 910 911 for (auto &M : LoadGroups) 912 Changed |= move(M); 913 for (auto &M : StoreGroups) 914 Changed |= move(M); 915 916 for (auto &M : LoadGroups) 917 Changed |= realignGroup(M); 918 for (auto &M : StoreGroups) 919 Changed |= realignGroup(M); 920 921 return Changed; 922 } 923 924 // --- End AlignVectors 925 926 auto HexagonVectorCombine::run() -> bool { 927 if (!HST.useHVXOps()) 928 return false; 929 930 bool Changed = AlignVectors(*this).run(); 931 return Changed; 932 } 933 934 auto HexagonVectorCombine::getIntTy() const -> IntegerType * { 935 return Type::getInt32Ty(F.getContext()); 936 } 937 938 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 939 assert(ElemCount >= 0); 940 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 941 if (ElemCount == 0) 942 return ByteTy; 943 return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false); 944 } 945 946 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 947 assert(ElemCount >= 0); 948 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 949 if (ElemCount == 0) 950 return BoolTy; 951 return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false); 952 } 953 954 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * { 955 return ConstantInt::getSigned(getIntTy(), Val); 956 } 957 958 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 959 if (auto *C = dyn_cast<Constant>(Val)) 960 return C->isZeroValue(); 961 return false; 962 } 963 964 auto HexagonVectorCombine::getIntValue(const Value *Val) const 965 -> Optional<APInt> { 966 if (auto *CI = dyn_cast<ConstantInt>(Val)) 967 return CI->getValue(); 968 return None; 969 } 970 971 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 972 return isa<UndefValue>(Val); 973 } 974 975 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int { 976 return getSizeOf(Val->getType()); 977 } 978 979 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int { 980 return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue(); 981 } 982 983 auto HexagonVectorCombine::getAllocSizeOf(const Type *Ty) const -> int { 984 return DL.getTypeAllocSize(const_cast<Type *>(Ty)).getFixedValue(); 985 } 986 987 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 988 // The actual type may be shorter than the HVX vector, so determine 989 // the alignment based on subtarget info. 990 if (HST.isTypeForHVX(Ty)) 991 return HST.getVectorLength(); 992 return DL.getABITypeAlign(Ty).value(); 993 } 994 995 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 996 assert(Ty->isIntOrIntVectorTy()); 997 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 998 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 999 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 1000 return Zero; 1001 } 1002 1003 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 1004 assert(Ty->isIntOrIntVectorTy()); 1005 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 1006 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1007 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 1008 return Minus1; 1009 } 1010 1011 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 1012 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src, 1013 int Start, int Length, int Where) const 1014 -> Value * { 1015 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 1016 int SrcLen = getSizeOf(Src); 1017 int DstLen = getSizeOf(Dst); 1018 assert(0 <= Start && Start + Length <= SrcLen); 1019 assert(0 <= Where && Where + Length <= DstLen); 1020 1021 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 1022 auto *Undef = UndefValue::get(getByteTy()); 1023 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 1024 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 1025 1026 SmallVector<int, 256> SMask(P2Len); 1027 for (int i = 0; i != P2Len; ++i) { 1028 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 1029 // Otherwise, pick Dst[i]; 1030 SMask[i] = 1031 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 1032 } 1033 1034 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); 1035 return vresize(Builder, P2Insert, DstLen, Undef); 1036 } 1037 1038 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, 1039 Value *Amt) const -> Value * { 1040 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1041 assert(isSectorTy(Hi->getType())); 1042 if (isZero(Amt)) 1043 return Hi; 1044 int VecLen = getSizeOf(Hi); 1045 if (auto IntAmt = getIntValue(Amt)) 1046 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 1047 VecLen); 1048 1049 if (HST.isTypeForHVX(Hi->getType())) { 1050 int HwLen = HST.getVectorLength(); 1051 assert(VecLen == HwLen && "Expecting an exact HVX type"); 1052 Intrinsic::ID V6_vlalignb = HwLen == 64 1053 ? Intrinsic::hexagon_V6_vlalignb 1054 : Intrinsic::hexagon_V6_vlalignb_128B; 1055 return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(), 1056 {Hi, Lo, Amt}); 1057 } 1058 1059 if (VecLen == 4) { 1060 Value *Pair = concat(Builder, {Lo, Hi}); 1061 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); 1062 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1063 return Builder.CreateBitCast(Trunc, Hi->getType()); 1064 } 1065 if (VecLen == 8) { 1066 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); 1067 return vralignb(Builder, Lo, Hi, Sub); 1068 } 1069 llvm_unreachable("Unexpected vector length"); 1070 } 1071 1072 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, 1073 Value *Amt) const -> Value * { 1074 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1075 assert(isSectorTy(Lo->getType())); 1076 if (isZero(Amt)) 1077 return Lo; 1078 int VecLen = getSizeOf(Lo); 1079 if (auto IntAmt = getIntValue(Amt)) 1080 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 1081 1082 if (HST.isTypeForHVX(Lo->getType())) { 1083 int HwLen = HST.getVectorLength(); 1084 assert(VecLen == HwLen && "Expecting an exact HVX type"); 1085 Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb 1086 : Intrinsic::hexagon_V6_valignb_128B; 1087 return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(), 1088 {Hi, Lo, Amt}); 1089 } 1090 1091 if (VecLen == 4) { 1092 Value *Pair = concat(Builder, {Lo, Hi}); 1093 Value *Shift = Builder.CreateLShr(Pair, Amt); 1094 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1095 return Builder.CreateBitCast(Trunc, Lo->getType()); 1096 } 1097 if (VecLen == 8) { 1098 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1099 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); 1100 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); 1101 Function *FI = Intrinsic::getDeclaration(F.getParent(), 1102 Intrinsic::hexagon_S2_valignrb); 1103 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); 1104 return Builder.CreateBitCast(Call, Lo->getType()); 1105 } 1106 llvm_unreachable("Unexpected vector length"); 1107 } 1108 1109 // Concatenates a sequence of vectors of the same type. 1110 auto HexagonVectorCombine::concat(IRBuilder<> &Builder, 1111 ArrayRef<Value *> Vecs) const -> Value * { 1112 assert(!Vecs.empty()); 1113 SmallVector<int, 256> SMask; 1114 std::vector<Value *> Work[2]; 1115 int ThisW = 0, OtherW = 1; 1116 1117 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 1118 while (Work[ThisW].size() > 1) { 1119 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 1120 int ElemCount = Ty->getElementCount().getFixedValue(); 1121 SMask.resize(ElemCount * 2); 1122 std::iota(SMask.begin(), SMask.end(), 0); 1123 1124 Work[OtherW].clear(); 1125 if (Work[ThisW].size() % 2 != 0) 1126 Work[ThisW].push_back(UndefValue::get(Ty)); 1127 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 1128 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], 1129 Work[ThisW][i + 1], SMask); 1130 Work[OtherW].push_back(Joined); 1131 } 1132 std::swap(ThisW, OtherW); 1133 } 1134 1135 // Since there may have been some undefs appended to make shuffle operands 1136 // have the same type, perform the last shuffle to only pick the original 1137 // elements. 1138 SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType())); 1139 std::iota(SMask.begin(), SMask.end(), 0); 1140 Value *Total = Work[OtherW].front(); 1141 return Builder.CreateShuffleVector(Total, SMask); 1142 } 1143 1144 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val, 1145 int NewSize, Value *Pad) const -> Value * { 1146 assert(isa<VectorType>(Val->getType())); 1147 auto *ValTy = cast<VectorType>(Val->getType()); 1148 assert(ValTy->getElementType() == Pad->getType()); 1149 1150 int CurSize = ValTy->getElementCount().getFixedValue(); 1151 if (CurSize == NewSize) 1152 return Val; 1153 // Truncate? 1154 if (CurSize > NewSize) 1155 return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize); 1156 // Extend. 1157 SmallVector<int, 128> SMask(NewSize); 1158 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 1159 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 1160 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); 1161 return Builder.CreateShuffleVector(Val, PadVec, SMask); 1162 } 1163 1164 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask, 1165 Type *FromTy, Type *ToTy) const -> Value * { 1166 // Mask is a vector <N x i1>, where each element corresponds to an 1167 // element of FromTy. Remap it so that each element will correspond 1168 // to an element of ToTy. 1169 assert(isa<VectorType>(Mask->getType())); 1170 1171 Type *FromSTy = FromTy->getScalarType(); 1172 Type *ToSTy = ToTy->getScalarType(); 1173 if (FromSTy == ToSTy) 1174 return Mask; 1175 1176 int FromSize = getSizeOf(FromSTy); 1177 int ToSize = getSizeOf(ToSTy); 1178 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 1179 1180 auto *MaskTy = cast<VectorType>(Mask->getType()); 1181 int FromCount = MaskTy->getElementCount().getFixedValue(); 1182 int ToCount = (FromCount * FromSize) / ToSize; 1183 assert((FromCount * FromSize) % ToSize == 0); 1184 1185 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 1186 // -> trunc to <M x i1>. 1187 Value *Ext = Builder.CreateSExt( 1188 Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false)); 1189 Value *Cast = Builder.CreateBitCast( 1190 Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false)); 1191 return Builder.CreateTrunc( 1192 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false)); 1193 } 1194 1195 // Bitcast to bytes, and return least significant bits. 1196 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const 1197 -> Value * { 1198 Type *ScalarTy = Val->getType()->getScalarType(); 1199 if (ScalarTy == getBoolTy()) 1200 return Val; 1201 1202 Value *Bytes = vbytes(Builder, Val); 1203 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 1204 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy))); 1205 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 1206 // <1 x i1>. 1207 return Builder.CreateTrunc(Bytes, getBoolTy()); 1208 } 1209 1210 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 1211 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const 1212 -> Value * { 1213 Type *ScalarTy = Val->getType()->getScalarType(); 1214 if (ScalarTy == getByteTy()) 1215 return Val; 1216 1217 if (ScalarTy != getBoolTy()) 1218 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); 1219 // For bool, return a sext from i1 to i8. 1220 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 1221 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); 1222 return Builder.CreateSExt(Val, getByteTy()); 1223 } 1224 1225 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder, 1226 Intrinsic::ID IntID, Type *RetTy, 1227 ArrayRef<Value *> Args) const 1228 -> Value * { 1229 int HwLen = HST.getVectorLength(); 1230 Type *BoolTy = Type::getInt1Ty(F.getContext()); 1231 Type *Int32Ty = Type::getInt32Ty(F.getContext()); 1232 // HVX vector -> v16i32/v32i32 1233 // HVX vector predicate -> v512i1/v1024i1 1234 auto getTypeForIntrin = [&](Type *Ty) -> Type * { 1235 if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) { 1236 Type *ElemTy = cast<VectorType>(Ty)->getElementType(); 1237 if (ElemTy == Int32Ty) 1238 return Ty; 1239 if (ElemTy == BoolTy) 1240 return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false); 1241 return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false); 1242 } 1243 // Non-HVX type. It should be a scalar. 1244 assert(Ty == Int32Ty || Ty->isIntegerTy(64)); 1245 return Ty; 1246 }; 1247 1248 auto getCast = [&](IRBuilder<> &Builder, Value *Val, 1249 Type *DestTy) -> Value * { 1250 Type *SrcTy = Val->getType(); 1251 if (SrcTy == DestTy) 1252 return Val; 1253 if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) { 1254 if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) { 1255 // This should take care of casts the other way too, for example 1256 // v1024i1 -> v32i1. 1257 Intrinsic::ID TC = HwLen == 64 1258 ? Intrinsic::hexagon_V6_pred_typecast 1259 : Intrinsic::hexagon_V6_pred_typecast_128B; 1260 Function *FI = Intrinsic::getDeclaration(F.getParent(), TC, 1261 {DestTy, Val->getType()}); 1262 return Builder.CreateCall(FI, {Val}); 1263 } 1264 // Non-predicate HVX vector. 1265 return Builder.CreateBitCast(Val, DestTy); 1266 } 1267 // Non-HVX type. It should be a scalar, and it should already have 1268 // a valid type. 1269 llvm_unreachable("Unexpected type"); 1270 }; 1271 1272 SmallVector<Value *, 4> IntOps; 1273 for (Value *A : Args) 1274 IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType()))); 1275 Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID); 1276 Value *Call = Builder.CreateCall(FI, IntOps); 1277 1278 Type *CallTy = Call->getType(); 1279 if (CallTy == RetTy) 1280 return Call; 1281 // Scalar types should have RetTy matching the call return type. 1282 assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true)); 1283 if (cast<VectorType>(CallTy)->getElementType() == BoolTy) 1284 return getCast(Builder, Call, RetTy); 1285 return Builder.CreateBitCast(Call, RetTy); 1286 } 1287 1288 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 1289 Value *Ptr1) const 1290 -> Optional<int> { 1291 struct Builder : IRBuilder<> { 1292 Builder(BasicBlock *B) : IRBuilder<>(B) {} 1293 ~Builder() { 1294 for (Instruction *I : llvm::reverse(ToErase)) 1295 I->eraseFromParent(); 1296 } 1297 SmallVector<Instruction *, 8> ToErase; 1298 }; 1299 1300 #define CallBuilder(B, F) \ 1301 [&](auto &B_) { \ 1302 Value *V = B_.F; \ 1303 if (auto *I = dyn_cast<Instruction>(V)) \ 1304 B_.ToErase.push_back(I); \ 1305 return V; \ 1306 }(B) 1307 1308 auto Simplify = [&](Value *V) { 1309 if (auto *I = dyn_cast<Instruction>(V)) { 1310 SimplifyQuery Q(DL, &TLI, &DT, &AC, I); 1311 if (Value *S = SimplifyInstruction(I, Q)) 1312 return S; 1313 } 1314 return V; 1315 }; 1316 1317 auto StripBitCast = [](Value *V) { 1318 while (auto *C = dyn_cast<BitCastInst>(V)) 1319 V = C->getOperand(0); 1320 return V; 1321 }; 1322 1323 Ptr0 = StripBitCast(Ptr0); 1324 Ptr1 = StripBitCast(Ptr1); 1325 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 1326 return None; 1327 1328 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 1329 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 1330 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 1331 return None; 1332 1333 Builder B(Gep0->getParent()); 1334 int Scale = getAllocSizeOf(Gep0->getSourceElementType()); 1335 1336 // FIXME: for now only check GEPs with a single index. 1337 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 1338 return None; 1339 1340 Value *Idx0 = Gep0->getOperand(1); 1341 Value *Idx1 = Gep1->getOperand(1); 1342 1343 // First, try to simplify the subtraction directly. 1344 if (auto *Diff = dyn_cast<ConstantInt>( 1345 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 1346 return Diff->getSExtValue() * Scale; 1347 1348 KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT); 1349 KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT); 1350 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 1351 if (Unknown.isAllOnes()) 1352 return None; 1353 1354 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 1355 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 1356 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 1357 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 1358 int Diff0 = 0; 1359 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 1360 Diff0 = C->getSExtValue(); 1361 } else { 1362 return None; 1363 } 1364 1365 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 1366 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 1367 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 1368 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 1369 int Diff1 = 0; 1370 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 1371 Diff1 = C->getSExtValue(); 1372 } else { 1373 return None; 1374 } 1375 1376 return (Diff0 + Diff1) * Scale; 1377 1378 #undef CallBuilder 1379 } 1380 1381 template <typename T> 1382 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 1383 BasicBlock::const_iterator To, 1384 const T &Ignore) const 1385 -> bool { 1386 auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> { 1387 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 1388 switch (II->getIntrinsicID()) { 1389 case Intrinsic::masked_load: 1390 return MemoryLocation::getForArgument(II, 0, TLI); 1391 case Intrinsic::masked_store: 1392 return MemoryLocation::getForArgument(II, 1, TLI); 1393 } 1394 } 1395 return MemoryLocation::getOrNone(&I); 1396 }; 1397 1398 // The source and the destination must be in the same basic block. 1399 const BasicBlock &Block = *In.getParent(); 1400 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 1401 // No PHIs. 1402 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 1403 return false; 1404 1405 if (!mayBeMemoryDependent(In)) 1406 return true; 1407 bool MayWrite = In.mayWriteToMemory(); 1408 auto MaybeLoc = getLocOrNone(In); 1409 1410 auto From = In.getIterator(); 1411 if (From == To) 1412 return true; 1413 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 1414 auto Range = 1415 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 1416 for (auto It = Range.first; It != Range.second; ++It) { 1417 const Instruction &I = *It; 1418 if (llvm::is_contained(Ignore, &I)) 1419 continue; 1420 // assume intrinsic can be ignored 1421 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1422 if (II->getIntrinsicID() == Intrinsic::assume) 1423 continue; 1424 } 1425 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 1426 if (I.mayThrow()) 1427 return false; 1428 if (auto *CB = dyn_cast<CallBase>(&I)) { 1429 if (!CB->hasFnAttr(Attribute::WillReturn)) 1430 return false; 1431 if (!CB->hasFnAttr(Attribute::NoSync)) 1432 return false; 1433 } 1434 if (I.mayReadOrWriteMemory()) { 1435 auto MaybeLocI = getLocOrNone(I); 1436 if (MayWrite || I.mayWriteToMemory()) { 1437 if (!MaybeLoc || !MaybeLocI) 1438 return false; 1439 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 1440 return false; 1441 } 1442 } 1443 } 1444 return true; 1445 } 1446 1447 #ifndef NDEBUG 1448 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 1449 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1450 return VecTy->getElementType() == getByteTy(); 1451 return false; 1452 } 1453 1454 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool { 1455 if (!isByteVecTy(Ty)) 1456 return false; 1457 int Size = getSizeOf(Ty); 1458 if (HST.isTypeForHVX(Ty)) 1459 return Size == static_cast<int>(HST.getVectorLength()); 1460 return Size == 4 || Size == 8; 1461 } 1462 #endif 1463 1464 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo, 1465 Value *Hi, int Start, 1466 int Length) const -> Value * { 1467 assert(0 <= Start && Start < Length); 1468 SmallVector<int, 128> SMask(Length); 1469 std::iota(SMask.begin(), SMask.end(), Start); 1470 return Builder.CreateShuffleVector(Lo, Hi, SMask); 1471 } 1472 1473 // Pass management. 1474 1475 namespace llvm { 1476 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 1477 FunctionPass *createHexagonVectorCombineLegacyPass(); 1478 } // namespace llvm 1479 1480 namespace { 1481 class HexagonVectorCombineLegacy : public FunctionPass { 1482 public: 1483 static char ID; 1484 1485 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 1486 1487 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 1488 1489 void getAnalysisUsage(AnalysisUsage &AU) const override { 1490 AU.setPreservesCFG(); 1491 AU.addRequired<AAResultsWrapperPass>(); 1492 AU.addRequired<AssumptionCacheTracker>(); 1493 AU.addRequired<DominatorTreeWrapperPass>(); 1494 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1495 AU.addRequired<TargetPassConfig>(); 1496 FunctionPass::getAnalysisUsage(AU); 1497 } 1498 1499 bool runOnFunction(Function &F) override { 1500 if (skipFunction(F)) 1501 return false; 1502 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1503 AssumptionCache &AC = 1504 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1505 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1506 TargetLibraryInfo &TLI = 1507 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1508 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 1509 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 1510 return HVC.run(); 1511 } 1512 }; 1513 } // namespace 1514 1515 char HexagonVectorCombineLegacy::ID = 0; 1516 1517 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 1518 "Hexagon Vector Combine", false, false) 1519 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1520 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1521 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1522 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1523 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 1524 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 1525 "Hexagon Vector Combine", false, false) 1526 1527 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 1528 return new HexagonVectorCombineLegacy(); 1529 } 1530