xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // HexagonVectorCombine is a utility class implementing a variety of functions
9 // that assist in vector-based optimizations.
10 //
11 // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12 // HvxIdioms: recognize various opportunities to generate HVX intrinsic code.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstSimplifyFolder.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/VectorUtils.h"
28 #include "llvm/CodeGen/TargetPassConfig.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsHexagon.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 
46 #include "HexagonSubtarget.h"
47 #include "HexagonTargetMachine.h"
48 
49 #include <algorithm>
50 #include <deque>
51 #include <map>
52 #include <optional>
53 #include <set>
54 #include <utility>
55 #include <vector>
56 
57 #define DEBUG_TYPE "hexagon-vc"
58 
59 using namespace llvm;
60 
61 namespace {
62 cl::opt<bool> DumpModule("hvc-dump-module", cl::Hidden);
63 cl::opt<bool> VAEnabled("hvc-va", cl::Hidden, cl::init(true)); // Align
64 cl::opt<bool> VIEnabled("hvc-vi", cl::Hidden, cl::init(true)); // Idioms
65 cl::opt<bool> VADoFullStores("hvc-va-full-stores", cl::Hidden);
66 
67 cl::opt<unsigned> VAGroupCountLimit("hvc-va-group-count-limit", cl::Hidden,
68                                     cl::init(~0));
69 cl::opt<unsigned> VAGroupSizeLimit("hvc-va-group-size-limit", cl::Hidden,
70                                    cl::init(~0));
71 
72 class HexagonVectorCombine {
73 public:
74   HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
75                        DominatorTree &DT_, ScalarEvolution &SE_,
76                        TargetLibraryInfo &TLI_, const TargetMachine &TM_)
77       : F(F_), DL(F.getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
78         SE(SE_), TLI(TLI_),
79         HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
80 
81   bool run();
82 
83   // Common integer type.
84   IntegerType *getIntTy(unsigned Width = 32) const;
85   // Byte type: either scalar (when Length = 0), or vector with given
86   // element count.
87   Type *getByteTy(int ElemCount = 0) const;
88   // Boolean type: either scalar (when Length = 0), or vector with given
89   // element count.
90   Type *getBoolTy(int ElemCount = 0) const;
91   // Create a ConstantInt of type returned by getIntTy with the value Val.
92   ConstantInt *getConstInt(int Val, unsigned Width = 32) const;
93   // Get the integer value of V, if it exists.
94   std::optional<APInt> getIntValue(const Value *Val) const;
95   // Is Val a constant 0, or a vector of 0s?
96   bool isZero(const Value *Val) const;
97   // Is Val an undef value?
98   bool isUndef(const Value *Val) const;
99   // Is Val a scalar (i1 true) or a vector of (i1 true)?
100   bool isTrue(const Value *Val) const;
101   // Is Val a scalar (i1 false) or a vector of (i1 false)?
102   bool isFalse(const Value *Val) const;
103 
104   // Get HVX vector type with the given element type.
105   VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const;
106 
107   enum SizeKind {
108     Store, // Store size
109     Alloc, // Alloc size
110   };
111   int getSizeOf(const Value *Val, SizeKind Kind = Store) const;
112   int getSizeOf(const Type *Ty, SizeKind Kind = Store) const;
113   int getTypeAlignment(Type *Ty) const;
114   size_t length(Value *Val) const;
115   size_t length(Type *Ty) const;
116 
117   Constant *getNullValue(Type *Ty) const;
118   Constant *getFullValue(Type *Ty) const;
119   Constant *getConstSplat(Type *Ty, int Val) const;
120 
121   Value *simplify(Value *Val) const;
122 
123   Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start,
124                  int Length, int Where) const;
125   Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
126                   Value *Amt) const;
127   Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
128                   Value *Amt) const;
129   Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const;
130   Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize,
131                  Value *Pad) const;
132   Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy,
133                  Type *ToTy) const;
134   Value *vlsb(IRBuilderBase &Builder, Value *Val) const;
135   Value *vbytes(IRBuilderBase &Builder, Value *Val) const;
136   Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start,
137                    unsigned Length) const;
138   Value *sublo(IRBuilderBase &Builder, Value *Val) const;
139   Value *subhi(IRBuilderBase &Builder, Value *Val) const;
140   Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
141   Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
142 
143   Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID,
144                             Type *RetTy, ArrayRef<Value *> Args,
145                             ArrayRef<Type *> ArgTys = std::nullopt,
146                             ArrayRef<Value *> MDSources = std::nullopt) const;
147   SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec,
148                                            unsigned ToWidth) const;
149   Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values,
150                             VectorType *ToType) const;
151 
152   std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
153 
154   unsigned getNumSignificantBits(const Value *V,
155                                  const Instruction *CtxI = nullptr) const;
156   KnownBits getKnownBits(const Value *V,
157                          const Instruction *CtxI = nullptr) const;
158 
159   bool isSafeToClone(const Instruction &In) const;
160 
161   template <typename T = std::vector<Instruction *>>
162   bool isSafeToMoveBeforeInBB(const Instruction &In,
163                               BasicBlock::const_iterator To,
164                               const T &IgnoreInsts = {}) const;
165 
166   // This function is only used for assertions at the moment.
167   [[maybe_unused]] bool isByteVecTy(Type *Ty) const;
168 
169   Function &F;
170   const DataLayout &DL;
171   AliasAnalysis &AA;
172   AssumptionCache &AC;
173   DominatorTree &DT;
174   ScalarEvolution &SE;
175   TargetLibraryInfo &TLI;
176   const HexagonSubtarget &HST;
177 
178 private:
179   Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi,
180                          int Start, int Length) const;
181 };
182 
183 class AlignVectors {
184   // This code tries to replace unaligned vector loads/stores with aligned
185   // ones.
186   // Consider unaligned load:
187   //   %v = original_load %some_addr, align <bad>
188   //   %user = %v
189   // It will generate
190   //      = load ..., align <good>
191   //      = load ..., align <good>
192   //      = valign
193   //      etc.
194   //   %synthesize = combine/shuffle the loaded data so that it looks
195   //                 exactly like what "original_load" has loaded.
196   //   %user = %synthesize
197   // Similarly for stores.
198 public:
199   AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {}
200 
201   bool run();
202 
203 private:
204   using InstList = std::vector<Instruction *>;
205   using InstMap = DenseMap<Instruction *, Instruction *>;
206 
207   struct AddrInfo {
208     AddrInfo(const AddrInfo &) = default;
209     AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
210              Align H)
211         : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
212           NeedAlign(HVC.getTypeAlignment(ValTy)) {}
213     AddrInfo &operator=(const AddrInfo &) = default;
214 
215     // XXX: add Size member?
216     Instruction *Inst;
217     Value *Addr;
218     Type *ValTy;
219     Align HaveAlign;
220     Align NeedAlign;
221     int Offset = 0; // Offset (in bytes) from the first member of the
222                     // containing AddrList.
223   };
224   using AddrList = std::vector<AddrInfo>;
225 
226   struct InstrLess {
227     bool operator()(const Instruction *A, const Instruction *B) const {
228       return A->comesBefore(B);
229     }
230   };
231   using DepList = std::set<Instruction *, InstrLess>;
232 
233   struct MoveGroup {
234     MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
235         : Base(B), Main{AI.Inst}, Clones{}, IsHvx(Hvx), IsLoad(Load) {}
236     MoveGroup() = default;
237     Instruction *Base; // Base instruction of the parent address group.
238     InstList Main;     // Main group of instructions.
239     InstList Deps;     // List of dependencies.
240     InstMap Clones;    // Map from original Deps to cloned ones.
241     bool IsHvx;        // Is this group of HVX instructions?
242     bool IsLoad;       // Is this a load group?
243   };
244   using MoveList = std::vector<MoveGroup>;
245 
246   struct ByteSpan {
247     // A representation of "interesting" bytes within a given span of memory.
248     // These bytes are those that are loaded or stored, and they don't have
249     // to cover the entire span of memory.
250     //
251     // The representation works by picking a contiguous sequence of bytes
252     // from somewhere within a llvm::Value, and placing it at a given offset
253     // within the span.
254     //
255     // The sequence of bytes from llvm:Value is represented by Segment.
256     // Block is Segment, plus where it goes in the span.
257     //
258     // An important feature of ByteSpan is being able to make a "section",
259     // i.e. creating another ByteSpan corresponding to a range of offsets
260     // relative to the source span.
261 
262     struct Segment {
263       // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
264       Segment(Value *Val, int Begin, int Len)
265           : Val(Val), Start(Begin), Size(Len) {}
266       Segment(const Segment &Seg) = default;
267       Segment &operator=(const Segment &Seg) = default;
268       Value *Val; // Value representable as a sequence of bytes.
269       int Start;  // First byte of the value that belongs to the segment.
270       int Size;   // Number of bytes in the segment.
271     };
272 
273     struct Block {
274       Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
275       Block(Value *Val, int Off, int Len, int Pos)
276           : Seg(Val, Off, Len), Pos(Pos) {}
277       Block(const Block &Blk) = default;
278       Block &operator=(const Block &Blk) = default;
279       Segment Seg; // Value segment.
280       int Pos;     // Position (offset) of the block in the span.
281     };
282 
283     int extent() const;
284     ByteSpan section(int Start, int Length) const;
285     ByteSpan &shift(int Offset);
286     SmallVector<Value *, 8> values() const;
287 
288     int size() const { return Blocks.size(); }
289     Block &operator[](int i) { return Blocks[i]; }
290     const Block &operator[](int i) const { return Blocks[i]; }
291 
292     std::vector<Block> Blocks;
293 
294     using iterator = decltype(Blocks)::iterator;
295     iterator begin() { return Blocks.begin(); }
296     iterator end() { return Blocks.end(); }
297     using const_iterator = decltype(Blocks)::const_iterator;
298     const_iterator begin() const { return Blocks.begin(); }
299     const_iterator end() const { return Blocks.end(); }
300   };
301 
302   Align getAlignFromValue(const Value *V) const;
303   std::optional<AddrInfo> getAddrInfo(Instruction &In) const;
304   bool isHvx(const AddrInfo &AI) const;
305   // This function is only used for assertions at the moment.
306   [[maybe_unused]] bool isSectorTy(Type *Ty) const;
307 
308   Value *getPayload(Value *Val) const;
309   Value *getMask(Value *Val) const;
310   Value *getPassThrough(Value *Val) const;
311 
312   Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
313                                int Adjust,
314                                const InstMap &CloneMap = InstMap()) const;
315   Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
316                               int Alignment,
317                               const InstMap &CloneMap = InstMap()) const;
318 
319   Value *createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
320                     Value *Predicate, int Alignment, Value *Mask,
321                     Value *PassThru,
322                     ArrayRef<Value *> MDSources = std::nullopt) const;
323   Value *createSimpleLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
324                           int Alignment,
325                           ArrayRef<Value *> MDSources = std::nullopt) const;
326 
327   Value *createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
328                      Value *Predicate, int Alignment, Value *Mask,
329                      ArrayRef<Value *> MDSources = std ::nullopt) const;
330   Value *createSimpleStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
331                            int Alignment,
332                            ArrayRef<Value *> MDSources = std ::nullopt) const;
333 
334   Value *createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
335                               Value *Predicate, int Alignment,
336                               ArrayRef<Value *> MDSources = std::nullopt) const;
337   Value *
338   createPredicatedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
339                         Value *Predicate, int Alignment,
340                         ArrayRef<Value *> MDSources = std::nullopt) const;
341 
342   DepList getUpwardDeps(Instruction *In, Instruction *Base) const;
343   bool createAddressGroups();
344   MoveList createLoadGroups(const AddrList &Group) const;
345   MoveList createStoreGroups(const AddrList &Group) const;
346   bool moveTogether(MoveGroup &Move) const;
347   template <typename T> InstMap cloneBefore(Instruction *To, T &&Insts) const;
348 
349   void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
350                         int ScLen, Value *AlignVal, Value *AlignAddr) const;
351   void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
352                          int ScLen, Value *AlignVal, Value *AlignAddr) const;
353   bool realignGroup(const MoveGroup &Move) const;
354 
355   Value *makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal,
356                              int Alignment) const;
357 
358   friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
359   friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
360   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B);
361   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
362 
363   std::map<Instruction *, AddrList> AddrGroups;
364   const HexagonVectorCombine &HVC;
365 };
366 
367 LLVM_ATTRIBUTE_UNUSED
368 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
369   OS << "Inst: " << AI.Inst << "  " << *AI.Inst << '\n';
370   OS << "Addr: " << *AI.Addr << '\n';
371   OS << "Type: " << *AI.ValTy << '\n';
372   OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
373   OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
374   OS << "Offset: " << AI.Offset;
375   return OS;
376 }
377 
378 LLVM_ATTRIBUTE_UNUSED
379 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
380   OS << "IsLoad:" << (MG.IsLoad ? "yes" : "no");
381   OS << ", IsHvx:" << (MG.IsHvx ? "yes" : "no") << '\n';
382   OS << "Main\n";
383   for (Instruction *I : MG.Main)
384     OS << "  " << *I << '\n';
385   OS << "Deps\n";
386   for (Instruction *I : MG.Deps)
387     OS << "  " << *I << '\n';
388   OS << "Clones\n";
389   for (auto [K, V] : MG.Clones) {
390     OS << "    ";
391     K->printAsOperand(OS, false);
392     OS << "\t-> " << *V << '\n';
393   }
394   return OS;
395 }
396 
397 LLVM_ATTRIBUTE_UNUSED
398 raw_ostream &operator<<(raw_ostream &OS,
399                         const AlignVectors::ByteSpan::Block &B) {
400   OS << "  @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] ";
401   if (B.Seg.Val == reinterpret_cast<const Value *>(&B)) {
402     OS << "(self:" << B.Seg.Val << ')';
403   } else if (B.Seg.Val != nullptr) {
404     OS << *B.Seg.Val;
405   } else {
406     OS << "(null)";
407   }
408   return OS;
409 }
410 
411 LLVM_ATTRIBUTE_UNUSED
412 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
413   OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
414   for (const AlignVectors::ByteSpan::Block &B : BS)
415     OS << B << '\n';
416   OS << ']';
417   return OS;
418 }
419 
420 class HvxIdioms {
421 public:
422   HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) {
423     auto *Int32Ty = HVC.getIntTy(32);
424     HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false);
425     HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true);
426   }
427 
428   bool run();
429 
430 private:
431   enum Signedness { Positive, Signed, Unsigned };
432 
433   // Value + sign
434   // This is to keep track of whether the value should be treated as signed
435   // or unsigned, or is known to be positive.
436   struct SValue {
437     Value *Val;
438     Signedness Sgn;
439   };
440 
441   struct FxpOp {
442     unsigned Opcode;
443     unsigned Frac; // Number of fraction bits
444     SValue X, Y;
445     // If present, add 1 << RoundAt before shift:
446     std::optional<unsigned> RoundAt;
447     VectorType *ResTy;
448   };
449 
450   auto getNumSignificantBits(Value *V, Instruction *In) const
451       -> std::pair<unsigned, Signedness>;
452   auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>;
453 
454   auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>;
455   auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *;
456 
457   auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
458                             const FxpOp &Op) const -> Value *;
459   auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
460                     bool Rounding) const -> Value *;
461   auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
462                     bool Rounding) const -> Value *;
463   // Return {Result, Carry}, where Carry is a vector predicate.
464   auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
465                       Value *CarryIn = nullptr) const
466       -> std::pair<Value *, Value *>;
467   auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *;
468   auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
469       -> Value *;
470   auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
471       -> std::pair<Value *, Value *>;
472   auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
473                      ArrayRef<Value *> WordY) const -> SmallVector<Value *>;
474   auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
475                      Signedness SgnX, ArrayRef<Value *> WordY,
476                      Signedness SgnY) const -> SmallVector<Value *>;
477 
478   VectorType *HvxI32Ty;
479   VectorType *HvxP32Ty;
480   const HexagonVectorCombine &HVC;
481 
482   friend raw_ostream &operator<<(raw_ostream &, const FxpOp &);
483 };
484 
485 [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS,
486                                          const HvxIdioms::FxpOp &Op) {
487   static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"};
488   OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac;
489   if (Op.RoundAt.has_value()) {
490     if (Op.Frac != 0 && *Op.RoundAt == Op.Frac - 1) {
491       OS << ":rnd";
492     } else {
493       OS << " + 1<<" << *Op.RoundAt;
494     }
495   }
496   OS << "\n  X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n"
497      << "  Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val;
498   return OS;
499 }
500 
501 } // namespace
502 
503 namespace {
504 
505 template <typename T> T *getIfUnordered(T *MaybeT) {
506   return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
507 }
508 template <typename T> T *isCandidate(Instruction *In) {
509   return dyn_cast<T>(In);
510 }
511 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
512   return getIfUnordered(dyn_cast<LoadInst>(In));
513 }
514 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
515   return getIfUnordered(dyn_cast<StoreInst>(In));
516 }
517 
518 #if !defined(_MSC_VER) || _MSC_VER >= 1926
519 // VS2017 and some versions of VS2019 have trouble compiling this:
520 // error C2976: 'std::map': too few template arguments
521 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
522 template <typename Pred, typename... Ts>
523 void erase_if(std::map<Ts...> &map, Pred p)
524 #else
525 template <typename Pred, typename T, typename U>
526 void erase_if(std::map<T, U> &map, Pred p)
527 #endif
528 {
529   for (auto i = map.begin(), e = map.end(); i != e;) {
530     if (p(*i))
531       i = map.erase(i);
532     else
533       i = std::next(i);
534   }
535 }
536 
537 // Forward other erase_ifs to the LLVM implementations.
538 template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
539   llvm::erase_if(std::forward<T>(container), p);
540 }
541 
542 } // namespace
543 
544 // --- Begin AlignVectors
545 
546 // For brevity, only consider loads. We identify a group of loads where we
547 // know the relative differences between their addresses, so we know how they
548 // are laid out in memory (relative to one another). These loads can overlap,
549 // can be shorter or longer than the desired vector length.
550 // Ultimately we want to generate a sequence of aligned loads that will load
551 // every byte that the original loads loaded, and have the program use these
552 // loaded values instead of the original loads.
553 // We consider the contiguous memory area spanned by all these loads.
554 //
555 // Let's say that a single aligned vector load can load 16 bytes at a time.
556 // If the program wanted to use a byte at offset 13 from the beginning of the
557 // original span, it will be a byte at offset 13+x in the aligned data for
558 // some x>=0. This may happen to be in the first aligned load, or in the load
559 // following it. Since we generally don't know what the that alignment value
560 // is at compile time, we proactively do valigns on the aligned loads, so that
561 // byte that was at offset 13 is still at offset 13 after the valigns.
562 //
563 // This will be the starting point for making the rest of the program use the
564 // data loaded by the new loads.
565 // For each original load, and its users:
566 //   %v = load ...
567 //   ... = %v
568 //   ... = %v
569 // we create
570 //   %new_v = extract/combine/shuffle data from loaded/valigned vectors so
571 //            it contains the same value as %v did before
572 // then replace all users of %v with %new_v.
573 //   ... = %new_v
574 //   ... = %new_v
575 
576 auto AlignVectors::ByteSpan::extent() const -> int {
577   if (size() == 0)
578     return 0;
579   int Min = Blocks[0].Pos;
580   int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
581   for (int i = 1, e = size(); i != e; ++i) {
582     Min = std::min(Min, Blocks[i].Pos);
583     Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
584   }
585   return Max - Min;
586 }
587 
588 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
589   ByteSpan Section;
590   for (const ByteSpan::Block &B : Blocks) {
591     int L = std::max(B.Pos, Start);                       // Left end.
592     int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
593     if (L < R) {
594       // How much to chop off the beginning of the segment:
595       int Off = L > B.Pos ? L - B.Pos : 0;
596       Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
597     }
598   }
599   return Section;
600 }
601 
602 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
603   for (Block &B : Blocks)
604     B.Pos += Offset;
605   return *this;
606 }
607 
608 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
609   SmallVector<Value *, 8> Values(Blocks.size());
610   for (int i = 0, e = Blocks.size(); i != e; ++i)
611     Values[i] = Blocks[i].Seg.Val;
612   return Values;
613 }
614 
615 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
616   const auto *C = dyn_cast<ConstantInt>(V);
617   assert(C && "Alignment must be a compile-time constant integer");
618   return C->getAlignValue();
619 }
620 
621 auto AlignVectors::getAddrInfo(Instruction &In) const
622     -> std::optional<AddrInfo> {
623   if (auto *L = isCandidate<LoadInst>(&In))
624     return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
625                     L->getAlign());
626   if (auto *S = isCandidate<StoreInst>(&In))
627     return AddrInfo(HVC, S, S->getPointerOperand(),
628                     S->getValueOperand()->getType(), S->getAlign());
629   if (auto *II = isCandidate<IntrinsicInst>(&In)) {
630     Intrinsic::ID ID = II->getIntrinsicID();
631     switch (ID) {
632     case Intrinsic::masked_load:
633       return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
634                       getAlignFromValue(II->getArgOperand(1)));
635     case Intrinsic::masked_store:
636       return AddrInfo(HVC, II, II->getArgOperand(1),
637                       II->getArgOperand(0)->getType(),
638                       getAlignFromValue(II->getArgOperand(2)));
639     }
640   }
641   return std::nullopt;
642 }
643 
644 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
645   return HVC.HST.isTypeForHVX(AI.ValTy);
646 }
647 
648 auto AlignVectors::getPayload(Value *Val) const -> Value * {
649   if (auto *In = dyn_cast<Instruction>(Val)) {
650     Intrinsic::ID ID = 0;
651     if (auto *II = dyn_cast<IntrinsicInst>(In))
652       ID = II->getIntrinsicID();
653     if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
654       return In->getOperand(0);
655   }
656   return Val;
657 }
658 
659 auto AlignVectors::getMask(Value *Val) const -> Value * {
660   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
661     switch (II->getIntrinsicID()) {
662     case Intrinsic::masked_load:
663       return II->getArgOperand(2);
664     case Intrinsic::masked_store:
665       return II->getArgOperand(3);
666     }
667   }
668 
669   Type *ValTy = getPayload(Val)->getType();
670   if (auto *VecTy = dyn_cast<VectorType>(ValTy))
671     return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy)));
672   return HVC.getFullValue(HVC.getBoolTy());
673 }
674 
675 auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
676   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
677     if (II->getIntrinsicID() == Intrinsic::masked_load)
678       return II->getArgOperand(3);
679   }
680   return UndefValue::get(getPayload(Val)->getType());
681 }
682 
683 auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr,
684                                          Type *ValTy, int Adjust,
685                                          const InstMap &CloneMap) const
686     -> Value * {
687   if (auto *I = dyn_cast<Instruction>(Ptr))
688     if (Instruction *New = CloneMap.lookup(I))
689       Ptr = New;
690   return Builder.CreatePtrAdd(Ptr, HVC.getConstInt(Adjust), "gep");
691 }
692 
693 auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr,
694                                         Type *ValTy, int Alignment,
695                                         const InstMap &CloneMap) const
696     -> Value * {
697   auto remap = [&](Value *V) -> Value * {
698     if (auto *I = dyn_cast<Instruction>(V)) {
699       for (auto [Old, New] : CloneMap)
700         I->replaceUsesOfWith(Old, New);
701       return I;
702     }
703     return V;
704   };
705   Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy(), "pti");
706   Value *Mask = HVC.getConstInt(-Alignment);
707   Value *And = Builder.CreateAnd(remap(AsInt), Mask, "and");
708   return Builder.CreateIntToPtr(
709       And, PointerType::getUnqual(ValTy->getContext()), "itp");
710 }
711 
712 auto AlignVectors::createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
713                               Value *Predicate, int Alignment, Value *Mask,
714                               Value *PassThru,
715                               ArrayRef<Value *> MDSources) const -> Value * {
716   bool HvxHasPredLoad = HVC.HST.useHVXV62Ops();
717   // Predicate is nullptr if not creating predicated load
718   if (Predicate) {
719     assert(!Predicate->getType()->isVectorTy() &&
720            "Expectning scalar predicate");
721     if (HVC.isFalse(Predicate))
722       return UndefValue::get(ValTy);
723     if (!HVC.isTrue(Predicate) && HvxHasPredLoad) {
724       Value *Load = createPredicatedLoad(Builder, ValTy, Ptr, Predicate,
725                                          Alignment, MDSources);
726       return Builder.CreateSelect(Mask, Load, PassThru);
727     }
728     // Predicate == true here.
729   }
730   assert(!HVC.isUndef(Mask)); // Should this be allowed?
731   if (HVC.isZero(Mask))
732     return PassThru;
733   if (HVC.isTrue(Mask))
734     return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources);
735 
736   Instruction *Load = Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment),
737                                                Mask, PassThru, "mld");
738   propagateMetadata(Load, MDSources);
739   return Load;
740 }
741 
742 auto AlignVectors::createSimpleLoad(IRBuilderBase &Builder, Type *ValTy,
743                                     Value *Ptr, int Alignment,
744                                     ArrayRef<Value *> MDSources) const
745     -> Value * {
746   Instruction *Load =
747       Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment), "ald");
748   propagateMetadata(Load, MDSources);
749   return Load;
750 }
751 
752 auto AlignVectors::createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy,
753                                         Value *Ptr, Value *Predicate,
754                                         int Alignment,
755                                         ArrayRef<Value *> MDSources) const
756     -> Value * {
757   assert(HVC.HST.isTypeForHVX(ValTy) &&
758          "Predicates 'scalar' vector loads not yet supported");
759   assert(Predicate);
760   assert(!Predicate->getType()->isVectorTy() && "Expectning scalar predicate");
761   assert(HVC.getSizeOf(ValTy, HVC.Alloc) % Alignment == 0);
762   if (HVC.isFalse(Predicate))
763     return UndefValue::get(ValTy);
764   if (HVC.isTrue(Predicate))
765     return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources);
766 
767   auto V6_vL32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vL32b_pred_ai);
768   // FIXME: This may not put the offset from Ptr into the vmem offset.
769   return HVC.createHvxIntrinsic(Builder, V6_vL32b_pred_ai, ValTy,
770                                 {Predicate, Ptr, HVC.getConstInt(0)},
771                                 std::nullopt, MDSources);
772 }
773 
774 auto AlignVectors::createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
775                                Value *Predicate, int Alignment, Value *Mask,
776                                ArrayRef<Value *> MDSources) const -> Value * {
777   if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
778     return UndefValue::get(Val->getType());
779   assert(!Predicate || (!Predicate->getType()->isVectorTy() &&
780                         "Expectning scalar predicate"));
781   if (Predicate) {
782     if (HVC.isFalse(Predicate))
783       return UndefValue::get(Val->getType());
784     if (HVC.isTrue(Predicate))
785       Predicate = nullptr;
786   }
787   // Here both Predicate and Mask are true or unknown.
788 
789   if (HVC.isTrue(Mask)) {
790     if (Predicate) { // Predicate unknown
791       return createPredicatedStore(Builder, Val, Ptr, Predicate, Alignment,
792                                    MDSources);
793     }
794     // Predicate is true:
795     return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources);
796   }
797 
798   // Mask is unknown
799   if (!Predicate) {
800     Instruction *Store =
801         Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
802     propagateMetadata(Store, MDSources);
803     return Store;
804   }
805 
806   // Both Predicate and Mask are unknown.
807   // Emulate masked store with predicated-load + mux + predicated-store.
808   Value *PredLoad = createPredicatedLoad(Builder, Val->getType(), Ptr,
809                                          Predicate, Alignment, MDSources);
810   Value *Mux = Builder.CreateSelect(Mask, Val, PredLoad);
811   return createPredicatedStore(Builder, Mux, Ptr, Predicate, Alignment,
812                                MDSources);
813 }
814 
815 auto AlignVectors::createSimpleStore(IRBuilderBase &Builder, Value *Val,
816                                      Value *Ptr, int Alignment,
817                                      ArrayRef<Value *> MDSources) const
818     -> Value * {
819   Instruction *Store = Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
820   propagateMetadata(Store, MDSources);
821   return Store;
822 }
823 
824 auto AlignVectors::createPredicatedStore(IRBuilderBase &Builder, Value *Val,
825                                          Value *Ptr, Value *Predicate,
826                                          int Alignment,
827                                          ArrayRef<Value *> MDSources) const
828     -> Value * {
829   assert(HVC.HST.isTypeForHVX(Val->getType()) &&
830          "Predicates 'scalar' vector stores not yet supported");
831   assert(Predicate);
832   if (HVC.isFalse(Predicate))
833     return UndefValue::get(Val->getType());
834   if (HVC.isTrue(Predicate))
835     return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources);
836 
837   assert(HVC.getSizeOf(Val, HVC.Alloc) % Alignment == 0);
838   auto V6_vS32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vS32b_pred_ai);
839   // FIXME: This may not put the offset from Ptr into the vmem offset.
840   return HVC.createHvxIntrinsic(Builder, V6_vS32b_pred_ai, nullptr,
841                                 {Predicate, Ptr, HVC.getConstInt(0), Val},
842                                 std::nullopt, MDSources);
843 }
844 
845 auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const
846     -> DepList {
847   BasicBlock *Parent = Base->getParent();
848   assert(In->getParent() == Parent &&
849          "Base and In should be in the same block");
850   assert(Base->comesBefore(In) && "Base should come before In");
851 
852   DepList Deps;
853   std::deque<Instruction *> WorkQ = {In};
854   while (!WorkQ.empty()) {
855     Instruction *D = WorkQ.front();
856     WorkQ.pop_front();
857     if (D != In)
858       Deps.insert(D);
859     for (Value *Op : D->operands()) {
860       if (auto *I = dyn_cast<Instruction>(Op)) {
861         if (I->getParent() == Parent && Base->comesBefore(I))
862           WorkQ.push_back(I);
863       }
864     }
865   }
866   return Deps;
867 }
868 
869 auto AlignVectors::createAddressGroups() -> bool {
870   // An address group created here may contain instructions spanning
871   // multiple basic blocks.
872   AddrList WorkStack;
873 
874   auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
875     for (AddrInfo &W : WorkStack) {
876       if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
877         return std::make_pair(W.Inst, *D);
878     }
879     return std::make_pair(nullptr, 0);
880   };
881 
882   auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
883     BasicBlock &Block = *DomN->getBlock();
884     for (Instruction &I : Block) {
885       auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
886       if (!AI)
887         continue;
888       auto F = findBaseAndOffset(*AI);
889       Instruction *GroupInst;
890       if (Instruction *BI = F.first) {
891         AI->Offset = F.second;
892         GroupInst = BI;
893       } else {
894         WorkStack.push_back(*AI);
895         GroupInst = AI->Inst;
896       }
897       AddrGroups[GroupInst].push_back(*AI);
898     }
899 
900     for (DomTreeNode *C : DomN->children())
901       Visit(C, Visit);
902 
903     while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
904       WorkStack.pop_back();
905   };
906 
907   traverseBlock(HVC.DT.getRootNode(), traverseBlock);
908   assert(WorkStack.empty());
909 
910   // AddrGroups are formed.
911 
912   // Remove groups of size 1.
913   erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
914   // Remove groups that don't use HVX types.
915   erase_if(AddrGroups, [&](auto &G) {
916     return llvm::none_of(
917         G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
918   });
919 
920   return !AddrGroups.empty();
921 }
922 
923 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
924   // Form load groups.
925   // To avoid complications with moving code across basic blocks, only form
926   // groups that are contained within a single basic block.
927   unsigned SizeLimit = VAGroupSizeLimit;
928   if (SizeLimit == 0)
929     return {};
930 
931   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
932     assert(!Move.Main.empty() && "Move group should have non-empty Main");
933     if (Move.Main.size() >= SizeLimit)
934       return false;
935     // Don't mix HVX and non-HVX instructions.
936     if (Move.IsHvx != isHvx(Info))
937       return false;
938     // Leading instruction in the load group.
939     Instruction *Base = Move.Main.front();
940     if (Base->getParent() != Info.Inst->getParent())
941       return false;
942     // Check if it's safe to move the load.
943     if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator()))
944       return false;
945     // And if it's safe to clone the dependencies.
946     auto isSafeToCopyAtBase = [&](const Instruction *I) {
947       return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()) &&
948              HVC.isSafeToClone(*I);
949     };
950     DepList Deps = getUpwardDeps(Info.Inst, Base);
951     if (!llvm::all_of(Deps, isSafeToCopyAtBase))
952       return false;
953 
954     Move.Main.push_back(Info.Inst);
955     llvm::append_range(Move.Deps, Deps);
956     return true;
957   };
958 
959   MoveList LoadGroups;
960 
961   for (const AddrInfo &Info : Group) {
962     if (!Info.Inst->mayReadFromMemory())
963       continue;
964     if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
965       LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
966   }
967 
968   // Erase singleton groups.
969   erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
970 
971   // Erase HVX groups on targets < HvxV62 (due to lack of predicated loads).
972   if (!HVC.HST.useHVXV62Ops())
973     erase_if(LoadGroups, [](const MoveGroup &G) { return G.IsHvx; });
974 
975   return LoadGroups;
976 }
977 
978 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
979   // Form store groups.
980   // To avoid complications with moving code across basic blocks, only form
981   // groups that are contained within a single basic block.
982   unsigned SizeLimit = VAGroupSizeLimit;
983   if (SizeLimit == 0)
984     return {};
985 
986   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
987     assert(!Move.Main.empty() && "Move group should have non-empty Main");
988     if (Move.Main.size() >= SizeLimit)
989       return false;
990     // For stores with return values we'd have to collect downward depenencies.
991     // There are no such stores that we handle at the moment, so omit that.
992     assert(Info.Inst->getType()->isVoidTy() &&
993            "Not handling stores with return values");
994     // Don't mix HVX and non-HVX instructions.
995     if (Move.IsHvx != isHvx(Info))
996       return false;
997     // For stores we need to be careful whether it's safe to move them.
998     // Stores that are otherwise safe to move together may not appear safe
999     // to move over one another (i.e. isSafeToMoveBefore may return false).
1000     Instruction *Base = Move.Main.front();
1001     if (Base->getParent() != Info.Inst->getParent())
1002       return false;
1003     if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
1004       return false;
1005     Move.Main.push_back(Info.Inst);
1006     return true;
1007   };
1008 
1009   MoveList StoreGroups;
1010 
1011   for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
1012     const AddrInfo &Info = *I;
1013     if (!Info.Inst->mayWriteToMemory())
1014       continue;
1015     if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
1016       StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
1017   }
1018 
1019   // Erase singleton groups.
1020   erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
1021 
1022   // Erase HVX groups on targets < HvxV62 (due to lack of predicated loads).
1023   if (!HVC.HST.useHVXV62Ops())
1024     erase_if(StoreGroups, [](const MoveGroup &G) { return G.IsHvx; });
1025 
1026   // Erase groups where every store is a full HVX vector. The reason is that
1027   // aligning predicated stores generates complex code that may be less
1028   // efficient than a sequence of unaligned vector stores.
1029   if (!VADoFullStores) {
1030     erase_if(StoreGroups, [this](const MoveGroup &G) {
1031       return G.IsHvx && llvm::all_of(G.Main, [this](Instruction *S) {
1032                auto MaybeInfo = this->getAddrInfo(*S);
1033                assert(MaybeInfo.has_value());
1034                return HVC.HST.isHVXVectorType(
1035                    EVT::getEVT(MaybeInfo->ValTy, false));
1036              });
1037     });
1038   }
1039 
1040   return StoreGroups;
1041 }
1042 
1043 auto AlignVectors::moveTogether(MoveGroup &Move) const -> bool {
1044   // Move all instructions to be adjacent.
1045   assert(!Move.Main.empty() && "Move group should have non-empty Main");
1046   Instruction *Where = Move.Main.front();
1047 
1048   if (Move.IsLoad) {
1049     // Move all the loads (and dependencies) to where the first load is.
1050     // Clone all deps to before Where, keeping order.
1051     Move.Clones = cloneBefore(Where, Move.Deps);
1052     // Move all main instructions to after Where, keeping order.
1053     ArrayRef<Instruction *> Main(Move.Main);
1054     for (Instruction *M : Main) {
1055       if (M != Where)
1056         M->moveAfter(Where);
1057       for (auto [Old, New] : Move.Clones)
1058         M->replaceUsesOfWith(Old, New);
1059       Where = M;
1060     }
1061     // Replace Deps with the clones.
1062     for (int i = 0, e = Move.Deps.size(); i != e; ++i)
1063       Move.Deps[i] = Move.Clones[Move.Deps[i]];
1064   } else {
1065     // Move all the stores to where the last store is.
1066     // NOTE: Deps are empty for "store" groups. If they need to be
1067     // non-empty, decide on the order.
1068     assert(Move.Deps.empty());
1069     // Move all main instructions to before Where, inverting order.
1070     ArrayRef<Instruction *> Main(Move.Main);
1071     for (Instruction *M : Main.drop_front(1)) {
1072       M->moveBefore(Where);
1073       Where = M;
1074     }
1075   }
1076 
1077   return Move.Main.size() + Move.Deps.size() > 1;
1078 }
1079 
1080 template <typename T>
1081 auto AlignVectors::cloneBefore(Instruction *To, T &&Insts) const -> InstMap {
1082   InstMap Map;
1083 
1084   for (Instruction *I : Insts) {
1085     assert(HVC.isSafeToClone(*I));
1086     Instruction *C = I->clone();
1087     C->setName(Twine("c.") + I->getName() + ".");
1088     C->insertBefore(To);
1089 
1090     for (auto [Old, New] : Map)
1091       C->replaceUsesOfWith(Old, New);
1092     Map.insert(std::make_pair(I, C));
1093   }
1094   return Map;
1095 }
1096 
1097 auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder,
1098                                     const ByteSpan &VSpan, int ScLen,
1099                                     Value *AlignVal, Value *AlignAddr) const
1100     -> void {
1101   LLVM_DEBUG(dbgs() << __func__ << "\n");
1102 
1103   Type *SecTy = HVC.getByteTy(ScLen);
1104   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
1105   bool DoAlign = !HVC.isZero(AlignVal);
1106   BasicBlock::iterator BasePos = Builder.GetInsertPoint();
1107   BasicBlock *BaseBlock = Builder.GetInsertBlock();
1108 
1109   ByteSpan ASpan;
1110   auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
1111   auto *Undef = UndefValue::get(SecTy);
1112 
1113   // Created load does not have to be "Instruction" (e.g. "undef").
1114   SmallVector<Value *> Loads(NumSectors + DoAlign, nullptr);
1115 
1116   // We could create all of the aligned loads, and generate the valigns
1117   // at the location of the first load, but for large load groups, this
1118   // could create highly suboptimal code (there have been groups of 140+
1119   // loads in real code).
1120   // Instead, place the loads/valigns as close to the users as possible.
1121   // In any case we need to have a mapping from the blocks of VSpan (the
1122   // span covered by the pre-existing loads) to ASpan (the span covered
1123   // by the aligned loads). There is a small problem, though: ASpan needs
1124   // to have pointers to the loads/valigns, but we don't have these loads
1125   // because we don't know where to put them yet. We find out by creating
1126   // a section of ASpan that corresponds to values (blocks) from VSpan,
1127   // and checking where the new load should be placed. We need to attach
1128   // this location information to each block in ASpan somehow, so we put
1129   // distincts values for Seg.Val in each ASpan.Blocks[i], and use a map
1130   // to store the location for each Seg.Val.
1131   // The distinct values happen to be Blocks[i].Seg.Val = &Blocks[i],
1132   // which helps with printing ByteSpans without crashing when printing
1133   // Segments with these temporary identifiers in place of Val.
1134 
1135   // Populate the blocks first, to avoid reallocations of the vector
1136   // interfering with generating the placeholder addresses.
1137   for (int Index = 0; Index != NumSectors; ++Index)
1138     ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen);
1139   for (int Index = 0; Index != NumSectors; ++Index) {
1140     ASpan.Blocks[Index].Seg.Val =
1141         reinterpret_cast<Value *>(&ASpan.Blocks[Index]);
1142   }
1143 
1144   // Multiple values from VSpan can map to the same value in ASpan. Since we
1145   // try to create loads lazily, we need to find the earliest use for each
1146   // value from ASpan.
1147   DenseMap<void *, Instruction *> EarliestUser;
1148   auto isEarlier = [](Instruction *A, Instruction *B) {
1149     if (B == nullptr)
1150       return true;
1151     if (A == nullptr)
1152       return false;
1153     assert(A->getParent() == B->getParent());
1154     return A->comesBefore(B);
1155   };
1156   auto earliestUser = [&](const auto &Uses) {
1157     Instruction *User = nullptr;
1158     for (const Use &U : Uses) {
1159       auto *I = dyn_cast<Instruction>(U.getUser());
1160       assert(I != nullptr && "Load used in a non-instruction?");
1161       // Make sure we only consider users in this block, but we need
1162       // to remember if there were users outside the block too. This is
1163       // because if no users are found, aligned loads will not be created.
1164       if (I->getParent() == BaseBlock) {
1165         if (!isa<PHINode>(I))
1166           User = std::min(User, I, isEarlier);
1167       } else {
1168         User = std::min(User, BaseBlock->getTerminator(), isEarlier);
1169       }
1170     }
1171     return User;
1172   };
1173 
1174   for (const ByteSpan::Block &B : VSpan) {
1175     ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size);
1176     for (const ByteSpan::Block &S : ASection) {
1177       EarliestUser[S.Seg.Val] = std::min(
1178           EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier);
1179     }
1180   }
1181 
1182   LLVM_DEBUG({
1183     dbgs() << "ASpan:\n" << ASpan << '\n';
1184     dbgs() << "Earliest users of ASpan:\n";
1185     for (auto &[Val, User] : EarliestUser) {
1186       dbgs() << Val << "\n ->" << *User << '\n';
1187     }
1188   });
1189 
1190   auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan,
1191                         int Index, bool MakePred) {
1192     Value *Ptr =
1193         createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
1194     Value *Predicate =
1195         MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr;
1196 
1197     // If vector shifting is potentially needed, accumulate metadata
1198     // from source sections of twice the load width.
1199     int Start = (Index - DoAlign) * ScLen;
1200     int Width = (1 + DoAlign) * ScLen;
1201     return this->createLoad(Builder, SecTy, Ptr, Predicate, ScLen, True, Undef,
1202                             VSpan.section(Start, Width).values());
1203   };
1204 
1205   auto moveBefore = [this](Instruction *In, Instruction *To) {
1206     // Move In and its upward dependencies to before To.
1207     assert(In->getParent() == To->getParent());
1208     DepList Deps = getUpwardDeps(In, To);
1209     In->moveBefore(To);
1210     // DepList is sorted with respect to positions in the basic block.
1211     InstMap Map = cloneBefore(In, Deps);
1212     for (auto [Old, New] : Map)
1213       In->replaceUsesOfWith(Old, New);
1214   };
1215 
1216   // Generate necessary loads at appropriate locations.
1217   LLVM_DEBUG(dbgs() << "Creating loads for ASpan sectors\n");
1218   for (int Index = 0; Index != NumSectors + 1; ++Index) {
1219     // In ASpan, each block will be either a single aligned load, or a
1220     // valign of a pair of loads. In the latter case, an aligned load j
1221     // will belong to the current valign, and the one in the previous
1222     // block (for j > 0).
1223     // Place the load at a location which will dominate the valign, assuming
1224     // the valign will be placed right before the earliest user.
1225     Instruction *PrevAt =
1226         DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr;
1227     Instruction *ThisAt =
1228         Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr;
1229     if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) {
1230       Builder.SetInsertPoint(Where);
1231       Loads[Index] =
1232           createLoad(Builder, VSpan, Index, DoAlign && Index == NumSectors);
1233       // We know it's safe to put the load at BasePos, but we'd prefer to put
1234       // it at "Where". To see if the load is safe to be placed at Where, put
1235       // it there first and then check if it's safe to move it to BasePos.
1236       // If not, then the load needs to be placed at BasePos.
1237       // We can't do this check proactively because we need the load to exist
1238       // in order to check legality.
1239       if (auto *Load = dyn_cast<Instruction>(Loads[Index])) {
1240         if (!HVC.isSafeToMoveBeforeInBB(*Load, BasePos))
1241           moveBefore(Load, &*BasePos);
1242       }
1243       LLVM_DEBUG(dbgs() << "Loads[" << Index << "]:" << *Loads[Index] << '\n');
1244     }
1245   }
1246 
1247   // Generate valigns if needed, and fill in proper values in ASpan
1248   LLVM_DEBUG(dbgs() << "Creating values for ASpan sectors\n");
1249   for (int Index = 0; Index != NumSectors; ++Index) {
1250     ASpan[Index].Seg.Val = nullptr;
1251     if (auto *Where = EarliestUser[&ASpan[Index]]) {
1252       Builder.SetInsertPoint(Where);
1253       Value *Val = Loads[Index];
1254       assert(Val != nullptr);
1255       if (DoAlign) {
1256         Value *NextLoad = Loads[Index + 1];
1257         assert(NextLoad != nullptr);
1258         Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal);
1259       }
1260       ASpan[Index].Seg.Val = Val;
1261       LLVM_DEBUG(dbgs() << "ASpan[" << Index << "]:" << *Val << '\n');
1262     }
1263   }
1264 
1265   for (const ByteSpan::Block &B : VSpan) {
1266     ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
1267     Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
1268     Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val));
1269 
1270     // We're generating a reduction, where each instruction depends on
1271     // the previous one, so we need to order them according to the position
1272     // of their inputs in the code.
1273     std::vector<ByteSpan::Block *> ABlocks;
1274     for (ByteSpan::Block &S : ASection) {
1275       if (S.Seg.Val != nullptr)
1276         ABlocks.push_back(&S);
1277     }
1278     llvm::sort(ABlocks,
1279                [&](const ByteSpan::Block *A, const ByteSpan::Block *B) {
1280                  return isEarlier(cast<Instruction>(A->Seg.Val),
1281                                   cast<Instruction>(B->Seg.Val));
1282                });
1283     for (ByteSpan::Block *S : ABlocks) {
1284       // The processing of the data loaded by the aligned loads
1285       // needs to be inserted after the data is available.
1286       Instruction *SegI = cast<Instruction>(S->Seg.Val);
1287       Builder.SetInsertPoint(&*std::next(SegI->getIterator()));
1288       Value *Pay = HVC.vbytes(Builder, getPayload(S->Seg.Val));
1289       Accum =
1290           HVC.insertb(Builder, Accum, Pay, S->Seg.Start, S->Seg.Size, S->Pos);
1291     }
1292     // Instead of casting everything to bytes for the vselect, cast to the
1293     // original value type. This will avoid complications with casting masks.
1294     // For example, in cases when the original mask applied to i32, it could
1295     // be converted to a mask applicable to i8 via pred_typecast intrinsic,
1296     // but if the mask is not exactly of HVX length, extra handling would be
1297     // needed to make it work.
1298     Type *ValTy = getPayload(B.Seg.Val)->getType();
1299     Value *Cast = Builder.CreateBitCast(Accum, ValTy, "cst");
1300     Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
1301                                       getPassThrough(B.Seg.Val), "sel");
1302     B.Seg.Val->replaceAllUsesWith(Sel);
1303   }
1304 }
1305 
1306 auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder,
1307                                      const ByteSpan &VSpan, int ScLen,
1308                                      Value *AlignVal, Value *AlignAddr) const
1309     -> void {
1310   LLVM_DEBUG(dbgs() << __func__ << "\n");
1311 
1312   Type *SecTy = HVC.getByteTy(ScLen);
1313   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
1314   bool DoAlign = !HVC.isZero(AlignVal);
1315 
1316   // Stores.
1317   ByteSpan ASpanV, ASpanM;
1318 
1319   // Return a vector value corresponding to the input value Val:
1320   // either <1 x Val> for scalar Val, or Val itself for vector Val.
1321   auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * {
1322     Type *Ty = Val->getType();
1323     if (Ty->isVectorTy())
1324       return Val;
1325     auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false);
1326     return Builder.CreateBitCast(Val, VecTy, "cst");
1327   };
1328 
1329   // Create an extra "undef" sector at the beginning and at the end.
1330   // They will be used as the left/right filler in the vlalign step.
1331   for (int Index = (DoAlign ? -1 : 0); Index != NumSectors + DoAlign; ++Index) {
1332     // For stores, the size of each section is an aligned vector length.
1333     // Adjust the store offsets relative to the section start offset.
1334     ByteSpan VSection =
1335         VSpan.section(Index * ScLen, ScLen).shift(-Index * ScLen);
1336     Value *Undef = UndefValue::get(SecTy);
1337     Value *Zero = HVC.getNullValue(SecTy);
1338     Value *AccumV = Undef;
1339     Value *AccumM = Zero;
1340     for (ByteSpan::Block &S : VSection) {
1341       Value *Pay = getPayload(S.Seg.Val);
1342       Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
1343                                 Pay->getType(), HVC.getByteTy());
1344       Value *PartM = HVC.insertb(Builder, Zero, HVC.vbytes(Builder, Mask),
1345                                  S.Seg.Start, S.Seg.Size, S.Pos);
1346       AccumM = Builder.CreateOr(AccumM, PartM);
1347 
1348       Value *PartV = HVC.insertb(Builder, Undef, HVC.vbytes(Builder, Pay),
1349                                  S.Seg.Start, S.Seg.Size, S.Pos);
1350 
1351       AccumV = Builder.CreateSelect(
1352           Builder.CreateICmp(CmpInst::ICMP_NE, PartM, Zero), PartV, AccumV);
1353     }
1354     ASpanV.Blocks.emplace_back(AccumV, ScLen, Index * ScLen);
1355     ASpanM.Blocks.emplace_back(AccumM, ScLen, Index * ScLen);
1356   }
1357 
1358   LLVM_DEBUG({
1359     dbgs() << "ASpanV before vlalign:\n" << ASpanV << '\n';
1360     dbgs() << "ASpanM before vlalign:\n" << ASpanM << '\n';
1361   });
1362 
1363   // vlalign
1364   if (DoAlign) {
1365     for (int Index = 1; Index != NumSectors + 2; ++Index) {
1366       Value *PrevV = ASpanV[Index - 1].Seg.Val, *ThisV = ASpanV[Index].Seg.Val;
1367       Value *PrevM = ASpanM[Index - 1].Seg.Val, *ThisM = ASpanM[Index].Seg.Val;
1368       assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType()));
1369       ASpanV[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal);
1370       ASpanM[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal);
1371     }
1372   }
1373 
1374   LLVM_DEBUG({
1375     dbgs() << "ASpanV after vlalign:\n" << ASpanV << '\n';
1376     dbgs() << "ASpanM after vlalign:\n" << ASpanM << '\n';
1377   });
1378 
1379   auto createStore = [&](IRBuilderBase &Builder, const ByteSpan &ASpanV,
1380                          const ByteSpan &ASpanM, int Index, bool MakePred) {
1381     Value *Val = ASpanV[Index].Seg.Val;
1382     Value *Mask = ASpanM[Index].Seg.Val; // bytes
1383     if (HVC.isUndef(Val) || HVC.isZero(Mask))
1384       return;
1385     Value *Ptr =
1386         createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
1387     Value *Predicate =
1388         MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr;
1389 
1390     // If vector shifting is potentially needed, accumulate metadata
1391     // from source sections of twice the store width.
1392     int Start = (Index - DoAlign) * ScLen;
1393     int Width = (1 + DoAlign) * ScLen;
1394     this->createStore(Builder, Val, Ptr, Predicate, ScLen,
1395                       HVC.vlsb(Builder, Mask),
1396                       VSpan.section(Start, Width).values());
1397   };
1398 
1399   for (int Index = 0; Index != NumSectors + DoAlign; ++Index) {
1400     createStore(Builder, ASpanV, ASpanM, Index, DoAlign && Index == NumSectors);
1401   }
1402 }
1403 
1404 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
1405   LLVM_DEBUG(dbgs() << "Realigning group:\n" << Move << '\n');
1406 
1407   // TODO: Needs support for masked loads/stores of "scalar" vectors.
1408   if (!Move.IsHvx)
1409     return false;
1410 
1411   // Return the element with the maximum alignment from Range,
1412   // where GetValue obtains the value to compare from an element.
1413   auto getMaxOf = [](auto Range, auto GetValue) {
1414     return *llvm::max_element(Range, [&GetValue](auto &A, auto &B) {
1415       return GetValue(A) < GetValue(B);
1416     });
1417   };
1418 
1419   const AddrList &BaseInfos = AddrGroups.at(Move.Base);
1420 
1421   // Conceptually, there is a vector of N bytes covering the addresses
1422   // starting from the minimum offset (i.e. Base.Addr+Start). This vector
1423   // represents a contiguous memory region that spans all accessed memory
1424   // locations.
1425   // The correspondence between loaded or stored values will be expressed
1426   // in terms of this vector. For example, the 0th element of the vector
1427   // from the Base address info will start at byte Start from the beginning
1428   // of this conceptual vector.
1429   //
1430   // This vector will be loaded/stored starting at the nearest down-aligned
1431   // address and the amount od the down-alignment will be AlignVal:
1432   //   valign(load_vector(align_down(Base+Start)), AlignVal)
1433 
1434   std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
1435   AddrList MoveInfos;
1436   llvm::copy_if(
1437       BaseInfos, std::back_inserter(MoveInfos),
1438       [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
1439 
1440   // Maximum alignment present in the whole address group.
1441   const AddrInfo &WithMaxAlign =
1442       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
1443   Align MaxGiven = WithMaxAlign.HaveAlign;
1444 
1445   // Minimum alignment present in the move address group.
1446   const AddrInfo &WithMinOffset =
1447       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
1448 
1449   const AddrInfo &WithMaxNeeded =
1450       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
1451   Align MinNeeded = WithMaxNeeded.NeedAlign;
1452 
1453   // Set the builder's insertion point right before the load group, or
1454   // immediately after the store group. (Instructions in a store group are
1455   // listed in reverse order.)
1456   Instruction *InsertAt = Move.Main.front();
1457   if (!Move.IsLoad) {
1458     // There should be a terminator (which store isn't, but check anyways).
1459     assert(InsertAt->getIterator() != InsertAt->getParent()->end());
1460     InsertAt = &*std::next(InsertAt->getIterator());
1461   }
1462 
1463   IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(),
1464                     InstSimplifyFolder(HVC.DL));
1465   Value *AlignAddr = nullptr; // Actual aligned address.
1466   Value *AlignVal = nullptr;  // Right-shift amount (for valign).
1467 
1468   if (MinNeeded <= MaxGiven) {
1469     int Start = WithMinOffset.Offset;
1470     int OffAtMax = WithMaxAlign.Offset;
1471     // Shift the offset of the maximally aligned instruction (OffAtMax)
1472     // back by just enough multiples of the required alignment to cover the
1473     // distance from Start to OffAtMax.
1474     // Calculate the address adjustment amount based on the address with the
1475     // maximum alignment. This is to allow a simple gep instruction instead
1476     // of potential bitcasts to i8*.
1477     int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
1478     AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
1479                                       WithMaxAlign.ValTy, Adjust, Move.Clones);
1480     int Diff = Start - (OffAtMax + Adjust);
1481     AlignVal = HVC.getConstInt(Diff);
1482     assert(Diff >= 0);
1483     assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
1484   } else {
1485     // WithMinOffset is the lowest address in the group,
1486     //   WithMinOffset.Addr = Base+Start.
1487     // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
1488     // mask off unnecessary bits, so it's ok to just the original pointer as
1489     // the alignment amount.
1490     // Do an explicit down-alignment of the address to avoid creating an
1491     // aligned instruction with an address that is not really aligned.
1492     AlignAddr =
1493         createAlignedPointer(Builder, WithMinOffset.Addr, WithMinOffset.ValTy,
1494                              MinNeeded.value(), Move.Clones);
1495     AlignVal =
1496         Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy(), "pti");
1497     if (auto *I = dyn_cast<Instruction>(AlignVal)) {
1498       for (auto [Old, New] : Move.Clones)
1499         I->replaceUsesOfWith(Old, New);
1500     }
1501   }
1502 
1503   ByteSpan VSpan;
1504   for (const AddrInfo &AI : MoveInfos) {
1505     VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
1506                               AI.Offset - WithMinOffset.Offset);
1507   }
1508 
1509   // The aligned loads/stores will use blocks that are either scalars,
1510   // or HVX vectors. Let "sector" be the unified term for such a block.
1511   // blend(scalar, vector) -> sector...
1512   int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
1513                          : std::max<int>(MinNeeded.value(), 4);
1514   assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
1515   assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
1516 
1517   LLVM_DEBUG({
1518     dbgs() << "ScLen:  " << ScLen << "\n";
1519     dbgs() << "AlignVal:" << *AlignVal << "\n";
1520     dbgs() << "AlignAddr:" << *AlignAddr << "\n";
1521     dbgs() << "VSpan:\n" << VSpan << '\n';
1522   });
1523 
1524   if (Move.IsLoad)
1525     realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
1526   else
1527     realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
1528 
1529   for (auto *Inst : Move.Main)
1530     Inst->eraseFromParent();
1531 
1532   return true;
1533 }
1534 
1535 auto AlignVectors::makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal,
1536                                        int Alignment) const -> Value * {
1537   auto *AlignTy = AlignVal->getType();
1538   Value *And = Builder.CreateAnd(
1539       AlignVal, ConstantInt::get(AlignTy, Alignment - 1), "and");
1540   Value *Zero = ConstantInt::get(AlignTy, 0);
1541   return Builder.CreateICmpNE(And, Zero, "isz");
1542 }
1543 
1544 auto AlignVectors::isSectorTy(Type *Ty) const -> bool {
1545   if (!HVC.isByteVecTy(Ty))
1546     return false;
1547   int Size = HVC.getSizeOf(Ty);
1548   if (HVC.HST.isTypeForHVX(Ty))
1549     return Size == static_cast<int>(HVC.HST.getVectorLength());
1550   return Size == 4 || Size == 8;
1551 }
1552 
1553 auto AlignVectors::run() -> bool {
1554   LLVM_DEBUG(dbgs() << "Running HVC::AlignVectors on " << HVC.F.getName()
1555                     << '\n');
1556   if (!createAddressGroups())
1557     return false;
1558 
1559   LLVM_DEBUG({
1560     dbgs() << "Address groups(" << AddrGroups.size() << "):\n";
1561     for (auto &[In, AL] : AddrGroups) {
1562       for (const AddrInfo &AI : AL)
1563         dbgs() << "---\n" << AI << '\n';
1564     }
1565   });
1566 
1567   bool Changed = false;
1568   MoveList LoadGroups, StoreGroups;
1569 
1570   for (auto &G : AddrGroups) {
1571     llvm::append_range(LoadGroups, createLoadGroups(G.second));
1572     llvm::append_range(StoreGroups, createStoreGroups(G.second));
1573   }
1574 
1575   LLVM_DEBUG({
1576     dbgs() << "\nLoad groups(" << LoadGroups.size() << "):\n";
1577     for (const MoveGroup &G : LoadGroups)
1578       dbgs() << G << "\n";
1579     dbgs() << "Store groups(" << StoreGroups.size() << "):\n";
1580     for (const MoveGroup &G : StoreGroups)
1581       dbgs() << G << "\n";
1582   });
1583 
1584   // Cumulative limit on the number of groups.
1585   unsigned CountLimit = VAGroupCountLimit;
1586   if (CountLimit == 0)
1587     return false;
1588 
1589   if (LoadGroups.size() > CountLimit) {
1590     LoadGroups.resize(CountLimit);
1591     StoreGroups.clear();
1592   } else {
1593     unsigned StoreLimit = CountLimit - LoadGroups.size();
1594     if (StoreGroups.size() > StoreLimit)
1595       StoreGroups.resize(StoreLimit);
1596   }
1597 
1598   for (auto &M : LoadGroups)
1599     Changed |= moveTogether(M);
1600   for (auto &M : StoreGroups)
1601     Changed |= moveTogether(M);
1602 
1603   LLVM_DEBUG(dbgs() << "After moveTogether:\n" << HVC.F);
1604 
1605   for (auto &M : LoadGroups)
1606     Changed |= realignGroup(M);
1607   for (auto &M : StoreGroups)
1608     Changed |= realignGroup(M);
1609 
1610   return Changed;
1611 }
1612 
1613 // --- End AlignVectors
1614 
1615 // --- Begin HvxIdioms
1616 
1617 auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const
1618     -> std::pair<unsigned, Signedness> {
1619   unsigned Bits = HVC.getNumSignificantBits(V, In);
1620   // The significant bits are calculated including the sign bit. This may
1621   // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may
1622   // result in 33 significant bits. To avoid extra words, skip the extra
1623   // sign bit, but keep information that the value is to be treated as
1624   // unsigned.
1625   KnownBits Known = HVC.getKnownBits(V, In);
1626   Signedness Sign = Signed;
1627   unsigned NumToTest = 0; // Number of bits used in test for unsignedness.
1628   if (isPowerOf2_32(Bits))
1629     NumToTest = Bits;
1630   else if (Bits > 1 && isPowerOf2_32(Bits - 1))
1631     NumToTest = Bits - 1;
1632 
1633   if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) {
1634     Sign = Unsigned;
1635     Bits = NumToTest;
1636   }
1637 
1638   // If the top bit of the nearest power-of-2 is zero, this value is
1639   // positive. It could be treated as either signed or unsigned.
1640   if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) {
1641     if (Known.Zero.ashr(Pow2 - 1).isAllOnes())
1642       Sign = Positive;
1643   }
1644   return {Bits, Sign};
1645 }
1646 
1647 auto HvxIdioms::canonSgn(SValue X, SValue Y) const
1648     -> std::pair<SValue, SValue> {
1649   // Canonicalize the signedness of X and Y, so that the result is one of:
1650   //   S, S
1651   //   U/P, S
1652   //   U/P, U/P
1653   if (X.Sgn == Signed && Y.Sgn != Signed)
1654     std::swap(X, Y);
1655   return {X, Y};
1656 }
1657 
1658 // Match
1659 //   (X * Y) [>> N], or
1660 //   ((X * Y) + (1 << M)) >> N
1661 auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> {
1662   using namespace PatternMatch;
1663   auto *Ty = In.getType();
1664 
1665   if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy())
1666     return std::nullopt;
1667 
1668   unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth();
1669 
1670   FxpOp Op;
1671   Value *Exp = &In;
1672 
1673   // Fixed-point multiplication is always shifted right (except when the
1674   // fraction is 0 bits).
1675   auto m_Shr = [](auto &&V, auto &&S) {
1676     return m_CombineOr(m_LShr(V, S), m_AShr(V, S));
1677   };
1678 
1679   const APInt *Qn = nullptr;
1680   if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) {
1681     Op.Frac = Qn->getZExtValue();
1682     Exp = T;
1683   } else {
1684     Op.Frac = 0;
1685   }
1686 
1687   if (Op.Frac > Width)
1688     return std::nullopt;
1689 
1690   // Check if there is rounding added.
1691   const APInt *C = nullptr;
1692   if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) {
1693     uint64_t CV = C->getZExtValue();
1694     if (CV != 0 && !isPowerOf2_64(CV))
1695       return std::nullopt;
1696     if (CV != 0)
1697       Op.RoundAt = Log2_64(CV);
1698     Exp = T;
1699   }
1700 
1701   // Check if the rest is a multiplication.
1702   if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) {
1703     Op.Opcode = Instruction::Mul;
1704     // FIXME: The information below is recomputed.
1705     Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second;
1706     Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second;
1707     Op.ResTy = cast<VectorType>(Ty);
1708     return Op;
1709   }
1710 
1711   return std::nullopt;
1712 }
1713 
1714 auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const
1715     -> Value * {
1716   assert(Op.X.Val->getType() == Op.Y.Val->getType());
1717 
1718   auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType());
1719   if (VecTy == nullptr)
1720     return nullptr;
1721   auto *ElemTy = cast<IntegerType>(VecTy->getElementType());
1722   unsigned ElemWidth = ElemTy->getBitWidth();
1723 
1724   // TODO: This can be relaxed after legalization is done pre-isel.
1725   if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0)
1726     return nullptr;
1727 
1728   // There are no special intrinsics that should be used for multiplying
1729   // signed 8-bit values, so just skip them. Normal codegen should handle
1730   // this just fine.
1731   if (ElemWidth <= 8)
1732     return nullptr;
1733   // Similarly, if this is just a multiplication that can be handled without
1734   // intervention, then leave it alone.
1735   if (ElemWidth <= 32 && Op.Frac == 0)
1736     return nullptr;
1737 
1738   auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In);
1739   auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In);
1740 
1741   // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes).
1742 
1743   Value *X = Op.X.Val, *Y = Op.Y.Val;
1744   IRBuilder Builder(In.getParent(), In.getIterator(),
1745                     InstSimplifyFolder(HVC.DL));
1746 
1747   auto roundUpWidth = [](unsigned Width) -> unsigned {
1748     if (Width <= 32 && !isPowerOf2_32(Width)) {
1749       // If the element width is not a power of 2, round it up
1750       // to the next one. Do this for widths not exceeding 32.
1751       return PowerOf2Ceil(Width);
1752     }
1753     if (Width > 32 && Width % 32 != 0) {
1754       // For wider elements, round it up to the multiple of 32.
1755       return alignTo(Width, 32u);
1756     }
1757     return Width;
1758   };
1759 
1760   BitsX = roundUpWidth(BitsX);
1761   BitsY = roundUpWidth(BitsY);
1762 
1763   // For elementwise multiplication vectors must have the same lengths, so
1764   // resize the elements of both inputs to the same width, the max of the
1765   // calculated significant bits.
1766   unsigned Width = std::max(BitsX, BitsY);
1767 
1768   auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy);
1769   if (Width < ElemWidth) {
1770     X = Builder.CreateTrunc(X, ResizeTy, "trn");
1771     Y = Builder.CreateTrunc(Y, ResizeTy, "trn");
1772   } else if (Width > ElemWidth) {
1773     X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy, "sxt")
1774                         : Builder.CreateZExt(X, ResizeTy, "zxt");
1775     Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy, "sxt")
1776                         : Builder.CreateZExt(Y, ResizeTy, "zxt");
1777   };
1778 
1779   assert(X->getType() == Y->getType() && X->getType() == ResizeTy);
1780 
1781   unsigned VecLen = HVC.length(ResizeTy);
1782   unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u);
1783 
1784   SmallVector<Value *> Results;
1785   FxpOp ChopOp = Op;
1786   ChopOp.ResTy = VectorType::get(Op.ResTy->getElementType(), ChopLen, false);
1787 
1788   for (unsigned V = 0; V != VecLen / ChopLen; ++V) {
1789     ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen);
1790     ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen);
1791     Results.push_back(processFxpMulChopped(Builder, In, ChopOp));
1792     if (Results.back() == nullptr)
1793       break;
1794   }
1795 
1796   if (Results.empty() || Results.back() == nullptr)
1797     return nullptr;
1798 
1799   Value *Cat = HVC.concat(Builder, Results);
1800   Value *Ext = SignX == Signed || SignY == Signed
1801                    ? Builder.CreateSExt(Cat, VecTy, "sxt")
1802                    : Builder.CreateZExt(Cat, VecTy, "zxt");
1803   return Ext;
1804 }
1805 
1806 auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
1807                                      const FxpOp &Op) const -> Value * {
1808   assert(Op.X.Val->getType() == Op.Y.Val->getType());
1809   auto *InpTy = cast<VectorType>(Op.X.Val->getType());
1810   unsigned Width = InpTy->getScalarSizeInBits();
1811   bool Rounding = Op.RoundAt.has_value();
1812 
1813   if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) {
1814     // The fixed-point intrinsics do signed multiplication.
1815     if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) {
1816       Value *QMul = nullptr;
1817       if (Width == 16) {
1818         QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding);
1819       } else if (Width == 32) {
1820         QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding);
1821       }
1822       if (QMul != nullptr)
1823         return QMul;
1824     }
1825   }
1826 
1827   assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n
1828   assert(Width < 32 || Width % 32 == 0);       // Width > 32 => Width is 32*k
1829 
1830   // If Width < 32, then it should really be 16.
1831   if (Width < 32) {
1832     if (Width < 16)
1833       return nullptr;
1834     // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we
1835     // generate a full precision products, which is unnecessary if there is
1836     // no shift.
1837     assert(Width == 16);
1838     assert(Op.Frac != 0 && "Unshifted mul should have been skipped");
1839     if (Op.Frac == 16) {
1840       // Multiply high
1841       if (Value *MulH = createMulH16(Builder, Op.X, Op.Y))
1842         return MulH;
1843     }
1844     // Do full-precision multiply and shift.
1845     Value *Prod32 = createMul16(Builder, Op.X, Op.Y);
1846     if (Rounding) {
1847       Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt);
1848       Prod32 = Builder.CreateAdd(Prod32, RoundVal, "add");
1849     }
1850 
1851     Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac);
1852     Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed
1853                          ? Builder.CreateAShr(Prod32, ShiftAmt, "asr")
1854                          : Builder.CreateLShr(Prod32, ShiftAmt, "lsr");
1855     return Builder.CreateTrunc(Shifted, InpTy, "trn");
1856   }
1857 
1858   // Width >= 32
1859 
1860   // Break up the arguments Op.X and Op.Y into vectors of smaller widths
1861   // in preparation of doing the multiplication by 32-bit parts.
1862   auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32);
1863   auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32);
1864   auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn);
1865 
1866   auto *HvxWordTy = cast<VectorType>(WordP.front()->getType());
1867 
1868   // Add the optional rounding to the proper word.
1869   if (Op.RoundAt.has_value()) {
1870     Value *Zero = HVC.getNullValue(WordX[0]->getType());
1871     SmallVector<Value *> RoundV(WordP.size(), Zero);
1872     RoundV[*Op.RoundAt / 32] =
1873         HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32));
1874     WordP = createAddLong(Builder, WordP, RoundV);
1875   }
1876 
1877   // createRightShiftLong?
1878 
1879   // Shift all products right by Op.Frac.
1880   unsigned SkipWords = Op.Frac / 32;
1881   Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32);
1882 
1883   for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) {
1884     int Src = Dst + SkipWords;
1885     Value *Lo = WordP[Src];
1886     if (Src + 1 < End) {
1887       Value *Hi = WordP[Src + 1];
1888       WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr,
1889                                            {Hi, Lo, ShiftAmt},
1890                                            /*FMFSource*/ nullptr, "int");
1891     } else {
1892       // The shift of the most significant word.
1893       WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt, "asr");
1894     }
1895   }
1896   if (SkipWords != 0)
1897     WordP.resize(WordP.size() - SkipWords);
1898 
1899   return HVC.joinVectorElements(Builder, WordP, Op.ResTy);
1900 }
1901 
1902 auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
1903                              bool Rounding) const -> Value * {
1904   assert(X.Val->getType() == Y.Val->getType());
1905   assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16));
1906   assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false)));
1907 
1908   // There is no non-rounding intrinsic for i16.
1909   if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned)
1910     return nullptr;
1911 
1912   auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs);
1913   return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(),
1914                                 {X.Val, Y.Val});
1915 }
1916 
1917 auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
1918                              bool Rounding) const -> Value * {
1919   Type *InpTy = X.Val->getType();
1920   assert(InpTy == Y.Val->getType());
1921   assert(InpTy->getScalarType() == HVC.getIntTy(32));
1922   assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false)));
1923 
1924   if (X.Sgn == Unsigned || Y.Sgn == Unsigned)
1925     return nullptr;
1926 
1927   auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh);
1928   auto V6_vmpyo_acc = Rounding
1929                           ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc)
1930                           : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc);
1931   Value *V1 =
1932       HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val});
1933   return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy,
1934                                 {V1, X.Val, Y.Val});
1935 }
1936 
1937 auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
1938                                Value *CarryIn) const
1939     -> std::pair<Value *, Value *> {
1940   assert(X->getType() == Y->getType());
1941   auto VecTy = cast<VectorType>(X->getType());
1942   if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) {
1943     SmallVector<Value *> Args = {X, Y};
1944     Intrinsic::ID AddCarry;
1945     if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) {
1946       AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo);
1947     } else {
1948       AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry);
1949       if (CarryIn == nullptr)
1950         CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy)));
1951       Args.push_back(CarryIn);
1952     }
1953     Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry,
1954                                         /*RetTy=*/nullptr, Args);
1955     Value *Result = Builder.CreateExtractValue(Ret, {0}, "ext");
1956     Value *CarryOut = Builder.CreateExtractValue(Ret, {1}, "ext");
1957     return {Result, CarryOut};
1958   }
1959 
1960   // In other cases, do a regular add, and unsigned compare-less-than.
1961   // The carry-out can originate in two places: adding the carry-in or adding
1962   // the two input values.
1963   Value *Result1 = X; // Result1 = X + CarryIn
1964   if (CarryIn != nullptr) {
1965     unsigned Width = VecTy->getScalarSizeInBits();
1966     uint32_t Mask = 1;
1967     if (Width < 32) {
1968       for (unsigned i = 0, e = 32 / Width; i != e; ++i)
1969         Mask = (Mask << Width) | 1;
1970     }
1971     auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt);
1972     Value *ValueIn =
1973         HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr,
1974                                {CarryIn, HVC.getConstInt(Mask)});
1975     Result1 = Builder.CreateAdd(X, ValueIn, "add");
1976   }
1977 
1978   Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X, "cmp");
1979   Value *Result2 = Builder.CreateAdd(Result1, Y, "add");
1980   Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y, "cmp");
1981   return {Result2, Builder.CreateOr(CarryOut1, CarryOut2, "orb")};
1982 }
1983 
1984 auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const
1985     -> Value * {
1986   Intrinsic::ID V6_vmpyh = 0;
1987   std::tie(X, Y) = canonSgn(X, Y);
1988 
1989   if (X.Sgn == Signed) {
1990     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv);
1991   } else if (Y.Sgn == Signed) {
1992     // In vmpyhus the second operand is unsigned
1993     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus);
1994   } else {
1995     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv);
1996   }
1997 
1998   // i16*i16 -> i32 / interleaved
1999   Value *P =
2000       HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val});
2001   // Deinterleave
2002   return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P));
2003 }
2004 
2005 auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
2006     -> Value * {
2007   Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false);
2008 
2009   if (HVC.HST.useHVXV69Ops()) {
2010     if (X.Sgn != Signed && Y.Sgn != Signed) {
2011       auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs);
2012       return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty,
2013                                     {X.Val, Y.Val});
2014     }
2015   }
2016 
2017   Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true);
2018   Value *Pair16 =
2019       Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty, "cst");
2020   unsigned Len = HVC.length(HvxP16Ty) / 2;
2021 
2022   SmallVector<int, 128> PickOdd(Len);
2023   for (int i = 0; i != static_cast<int>(Len); ++i)
2024     PickOdd[i] = 2 * i + 1;
2025 
2026   return Builder.CreateShuffleVector(
2027       HVC.sublo(Builder, Pair16), HVC.subhi(Builder, Pair16), PickOdd, "shf");
2028 }
2029 
2030 auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
2031     -> std::pair<Value *, Value *> {
2032   assert(X.Val->getType() == Y.Val->getType());
2033   assert(X.Val->getType() == HvxI32Ty);
2034 
2035   Intrinsic::ID V6_vmpy_parts;
2036   std::tie(X, Y) = canonSgn(X, Y);
2037 
2038   if (X.Sgn == Signed) {
2039     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts;
2040   } else if (Y.Sgn == Signed) {
2041     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts;
2042   } else {
2043     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts;
2044   }
2045 
2046   Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr,
2047                                         {X.Val, Y.Val}, {HvxI32Ty});
2048   Value *Hi = Builder.CreateExtractValue(Parts, {0}, "ext");
2049   Value *Lo = Builder.CreateExtractValue(Parts, {1}, "ext");
2050   return {Lo, Hi};
2051 }
2052 
2053 auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
2054                               ArrayRef<Value *> WordY) const
2055     -> SmallVector<Value *> {
2056   assert(WordX.size() == WordY.size());
2057   unsigned Idx = 0, Length = WordX.size();
2058   SmallVector<Value *> Sum(Length);
2059 
2060   while (Idx != Length) {
2061     if (HVC.isZero(WordX[Idx]))
2062       Sum[Idx] = WordY[Idx];
2063     else if (HVC.isZero(WordY[Idx]))
2064       Sum[Idx] = WordX[Idx];
2065     else
2066       break;
2067     ++Idx;
2068   }
2069 
2070   Value *Carry = nullptr;
2071   for (; Idx != Length; ++Idx) {
2072     std::tie(Sum[Idx], Carry) =
2073         createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry);
2074   }
2075 
2076   // This drops the final carry beyond the highest word.
2077   return Sum;
2078 }
2079 
2080 auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
2081                               Signedness SgnX, ArrayRef<Value *> WordY,
2082                               Signedness SgnY) const -> SmallVector<Value *> {
2083   SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size());
2084 
2085   // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results,
2086   // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3.
2087   for (int i = 0, e = WordX.size(); i != e; ++i) {
2088     for (int j = 0, f = WordY.size(); j != f; ++j) {
2089       // Check the 4 halves that this multiplication can generate.
2090       Signedness SX = (i + 1 == e) ? SgnX : Unsigned;
2091       Signedness SY = (j + 1 == f) ? SgnY : Unsigned;
2092       auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY});
2093       Products[i + j + 0].push_back(Lo);
2094       Products[i + j + 1].push_back(Hi);
2095     }
2096   }
2097 
2098   Value *Zero = HVC.getNullValue(WordX[0]->getType());
2099 
2100   auto pop_back_or_zero = [Zero](auto &Vector) -> Value * {
2101     if (Vector.empty())
2102       return Zero;
2103     auto Last = Vector.back();
2104     Vector.pop_back();
2105     return Last;
2106   };
2107 
2108   for (int i = 0, e = Products.size(); i != e; ++i) {
2109     while (Products[i].size() > 1) {
2110       Value *Carry = nullptr; // no carry-in
2111       for (int j = i; j != e; ++j) {
2112         auto &ProdJ = Products[j];
2113         auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ),
2114                                               pop_back_or_zero(ProdJ), Carry);
2115         ProdJ.insert(ProdJ.begin(), Sum);
2116         Carry = CarryOut;
2117       }
2118     }
2119   }
2120 
2121   SmallVector<Value *> WordP;
2122   for (auto &P : Products) {
2123     assert(P.size() == 1 && "Should have been added together");
2124     WordP.push_back(P.front());
2125   }
2126 
2127   return WordP;
2128 }
2129 
2130 auto HvxIdioms::run() -> bool {
2131   bool Changed = false;
2132 
2133   for (BasicBlock &B : HVC.F) {
2134     for (auto It = B.rbegin(); It != B.rend(); ++It) {
2135       if (auto Fxm = matchFxpMul(*It)) {
2136         Value *New = processFxpMul(*It, *Fxm);
2137         // Always report "changed" for now.
2138         Changed = true;
2139         if (!New)
2140           continue;
2141         bool StartOver = !isa<Instruction>(New);
2142         It->replaceAllUsesWith(New);
2143         RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI);
2144         It = StartOver ? B.rbegin()
2145                        : cast<Instruction>(New)->getReverseIterator();
2146         Changed = true;
2147       }
2148     }
2149   }
2150 
2151   return Changed;
2152 }
2153 
2154 // --- End HvxIdioms
2155 
2156 auto HexagonVectorCombine::run() -> bool {
2157   if (DumpModule)
2158     dbgs() << "Module before HexagonVectorCombine\n" << *F.getParent();
2159 
2160   bool Changed = false;
2161   if (HST.useHVXOps()) {
2162     if (VAEnabled)
2163       Changed |= AlignVectors(*this).run();
2164     if (VIEnabled)
2165       Changed |= HvxIdioms(*this).run();
2166   }
2167 
2168   if (DumpModule) {
2169     dbgs() << "Module " << (Changed ? "(modified)" : "(unchanged)")
2170            << " after HexagonVectorCombine\n"
2171            << *F.getParent();
2172   }
2173   return Changed;
2174 }
2175 
2176 auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * {
2177   return IntegerType::get(F.getContext(), Width);
2178 }
2179 
2180 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
2181   assert(ElemCount >= 0);
2182   IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
2183   if (ElemCount == 0)
2184     return ByteTy;
2185   return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false);
2186 }
2187 
2188 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
2189   assert(ElemCount >= 0);
2190   IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
2191   if (ElemCount == 0)
2192     return BoolTy;
2193   return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false);
2194 }
2195 
2196 auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const
2197     -> ConstantInt * {
2198   return ConstantInt::getSigned(getIntTy(Width), Val);
2199 }
2200 
2201 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
2202   if (auto *C = dyn_cast<Constant>(Val))
2203     return C->isZeroValue();
2204   return false;
2205 }
2206 
2207 auto HexagonVectorCombine::getIntValue(const Value *Val) const
2208     -> std::optional<APInt> {
2209   if (auto *CI = dyn_cast<ConstantInt>(Val))
2210     return CI->getValue();
2211   return std::nullopt;
2212 }
2213 
2214 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
2215   return isa<UndefValue>(Val);
2216 }
2217 
2218 auto HexagonVectorCombine::isTrue(const Value *Val) const -> bool {
2219   return Val == ConstantInt::getTrue(Val->getType());
2220 }
2221 
2222 auto HexagonVectorCombine::isFalse(const Value *Val) const -> bool {
2223   return isZero(Val);
2224 }
2225 
2226 auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const
2227     -> VectorType * {
2228   EVT ETy = EVT::getEVT(ElemTy, false);
2229   assert(ETy.isSimple() && "Invalid HVX element type");
2230   // Do not allow boolean types here: they don't have a fixed length.
2231   assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) &&
2232          "Invalid HVX element type");
2233   unsigned HwLen = HST.getVectorLength();
2234   unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits();
2235   return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems,
2236                          /*Scalable=*/false);
2237 }
2238 
2239 auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const
2240     -> int {
2241   return getSizeOf(Val->getType(), Kind);
2242 }
2243 
2244 auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const
2245     -> int {
2246   auto *NcTy = const_cast<Type *>(Ty);
2247   switch (Kind) {
2248   case Store:
2249     return DL.getTypeStoreSize(NcTy).getFixedValue();
2250   case Alloc:
2251     return DL.getTypeAllocSize(NcTy).getFixedValue();
2252   }
2253   llvm_unreachable("Unhandled SizeKind enum");
2254 }
2255 
2256 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
2257   // The actual type may be shorter than the HVX vector, so determine
2258   // the alignment based on subtarget info.
2259   if (HST.isTypeForHVX(Ty))
2260     return HST.getVectorLength();
2261   return DL.getABITypeAlign(Ty).value();
2262 }
2263 
2264 auto HexagonVectorCombine::length(Value *Val) const -> size_t {
2265   return length(Val->getType());
2266 }
2267 
2268 auto HexagonVectorCombine::length(Type *Ty) const -> size_t {
2269   auto *VecTy = dyn_cast<VectorType>(Ty);
2270   assert(VecTy && "Must be a vector type");
2271   return VecTy->getElementCount().getFixedValue();
2272 }
2273 
2274 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
2275   assert(Ty->isIntOrIntVectorTy());
2276   auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
2277   if (auto *VecTy = dyn_cast<VectorType>(Ty))
2278     return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
2279   return Zero;
2280 }
2281 
2282 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
2283   assert(Ty->isIntOrIntVectorTy());
2284   auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
2285   if (auto *VecTy = dyn_cast<VectorType>(Ty))
2286     return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
2287   return Minus1;
2288 }
2289 
2290 auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const
2291     -> Constant * {
2292   assert(Ty->isVectorTy());
2293   auto VecTy = cast<VectorType>(Ty);
2294   Type *ElemTy = VecTy->getElementType();
2295   // Add support for floats if needed.
2296   auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(),
2297                                          ConstantInt::get(ElemTy, Val));
2298   return Splat;
2299 }
2300 
2301 auto HexagonVectorCombine::simplify(Value *V) const -> Value * {
2302   if (auto *In = dyn_cast<Instruction>(V)) {
2303     SimplifyQuery Q(DL, &TLI, &DT, &AC, In);
2304     return simplifyInstruction(In, Q);
2305   }
2306   return nullptr;
2307 }
2308 
2309 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
2310 auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst,
2311                                    Value *Src, int Start, int Length,
2312                                    int Where) const -> Value * {
2313   assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
2314   int SrcLen = getSizeOf(Src);
2315   int DstLen = getSizeOf(Dst);
2316   assert(0 <= Start && Start + Length <= SrcLen);
2317   assert(0 <= Where && Where + Length <= DstLen);
2318 
2319   int P2Len = PowerOf2Ceil(SrcLen | DstLen);
2320   auto *Undef = UndefValue::get(getByteTy());
2321   Value *P2Src = vresize(Builder, Src, P2Len, Undef);
2322   Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
2323 
2324   SmallVector<int, 256> SMask(P2Len);
2325   for (int i = 0; i != P2Len; ++i) {
2326     // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
2327     // Otherwise, pick Dst[i];
2328     SMask[i] =
2329         (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
2330   }
2331 
2332   Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask, "shf");
2333   return vresize(Builder, P2Insert, DstLen, Undef);
2334 }
2335 
2336 auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo,
2337                                     Value *Hi, Value *Amt) const -> Value * {
2338   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
2339   if (isZero(Amt))
2340     return Hi;
2341   int VecLen = getSizeOf(Hi);
2342   if (auto IntAmt = getIntValue(Amt))
2343     return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
2344                            VecLen);
2345 
2346   if (HST.isTypeForHVX(Hi->getType())) {
2347     assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
2348            "Expecting an exact HVX type");
2349     return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb),
2350                               Hi->getType(), {Hi, Lo, Amt});
2351   }
2352 
2353   if (VecLen == 4) {
2354     Value *Pair = concat(Builder, {Lo, Hi});
2355     Value *Shift =
2356         Builder.CreateLShr(Builder.CreateShl(Pair, Amt, "shl"), 32, "lsr");
2357     Value *Trunc =
2358         Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn");
2359     return Builder.CreateBitCast(Trunc, Hi->getType(), "cst");
2360   }
2361   if (VecLen == 8) {
2362     Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt, "sub");
2363     return vralignb(Builder, Lo, Hi, Sub);
2364   }
2365   llvm_unreachable("Unexpected vector length");
2366 }
2367 
2368 auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo,
2369                                     Value *Hi, Value *Amt) const -> Value * {
2370   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
2371   if (isZero(Amt))
2372     return Lo;
2373   int VecLen = getSizeOf(Lo);
2374   if (auto IntAmt = getIntValue(Amt))
2375     return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
2376 
2377   if (HST.isTypeForHVX(Lo->getType())) {
2378     assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
2379            "Expecting an exact HVX type");
2380     return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb),
2381                               Lo->getType(), {Hi, Lo, Amt});
2382   }
2383 
2384   if (VecLen == 4) {
2385     Value *Pair = concat(Builder, {Lo, Hi});
2386     Value *Shift = Builder.CreateLShr(Pair, Amt, "lsr");
2387     Value *Trunc =
2388         Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn");
2389     return Builder.CreateBitCast(Trunc, Lo->getType(), "cst");
2390   }
2391   if (VecLen == 8) {
2392     Type *Int64Ty = Type::getInt64Ty(F.getContext());
2393     Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty, "cst");
2394     Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty, "cst");
2395     Function *FI = Intrinsic::getDeclaration(F.getParent(),
2396                                              Intrinsic::hexagon_S2_valignrb);
2397     Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}, "cup");
2398     return Builder.CreateBitCast(Call, Lo->getType(), "cst");
2399   }
2400   llvm_unreachable("Unexpected vector length");
2401 }
2402 
2403 // Concatenates a sequence of vectors of the same type.
2404 auto HexagonVectorCombine::concat(IRBuilderBase &Builder,
2405                                   ArrayRef<Value *> Vecs) const -> Value * {
2406   assert(!Vecs.empty());
2407   SmallVector<int, 256> SMask;
2408   std::vector<Value *> Work[2];
2409   int ThisW = 0, OtherW = 1;
2410 
2411   Work[ThisW].assign(Vecs.begin(), Vecs.end());
2412   while (Work[ThisW].size() > 1) {
2413     auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
2414     SMask.resize(length(Ty) * 2);
2415     std::iota(SMask.begin(), SMask.end(), 0);
2416 
2417     Work[OtherW].clear();
2418     if (Work[ThisW].size() % 2 != 0)
2419       Work[ThisW].push_back(UndefValue::get(Ty));
2420     for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
2421       Value *Joined = Builder.CreateShuffleVector(
2422           Work[ThisW][i], Work[ThisW][i + 1], SMask, "shf");
2423       Work[OtherW].push_back(Joined);
2424     }
2425     std::swap(ThisW, OtherW);
2426   }
2427 
2428   // Since there may have been some undefs appended to make shuffle operands
2429   // have the same type, perform the last shuffle to only pick the original
2430   // elements.
2431   SMask.resize(Vecs.size() * length(Vecs.front()->getType()));
2432   std::iota(SMask.begin(), SMask.end(), 0);
2433   Value *Total = Work[ThisW].front();
2434   return Builder.CreateShuffleVector(Total, SMask, "shf");
2435 }
2436 
2437 auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val,
2438                                    int NewSize, Value *Pad) const -> Value * {
2439   assert(isa<VectorType>(Val->getType()));
2440   auto *ValTy = cast<VectorType>(Val->getType());
2441   assert(ValTy->getElementType() == Pad->getType());
2442 
2443   int CurSize = length(ValTy);
2444   if (CurSize == NewSize)
2445     return Val;
2446   // Truncate?
2447   if (CurSize > NewSize)
2448     return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize);
2449   // Extend.
2450   SmallVector<int, 128> SMask(NewSize);
2451   std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
2452   std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
2453   Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad, "spt");
2454   return Builder.CreateShuffleVector(Val, PadVec, SMask, "shf");
2455 }
2456 
2457 auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask,
2458                                    Type *FromTy, Type *ToTy) const -> Value * {
2459   // Mask is a vector <N x i1>, where each element corresponds to an
2460   // element of FromTy. Remap it so that each element will correspond
2461   // to an element of ToTy.
2462   assert(isa<VectorType>(Mask->getType()));
2463 
2464   Type *FromSTy = FromTy->getScalarType();
2465   Type *ToSTy = ToTy->getScalarType();
2466   if (FromSTy == ToSTy)
2467     return Mask;
2468 
2469   int FromSize = getSizeOf(FromSTy);
2470   int ToSize = getSizeOf(ToSTy);
2471   assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
2472 
2473   auto *MaskTy = cast<VectorType>(Mask->getType());
2474   int FromCount = length(MaskTy);
2475   int ToCount = (FromCount * FromSize) / ToSize;
2476   assert((FromCount * FromSize) % ToSize == 0);
2477 
2478   auto *FromITy = getIntTy(FromSize * 8);
2479   auto *ToITy = getIntTy(ToSize * 8);
2480 
2481   // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
2482   // -> trunc to <M x i1>.
2483   Value *Ext = Builder.CreateSExt(
2484       Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false), "sxt");
2485   Value *Cast = Builder.CreateBitCast(
2486       Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false), "cst");
2487   return Builder.CreateTrunc(
2488       Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false), "trn");
2489 }
2490 
2491 // Bitcast to bytes, and return least significant bits.
2492 auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const
2493     -> Value * {
2494   Type *ScalarTy = Val->getType()->getScalarType();
2495   if (ScalarTy == getBoolTy())
2496     return Val;
2497 
2498   Value *Bytes = vbytes(Builder, Val);
2499   if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
2500     return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)), "trn");
2501   // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
2502   // <1 x i1>.
2503   return Builder.CreateTrunc(Bytes, getBoolTy(), "trn");
2504 }
2505 
2506 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
2507 auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const
2508     -> Value * {
2509   Type *ScalarTy = Val->getType()->getScalarType();
2510   if (ScalarTy == getByteTy())
2511     return Val;
2512 
2513   if (ScalarTy != getBoolTy())
2514     return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)), "cst");
2515   // For bool, return a sext from i1 to i8.
2516   if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
2517     return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy), "sxt");
2518   return Builder.CreateSExt(Val, getByteTy(), "sxt");
2519 }
2520 
2521 auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val,
2522                                      unsigned Start, unsigned Length) const
2523     -> Value * {
2524   assert(Start + Length <= length(Val));
2525   return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length);
2526 }
2527 
2528 auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const
2529     -> Value * {
2530   size_t Len = length(Val);
2531   assert(Len % 2 == 0 && "Length should be even");
2532   return subvector(Builder, Val, 0, Len / 2);
2533 }
2534 
2535 auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const
2536     -> Value * {
2537   size_t Len = length(Val);
2538   assert(Len % 2 == 0 && "Length should be even");
2539   return subvector(Builder, Val, Len / 2, Len / 2);
2540 }
2541 
2542 auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0,
2543                                  Value *Val1) const -> Value * {
2544   assert(Val0->getType() == Val1->getType());
2545   int Len = length(Val0);
2546   SmallVector<int, 128> Mask(2 * Len);
2547 
2548   for (int i = 0; i != Len; ++i) {
2549     Mask[i] = 2 * i;           // Even
2550     Mask[i + Len] = 2 * i + 1; // Odd
2551   }
2552   return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf");
2553 }
2554 
2555 auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0,
2556                                   Value *Val1) const -> Value * { //
2557   assert(Val0->getType() == Val1->getType());
2558   int Len = length(Val0);
2559   SmallVector<int, 128> Mask(2 * Len);
2560 
2561   for (int i = 0; i != Len; ++i) {
2562     Mask[2 * i + 0] = i;       // Val0
2563     Mask[2 * i + 1] = i + Len; // Val1
2564   }
2565   return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf");
2566 }
2567 
2568 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder,
2569                                               Intrinsic::ID IntID, Type *RetTy,
2570                                               ArrayRef<Value *> Args,
2571                                               ArrayRef<Type *> ArgTys,
2572                                               ArrayRef<Value *> MDSources) const
2573     -> Value * {
2574   auto getCast = [&](IRBuilderBase &Builder, Value *Val,
2575                      Type *DestTy) -> Value * {
2576     Type *SrcTy = Val->getType();
2577     if (SrcTy == DestTy)
2578       return Val;
2579 
2580     // Non-HVX type. It should be a scalar, and it should already have
2581     // a valid type.
2582     assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true));
2583 
2584     Type *BoolTy = Type::getInt1Ty(F.getContext());
2585     if (cast<VectorType>(SrcTy)->getElementType() != BoolTy)
2586       return Builder.CreateBitCast(Val, DestTy, "cst");
2587 
2588     // Predicate HVX vector.
2589     unsigned HwLen = HST.getVectorLength();
2590     Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast
2591                                    : Intrinsic::hexagon_V6_pred_typecast_128B;
2592     Function *FI =
2593         Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()});
2594     return Builder.CreateCall(FI, {Val}, "cup");
2595   };
2596 
2597   Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys);
2598   FunctionType *IntrTy = IntrFn->getFunctionType();
2599 
2600   SmallVector<Value *, 4> IntrArgs;
2601   for (int i = 0, e = Args.size(); i != e; ++i) {
2602     Value *A = Args[i];
2603     Type *T = IntrTy->getParamType(i);
2604     if (A->getType() != T) {
2605       IntrArgs.push_back(getCast(Builder, A, T));
2606     } else {
2607       IntrArgs.push_back(A);
2608     }
2609   }
2610   StringRef MaybeName = !IntrTy->getReturnType()->isVoidTy() ? "cup" : "";
2611   CallInst *Call = Builder.CreateCall(IntrFn, IntrArgs, MaybeName);
2612 
2613   MemoryEffects ME = Call->getAttributes().getMemoryEffects();
2614   if (!ME.doesNotAccessMemory() && !ME.onlyAccessesInaccessibleMem())
2615     propagateMetadata(Call, MDSources);
2616 
2617   Type *CallTy = Call->getType();
2618   if (RetTy == nullptr || CallTy == RetTy)
2619     return Call;
2620   // Scalar types should have RetTy matching the call return type.
2621   assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true));
2622   return getCast(Builder, Call, RetTy);
2623 }
2624 
2625 auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder,
2626                                                Value *Vec,
2627                                                unsigned ToWidth) const
2628     -> SmallVector<Value *> {
2629   // Break a vector of wide elements into a series of vectors with narrow
2630   // elements:
2631   //   (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...)
2632   // -->
2633   //   (a0, a1, a2, ...)    // lowest "ToWidth" bits
2634   //   (b0, b1, b2, ...)    // the next lowest...
2635   //   (c0, c1, c2, ...)    // ...
2636   //   ...
2637   //
2638   // The number of elements in each resulting vector is the same as
2639   // in the original vector.
2640 
2641   auto *VecTy = cast<VectorType>(Vec->getType());
2642   assert(VecTy->getElementType()->isIntegerTy());
2643   unsigned FromWidth = VecTy->getScalarSizeInBits();
2644   assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth));
2645   assert(ToWidth <= FromWidth && "Breaking up into wider elements?");
2646   unsigned NumResults = FromWidth / ToWidth;
2647 
2648   SmallVector<Value *> Results(NumResults);
2649   Results[0] = Vec;
2650   unsigned Length = length(VecTy);
2651 
2652   // Do it by splitting in half, since those operations correspond to deal
2653   // instructions.
2654   auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void {
2655     // Take V = Results[Begin], split it in L, H.
2656     // Store Results[Begin] = L, Results[(Begin+End)/2] = H
2657     // Call itself recursively split(Begin, Half), split(Half+1, End)
2658     if (Begin + 1 == End)
2659       return;
2660 
2661     Value *Val = Results[Begin];
2662     unsigned Width = Val->getType()->getScalarSizeInBits();
2663 
2664     auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false);
2665     Value *VVal = Builder.CreateBitCast(Val, VTy, "cst");
2666 
2667     Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal));
2668 
2669     unsigned Half = (Begin + End) / 2;
2670     Results[Begin] = sublo(Builder, Res);
2671     Results[Half] = subhi(Builder, Res);
2672 
2673     splitFunc(Begin, Half, splitFunc);
2674     splitFunc(Half, End, splitFunc);
2675   };
2676 
2677   splitInHalf(0, NumResults, splitInHalf);
2678   return Results;
2679 }
2680 
2681 auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder,
2682                                               ArrayRef<Value *> Values,
2683                                               VectorType *ToType) const
2684     -> Value * {
2685   assert(ToType->getElementType()->isIntegerTy());
2686 
2687   // If the list of values does not have power-of-2 elements, append copies
2688   // of the sign bit to it, to make the size be 2^n.
2689   // The reason for this is that the values will be joined in pairs, because
2690   // otherwise the shuffles will result in convoluted code. With pairwise
2691   // joins, the shuffles will hopefully be folded into a perfect shuffle.
2692   // The output will need to be sign-extended to a type with element width
2693   // being a power-of-2 anyways.
2694   SmallVector<Value *> Inputs(Values.begin(), Values.end());
2695 
2696   unsigned ToWidth = ToType->getScalarSizeInBits();
2697   unsigned Width = Inputs.front()->getType()->getScalarSizeInBits();
2698   assert(Width <= ToWidth);
2699   assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth));
2700   unsigned Length = length(Inputs.front()->getType());
2701 
2702   unsigned NeedInputs = ToWidth / Width;
2703   if (Inputs.size() != NeedInputs) {
2704     // Having too many inputs is ok: drop the high bits (usual wrap-around).
2705     // If there are too few, fill them with the sign bit.
2706     Value *Last = Inputs.back();
2707     Value *Sign = Builder.CreateAShr(
2708         Last, getConstSplat(Last->getType(), Width - 1), "asr");
2709     Inputs.resize(NeedInputs, Sign);
2710   }
2711 
2712   while (Inputs.size() > 1) {
2713     Width *= 2;
2714     auto *VTy = VectorType::get(getIntTy(Width), Length, false);
2715     for (int i = 0, e = Inputs.size(); i < e; i += 2) {
2716       Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]);
2717       Inputs[i / 2] = Builder.CreateBitCast(Res, VTy, "cst");
2718     }
2719     Inputs.resize(Inputs.size() / 2);
2720   }
2721 
2722   assert(Inputs.front()->getType() == ToType);
2723   return Inputs.front();
2724 }
2725 
2726 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
2727                                                       Value *Ptr1) const
2728     -> std::optional<int> {
2729   // Try SCEV first.
2730   const SCEV *Scev0 = SE.getSCEV(Ptr0);
2731   const SCEV *Scev1 = SE.getSCEV(Ptr1);
2732   const SCEV *ScevDiff = SE.getMinusSCEV(Scev0, Scev1);
2733   if (auto *Const = dyn_cast<SCEVConstant>(ScevDiff)) {
2734     APInt V = Const->getAPInt();
2735     if (V.isSignedIntN(8 * sizeof(int)))
2736       return static_cast<int>(V.getSExtValue());
2737   }
2738 
2739   struct Builder : IRBuilder<> {
2740     Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {}
2741     ~Builder() {
2742       for (Instruction *I : llvm::reverse(ToErase))
2743         I->eraseFromParent();
2744     }
2745     SmallVector<Instruction *, 8> ToErase;
2746   };
2747 
2748 #define CallBuilder(B, F)                                                      \
2749   [&](auto &B_) {                                                              \
2750     Value *V = B_.F;                                                           \
2751     if (auto *I = dyn_cast<Instruction>(V))                                    \
2752       B_.ToErase.push_back(I);                                                 \
2753     return V;                                                                  \
2754   }(B)
2755 
2756   auto Simplify = [this](Value *V) {
2757     if (Value *S = simplify(V))
2758       return S;
2759     return V;
2760   };
2761 
2762   auto StripBitCast = [](Value *V) {
2763     while (auto *C = dyn_cast<BitCastInst>(V))
2764       V = C->getOperand(0);
2765     return V;
2766   };
2767 
2768   Ptr0 = StripBitCast(Ptr0);
2769   Ptr1 = StripBitCast(Ptr1);
2770   if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
2771     return std::nullopt;
2772 
2773   auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
2774   auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
2775   if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
2776     return std::nullopt;
2777   if (Gep0->getSourceElementType() != Gep1->getSourceElementType())
2778     return std::nullopt;
2779 
2780   Builder B(Gep0->getParent());
2781   int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc);
2782 
2783   // FIXME: for now only check GEPs with a single index.
2784   if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
2785     return std::nullopt;
2786 
2787   Value *Idx0 = Gep0->getOperand(1);
2788   Value *Idx1 = Gep1->getOperand(1);
2789 
2790   // First, try to simplify the subtraction directly.
2791   if (auto *Diff = dyn_cast<ConstantInt>(
2792           Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
2793     return Diff->getSExtValue() * Scale;
2794 
2795   KnownBits Known0 = getKnownBits(Idx0, Gep0);
2796   KnownBits Known1 = getKnownBits(Idx1, Gep1);
2797   APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
2798   if (Unknown.isAllOnes())
2799     return std::nullopt;
2800 
2801   Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
2802   Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
2803   Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
2804   Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
2805   int Diff0 = 0;
2806   if (auto *C = dyn_cast<ConstantInt>(SubU)) {
2807     Diff0 = C->getSExtValue();
2808   } else {
2809     return std::nullopt;
2810   }
2811 
2812   Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
2813   Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
2814   Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
2815   Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
2816   int Diff1 = 0;
2817   if (auto *C = dyn_cast<ConstantInt>(SubK)) {
2818     Diff1 = C->getSExtValue();
2819   } else {
2820     return std::nullopt;
2821   }
2822 
2823   return (Diff0 + Diff1) * Scale;
2824 
2825 #undef CallBuilder
2826 }
2827 
2828 auto HexagonVectorCombine::getNumSignificantBits(const Value *V,
2829                                                  const Instruction *CtxI) const
2830     -> unsigned {
2831   return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
2832 }
2833 
2834 auto HexagonVectorCombine::getKnownBits(const Value *V,
2835                                         const Instruction *CtxI) const
2836     -> KnownBits {
2837   return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
2838 }
2839 
2840 auto HexagonVectorCombine::isSafeToClone(const Instruction &In) const -> bool {
2841   if (In.mayHaveSideEffects() || In.isAtomic() || In.isVolatile() ||
2842       In.isFenceLike() || In.mayReadOrWriteMemory()) {
2843     return false;
2844   }
2845   if (isa<CallBase>(In) || isa<AllocaInst>(In))
2846     return false;
2847   return true;
2848 }
2849 
2850 template <typename T>
2851 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
2852                                                   BasicBlock::const_iterator To,
2853                                                   const T &IgnoreInsts) const
2854     -> bool {
2855   auto getLocOrNone =
2856       [this](const Instruction &I) -> std::optional<MemoryLocation> {
2857     if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
2858       switch (II->getIntrinsicID()) {
2859       case Intrinsic::masked_load:
2860         return MemoryLocation::getForArgument(II, 0, TLI);
2861       case Intrinsic::masked_store:
2862         return MemoryLocation::getForArgument(II, 1, TLI);
2863       }
2864     }
2865     return MemoryLocation::getOrNone(&I);
2866   };
2867 
2868   // The source and the destination must be in the same basic block.
2869   const BasicBlock &Block = *In.getParent();
2870   assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
2871   // No PHIs.
2872   if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
2873     return false;
2874 
2875   if (!mayHaveNonDefUseDependency(In))
2876     return true;
2877   bool MayWrite = In.mayWriteToMemory();
2878   auto MaybeLoc = getLocOrNone(In);
2879 
2880   auto From = In.getIterator();
2881   if (From == To)
2882     return true;
2883   bool MoveUp = (To != Block.end() && To->comesBefore(&In));
2884   auto Range =
2885       MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
2886   for (auto It = Range.first; It != Range.second; ++It) {
2887     const Instruction &I = *It;
2888     if (llvm::is_contained(IgnoreInsts, &I))
2889       continue;
2890     // assume intrinsic can be ignored
2891     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2892       if (II->getIntrinsicID() == Intrinsic::assume)
2893         continue;
2894     }
2895     // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
2896     if (I.mayThrow())
2897       return false;
2898     if (auto *CB = dyn_cast<CallBase>(&I)) {
2899       if (!CB->hasFnAttr(Attribute::WillReturn))
2900         return false;
2901       if (!CB->hasFnAttr(Attribute::NoSync))
2902         return false;
2903     }
2904     if (I.mayReadOrWriteMemory()) {
2905       auto MaybeLocI = getLocOrNone(I);
2906       if (MayWrite || I.mayWriteToMemory()) {
2907         if (!MaybeLoc || !MaybeLocI)
2908           return false;
2909         if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
2910           return false;
2911       }
2912     }
2913   }
2914   return true;
2915 }
2916 
2917 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
2918   if (auto *VecTy = dyn_cast<VectorType>(Ty))
2919     return VecTy->getElementType() == getByteTy();
2920   return false;
2921 }
2922 
2923 auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo,
2924                                            Value *Hi, int Start,
2925                                            int Length) const -> Value * {
2926   assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi));
2927   SmallVector<int, 128> SMask(Length);
2928   std::iota(SMask.begin(), SMask.end(), Start);
2929   return Builder.CreateShuffleVector(Lo, Hi, SMask, "shf");
2930 }
2931 
2932 // Pass management.
2933 
2934 namespace llvm {
2935 void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
2936 FunctionPass *createHexagonVectorCombineLegacyPass();
2937 } // namespace llvm
2938 
2939 namespace {
2940 class HexagonVectorCombineLegacy : public FunctionPass {
2941 public:
2942   static char ID;
2943 
2944   HexagonVectorCombineLegacy() : FunctionPass(ID) {}
2945 
2946   StringRef getPassName() const override { return "Hexagon Vector Combine"; }
2947 
2948   void getAnalysisUsage(AnalysisUsage &AU) const override {
2949     AU.setPreservesCFG();
2950     AU.addRequired<AAResultsWrapperPass>();
2951     AU.addRequired<AssumptionCacheTracker>();
2952     AU.addRequired<DominatorTreeWrapperPass>();
2953     AU.addRequired<ScalarEvolutionWrapperPass>();
2954     AU.addRequired<TargetLibraryInfoWrapperPass>();
2955     AU.addRequired<TargetPassConfig>();
2956     FunctionPass::getAnalysisUsage(AU);
2957   }
2958 
2959   bool runOnFunction(Function &F) override {
2960     if (skipFunction(F))
2961       return false;
2962     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2963     AssumptionCache &AC =
2964         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2965     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2966     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2967     TargetLibraryInfo &TLI =
2968         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2969     auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
2970     HexagonVectorCombine HVC(F, AA, AC, DT, SE, TLI, TM);
2971     return HVC.run();
2972   }
2973 };
2974 } // namespace
2975 
2976 char HexagonVectorCombineLegacy::ID = 0;
2977 
2978 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
2979                       "Hexagon Vector Combine", false, false)
2980 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2981 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2982 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2983 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2984 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2985 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
2986 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
2987                     "Hexagon Vector Combine", false, false)
2988 
2989 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
2990   return new HexagonVectorCombineLegacy();
2991 }
2992