1e8d8bef9SDimitry Andric //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric // HexagonVectorCombine is a utility class implementing a variety of functions
9e8d8bef9SDimitry Andric // that assist in vector-based optimizations.
10e8d8bef9SDimitry Andric //
11e8d8bef9SDimitry Andric // AlignVectors: replace unaligned vector loads and stores with aligned ones.
1206c3fb27SDimitry Andric // HvxIdioms: recognize various opportunities to generate HVX intrinsic code.
13e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
14e8d8bef9SDimitry Andric
15e8d8bef9SDimitry Andric #include "llvm/ADT/APInt.h"
16e8d8bef9SDimitry Andric #include "llvm/ADT/ArrayRef.h"
17e8d8bef9SDimitry Andric #include "llvm/ADT/DenseMap.h"
18e8d8bef9SDimitry Andric #include "llvm/ADT/STLExtras.h"
19e8d8bef9SDimitry Andric #include "llvm/ADT/SmallVector.h"
20e8d8bef9SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
21e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
22bdd1243dSDimitry Andric #include "llvm/Analysis/InstSimplifyFolder.h"
23e8d8bef9SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
2406c3fb27SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h"
25e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h"
26e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
27fe6060f1SDimitry Andric #include "llvm/Analysis/VectorUtils.h"
28e8d8bef9SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
29bdd1243dSDimitry Andric #include "llvm/CodeGen/ValueTypes.h"
30e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h"
31e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h"
32e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
33e8d8bef9SDimitry Andric #include "llvm/IR/Intrinsics.h"
34e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsHexagon.h"
35fe6060f1SDimitry Andric #include "llvm/IR/Metadata.h"
36bdd1243dSDimitry Andric #include "llvm/IR/PatternMatch.h"
37e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h"
38e8d8bef9SDimitry Andric #include "llvm/Pass.h"
3906c3fb27SDimitry Andric #include "llvm/Support/CommandLine.h"
40e8d8bef9SDimitry Andric #include "llvm/Support/KnownBits.h"
41e8d8bef9SDimitry Andric #include "llvm/Support/MathExtras.h"
42e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h"
43e8d8bef9SDimitry Andric #include "llvm/Target/TargetMachine.h"
44bdd1243dSDimitry Andric #include "llvm/Transforms/Utils/Local.h"
45e8d8bef9SDimitry Andric
46e8d8bef9SDimitry Andric #include "HexagonSubtarget.h"
47e8d8bef9SDimitry Andric #include "HexagonTargetMachine.h"
48e8d8bef9SDimitry Andric
49e8d8bef9SDimitry Andric #include <algorithm>
50e8d8bef9SDimitry Andric #include <deque>
51e8d8bef9SDimitry Andric #include <map>
52bdd1243dSDimitry Andric #include <optional>
53e8d8bef9SDimitry Andric #include <set>
54e8d8bef9SDimitry Andric #include <utility>
55e8d8bef9SDimitry Andric #include <vector>
56e8d8bef9SDimitry Andric
57e8d8bef9SDimitry Andric #define DEBUG_TYPE "hexagon-vc"
58e8d8bef9SDimitry Andric
59e8d8bef9SDimitry Andric using namespace llvm;
60e8d8bef9SDimitry Andric
61e8d8bef9SDimitry Andric namespace {
6206c3fb27SDimitry Andric cl::opt<bool> DumpModule("hvc-dump-module", cl::Hidden);
6306c3fb27SDimitry Andric cl::opt<bool> VAEnabled("hvc-va", cl::Hidden, cl::init(true)); // Align
6406c3fb27SDimitry Andric cl::opt<bool> VIEnabled("hvc-vi", cl::Hidden, cl::init(true)); // Idioms
6506c3fb27SDimitry Andric cl::opt<bool> VADoFullStores("hvc-va-full-stores", cl::Hidden);
6606c3fb27SDimitry Andric
6706c3fb27SDimitry Andric cl::opt<unsigned> VAGroupCountLimit("hvc-va-group-count-limit", cl::Hidden,
6806c3fb27SDimitry Andric cl::init(~0));
6906c3fb27SDimitry Andric cl::opt<unsigned> VAGroupSizeLimit("hvc-va-group-size-limit", cl::Hidden,
7006c3fb27SDimitry Andric cl::init(~0));
7106c3fb27SDimitry Andric
72e8d8bef9SDimitry Andric class HexagonVectorCombine {
73e8d8bef9SDimitry Andric public:
HexagonVectorCombine(Function & F_,AliasAnalysis & AA_,AssumptionCache & AC_,DominatorTree & DT_,ScalarEvolution & SE_,TargetLibraryInfo & TLI_,const TargetMachine & TM_)74e8d8bef9SDimitry Andric HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
7506c3fb27SDimitry Andric DominatorTree &DT_, ScalarEvolution &SE_,
7606c3fb27SDimitry Andric TargetLibraryInfo &TLI_, const TargetMachine &TM_)
77*0fca6ea1SDimitry Andric : F(F_), DL(F.getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
7806c3fb27SDimitry Andric SE(SE_), TLI(TLI_),
79e8d8bef9SDimitry Andric HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
80e8d8bef9SDimitry Andric
81e8d8bef9SDimitry Andric bool run();
82e8d8bef9SDimitry Andric
83e8d8bef9SDimitry Andric // Common integer type.
84bdd1243dSDimitry Andric IntegerType *getIntTy(unsigned Width = 32) const;
85e8d8bef9SDimitry Andric // Byte type: either scalar (when Length = 0), or vector with given
86e8d8bef9SDimitry Andric // element count.
87e8d8bef9SDimitry Andric Type *getByteTy(int ElemCount = 0) const;
88e8d8bef9SDimitry Andric // Boolean type: either scalar (when Length = 0), or vector with given
89e8d8bef9SDimitry Andric // element count.
90e8d8bef9SDimitry Andric Type *getBoolTy(int ElemCount = 0) const;
91e8d8bef9SDimitry Andric // Create a ConstantInt of type returned by getIntTy with the value Val.
92bdd1243dSDimitry Andric ConstantInt *getConstInt(int Val, unsigned Width = 32) const;
93e8d8bef9SDimitry Andric // Get the integer value of V, if it exists.
94bdd1243dSDimitry Andric std::optional<APInt> getIntValue(const Value *Val) const;
9506c3fb27SDimitry Andric // Is Val a constant 0, or a vector of 0s?
96e8d8bef9SDimitry Andric bool isZero(const Value *Val) const;
9706c3fb27SDimitry Andric // Is Val an undef value?
98e8d8bef9SDimitry Andric bool isUndef(const Value *Val) const;
9906c3fb27SDimitry Andric // Is Val a scalar (i1 true) or a vector of (i1 true)?
10006c3fb27SDimitry Andric bool isTrue(const Value *Val) const;
10106c3fb27SDimitry Andric // Is Val a scalar (i1 false) or a vector of (i1 false)?
10206c3fb27SDimitry Andric bool isFalse(const Value *Val) const;
103e8d8bef9SDimitry Andric
104bdd1243dSDimitry Andric // Get HVX vector type with the given element type.
105bdd1243dSDimitry Andric VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const;
106bdd1243dSDimitry Andric
107bdd1243dSDimitry Andric enum SizeKind {
108bdd1243dSDimitry Andric Store, // Store size
109bdd1243dSDimitry Andric Alloc, // Alloc size
110bdd1243dSDimitry Andric };
111bdd1243dSDimitry Andric int getSizeOf(const Value *Val, SizeKind Kind = Store) const;
112bdd1243dSDimitry Andric int getSizeOf(const Type *Ty, SizeKind Kind = Store) const;
113e8d8bef9SDimitry Andric int getTypeAlignment(Type *Ty) const;
114bdd1243dSDimitry Andric size_t length(Value *Val) const;
115bdd1243dSDimitry Andric size_t length(Type *Ty) const;
116e8d8bef9SDimitry Andric
117e8d8bef9SDimitry Andric Constant *getNullValue(Type *Ty) const;
118e8d8bef9SDimitry Andric Constant *getFullValue(Type *Ty) const;
119bdd1243dSDimitry Andric Constant *getConstSplat(Type *Ty, int Val) const;
120e8d8bef9SDimitry Andric
121bdd1243dSDimitry Andric Value *simplify(Value *Val) const;
122bdd1243dSDimitry Andric
123bdd1243dSDimitry Andric Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start,
124e8d8bef9SDimitry Andric int Length, int Where) const;
125bdd1243dSDimitry Andric Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
126bdd1243dSDimitry Andric Value *Amt) const;
127bdd1243dSDimitry Andric Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
128bdd1243dSDimitry Andric Value *Amt) const;
129bdd1243dSDimitry Andric Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const;
130bdd1243dSDimitry Andric Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize,
131e8d8bef9SDimitry Andric Value *Pad) const;
132bdd1243dSDimitry Andric Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy,
133e8d8bef9SDimitry Andric Type *ToTy) const;
134bdd1243dSDimitry Andric Value *vlsb(IRBuilderBase &Builder, Value *Val) const;
135bdd1243dSDimitry Andric Value *vbytes(IRBuilderBase &Builder, Value *Val) const;
136bdd1243dSDimitry Andric Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start,
137bdd1243dSDimitry Andric unsigned Length) const;
138bdd1243dSDimitry Andric Value *sublo(IRBuilderBase &Builder, Value *Val) const;
139bdd1243dSDimitry Andric Value *subhi(IRBuilderBase &Builder, Value *Val) const;
140bdd1243dSDimitry Andric Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
141bdd1243dSDimitry Andric Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
142e8d8bef9SDimitry Andric
143bdd1243dSDimitry Andric Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID,
144bdd1243dSDimitry Andric Type *RetTy, ArrayRef<Value *> Args,
14506c3fb27SDimitry Andric ArrayRef<Type *> ArgTys = std::nullopt,
14606c3fb27SDimitry Andric ArrayRef<Value *> MDSources = std::nullopt) const;
147bdd1243dSDimitry Andric SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec,
148bdd1243dSDimitry Andric unsigned ToWidth) const;
149bdd1243dSDimitry Andric Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values,
150bdd1243dSDimitry Andric VectorType *ToType) const;
151e8d8bef9SDimitry Andric
152bdd1243dSDimitry Andric std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
153bdd1243dSDimitry Andric
154bdd1243dSDimitry Andric unsigned getNumSignificantBits(const Value *V,
155bdd1243dSDimitry Andric const Instruction *CtxI = nullptr) const;
156bdd1243dSDimitry Andric KnownBits getKnownBits(const Value *V,
157bdd1243dSDimitry Andric const Instruction *CtxI = nullptr) const;
158e8d8bef9SDimitry Andric
15906c3fb27SDimitry Andric bool isSafeToClone(const Instruction &In) const;
16006c3fb27SDimitry Andric
161e8d8bef9SDimitry Andric template <typename T = std::vector<Instruction *>>
162e8d8bef9SDimitry Andric bool isSafeToMoveBeforeInBB(const Instruction &In,
163e8d8bef9SDimitry Andric BasicBlock::const_iterator To,
164bdd1243dSDimitry Andric const T &IgnoreInsts = {}) const;
165bdd1243dSDimitry Andric
166bdd1243dSDimitry Andric // This function is only used for assertions at the moment.
167bdd1243dSDimitry Andric [[maybe_unused]] bool isByteVecTy(Type *Ty) const;
168e8d8bef9SDimitry Andric
169e8d8bef9SDimitry Andric Function &F;
170e8d8bef9SDimitry Andric const DataLayout &DL;
171e8d8bef9SDimitry Andric AliasAnalysis &AA;
172e8d8bef9SDimitry Andric AssumptionCache &AC;
173e8d8bef9SDimitry Andric DominatorTree &DT;
17406c3fb27SDimitry Andric ScalarEvolution &SE;
175e8d8bef9SDimitry Andric TargetLibraryInfo &TLI;
176e8d8bef9SDimitry Andric const HexagonSubtarget &HST;
177e8d8bef9SDimitry Andric
178e8d8bef9SDimitry Andric private:
179bdd1243dSDimitry Andric Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi,
180bdd1243dSDimitry Andric int Start, int Length) const;
181e8d8bef9SDimitry Andric };
182e8d8bef9SDimitry Andric
183e8d8bef9SDimitry Andric class AlignVectors {
18406c3fb27SDimitry Andric // This code tries to replace unaligned vector loads/stores with aligned
18506c3fb27SDimitry Andric // ones.
18606c3fb27SDimitry Andric // Consider unaligned load:
18706c3fb27SDimitry Andric // %v = original_load %some_addr, align <bad>
18806c3fb27SDimitry Andric // %user = %v
18906c3fb27SDimitry Andric // It will generate
19006c3fb27SDimitry Andric // = load ..., align <good>
19106c3fb27SDimitry Andric // = load ..., align <good>
19206c3fb27SDimitry Andric // = valign
19306c3fb27SDimitry Andric // etc.
19406c3fb27SDimitry Andric // %synthesize = combine/shuffle the loaded data so that it looks
19506c3fb27SDimitry Andric // exactly like what "original_load" has loaded.
19606c3fb27SDimitry Andric // %user = %synthesize
19706c3fb27SDimitry Andric // Similarly for stores.
198e8d8bef9SDimitry Andric public:
AlignVectors(const HexagonVectorCombine & HVC_)199bdd1243dSDimitry Andric AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {}
200e8d8bef9SDimitry Andric
201e8d8bef9SDimitry Andric bool run();
202e8d8bef9SDimitry Andric
203e8d8bef9SDimitry Andric private:
204e8d8bef9SDimitry Andric using InstList = std::vector<Instruction *>;
20506c3fb27SDimitry Andric using InstMap = DenseMap<Instruction *, Instruction *>;
206e8d8bef9SDimitry Andric
207e8d8bef9SDimitry Andric struct AddrInfo {
208e8d8bef9SDimitry Andric AddrInfo(const AddrInfo &) = default;
AddrInfo__anoncba317990111::AlignVectors::AddrInfo209e8d8bef9SDimitry Andric AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
210e8d8bef9SDimitry Andric Align H)
211e8d8bef9SDimitry Andric : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
212e8d8bef9SDimitry Andric NeedAlign(HVC.getTypeAlignment(ValTy)) {}
2136246ae0bSDimitry Andric AddrInfo &operator=(const AddrInfo &) = default;
214e8d8bef9SDimitry Andric
215e8d8bef9SDimitry Andric // XXX: add Size member?
216e8d8bef9SDimitry Andric Instruction *Inst;
217e8d8bef9SDimitry Andric Value *Addr;
218e8d8bef9SDimitry Andric Type *ValTy;
219e8d8bef9SDimitry Andric Align HaveAlign;
220e8d8bef9SDimitry Andric Align NeedAlign;
221e8d8bef9SDimitry Andric int Offset = 0; // Offset (in bytes) from the first member of the
222e8d8bef9SDimitry Andric // containing AddrList.
223e8d8bef9SDimitry Andric };
224e8d8bef9SDimitry Andric using AddrList = std::vector<AddrInfo>;
225e8d8bef9SDimitry Andric
226e8d8bef9SDimitry Andric struct InstrLess {
operator ()__anoncba317990111::AlignVectors::InstrLess227e8d8bef9SDimitry Andric bool operator()(const Instruction *A, const Instruction *B) const {
228e8d8bef9SDimitry Andric return A->comesBefore(B);
229e8d8bef9SDimitry Andric }
230e8d8bef9SDimitry Andric };
231e8d8bef9SDimitry Andric using DepList = std::set<Instruction *, InstrLess>;
232e8d8bef9SDimitry Andric
233e8d8bef9SDimitry Andric struct MoveGroup {
MoveGroup__anoncba317990111::AlignVectors::MoveGroup234e8d8bef9SDimitry Andric MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
23506c3fb27SDimitry Andric : Base(B), Main{AI.Inst}, Clones{}, IsHvx(Hvx), IsLoad(Load) {}
23606c3fb27SDimitry Andric MoveGroup() = default;
237e8d8bef9SDimitry Andric Instruction *Base; // Base instruction of the parent address group.
238e8d8bef9SDimitry Andric InstList Main; // Main group of instructions.
239e8d8bef9SDimitry Andric InstList Deps; // List of dependencies.
24006c3fb27SDimitry Andric InstMap Clones; // Map from original Deps to cloned ones.
241e8d8bef9SDimitry Andric bool IsHvx; // Is this group of HVX instructions?
242e8d8bef9SDimitry Andric bool IsLoad; // Is this a load group?
243e8d8bef9SDimitry Andric };
244e8d8bef9SDimitry Andric using MoveList = std::vector<MoveGroup>;
245e8d8bef9SDimitry Andric
246e8d8bef9SDimitry Andric struct ByteSpan {
24706c3fb27SDimitry Andric // A representation of "interesting" bytes within a given span of memory.
24806c3fb27SDimitry Andric // These bytes are those that are loaded or stored, and they don't have
24906c3fb27SDimitry Andric // to cover the entire span of memory.
25006c3fb27SDimitry Andric //
25106c3fb27SDimitry Andric // The representation works by picking a contiguous sequence of bytes
25206c3fb27SDimitry Andric // from somewhere within a llvm::Value, and placing it at a given offset
25306c3fb27SDimitry Andric // within the span.
25406c3fb27SDimitry Andric //
25506c3fb27SDimitry Andric // The sequence of bytes from llvm:Value is represented by Segment.
25606c3fb27SDimitry Andric // Block is Segment, plus where it goes in the span.
25706c3fb27SDimitry Andric //
25806c3fb27SDimitry Andric // An important feature of ByteSpan is being able to make a "section",
25906c3fb27SDimitry Andric // i.e. creating another ByteSpan corresponding to a range of offsets
26006c3fb27SDimitry Andric // relative to the source span.
26106c3fb27SDimitry Andric
262e8d8bef9SDimitry Andric struct Segment {
263fe6060f1SDimitry Andric // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
Segment__anoncba317990111::AlignVectors::ByteSpan::Segment264e8d8bef9SDimitry Andric Segment(Value *Val, int Begin, int Len)
265e8d8bef9SDimitry Andric : Val(Val), Start(Begin), Size(Len) {}
266e8d8bef9SDimitry Andric Segment(const Segment &Seg) = default;
2676246ae0bSDimitry Andric Segment &operator=(const Segment &Seg) = default;
268fe6060f1SDimitry Andric Value *Val; // Value representable as a sequence of bytes.
269fe6060f1SDimitry Andric int Start; // First byte of the value that belongs to the segment.
270fe6060f1SDimitry Andric int Size; // Number of bytes in the segment.
271e8d8bef9SDimitry Andric };
272e8d8bef9SDimitry Andric
273e8d8bef9SDimitry Andric struct Block {
Block__anoncba317990111::AlignVectors::ByteSpan::Block274e8d8bef9SDimitry Andric Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
Block__anoncba317990111::AlignVectors::ByteSpan::Block275e8d8bef9SDimitry Andric Block(Value *Val, int Off, int Len, int Pos)
276e8d8bef9SDimitry Andric : Seg(Val, Off, Len), Pos(Pos) {}
277e8d8bef9SDimitry Andric Block(const Block &Blk) = default;
2786246ae0bSDimitry Andric Block &operator=(const Block &Blk) = default;
279fe6060f1SDimitry Andric Segment Seg; // Value segment.
28006c3fb27SDimitry Andric int Pos; // Position (offset) of the block in the span.
281e8d8bef9SDimitry Andric };
282e8d8bef9SDimitry Andric
283e8d8bef9SDimitry Andric int extent() const;
284e8d8bef9SDimitry Andric ByteSpan section(int Start, int Length) const;
285e8d8bef9SDimitry Andric ByteSpan &shift(int Offset);
286fe6060f1SDimitry Andric SmallVector<Value *, 8> values() const;
287e8d8bef9SDimitry Andric
size__anoncba317990111::AlignVectors::ByteSpan288e8d8bef9SDimitry Andric int size() const { return Blocks.size(); }
operator []__anoncba317990111::AlignVectors::ByteSpan289e8d8bef9SDimitry Andric Block &operator[](int i) { return Blocks[i]; }
operator []__anoncba317990111::AlignVectors::ByteSpan29006c3fb27SDimitry Andric const Block &operator[](int i) const { return Blocks[i]; }
291e8d8bef9SDimitry Andric
292e8d8bef9SDimitry Andric std::vector<Block> Blocks;
293e8d8bef9SDimitry Andric
294e8d8bef9SDimitry Andric using iterator = decltype(Blocks)::iterator;
begin__anoncba317990111::AlignVectors::ByteSpan295e8d8bef9SDimitry Andric iterator begin() { return Blocks.begin(); }
end__anoncba317990111::AlignVectors::ByteSpan296e8d8bef9SDimitry Andric iterator end() { return Blocks.end(); }
297e8d8bef9SDimitry Andric using const_iterator = decltype(Blocks)::const_iterator;
begin__anoncba317990111::AlignVectors::ByteSpan298e8d8bef9SDimitry Andric const_iterator begin() const { return Blocks.begin(); }
end__anoncba317990111::AlignVectors::ByteSpan299e8d8bef9SDimitry Andric const_iterator end() const { return Blocks.end(); }
300e8d8bef9SDimitry Andric };
301e8d8bef9SDimitry Andric
302e8d8bef9SDimitry Andric Align getAlignFromValue(const Value *V) const;
303bdd1243dSDimitry Andric std::optional<AddrInfo> getAddrInfo(Instruction &In) const;
304e8d8bef9SDimitry Andric bool isHvx(const AddrInfo &AI) const;
305bdd1243dSDimitry Andric // This function is only used for assertions at the moment.
306bdd1243dSDimitry Andric [[maybe_unused]] bool isSectorTy(Type *Ty) const;
307e8d8bef9SDimitry Andric
308e8d8bef9SDimitry Andric Value *getPayload(Value *Val) const;
309e8d8bef9SDimitry Andric Value *getMask(Value *Val) const;
310e8d8bef9SDimitry Andric Value *getPassThrough(Value *Val) const;
311e8d8bef9SDimitry Andric
312bdd1243dSDimitry Andric Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
31306c3fb27SDimitry Andric int Adjust,
31406c3fb27SDimitry Andric const InstMap &CloneMap = InstMap()) const;
315bdd1243dSDimitry Andric Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
31606c3fb27SDimitry Andric int Alignment,
31706c3fb27SDimitry Andric const InstMap &CloneMap = InstMap()) const;
31806c3fb27SDimitry Andric
31906c3fb27SDimitry Andric Value *createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
32006c3fb27SDimitry Andric Value *Predicate, int Alignment, Value *Mask,
32106c3fb27SDimitry Andric Value *PassThru,
32206c3fb27SDimitry Andric ArrayRef<Value *> MDSources = std::nullopt) const;
32306c3fb27SDimitry Andric Value *createSimpleLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
32406c3fb27SDimitry Andric int Alignment,
32506c3fb27SDimitry Andric ArrayRef<Value *> MDSources = std::nullopt) const;
32606c3fb27SDimitry Andric
32706c3fb27SDimitry Andric Value *createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
32806c3fb27SDimitry Andric Value *Predicate, int Alignment, Value *Mask,
32906c3fb27SDimitry Andric ArrayRef<Value *> MDSources = std ::nullopt) const;
33006c3fb27SDimitry Andric Value *createSimpleStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
33106c3fb27SDimitry Andric int Alignment,
33206c3fb27SDimitry Andric ArrayRef<Value *> MDSources = std ::nullopt) const;
33306c3fb27SDimitry Andric
33406c3fb27SDimitry Andric Value *createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
33506c3fb27SDimitry Andric Value *Predicate, int Alignment,
33606c3fb27SDimitry Andric ArrayRef<Value *> MDSources = std::nullopt) const;
33706c3fb27SDimitry Andric Value *
33806c3fb27SDimitry Andric createPredicatedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
33906c3fb27SDimitry Andric Value *Predicate, int Alignment,
34006c3fb27SDimitry Andric ArrayRef<Value *> MDSources = std::nullopt) const;
341e8d8bef9SDimitry Andric
342bdd1243dSDimitry Andric DepList getUpwardDeps(Instruction *In, Instruction *Base) const;
343e8d8bef9SDimitry Andric bool createAddressGroups();
344e8d8bef9SDimitry Andric MoveList createLoadGroups(const AddrList &Group) const;
345e8d8bef9SDimitry Andric MoveList createStoreGroups(const AddrList &Group) const;
34606c3fb27SDimitry Andric bool moveTogether(MoveGroup &Move) const;
34706c3fb27SDimitry Andric template <typename T> InstMap cloneBefore(Instruction *To, T &&Insts) const;
34806c3fb27SDimitry Andric
349bdd1243dSDimitry Andric void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
350bdd1243dSDimitry Andric int ScLen, Value *AlignVal, Value *AlignAddr) const;
351bdd1243dSDimitry Andric void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
352bdd1243dSDimitry Andric int ScLen, Value *AlignVal, Value *AlignAddr) const;
353e8d8bef9SDimitry Andric bool realignGroup(const MoveGroup &Move) const;
354e8d8bef9SDimitry Andric
35506c3fb27SDimitry Andric Value *makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal,
35606c3fb27SDimitry Andric int Alignment) const;
35706c3fb27SDimitry Andric
358e8d8bef9SDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
359e8d8bef9SDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
360bdd1243dSDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B);
361e8d8bef9SDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
362e8d8bef9SDimitry Andric
363e8d8bef9SDimitry Andric std::map<Instruction *, AddrList> AddrGroups;
364bdd1243dSDimitry Andric const HexagonVectorCombine &HVC;
365e8d8bef9SDimitry Andric };
366e8d8bef9SDimitry Andric
367e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::AddrInfo & AI)368e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
369e8d8bef9SDimitry Andric OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n';
370e8d8bef9SDimitry Andric OS << "Addr: " << *AI.Addr << '\n';
371e8d8bef9SDimitry Andric OS << "Type: " << *AI.ValTy << '\n';
372e8d8bef9SDimitry Andric OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
373e8d8bef9SDimitry Andric OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
374e8d8bef9SDimitry Andric OS << "Offset: " << AI.Offset;
375e8d8bef9SDimitry Andric return OS;
376e8d8bef9SDimitry Andric }
377e8d8bef9SDimitry Andric
378e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::MoveGroup & MG)379e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
38006c3fb27SDimitry Andric OS << "IsLoad:" << (MG.IsLoad ? "yes" : "no");
38106c3fb27SDimitry Andric OS << ", IsHvx:" << (MG.IsHvx ? "yes" : "no") << '\n';
382e8d8bef9SDimitry Andric OS << "Main\n";
383e8d8bef9SDimitry Andric for (Instruction *I : MG.Main)
384e8d8bef9SDimitry Andric OS << " " << *I << '\n';
385e8d8bef9SDimitry Andric OS << "Deps\n";
386e8d8bef9SDimitry Andric for (Instruction *I : MG.Deps)
387e8d8bef9SDimitry Andric OS << " " << *I << '\n';
38806c3fb27SDimitry Andric OS << "Clones\n";
38906c3fb27SDimitry Andric for (auto [K, V] : MG.Clones) {
39006c3fb27SDimitry Andric OS << " ";
39106c3fb27SDimitry Andric K->printAsOperand(OS, false);
39206c3fb27SDimitry Andric OS << "\t-> " << *V << '\n';
39306c3fb27SDimitry Andric }
394e8d8bef9SDimitry Andric return OS;
395e8d8bef9SDimitry Andric }
396e8d8bef9SDimitry Andric
397e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::ByteSpan::Block & B)398bdd1243dSDimitry Andric raw_ostream &operator<<(raw_ostream &OS,
399bdd1243dSDimitry Andric const AlignVectors::ByteSpan::Block &B) {
40006c3fb27SDimitry Andric OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] ";
40106c3fb27SDimitry Andric if (B.Seg.Val == reinterpret_cast<const Value *>(&B)) {
40206c3fb27SDimitry Andric OS << "(self:" << B.Seg.Val << ')';
40306c3fb27SDimitry Andric } else if (B.Seg.Val != nullptr) {
40406c3fb27SDimitry Andric OS << *B.Seg.Val;
40506c3fb27SDimitry Andric } else {
40606c3fb27SDimitry Andric OS << "(null)";
40706c3fb27SDimitry Andric }
408bdd1243dSDimitry Andric return OS;
409bdd1243dSDimitry Andric }
410bdd1243dSDimitry Andric
411bdd1243dSDimitry Andric LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::ByteSpan & BS)412e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
413e8d8bef9SDimitry Andric OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
414bdd1243dSDimitry Andric for (const AlignVectors::ByteSpan::Block &B : BS)
415bdd1243dSDimitry Andric OS << B << '\n';
416e8d8bef9SDimitry Andric OS << ']';
417e8d8bef9SDimitry Andric return OS;
418e8d8bef9SDimitry Andric }
419e8d8bef9SDimitry Andric
420bdd1243dSDimitry Andric class HvxIdioms {
421bdd1243dSDimitry Andric public:
HvxIdioms(const HexagonVectorCombine & HVC_)422bdd1243dSDimitry Andric HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) {
423bdd1243dSDimitry Andric auto *Int32Ty = HVC.getIntTy(32);
424bdd1243dSDimitry Andric HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false);
425bdd1243dSDimitry Andric HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true);
426bdd1243dSDimitry Andric }
427bdd1243dSDimitry Andric
428bdd1243dSDimitry Andric bool run();
429bdd1243dSDimitry Andric
430bdd1243dSDimitry Andric private:
431bdd1243dSDimitry Andric enum Signedness { Positive, Signed, Unsigned };
432bdd1243dSDimitry Andric
433bdd1243dSDimitry Andric // Value + sign
434bdd1243dSDimitry Andric // This is to keep track of whether the value should be treated as signed
435bdd1243dSDimitry Andric // or unsigned, or is known to be positive.
436bdd1243dSDimitry Andric struct SValue {
437bdd1243dSDimitry Andric Value *Val;
438bdd1243dSDimitry Andric Signedness Sgn;
439bdd1243dSDimitry Andric };
440bdd1243dSDimitry Andric
441bdd1243dSDimitry Andric struct FxpOp {
442bdd1243dSDimitry Andric unsigned Opcode;
443bdd1243dSDimitry Andric unsigned Frac; // Number of fraction bits
444bdd1243dSDimitry Andric SValue X, Y;
445bdd1243dSDimitry Andric // If present, add 1 << RoundAt before shift:
446bdd1243dSDimitry Andric std::optional<unsigned> RoundAt;
447bdd1243dSDimitry Andric VectorType *ResTy;
448bdd1243dSDimitry Andric };
449bdd1243dSDimitry Andric
450bdd1243dSDimitry Andric auto getNumSignificantBits(Value *V, Instruction *In) const
451bdd1243dSDimitry Andric -> std::pair<unsigned, Signedness>;
452bdd1243dSDimitry Andric auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>;
453bdd1243dSDimitry Andric
454bdd1243dSDimitry Andric auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>;
455bdd1243dSDimitry Andric auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *;
456bdd1243dSDimitry Andric
457bdd1243dSDimitry Andric auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
458bdd1243dSDimitry Andric const FxpOp &Op) const -> Value *;
459bdd1243dSDimitry Andric auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
460bdd1243dSDimitry Andric bool Rounding) const -> Value *;
461bdd1243dSDimitry Andric auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
462bdd1243dSDimitry Andric bool Rounding) const -> Value *;
463bdd1243dSDimitry Andric // Return {Result, Carry}, where Carry is a vector predicate.
464bdd1243dSDimitry Andric auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
465bdd1243dSDimitry Andric Value *CarryIn = nullptr) const
466bdd1243dSDimitry Andric -> std::pair<Value *, Value *>;
467bdd1243dSDimitry Andric auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *;
468bdd1243dSDimitry Andric auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
469bdd1243dSDimitry Andric -> Value *;
470bdd1243dSDimitry Andric auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
471bdd1243dSDimitry Andric -> std::pair<Value *, Value *>;
472bdd1243dSDimitry Andric auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
473bdd1243dSDimitry Andric ArrayRef<Value *> WordY) const -> SmallVector<Value *>;
474bdd1243dSDimitry Andric auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
475bdd1243dSDimitry Andric Signedness SgnX, ArrayRef<Value *> WordY,
476bdd1243dSDimitry Andric Signedness SgnY) const -> SmallVector<Value *>;
477bdd1243dSDimitry Andric
478bdd1243dSDimitry Andric VectorType *HvxI32Ty;
479bdd1243dSDimitry Andric VectorType *HvxP32Ty;
480bdd1243dSDimitry Andric const HexagonVectorCombine &HVC;
481bdd1243dSDimitry Andric
482bdd1243dSDimitry Andric friend raw_ostream &operator<<(raw_ostream &, const FxpOp &);
483bdd1243dSDimitry Andric };
484bdd1243dSDimitry Andric
operator <<(raw_ostream & OS,const HvxIdioms::FxpOp & Op)485bdd1243dSDimitry Andric [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS,
486bdd1243dSDimitry Andric const HvxIdioms::FxpOp &Op) {
487bdd1243dSDimitry Andric static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"};
488bdd1243dSDimitry Andric OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac;
489bdd1243dSDimitry Andric if (Op.RoundAt.has_value()) {
490bdd1243dSDimitry Andric if (Op.Frac != 0 && *Op.RoundAt == Op.Frac - 1) {
491bdd1243dSDimitry Andric OS << ":rnd";
492bdd1243dSDimitry Andric } else {
493bdd1243dSDimitry Andric OS << " + 1<<" << *Op.RoundAt;
494bdd1243dSDimitry Andric }
495bdd1243dSDimitry Andric }
496bdd1243dSDimitry Andric OS << "\n X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n"
497bdd1243dSDimitry Andric << " Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val;
498bdd1243dSDimitry Andric return OS;
499bdd1243dSDimitry Andric }
500bdd1243dSDimitry Andric
501e8d8bef9SDimitry Andric } // namespace
502e8d8bef9SDimitry Andric
503e8d8bef9SDimitry Andric namespace {
504e8d8bef9SDimitry Andric
getIfUnordered(T * MaybeT)505e8d8bef9SDimitry Andric template <typename T> T *getIfUnordered(T *MaybeT) {
506e8d8bef9SDimitry Andric return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
507e8d8bef9SDimitry Andric }
isCandidate(Instruction * In)508e8d8bef9SDimitry Andric template <typename T> T *isCandidate(Instruction *In) {
509e8d8bef9SDimitry Andric return dyn_cast<T>(In);
510e8d8bef9SDimitry Andric }
isCandidate(Instruction * In)511e8d8bef9SDimitry Andric template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
512e8d8bef9SDimitry Andric return getIfUnordered(dyn_cast<LoadInst>(In));
513e8d8bef9SDimitry Andric }
isCandidate(Instruction * In)514e8d8bef9SDimitry Andric template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
515e8d8bef9SDimitry Andric return getIfUnordered(dyn_cast<StoreInst>(In));
516e8d8bef9SDimitry Andric }
517e8d8bef9SDimitry Andric
518fe6060f1SDimitry Andric #if !defined(_MSC_VER) || _MSC_VER >= 1926
519fe6060f1SDimitry Andric // VS2017 and some versions of VS2019 have trouble compiling this:
520e8d8bef9SDimitry Andric // error C2976: 'std::map': too few template arguments
521fe6060f1SDimitry Andric // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
522e8d8bef9SDimitry Andric template <typename Pred, typename... Ts>
erase_if(std::map<Ts...> & map,Pred p)523e8d8bef9SDimitry Andric void erase_if(std::map<Ts...> &map, Pred p)
524e8d8bef9SDimitry Andric #else
525e8d8bef9SDimitry Andric template <typename Pred, typename T, typename U>
526e8d8bef9SDimitry Andric void erase_if(std::map<T, U> &map, Pred p)
527e8d8bef9SDimitry Andric #endif
528e8d8bef9SDimitry Andric {
529e8d8bef9SDimitry Andric for (auto i = map.begin(), e = map.end(); i != e;) {
530e8d8bef9SDimitry Andric if (p(*i))
531e8d8bef9SDimitry Andric i = map.erase(i);
532e8d8bef9SDimitry Andric else
533e8d8bef9SDimitry Andric i = std::next(i);
534e8d8bef9SDimitry Andric }
535e8d8bef9SDimitry Andric }
536e8d8bef9SDimitry Andric
537e8d8bef9SDimitry Andric // Forward other erase_ifs to the LLVM implementations.
erase_if(T && container,Pred p)538e8d8bef9SDimitry Andric template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
539e8d8bef9SDimitry Andric llvm::erase_if(std::forward<T>(container), p);
540e8d8bef9SDimitry Andric }
541e8d8bef9SDimitry Andric
542e8d8bef9SDimitry Andric } // namespace
543e8d8bef9SDimitry Andric
544e8d8bef9SDimitry Andric // --- Begin AlignVectors
545e8d8bef9SDimitry Andric
54606c3fb27SDimitry Andric // For brevity, only consider loads. We identify a group of loads where we
54706c3fb27SDimitry Andric // know the relative differences between their addresses, so we know how they
54806c3fb27SDimitry Andric // are laid out in memory (relative to one another). These loads can overlap,
54906c3fb27SDimitry Andric // can be shorter or longer than the desired vector length.
55006c3fb27SDimitry Andric // Ultimately we want to generate a sequence of aligned loads that will load
55106c3fb27SDimitry Andric // every byte that the original loads loaded, and have the program use these
55206c3fb27SDimitry Andric // loaded values instead of the original loads.
55306c3fb27SDimitry Andric // We consider the contiguous memory area spanned by all these loads.
55406c3fb27SDimitry Andric //
55506c3fb27SDimitry Andric // Let's say that a single aligned vector load can load 16 bytes at a time.
55606c3fb27SDimitry Andric // If the program wanted to use a byte at offset 13 from the beginning of the
55706c3fb27SDimitry Andric // original span, it will be a byte at offset 13+x in the aligned data for
55806c3fb27SDimitry Andric // some x>=0. This may happen to be in the first aligned load, or in the load
55906c3fb27SDimitry Andric // following it. Since we generally don't know what the that alignment value
56006c3fb27SDimitry Andric // is at compile time, we proactively do valigns on the aligned loads, so that
56106c3fb27SDimitry Andric // byte that was at offset 13 is still at offset 13 after the valigns.
56206c3fb27SDimitry Andric //
56306c3fb27SDimitry Andric // This will be the starting point for making the rest of the program use the
56406c3fb27SDimitry Andric // data loaded by the new loads.
56506c3fb27SDimitry Andric // For each original load, and its users:
56606c3fb27SDimitry Andric // %v = load ...
56706c3fb27SDimitry Andric // ... = %v
56806c3fb27SDimitry Andric // ... = %v
56906c3fb27SDimitry Andric // we create
57006c3fb27SDimitry Andric // %new_v = extract/combine/shuffle data from loaded/valigned vectors so
57106c3fb27SDimitry Andric // it contains the same value as %v did before
57206c3fb27SDimitry Andric // then replace all users of %v with %new_v.
57306c3fb27SDimitry Andric // ... = %new_v
57406c3fb27SDimitry Andric // ... = %new_v
57506c3fb27SDimitry Andric
extent() const576e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::extent() const -> int {
577e8d8bef9SDimitry Andric if (size() == 0)
578e8d8bef9SDimitry Andric return 0;
579e8d8bef9SDimitry Andric int Min = Blocks[0].Pos;
580e8d8bef9SDimitry Andric int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
581e8d8bef9SDimitry Andric for (int i = 1, e = size(); i != e; ++i) {
582e8d8bef9SDimitry Andric Min = std::min(Min, Blocks[i].Pos);
583e8d8bef9SDimitry Andric Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
584e8d8bef9SDimitry Andric }
585e8d8bef9SDimitry Andric return Max - Min;
586e8d8bef9SDimitry Andric }
587e8d8bef9SDimitry Andric
section(int Start,int Length) const588e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
589e8d8bef9SDimitry Andric ByteSpan Section;
590e8d8bef9SDimitry Andric for (const ByteSpan::Block &B : Blocks) {
591e8d8bef9SDimitry Andric int L = std::max(B.Pos, Start); // Left end.
592e8d8bef9SDimitry Andric int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
593e8d8bef9SDimitry Andric if (L < R) {
594e8d8bef9SDimitry Andric // How much to chop off the beginning of the segment:
595e8d8bef9SDimitry Andric int Off = L > B.Pos ? L - B.Pos : 0;
596e8d8bef9SDimitry Andric Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
597e8d8bef9SDimitry Andric }
598e8d8bef9SDimitry Andric }
599e8d8bef9SDimitry Andric return Section;
600e8d8bef9SDimitry Andric }
601e8d8bef9SDimitry Andric
shift(int Offset)602e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
603e8d8bef9SDimitry Andric for (Block &B : Blocks)
604e8d8bef9SDimitry Andric B.Pos += Offset;
605e8d8bef9SDimitry Andric return *this;
606e8d8bef9SDimitry Andric }
607e8d8bef9SDimitry Andric
values() const608fe6060f1SDimitry Andric auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
609fe6060f1SDimitry Andric SmallVector<Value *, 8> Values(Blocks.size());
610fe6060f1SDimitry Andric for (int i = 0, e = Blocks.size(); i != e; ++i)
611fe6060f1SDimitry Andric Values[i] = Blocks[i].Seg.Val;
612fe6060f1SDimitry Andric return Values;
613fe6060f1SDimitry Andric }
614fe6060f1SDimitry Andric
getAlignFromValue(const Value * V) const615e8d8bef9SDimitry Andric auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
616e8d8bef9SDimitry Andric const auto *C = dyn_cast<ConstantInt>(V);
617e8d8bef9SDimitry Andric assert(C && "Alignment must be a compile-time constant integer");
618e8d8bef9SDimitry Andric return C->getAlignValue();
619e8d8bef9SDimitry Andric }
620e8d8bef9SDimitry Andric
getAddrInfo(Instruction & In) const621bdd1243dSDimitry Andric auto AlignVectors::getAddrInfo(Instruction &In) const
622bdd1243dSDimitry Andric -> std::optional<AddrInfo> {
623e8d8bef9SDimitry Andric if (auto *L = isCandidate<LoadInst>(&In))
624e8d8bef9SDimitry Andric return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
625e8d8bef9SDimitry Andric L->getAlign());
626e8d8bef9SDimitry Andric if (auto *S = isCandidate<StoreInst>(&In))
627e8d8bef9SDimitry Andric return AddrInfo(HVC, S, S->getPointerOperand(),
628e8d8bef9SDimitry Andric S->getValueOperand()->getType(), S->getAlign());
629e8d8bef9SDimitry Andric if (auto *II = isCandidate<IntrinsicInst>(&In)) {
630e8d8bef9SDimitry Andric Intrinsic::ID ID = II->getIntrinsicID();
631e8d8bef9SDimitry Andric switch (ID) {
632e8d8bef9SDimitry Andric case Intrinsic::masked_load:
633e8d8bef9SDimitry Andric return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
634e8d8bef9SDimitry Andric getAlignFromValue(II->getArgOperand(1)));
635e8d8bef9SDimitry Andric case Intrinsic::masked_store:
636e8d8bef9SDimitry Andric return AddrInfo(HVC, II, II->getArgOperand(1),
637e8d8bef9SDimitry Andric II->getArgOperand(0)->getType(),
638e8d8bef9SDimitry Andric getAlignFromValue(II->getArgOperand(2)));
639e8d8bef9SDimitry Andric }
640e8d8bef9SDimitry Andric }
641bdd1243dSDimitry Andric return std::nullopt;
642e8d8bef9SDimitry Andric }
643e8d8bef9SDimitry Andric
isHvx(const AddrInfo & AI) const644e8d8bef9SDimitry Andric auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
645e8d8bef9SDimitry Andric return HVC.HST.isTypeForHVX(AI.ValTy);
646e8d8bef9SDimitry Andric }
647e8d8bef9SDimitry Andric
getPayload(Value * Val) const648e8d8bef9SDimitry Andric auto AlignVectors::getPayload(Value *Val) const -> Value * {
649e8d8bef9SDimitry Andric if (auto *In = dyn_cast<Instruction>(Val)) {
650e8d8bef9SDimitry Andric Intrinsic::ID ID = 0;
651e8d8bef9SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(In))
652e8d8bef9SDimitry Andric ID = II->getIntrinsicID();
653e8d8bef9SDimitry Andric if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
654e8d8bef9SDimitry Andric return In->getOperand(0);
655e8d8bef9SDimitry Andric }
656e8d8bef9SDimitry Andric return Val;
657e8d8bef9SDimitry Andric }
658e8d8bef9SDimitry Andric
getMask(Value * Val) const659e8d8bef9SDimitry Andric auto AlignVectors::getMask(Value *Val) const -> Value * {
660e8d8bef9SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
661e8d8bef9SDimitry Andric switch (II->getIntrinsicID()) {
662e8d8bef9SDimitry Andric case Intrinsic::masked_load:
663e8d8bef9SDimitry Andric return II->getArgOperand(2);
664e8d8bef9SDimitry Andric case Intrinsic::masked_store:
665e8d8bef9SDimitry Andric return II->getArgOperand(3);
666e8d8bef9SDimitry Andric }
667e8d8bef9SDimitry Andric }
668e8d8bef9SDimitry Andric
669e8d8bef9SDimitry Andric Type *ValTy = getPayload(Val)->getType();
670bdd1243dSDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(ValTy))
671bdd1243dSDimitry Andric return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy)));
672e8d8bef9SDimitry Andric return HVC.getFullValue(HVC.getBoolTy());
673e8d8bef9SDimitry Andric }
674e8d8bef9SDimitry Andric
getPassThrough(Value * Val) const675e8d8bef9SDimitry Andric auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
676e8d8bef9SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
677e8d8bef9SDimitry Andric if (II->getIntrinsicID() == Intrinsic::masked_load)
678e8d8bef9SDimitry Andric return II->getArgOperand(3);
679e8d8bef9SDimitry Andric }
680e8d8bef9SDimitry Andric return UndefValue::get(getPayload(Val)->getType());
681e8d8bef9SDimitry Andric }
682e8d8bef9SDimitry Andric
createAdjustedPointer(IRBuilderBase & Builder,Value * Ptr,Type * ValTy,int Adjust,const InstMap & CloneMap) const683bdd1243dSDimitry Andric auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr,
68406c3fb27SDimitry Andric Type *ValTy, int Adjust,
68506c3fb27SDimitry Andric const InstMap &CloneMap) const
686e8d8bef9SDimitry Andric -> Value * {
68706c3fb27SDimitry Andric if (auto *I = dyn_cast<Instruction>(Ptr))
68806c3fb27SDimitry Andric if (Instruction *New = CloneMap.lookup(I))
68906c3fb27SDimitry Andric Ptr = New;
6907a6dacacSDimitry Andric return Builder.CreatePtrAdd(Ptr, HVC.getConstInt(Adjust), "gep");
691e8d8bef9SDimitry Andric }
692e8d8bef9SDimitry Andric
createAlignedPointer(IRBuilderBase & Builder,Value * Ptr,Type * ValTy,int Alignment,const InstMap & CloneMap) const693bdd1243dSDimitry Andric auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr,
69406c3fb27SDimitry Andric Type *ValTy, int Alignment,
69506c3fb27SDimitry Andric const InstMap &CloneMap) const
696e8d8bef9SDimitry Andric -> Value * {
69706c3fb27SDimitry Andric auto remap = [&](Value *V) -> Value * {
69806c3fb27SDimitry Andric if (auto *I = dyn_cast<Instruction>(V)) {
69906c3fb27SDimitry Andric for (auto [Old, New] : CloneMap)
70006c3fb27SDimitry Andric I->replaceUsesOfWith(Old, New);
70106c3fb27SDimitry Andric return I;
70206c3fb27SDimitry Andric }
70306c3fb27SDimitry Andric return V;
70406c3fb27SDimitry Andric };
70506c3fb27SDimitry Andric Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy(), "pti");
706e8d8bef9SDimitry Andric Value *Mask = HVC.getConstInt(-Alignment);
70706c3fb27SDimitry Andric Value *And = Builder.CreateAnd(remap(AsInt), Mask, "and");
7085f757f3fSDimitry Andric return Builder.CreateIntToPtr(
7095f757f3fSDimitry Andric And, PointerType::getUnqual(ValTy->getContext()), "itp");
710e8d8bef9SDimitry Andric }
711e8d8bef9SDimitry Andric
createLoad(IRBuilderBase & Builder,Type * ValTy,Value * Ptr,Value * Predicate,int Alignment,Value * Mask,Value * PassThru,ArrayRef<Value * > MDSources) const71206c3fb27SDimitry Andric auto AlignVectors::createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
71306c3fb27SDimitry Andric Value *Predicate, int Alignment, Value *Mask,
71406c3fb27SDimitry Andric Value *PassThru,
71506c3fb27SDimitry Andric ArrayRef<Value *> MDSources) const -> Value * {
71606c3fb27SDimitry Andric bool HvxHasPredLoad = HVC.HST.useHVXV62Ops();
71706c3fb27SDimitry Andric // Predicate is nullptr if not creating predicated load
71806c3fb27SDimitry Andric if (Predicate) {
71906c3fb27SDimitry Andric assert(!Predicate->getType()->isVectorTy() &&
72006c3fb27SDimitry Andric "Expectning scalar predicate");
72106c3fb27SDimitry Andric if (HVC.isFalse(Predicate))
72206c3fb27SDimitry Andric return UndefValue::get(ValTy);
72306c3fb27SDimitry Andric if (!HVC.isTrue(Predicate) && HvxHasPredLoad) {
72406c3fb27SDimitry Andric Value *Load = createPredicatedLoad(Builder, ValTy, Ptr, Predicate,
72506c3fb27SDimitry Andric Alignment, MDSources);
72606c3fb27SDimitry Andric return Builder.CreateSelect(Mask, Load, PassThru);
72706c3fb27SDimitry Andric }
72806c3fb27SDimitry Andric // Predicate == true here.
72906c3fb27SDimitry Andric }
730e8d8bef9SDimitry Andric assert(!HVC.isUndef(Mask)); // Should this be allowed?
731e8d8bef9SDimitry Andric if (HVC.isZero(Mask))
732e8d8bef9SDimitry Andric return PassThru;
73306c3fb27SDimitry Andric if (HVC.isTrue(Mask))
73406c3fb27SDimitry Andric return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources);
73506c3fb27SDimitry Andric
73606c3fb27SDimitry Andric Instruction *Load = Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment),
73706c3fb27SDimitry Andric Mask, PassThru, "mld");
73806c3fb27SDimitry Andric propagateMetadata(Load, MDSources);
73906c3fb27SDimitry Andric return Load;
740e8d8bef9SDimitry Andric }
741e8d8bef9SDimitry Andric
createSimpleLoad(IRBuilderBase & Builder,Type * ValTy,Value * Ptr,int Alignment,ArrayRef<Value * > MDSources) const74206c3fb27SDimitry Andric auto AlignVectors::createSimpleLoad(IRBuilderBase &Builder, Type *ValTy,
743e8d8bef9SDimitry Andric Value *Ptr, int Alignment,
74406c3fb27SDimitry Andric ArrayRef<Value *> MDSources) const
74506c3fb27SDimitry Andric -> Value * {
74606c3fb27SDimitry Andric Instruction *Load =
74706c3fb27SDimitry Andric Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment), "ald");
74806c3fb27SDimitry Andric propagateMetadata(Load, MDSources);
74906c3fb27SDimitry Andric return Load;
75006c3fb27SDimitry Andric }
75106c3fb27SDimitry Andric
createPredicatedLoad(IRBuilderBase & Builder,Type * ValTy,Value * Ptr,Value * Predicate,int Alignment,ArrayRef<Value * > MDSources) const75206c3fb27SDimitry Andric auto AlignVectors::createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy,
75306c3fb27SDimitry Andric Value *Ptr, Value *Predicate,
75406c3fb27SDimitry Andric int Alignment,
75506c3fb27SDimitry Andric ArrayRef<Value *> MDSources) const
75606c3fb27SDimitry Andric -> Value * {
75706c3fb27SDimitry Andric assert(HVC.HST.isTypeForHVX(ValTy) &&
75806c3fb27SDimitry Andric "Predicates 'scalar' vector loads not yet supported");
75906c3fb27SDimitry Andric assert(Predicate);
76006c3fb27SDimitry Andric assert(!Predicate->getType()->isVectorTy() && "Expectning scalar predicate");
76106c3fb27SDimitry Andric assert(HVC.getSizeOf(ValTy, HVC.Alloc) % Alignment == 0);
76206c3fb27SDimitry Andric if (HVC.isFalse(Predicate))
76306c3fb27SDimitry Andric return UndefValue::get(ValTy);
76406c3fb27SDimitry Andric if (HVC.isTrue(Predicate))
76506c3fb27SDimitry Andric return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources);
76606c3fb27SDimitry Andric
76706c3fb27SDimitry Andric auto V6_vL32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vL32b_pred_ai);
76806c3fb27SDimitry Andric // FIXME: This may not put the offset from Ptr into the vmem offset.
76906c3fb27SDimitry Andric return HVC.createHvxIntrinsic(Builder, V6_vL32b_pred_ai, ValTy,
77006c3fb27SDimitry Andric {Predicate, Ptr, HVC.getConstInt(0)},
77106c3fb27SDimitry Andric std::nullopt, MDSources);
77206c3fb27SDimitry Andric }
77306c3fb27SDimitry Andric
createStore(IRBuilderBase & Builder,Value * Val,Value * Ptr,Value * Predicate,int Alignment,Value * Mask,ArrayRef<Value * > MDSources) const77406c3fb27SDimitry Andric auto AlignVectors::createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
77506c3fb27SDimitry Andric Value *Predicate, int Alignment, Value *Mask,
77606c3fb27SDimitry Andric ArrayRef<Value *> MDSources) const -> Value * {
777e8d8bef9SDimitry Andric if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
778e8d8bef9SDimitry Andric return UndefValue::get(Val->getType());
77906c3fb27SDimitry Andric assert(!Predicate || (!Predicate->getType()->isVectorTy() &&
78006c3fb27SDimitry Andric "Expectning scalar predicate"));
78106c3fb27SDimitry Andric if (Predicate) {
78206c3fb27SDimitry Andric if (HVC.isFalse(Predicate))
78306c3fb27SDimitry Andric return UndefValue::get(Val->getType());
78406c3fb27SDimitry Andric if (HVC.isTrue(Predicate))
78506c3fb27SDimitry Andric Predicate = nullptr;
78606c3fb27SDimitry Andric }
78706c3fb27SDimitry Andric // Here both Predicate and Mask are true or unknown.
78806c3fb27SDimitry Andric
78906c3fb27SDimitry Andric if (HVC.isTrue(Mask)) {
79006c3fb27SDimitry Andric if (Predicate) { // Predicate unknown
79106c3fb27SDimitry Andric return createPredicatedStore(Builder, Val, Ptr, Predicate, Alignment,
79206c3fb27SDimitry Andric MDSources);
79306c3fb27SDimitry Andric }
79406c3fb27SDimitry Andric // Predicate is true:
79506c3fb27SDimitry Andric return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources);
79606c3fb27SDimitry Andric }
79706c3fb27SDimitry Andric
79806c3fb27SDimitry Andric // Mask is unknown
79906c3fb27SDimitry Andric if (!Predicate) {
80006c3fb27SDimitry Andric Instruction *Store =
80106c3fb27SDimitry Andric Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
80206c3fb27SDimitry Andric propagateMetadata(Store, MDSources);
80306c3fb27SDimitry Andric return Store;
80406c3fb27SDimitry Andric }
80506c3fb27SDimitry Andric
80606c3fb27SDimitry Andric // Both Predicate and Mask are unknown.
80706c3fb27SDimitry Andric // Emulate masked store with predicated-load + mux + predicated-store.
80806c3fb27SDimitry Andric Value *PredLoad = createPredicatedLoad(Builder, Val->getType(), Ptr,
80906c3fb27SDimitry Andric Predicate, Alignment, MDSources);
81006c3fb27SDimitry Andric Value *Mux = Builder.CreateSelect(Mask, Val, PredLoad);
81106c3fb27SDimitry Andric return createPredicatedStore(Builder, Mux, Ptr, Predicate, Alignment,
81206c3fb27SDimitry Andric MDSources);
81306c3fb27SDimitry Andric }
81406c3fb27SDimitry Andric
createSimpleStore(IRBuilderBase & Builder,Value * Val,Value * Ptr,int Alignment,ArrayRef<Value * > MDSources) const81506c3fb27SDimitry Andric auto AlignVectors::createSimpleStore(IRBuilderBase &Builder, Value *Val,
81606c3fb27SDimitry Andric Value *Ptr, int Alignment,
81706c3fb27SDimitry Andric ArrayRef<Value *> MDSources) const
81806c3fb27SDimitry Andric -> Value * {
81906c3fb27SDimitry Andric Instruction *Store = Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
82006c3fb27SDimitry Andric propagateMetadata(Store, MDSources);
82106c3fb27SDimitry Andric return Store;
82206c3fb27SDimitry Andric }
82306c3fb27SDimitry Andric
createPredicatedStore(IRBuilderBase & Builder,Value * Val,Value * Ptr,Value * Predicate,int Alignment,ArrayRef<Value * > MDSources) const82406c3fb27SDimitry Andric auto AlignVectors::createPredicatedStore(IRBuilderBase &Builder, Value *Val,
82506c3fb27SDimitry Andric Value *Ptr, Value *Predicate,
82606c3fb27SDimitry Andric int Alignment,
82706c3fb27SDimitry Andric ArrayRef<Value *> MDSources) const
82806c3fb27SDimitry Andric -> Value * {
82906c3fb27SDimitry Andric assert(HVC.HST.isTypeForHVX(Val->getType()) &&
83006c3fb27SDimitry Andric "Predicates 'scalar' vector stores not yet supported");
83106c3fb27SDimitry Andric assert(Predicate);
83206c3fb27SDimitry Andric if (HVC.isFalse(Predicate))
83306c3fb27SDimitry Andric return UndefValue::get(Val->getType());
83406c3fb27SDimitry Andric if (HVC.isTrue(Predicate))
83506c3fb27SDimitry Andric return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources);
83606c3fb27SDimitry Andric
83706c3fb27SDimitry Andric assert(HVC.getSizeOf(Val, HVC.Alloc) % Alignment == 0);
83806c3fb27SDimitry Andric auto V6_vS32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vS32b_pred_ai);
83906c3fb27SDimitry Andric // FIXME: This may not put the offset from Ptr into the vmem offset.
84006c3fb27SDimitry Andric return HVC.createHvxIntrinsic(Builder, V6_vS32b_pred_ai, nullptr,
84106c3fb27SDimitry Andric {Predicate, Ptr, HVC.getConstInt(0), Val},
84206c3fb27SDimitry Andric std::nullopt, MDSources);
843e8d8bef9SDimitry Andric }
844e8d8bef9SDimitry Andric
getUpwardDeps(Instruction * In,Instruction * Base) const845bdd1243dSDimitry Andric auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const
846bdd1243dSDimitry Andric -> DepList {
847bdd1243dSDimitry Andric BasicBlock *Parent = Base->getParent();
848bdd1243dSDimitry Andric assert(In->getParent() == Parent &&
849bdd1243dSDimitry Andric "Base and In should be in the same block");
850bdd1243dSDimitry Andric assert(Base->comesBefore(In) && "Base should come before In");
851bdd1243dSDimitry Andric
852bdd1243dSDimitry Andric DepList Deps;
853bdd1243dSDimitry Andric std::deque<Instruction *> WorkQ = {In};
854bdd1243dSDimitry Andric while (!WorkQ.empty()) {
855bdd1243dSDimitry Andric Instruction *D = WorkQ.front();
856bdd1243dSDimitry Andric WorkQ.pop_front();
85706c3fb27SDimitry Andric if (D != In)
858bdd1243dSDimitry Andric Deps.insert(D);
859bdd1243dSDimitry Andric for (Value *Op : D->operands()) {
860bdd1243dSDimitry Andric if (auto *I = dyn_cast<Instruction>(Op)) {
861bdd1243dSDimitry Andric if (I->getParent() == Parent && Base->comesBefore(I))
862bdd1243dSDimitry Andric WorkQ.push_back(I);
863bdd1243dSDimitry Andric }
864bdd1243dSDimitry Andric }
865bdd1243dSDimitry Andric }
866bdd1243dSDimitry Andric return Deps;
867bdd1243dSDimitry Andric }
868bdd1243dSDimitry Andric
createAddressGroups()869e8d8bef9SDimitry Andric auto AlignVectors::createAddressGroups() -> bool {
870e8d8bef9SDimitry Andric // An address group created here may contain instructions spanning
871e8d8bef9SDimitry Andric // multiple basic blocks.
872e8d8bef9SDimitry Andric AddrList WorkStack;
873e8d8bef9SDimitry Andric
874e8d8bef9SDimitry Andric auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
875e8d8bef9SDimitry Andric for (AddrInfo &W : WorkStack) {
876e8d8bef9SDimitry Andric if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
877e8d8bef9SDimitry Andric return std::make_pair(W.Inst, *D);
878e8d8bef9SDimitry Andric }
879e8d8bef9SDimitry Andric return std::make_pair(nullptr, 0);
880e8d8bef9SDimitry Andric };
881e8d8bef9SDimitry Andric
882e8d8bef9SDimitry Andric auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
883e8d8bef9SDimitry Andric BasicBlock &Block = *DomN->getBlock();
884e8d8bef9SDimitry Andric for (Instruction &I : Block) {
885e8d8bef9SDimitry Andric auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
886e8d8bef9SDimitry Andric if (!AI)
887e8d8bef9SDimitry Andric continue;
888e8d8bef9SDimitry Andric auto F = findBaseAndOffset(*AI);
889e8d8bef9SDimitry Andric Instruction *GroupInst;
890e8d8bef9SDimitry Andric if (Instruction *BI = F.first) {
891e8d8bef9SDimitry Andric AI->Offset = F.second;
892e8d8bef9SDimitry Andric GroupInst = BI;
893e8d8bef9SDimitry Andric } else {
894e8d8bef9SDimitry Andric WorkStack.push_back(*AI);
895e8d8bef9SDimitry Andric GroupInst = AI->Inst;
896e8d8bef9SDimitry Andric }
897e8d8bef9SDimitry Andric AddrGroups[GroupInst].push_back(*AI);
898e8d8bef9SDimitry Andric }
899e8d8bef9SDimitry Andric
900e8d8bef9SDimitry Andric for (DomTreeNode *C : DomN->children())
901e8d8bef9SDimitry Andric Visit(C, Visit);
902e8d8bef9SDimitry Andric
903e8d8bef9SDimitry Andric while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
904e8d8bef9SDimitry Andric WorkStack.pop_back();
905e8d8bef9SDimitry Andric };
906e8d8bef9SDimitry Andric
907e8d8bef9SDimitry Andric traverseBlock(HVC.DT.getRootNode(), traverseBlock);
908e8d8bef9SDimitry Andric assert(WorkStack.empty());
909e8d8bef9SDimitry Andric
910e8d8bef9SDimitry Andric // AddrGroups are formed.
911e8d8bef9SDimitry Andric
912e8d8bef9SDimitry Andric // Remove groups of size 1.
913e8d8bef9SDimitry Andric erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
914e8d8bef9SDimitry Andric // Remove groups that don't use HVX types.
915e8d8bef9SDimitry Andric erase_if(AddrGroups, [&](auto &G) {
9160eae32dcSDimitry Andric return llvm::none_of(
917e8d8bef9SDimitry Andric G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
918e8d8bef9SDimitry Andric });
919e8d8bef9SDimitry Andric
920e8d8bef9SDimitry Andric return !AddrGroups.empty();
921e8d8bef9SDimitry Andric }
922e8d8bef9SDimitry Andric
createLoadGroups(const AddrList & Group) const923e8d8bef9SDimitry Andric auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
924e8d8bef9SDimitry Andric // Form load groups.
925e8d8bef9SDimitry Andric // To avoid complications with moving code across basic blocks, only form
926e8d8bef9SDimitry Andric // groups that are contained within a single basic block.
92706c3fb27SDimitry Andric unsigned SizeLimit = VAGroupSizeLimit;
92806c3fb27SDimitry Andric if (SizeLimit == 0)
92906c3fb27SDimitry Andric return {};
930e8d8bef9SDimitry Andric
931e8d8bef9SDimitry Andric auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
932e8d8bef9SDimitry Andric assert(!Move.Main.empty() && "Move group should have non-empty Main");
93306c3fb27SDimitry Andric if (Move.Main.size() >= SizeLimit)
93406c3fb27SDimitry Andric return false;
935e8d8bef9SDimitry Andric // Don't mix HVX and non-HVX instructions.
936e8d8bef9SDimitry Andric if (Move.IsHvx != isHvx(Info))
937e8d8bef9SDimitry Andric return false;
938e8d8bef9SDimitry Andric // Leading instruction in the load group.
939e8d8bef9SDimitry Andric Instruction *Base = Move.Main.front();
940e8d8bef9SDimitry Andric if (Base->getParent() != Info.Inst->getParent())
941e8d8bef9SDimitry Andric return false;
94206c3fb27SDimitry Andric // Check if it's safe to move the load.
94306c3fb27SDimitry Andric if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator()))
94406c3fb27SDimitry Andric return false;
94506c3fb27SDimitry Andric // And if it's safe to clone the dependencies.
94606c3fb27SDimitry Andric auto isSafeToCopyAtBase = [&](const Instruction *I) {
94706c3fb27SDimitry Andric return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()) &&
94806c3fb27SDimitry Andric HVC.isSafeToClone(*I);
949e8d8bef9SDimitry Andric };
950e8d8bef9SDimitry Andric DepList Deps = getUpwardDeps(Info.Inst, Base);
95106c3fb27SDimitry Andric if (!llvm::all_of(Deps, isSafeToCopyAtBase))
952e8d8bef9SDimitry Andric return false;
953e8d8bef9SDimitry Andric
954e8d8bef9SDimitry Andric Move.Main.push_back(Info.Inst);
955e8d8bef9SDimitry Andric llvm::append_range(Move.Deps, Deps);
956e8d8bef9SDimitry Andric return true;
957e8d8bef9SDimitry Andric };
958e8d8bef9SDimitry Andric
959e8d8bef9SDimitry Andric MoveList LoadGroups;
960e8d8bef9SDimitry Andric
961e8d8bef9SDimitry Andric for (const AddrInfo &Info : Group) {
962e8d8bef9SDimitry Andric if (!Info.Inst->mayReadFromMemory())
963e8d8bef9SDimitry Andric continue;
964e8d8bef9SDimitry Andric if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
965e8d8bef9SDimitry Andric LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
966e8d8bef9SDimitry Andric }
967e8d8bef9SDimitry Andric
968e8d8bef9SDimitry Andric // Erase singleton groups.
969e8d8bef9SDimitry Andric erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
97006c3fb27SDimitry Andric
97106c3fb27SDimitry Andric // Erase HVX groups on targets < HvxV62 (due to lack of predicated loads).
97206c3fb27SDimitry Andric if (!HVC.HST.useHVXV62Ops())
97306c3fb27SDimitry Andric erase_if(LoadGroups, [](const MoveGroup &G) { return G.IsHvx; });
97406c3fb27SDimitry Andric
975e8d8bef9SDimitry Andric return LoadGroups;
976e8d8bef9SDimitry Andric }
977e8d8bef9SDimitry Andric
createStoreGroups(const AddrList & Group) const978e8d8bef9SDimitry Andric auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
979e8d8bef9SDimitry Andric // Form store groups.
980e8d8bef9SDimitry Andric // To avoid complications with moving code across basic blocks, only form
981e8d8bef9SDimitry Andric // groups that are contained within a single basic block.
98206c3fb27SDimitry Andric unsigned SizeLimit = VAGroupSizeLimit;
98306c3fb27SDimitry Andric if (SizeLimit == 0)
98406c3fb27SDimitry Andric return {};
985e8d8bef9SDimitry Andric
986e8d8bef9SDimitry Andric auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
987e8d8bef9SDimitry Andric assert(!Move.Main.empty() && "Move group should have non-empty Main");
98806c3fb27SDimitry Andric if (Move.Main.size() >= SizeLimit)
98906c3fb27SDimitry Andric return false;
990e8d8bef9SDimitry Andric // For stores with return values we'd have to collect downward depenencies.
991e8d8bef9SDimitry Andric // There are no such stores that we handle at the moment, so omit that.
992e8d8bef9SDimitry Andric assert(Info.Inst->getType()->isVoidTy() &&
993e8d8bef9SDimitry Andric "Not handling stores with return values");
994e8d8bef9SDimitry Andric // Don't mix HVX and non-HVX instructions.
995e8d8bef9SDimitry Andric if (Move.IsHvx != isHvx(Info))
996e8d8bef9SDimitry Andric return false;
997e8d8bef9SDimitry Andric // For stores we need to be careful whether it's safe to move them.
998e8d8bef9SDimitry Andric // Stores that are otherwise safe to move together may not appear safe
999e8d8bef9SDimitry Andric // to move over one another (i.e. isSafeToMoveBefore may return false).
1000e8d8bef9SDimitry Andric Instruction *Base = Move.Main.front();
1001e8d8bef9SDimitry Andric if (Base->getParent() != Info.Inst->getParent())
1002e8d8bef9SDimitry Andric return false;
1003e8d8bef9SDimitry Andric if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
1004e8d8bef9SDimitry Andric return false;
1005e8d8bef9SDimitry Andric Move.Main.push_back(Info.Inst);
1006e8d8bef9SDimitry Andric return true;
1007e8d8bef9SDimitry Andric };
1008e8d8bef9SDimitry Andric
1009e8d8bef9SDimitry Andric MoveList StoreGroups;
1010e8d8bef9SDimitry Andric
1011e8d8bef9SDimitry Andric for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
1012e8d8bef9SDimitry Andric const AddrInfo &Info = *I;
1013e8d8bef9SDimitry Andric if (!Info.Inst->mayWriteToMemory())
1014e8d8bef9SDimitry Andric continue;
1015e8d8bef9SDimitry Andric if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
1016e8d8bef9SDimitry Andric StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
1017e8d8bef9SDimitry Andric }
1018e8d8bef9SDimitry Andric
1019e8d8bef9SDimitry Andric // Erase singleton groups.
1020e8d8bef9SDimitry Andric erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
102106c3fb27SDimitry Andric
102206c3fb27SDimitry Andric // Erase HVX groups on targets < HvxV62 (due to lack of predicated loads).
102306c3fb27SDimitry Andric if (!HVC.HST.useHVXV62Ops())
102406c3fb27SDimitry Andric erase_if(StoreGroups, [](const MoveGroup &G) { return G.IsHvx; });
102506c3fb27SDimitry Andric
102606c3fb27SDimitry Andric // Erase groups where every store is a full HVX vector. The reason is that
102706c3fb27SDimitry Andric // aligning predicated stores generates complex code that may be less
102806c3fb27SDimitry Andric // efficient than a sequence of unaligned vector stores.
102906c3fb27SDimitry Andric if (!VADoFullStores) {
103006c3fb27SDimitry Andric erase_if(StoreGroups, [this](const MoveGroup &G) {
103106c3fb27SDimitry Andric return G.IsHvx && llvm::all_of(G.Main, [this](Instruction *S) {
103206c3fb27SDimitry Andric auto MaybeInfo = this->getAddrInfo(*S);
103306c3fb27SDimitry Andric assert(MaybeInfo.has_value());
103406c3fb27SDimitry Andric return HVC.HST.isHVXVectorType(
103506c3fb27SDimitry Andric EVT::getEVT(MaybeInfo->ValTy, false));
103606c3fb27SDimitry Andric });
103706c3fb27SDimitry Andric });
103806c3fb27SDimitry Andric }
103906c3fb27SDimitry Andric
1040e8d8bef9SDimitry Andric return StoreGroups;
1041e8d8bef9SDimitry Andric }
1042e8d8bef9SDimitry Andric
moveTogether(MoveGroup & Move) const104306c3fb27SDimitry Andric auto AlignVectors::moveTogether(MoveGroup &Move) const -> bool {
104406c3fb27SDimitry Andric // Move all instructions to be adjacent.
1045e8d8bef9SDimitry Andric assert(!Move.Main.empty() && "Move group should have non-empty Main");
1046e8d8bef9SDimitry Andric Instruction *Where = Move.Main.front();
1047e8d8bef9SDimitry Andric
1048e8d8bef9SDimitry Andric if (Move.IsLoad) {
104906c3fb27SDimitry Andric // Move all the loads (and dependencies) to where the first load is.
105006c3fb27SDimitry Andric // Clone all deps to before Where, keeping order.
105106c3fb27SDimitry Andric Move.Clones = cloneBefore(Where, Move.Deps);
1052e8d8bef9SDimitry Andric // Move all main instructions to after Where, keeping order.
1053e8d8bef9SDimitry Andric ArrayRef<Instruction *> Main(Move.Main);
105406c3fb27SDimitry Andric for (Instruction *M : Main) {
105506c3fb27SDimitry Andric if (M != Where)
1056e8d8bef9SDimitry Andric M->moveAfter(Where);
105706c3fb27SDimitry Andric for (auto [Old, New] : Move.Clones)
105806c3fb27SDimitry Andric M->replaceUsesOfWith(Old, New);
1059e8d8bef9SDimitry Andric Where = M;
1060e8d8bef9SDimitry Andric }
106106c3fb27SDimitry Andric // Replace Deps with the clones.
106206c3fb27SDimitry Andric for (int i = 0, e = Move.Deps.size(); i != e; ++i)
106306c3fb27SDimitry Andric Move.Deps[i] = Move.Clones[Move.Deps[i]];
1064e8d8bef9SDimitry Andric } else {
106506c3fb27SDimitry Andric // Move all the stores to where the last store is.
1066e8d8bef9SDimitry Andric // NOTE: Deps are empty for "store" groups. If they need to be
1067e8d8bef9SDimitry Andric // non-empty, decide on the order.
1068e8d8bef9SDimitry Andric assert(Move.Deps.empty());
1069e8d8bef9SDimitry Andric // Move all main instructions to before Where, inverting order.
1070e8d8bef9SDimitry Andric ArrayRef<Instruction *> Main(Move.Main);
1071e8d8bef9SDimitry Andric for (Instruction *M : Main.drop_front(1)) {
1072e8d8bef9SDimitry Andric M->moveBefore(Where);
1073e8d8bef9SDimitry Andric Where = M;
1074e8d8bef9SDimitry Andric }
1075e8d8bef9SDimitry Andric }
1076e8d8bef9SDimitry Andric
1077e8d8bef9SDimitry Andric return Move.Main.size() + Move.Deps.size() > 1;
1078e8d8bef9SDimitry Andric }
1079e8d8bef9SDimitry Andric
108006c3fb27SDimitry Andric template <typename T>
cloneBefore(Instruction * To,T && Insts) const108106c3fb27SDimitry Andric auto AlignVectors::cloneBefore(Instruction *To, T &&Insts) const -> InstMap {
108206c3fb27SDimitry Andric InstMap Map;
108306c3fb27SDimitry Andric
108406c3fb27SDimitry Andric for (Instruction *I : Insts) {
108506c3fb27SDimitry Andric assert(HVC.isSafeToClone(*I));
108606c3fb27SDimitry Andric Instruction *C = I->clone();
108706c3fb27SDimitry Andric C->setName(Twine("c.") + I->getName() + ".");
108806c3fb27SDimitry Andric C->insertBefore(To);
108906c3fb27SDimitry Andric
109006c3fb27SDimitry Andric for (auto [Old, New] : Map)
109106c3fb27SDimitry Andric C->replaceUsesOfWith(Old, New);
109206c3fb27SDimitry Andric Map.insert(std::make_pair(I, C));
109306c3fb27SDimitry Andric }
109406c3fb27SDimitry Andric return Map;
109506c3fb27SDimitry Andric }
109606c3fb27SDimitry Andric
realignLoadGroup(IRBuilderBase & Builder,const ByteSpan & VSpan,int ScLen,Value * AlignVal,Value * AlignAddr) const1097bdd1243dSDimitry Andric auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder,
1098bdd1243dSDimitry Andric const ByteSpan &VSpan, int ScLen,
1099bdd1243dSDimitry Andric Value *AlignVal, Value *AlignAddr) const
1100bdd1243dSDimitry Andric -> void {
110106c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << __func__ << "\n");
110206c3fb27SDimitry Andric
1103bdd1243dSDimitry Andric Type *SecTy = HVC.getByteTy(ScLen);
1104bdd1243dSDimitry Andric int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
1105bdd1243dSDimitry Andric bool DoAlign = !HVC.isZero(AlignVal);
1106bdd1243dSDimitry Andric BasicBlock::iterator BasePos = Builder.GetInsertPoint();
1107bdd1243dSDimitry Andric BasicBlock *BaseBlock = Builder.GetInsertBlock();
1108bdd1243dSDimitry Andric
1109bdd1243dSDimitry Andric ByteSpan ASpan;
1110bdd1243dSDimitry Andric auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
1111bdd1243dSDimitry Andric auto *Undef = UndefValue::get(SecTy);
1112bdd1243dSDimitry Andric
111306c3fb27SDimitry Andric // Created load does not have to be "Instruction" (e.g. "undef").
111406c3fb27SDimitry Andric SmallVector<Value *> Loads(NumSectors + DoAlign, nullptr);
1115bdd1243dSDimitry Andric
1116bdd1243dSDimitry Andric // We could create all of the aligned loads, and generate the valigns
1117bdd1243dSDimitry Andric // at the location of the first load, but for large load groups, this
1118bdd1243dSDimitry Andric // could create highly suboptimal code (there have been groups of 140+
1119bdd1243dSDimitry Andric // loads in real code).
1120bdd1243dSDimitry Andric // Instead, place the loads/valigns as close to the users as possible.
1121bdd1243dSDimitry Andric // In any case we need to have a mapping from the blocks of VSpan (the
1122bdd1243dSDimitry Andric // span covered by the pre-existing loads) to ASpan (the span covered
1123bdd1243dSDimitry Andric // by the aligned loads). There is a small problem, though: ASpan needs
112406c3fb27SDimitry Andric // to have pointers to the loads/valigns, but we don't have these loads
112506c3fb27SDimitry Andric // because we don't know where to put them yet. We find out by creating
112606c3fb27SDimitry Andric // a section of ASpan that corresponds to values (blocks) from VSpan,
112706c3fb27SDimitry Andric // and checking where the new load should be placed. We need to attach
112806c3fb27SDimitry Andric // this location information to each block in ASpan somehow, so we put
112906c3fb27SDimitry Andric // distincts values for Seg.Val in each ASpan.Blocks[i], and use a map
113006c3fb27SDimitry Andric // to store the location for each Seg.Val.
113106c3fb27SDimitry Andric // The distinct values happen to be Blocks[i].Seg.Val = &Blocks[i],
113206c3fb27SDimitry Andric // which helps with printing ByteSpans without crashing when printing
113306c3fb27SDimitry Andric // Segments with these temporary identifiers in place of Val.
1134bdd1243dSDimitry Andric
1135bdd1243dSDimitry Andric // Populate the blocks first, to avoid reallocations of the vector
1136bdd1243dSDimitry Andric // interfering with generating the placeholder addresses.
1137bdd1243dSDimitry Andric for (int Index = 0; Index != NumSectors; ++Index)
1138bdd1243dSDimitry Andric ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen);
1139bdd1243dSDimitry Andric for (int Index = 0; Index != NumSectors; ++Index) {
1140bdd1243dSDimitry Andric ASpan.Blocks[Index].Seg.Val =
1141bdd1243dSDimitry Andric reinterpret_cast<Value *>(&ASpan.Blocks[Index]);
1142bdd1243dSDimitry Andric }
1143bdd1243dSDimitry Andric
1144bdd1243dSDimitry Andric // Multiple values from VSpan can map to the same value in ASpan. Since we
1145bdd1243dSDimitry Andric // try to create loads lazily, we need to find the earliest use for each
1146bdd1243dSDimitry Andric // value from ASpan.
1147bdd1243dSDimitry Andric DenseMap<void *, Instruction *> EarliestUser;
1148bdd1243dSDimitry Andric auto isEarlier = [](Instruction *A, Instruction *B) {
1149bdd1243dSDimitry Andric if (B == nullptr)
1150bdd1243dSDimitry Andric return true;
1151bdd1243dSDimitry Andric if (A == nullptr)
1152bdd1243dSDimitry Andric return false;
1153bdd1243dSDimitry Andric assert(A->getParent() == B->getParent());
1154bdd1243dSDimitry Andric return A->comesBefore(B);
1155bdd1243dSDimitry Andric };
1156bdd1243dSDimitry Andric auto earliestUser = [&](const auto &Uses) {
1157bdd1243dSDimitry Andric Instruction *User = nullptr;
1158bdd1243dSDimitry Andric for (const Use &U : Uses) {
1159bdd1243dSDimitry Andric auto *I = dyn_cast<Instruction>(U.getUser());
1160bdd1243dSDimitry Andric assert(I != nullptr && "Load used in a non-instruction?");
116106c3fb27SDimitry Andric // Make sure we only consider users in this block, but we need
1162bdd1243dSDimitry Andric // to remember if there were users outside the block too. This is
116306c3fb27SDimitry Andric // because if no users are found, aligned loads will not be created.
1164bdd1243dSDimitry Andric if (I->getParent() == BaseBlock) {
1165bdd1243dSDimitry Andric if (!isa<PHINode>(I))
1166bdd1243dSDimitry Andric User = std::min(User, I, isEarlier);
1167bdd1243dSDimitry Andric } else {
1168bdd1243dSDimitry Andric User = std::min(User, BaseBlock->getTerminator(), isEarlier);
1169bdd1243dSDimitry Andric }
1170bdd1243dSDimitry Andric }
1171bdd1243dSDimitry Andric return User;
1172bdd1243dSDimitry Andric };
1173bdd1243dSDimitry Andric
1174bdd1243dSDimitry Andric for (const ByteSpan::Block &B : VSpan) {
1175bdd1243dSDimitry Andric ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size);
1176bdd1243dSDimitry Andric for (const ByteSpan::Block &S : ASection) {
1177bdd1243dSDimitry Andric EarliestUser[S.Seg.Val] = std::min(
1178bdd1243dSDimitry Andric EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier);
1179bdd1243dSDimitry Andric }
1180bdd1243dSDimitry Andric }
1181bdd1243dSDimitry Andric
118206c3fb27SDimitry Andric LLVM_DEBUG({
118306c3fb27SDimitry Andric dbgs() << "ASpan:\n" << ASpan << '\n';
118406c3fb27SDimitry Andric dbgs() << "Earliest users of ASpan:\n";
118506c3fb27SDimitry Andric for (auto &[Val, User] : EarliestUser) {
118606c3fb27SDimitry Andric dbgs() << Val << "\n ->" << *User << '\n';
118706c3fb27SDimitry Andric }
118806c3fb27SDimitry Andric });
118906c3fb27SDimitry Andric
1190bdd1243dSDimitry Andric auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan,
119106c3fb27SDimitry Andric int Index, bool MakePred) {
1192bdd1243dSDimitry Andric Value *Ptr =
1193bdd1243dSDimitry Andric createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
119406c3fb27SDimitry Andric Value *Predicate =
119506c3fb27SDimitry Andric MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr;
119606c3fb27SDimitry Andric
1197bdd1243dSDimitry Andric // If vector shifting is potentially needed, accumulate metadata
1198bdd1243dSDimitry Andric // from source sections of twice the load width.
1199bdd1243dSDimitry Andric int Start = (Index - DoAlign) * ScLen;
1200bdd1243dSDimitry Andric int Width = (1 + DoAlign) * ScLen;
120106c3fb27SDimitry Andric return this->createLoad(Builder, SecTy, Ptr, Predicate, ScLen, True, Undef,
1202bdd1243dSDimitry Andric VSpan.section(Start, Width).values());
1203bdd1243dSDimitry Andric };
1204bdd1243dSDimitry Andric
1205bdd1243dSDimitry Andric auto moveBefore = [this](Instruction *In, Instruction *To) {
1206bdd1243dSDimitry Andric // Move In and its upward dependencies to before To.
1207bdd1243dSDimitry Andric assert(In->getParent() == To->getParent());
1208bdd1243dSDimitry Andric DepList Deps = getUpwardDeps(In, To);
120906c3fb27SDimitry Andric In->moveBefore(To);
1210bdd1243dSDimitry Andric // DepList is sorted with respect to positions in the basic block.
121106c3fb27SDimitry Andric InstMap Map = cloneBefore(In, Deps);
121206c3fb27SDimitry Andric for (auto [Old, New] : Map)
121306c3fb27SDimitry Andric In->replaceUsesOfWith(Old, New);
1214bdd1243dSDimitry Andric };
1215bdd1243dSDimitry Andric
1216bdd1243dSDimitry Andric // Generate necessary loads at appropriate locations.
121706c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Creating loads for ASpan sectors\n");
1218bdd1243dSDimitry Andric for (int Index = 0; Index != NumSectors + 1; ++Index) {
1219bdd1243dSDimitry Andric // In ASpan, each block will be either a single aligned load, or a
1220bdd1243dSDimitry Andric // valign of a pair of loads. In the latter case, an aligned load j
1221bdd1243dSDimitry Andric // will belong to the current valign, and the one in the previous
1222bdd1243dSDimitry Andric // block (for j > 0).
122306c3fb27SDimitry Andric // Place the load at a location which will dominate the valign, assuming
122406c3fb27SDimitry Andric // the valign will be placed right before the earliest user.
1225bdd1243dSDimitry Andric Instruction *PrevAt =
1226bdd1243dSDimitry Andric DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr;
1227bdd1243dSDimitry Andric Instruction *ThisAt =
1228bdd1243dSDimitry Andric Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr;
1229bdd1243dSDimitry Andric if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) {
1230bdd1243dSDimitry Andric Builder.SetInsertPoint(Where);
123106c3fb27SDimitry Andric Loads[Index] =
123206c3fb27SDimitry Andric createLoad(Builder, VSpan, Index, DoAlign && Index == NumSectors);
123306c3fb27SDimitry Andric // We know it's safe to put the load at BasePos, but we'd prefer to put
123406c3fb27SDimitry Andric // it at "Where". To see if the load is safe to be placed at Where, put
123506c3fb27SDimitry Andric // it there first and then check if it's safe to move it to BasePos.
123606c3fb27SDimitry Andric // If not, then the load needs to be placed at BasePos.
1237bdd1243dSDimitry Andric // We can't do this check proactively because we need the load to exist
1238bdd1243dSDimitry Andric // in order to check legality.
123906c3fb27SDimitry Andric if (auto *Load = dyn_cast<Instruction>(Loads[Index])) {
124006c3fb27SDimitry Andric if (!HVC.isSafeToMoveBeforeInBB(*Load, BasePos))
124106c3fb27SDimitry Andric moveBefore(Load, &*BasePos);
124206c3fb27SDimitry Andric }
124306c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Loads[" << Index << "]:" << *Loads[Index] << '\n');
1244bdd1243dSDimitry Andric }
1245bdd1243dSDimitry Andric }
124606c3fb27SDimitry Andric
1247bdd1243dSDimitry Andric // Generate valigns if needed, and fill in proper values in ASpan
124806c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Creating values for ASpan sectors\n");
1249bdd1243dSDimitry Andric for (int Index = 0; Index != NumSectors; ++Index) {
1250bdd1243dSDimitry Andric ASpan[Index].Seg.Val = nullptr;
1251bdd1243dSDimitry Andric if (auto *Where = EarliestUser[&ASpan[Index]]) {
1252bdd1243dSDimitry Andric Builder.SetInsertPoint(Where);
1253bdd1243dSDimitry Andric Value *Val = Loads[Index];
1254bdd1243dSDimitry Andric assert(Val != nullptr);
1255bdd1243dSDimitry Andric if (DoAlign) {
1256bdd1243dSDimitry Andric Value *NextLoad = Loads[Index + 1];
1257bdd1243dSDimitry Andric assert(NextLoad != nullptr);
1258bdd1243dSDimitry Andric Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal);
1259bdd1243dSDimitry Andric }
1260bdd1243dSDimitry Andric ASpan[Index].Seg.Val = Val;
126106c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "ASpan[" << Index << "]:" << *Val << '\n');
1262bdd1243dSDimitry Andric }
1263bdd1243dSDimitry Andric }
1264bdd1243dSDimitry Andric
1265bdd1243dSDimitry Andric for (const ByteSpan::Block &B : VSpan) {
1266bdd1243dSDimitry Andric ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
1267bdd1243dSDimitry Andric Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
1268bdd1243dSDimitry Andric Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val));
1269bdd1243dSDimitry Andric
127006c3fb27SDimitry Andric // We're generating a reduction, where each instruction depends on
127106c3fb27SDimitry Andric // the previous one, so we need to order them according to the position
127206c3fb27SDimitry Andric // of their inputs in the code.
127306c3fb27SDimitry Andric std::vector<ByteSpan::Block *> ABlocks;
1274bdd1243dSDimitry Andric for (ByteSpan::Block &S : ASection) {
127506c3fb27SDimitry Andric if (S.Seg.Val != nullptr)
127606c3fb27SDimitry Andric ABlocks.push_back(&S);
127706c3fb27SDimitry Andric }
127806c3fb27SDimitry Andric llvm::sort(ABlocks,
127906c3fb27SDimitry Andric [&](const ByteSpan::Block *A, const ByteSpan::Block *B) {
128006c3fb27SDimitry Andric return isEarlier(cast<Instruction>(A->Seg.Val),
128106c3fb27SDimitry Andric cast<Instruction>(B->Seg.Val));
128206c3fb27SDimitry Andric });
128306c3fb27SDimitry Andric for (ByteSpan::Block *S : ABlocks) {
1284bdd1243dSDimitry Andric // The processing of the data loaded by the aligned loads
1285bdd1243dSDimitry Andric // needs to be inserted after the data is available.
128606c3fb27SDimitry Andric Instruction *SegI = cast<Instruction>(S->Seg.Val);
1287bdd1243dSDimitry Andric Builder.SetInsertPoint(&*std::next(SegI->getIterator()));
128806c3fb27SDimitry Andric Value *Pay = HVC.vbytes(Builder, getPayload(S->Seg.Val));
128906c3fb27SDimitry Andric Accum =
129006c3fb27SDimitry Andric HVC.insertb(Builder, Accum, Pay, S->Seg.Start, S->Seg.Size, S->Pos);
1291bdd1243dSDimitry Andric }
1292bdd1243dSDimitry Andric // Instead of casting everything to bytes for the vselect, cast to the
1293bdd1243dSDimitry Andric // original value type. This will avoid complications with casting masks.
1294bdd1243dSDimitry Andric // For example, in cases when the original mask applied to i32, it could
1295bdd1243dSDimitry Andric // be converted to a mask applicable to i8 via pred_typecast intrinsic,
1296bdd1243dSDimitry Andric // but if the mask is not exactly of HVX length, extra handling would be
1297bdd1243dSDimitry Andric // needed to make it work.
1298bdd1243dSDimitry Andric Type *ValTy = getPayload(B.Seg.Val)->getType();
129906c3fb27SDimitry Andric Value *Cast = Builder.CreateBitCast(Accum, ValTy, "cst");
1300bdd1243dSDimitry Andric Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
130106c3fb27SDimitry Andric getPassThrough(B.Seg.Val), "sel");
1302bdd1243dSDimitry Andric B.Seg.Val->replaceAllUsesWith(Sel);
1303bdd1243dSDimitry Andric }
1304bdd1243dSDimitry Andric }
1305bdd1243dSDimitry Andric
realignStoreGroup(IRBuilderBase & Builder,const ByteSpan & VSpan,int ScLen,Value * AlignVal,Value * AlignAddr) const1306bdd1243dSDimitry Andric auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder,
1307bdd1243dSDimitry Andric const ByteSpan &VSpan, int ScLen,
1308bdd1243dSDimitry Andric Value *AlignVal, Value *AlignAddr) const
1309bdd1243dSDimitry Andric -> void {
131006c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << __func__ << "\n");
131106c3fb27SDimitry Andric
1312bdd1243dSDimitry Andric Type *SecTy = HVC.getByteTy(ScLen);
1313bdd1243dSDimitry Andric int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
1314bdd1243dSDimitry Andric bool DoAlign = !HVC.isZero(AlignVal);
1315bdd1243dSDimitry Andric
1316bdd1243dSDimitry Andric // Stores.
1317bdd1243dSDimitry Andric ByteSpan ASpanV, ASpanM;
1318bdd1243dSDimitry Andric
1319bdd1243dSDimitry Andric // Return a vector value corresponding to the input value Val:
1320bdd1243dSDimitry Andric // either <1 x Val> for scalar Val, or Val itself for vector Val.
1321bdd1243dSDimitry Andric auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * {
1322bdd1243dSDimitry Andric Type *Ty = Val->getType();
1323bdd1243dSDimitry Andric if (Ty->isVectorTy())
1324bdd1243dSDimitry Andric return Val;
1325bdd1243dSDimitry Andric auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false);
132606c3fb27SDimitry Andric return Builder.CreateBitCast(Val, VecTy, "cst");
1327bdd1243dSDimitry Andric };
1328bdd1243dSDimitry Andric
1329bdd1243dSDimitry Andric // Create an extra "undef" sector at the beginning and at the end.
1330bdd1243dSDimitry Andric // They will be used as the left/right filler in the vlalign step.
133106c3fb27SDimitry Andric for (int Index = (DoAlign ? -1 : 0); Index != NumSectors + DoAlign; ++Index) {
1332bdd1243dSDimitry Andric // For stores, the size of each section is an aligned vector length.
1333bdd1243dSDimitry Andric // Adjust the store offsets relative to the section start offset.
133406c3fb27SDimitry Andric ByteSpan VSection =
133506c3fb27SDimitry Andric VSpan.section(Index * ScLen, ScLen).shift(-Index * ScLen);
133606c3fb27SDimitry Andric Value *Undef = UndefValue::get(SecTy);
133706c3fb27SDimitry Andric Value *Zero = HVC.getNullValue(SecTy);
133806c3fb27SDimitry Andric Value *AccumV = Undef;
133906c3fb27SDimitry Andric Value *AccumM = Zero;
1340bdd1243dSDimitry Andric for (ByteSpan::Block &S : VSection) {
1341bdd1243dSDimitry Andric Value *Pay = getPayload(S.Seg.Val);
1342bdd1243dSDimitry Andric Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
1343bdd1243dSDimitry Andric Pay->getType(), HVC.getByteTy());
134406c3fb27SDimitry Andric Value *PartM = HVC.insertb(Builder, Zero, HVC.vbytes(Builder, Mask),
1345bdd1243dSDimitry Andric S.Seg.Start, S.Seg.Size, S.Pos);
134606c3fb27SDimitry Andric AccumM = Builder.CreateOr(AccumM, PartM);
134706c3fb27SDimitry Andric
134806c3fb27SDimitry Andric Value *PartV = HVC.insertb(Builder, Undef, HVC.vbytes(Builder, Pay),
1349bdd1243dSDimitry Andric S.Seg.Start, S.Seg.Size, S.Pos);
135006c3fb27SDimitry Andric
135106c3fb27SDimitry Andric AccumV = Builder.CreateSelect(
135206c3fb27SDimitry Andric Builder.CreateICmp(CmpInst::ICMP_NE, PartM, Zero), PartV, AccumV);
1353bdd1243dSDimitry Andric }
135406c3fb27SDimitry Andric ASpanV.Blocks.emplace_back(AccumV, ScLen, Index * ScLen);
135506c3fb27SDimitry Andric ASpanM.Blocks.emplace_back(AccumM, ScLen, Index * ScLen);
1356bdd1243dSDimitry Andric }
1357bdd1243dSDimitry Andric
135806c3fb27SDimitry Andric LLVM_DEBUG({
135906c3fb27SDimitry Andric dbgs() << "ASpanV before vlalign:\n" << ASpanV << '\n';
136006c3fb27SDimitry Andric dbgs() << "ASpanM before vlalign:\n" << ASpanM << '\n';
136106c3fb27SDimitry Andric });
136206c3fb27SDimitry Andric
1363bdd1243dSDimitry Andric // vlalign
1364bdd1243dSDimitry Andric if (DoAlign) {
136506c3fb27SDimitry Andric for (int Index = 1; Index != NumSectors + 2; ++Index) {
136606c3fb27SDimitry Andric Value *PrevV = ASpanV[Index - 1].Seg.Val, *ThisV = ASpanV[Index].Seg.Val;
136706c3fb27SDimitry Andric Value *PrevM = ASpanM[Index - 1].Seg.Val, *ThisM = ASpanM[Index].Seg.Val;
1368bdd1243dSDimitry Andric assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType()));
136906c3fb27SDimitry Andric ASpanV[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal);
137006c3fb27SDimitry Andric ASpanM[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal);
1371bdd1243dSDimitry Andric }
1372bdd1243dSDimitry Andric }
1373bdd1243dSDimitry Andric
137406c3fb27SDimitry Andric LLVM_DEBUG({
137506c3fb27SDimitry Andric dbgs() << "ASpanV after vlalign:\n" << ASpanV << '\n';
137606c3fb27SDimitry Andric dbgs() << "ASpanM after vlalign:\n" << ASpanM << '\n';
137706c3fb27SDimitry Andric });
137806c3fb27SDimitry Andric
137906c3fb27SDimitry Andric auto createStore = [&](IRBuilderBase &Builder, const ByteSpan &ASpanV,
138006c3fb27SDimitry Andric const ByteSpan &ASpanM, int Index, bool MakePred) {
138106c3fb27SDimitry Andric Value *Val = ASpanV[Index].Seg.Val;
138206c3fb27SDimitry Andric Value *Mask = ASpanM[Index].Seg.Val; // bytes
138306c3fb27SDimitry Andric if (HVC.isUndef(Val) || HVC.isZero(Mask))
138406c3fb27SDimitry Andric return;
138506c3fb27SDimitry Andric Value *Ptr =
138606c3fb27SDimitry Andric createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
138706c3fb27SDimitry Andric Value *Predicate =
138806c3fb27SDimitry Andric MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr;
138906c3fb27SDimitry Andric
1390bdd1243dSDimitry Andric // If vector shifting is potentially needed, accumulate metadata
1391bdd1243dSDimitry Andric // from source sections of twice the store width.
139206c3fb27SDimitry Andric int Start = (Index - DoAlign) * ScLen;
1393bdd1243dSDimitry Andric int Width = (1 + DoAlign) * ScLen;
139406c3fb27SDimitry Andric this->createStore(Builder, Val, Ptr, Predicate, ScLen,
139506c3fb27SDimitry Andric HVC.vlsb(Builder, Mask),
1396bdd1243dSDimitry Andric VSpan.section(Start, Width).values());
139706c3fb27SDimitry Andric };
139806c3fb27SDimitry Andric
139906c3fb27SDimitry Andric for (int Index = 0; Index != NumSectors + DoAlign; ++Index) {
140006c3fb27SDimitry Andric createStore(Builder, ASpanV, ASpanM, Index, DoAlign && Index == NumSectors);
1401bdd1243dSDimitry Andric }
1402bdd1243dSDimitry Andric }
1403bdd1243dSDimitry Andric
realignGroup(const MoveGroup & Move) const1404e8d8bef9SDimitry Andric auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
140506c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Realigning group:\n" << Move << '\n');
140606c3fb27SDimitry Andric
1407e8d8bef9SDimitry Andric // TODO: Needs support for masked loads/stores of "scalar" vectors.
1408e8d8bef9SDimitry Andric if (!Move.IsHvx)
1409e8d8bef9SDimitry Andric return false;
1410e8d8bef9SDimitry Andric
1411e8d8bef9SDimitry Andric // Return the element with the maximum alignment from Range,
1412e8d8bef9SDimitry Andric // where GetValue obtains the value to compare from an element.
1413e8d8bef9SDimitry Andric auto getMaxOf = [](auto Range, auto GetValue) {
1414*0fca6ea1SDimitry Andric return *llvm::max_element(Range, [&GetValue](auto &A, auto &B) {
1415*0fca6ea1SDimitry Andric return GetValue(A) < GetValue(B);
1416*0fca6ea1SDimitry Andric });
1417e8d8bef9SDimitry Andric };
1418e8d8bef9SDimitry Andric
1419e8d8bef9SDimitry Andric const AddrList &BaseInfos = AddrGroups.at(Move.Base);
1420e8d8bef9SDimitry Andric
1421e8d8bef9SDimitry Andric // Conceptually, there is a vector of N bytes covering the addresses
1422e8d8bef9SDimitry Andric // starting from the minimum offset (i.e. Base.Addr+Start). This vector
1423e8d8bef9SDimitry Andric // represents a contiguous memory region that spans all accessed memory
1424e8d8bef9SDimitry Andric // locations.
1425e8d8bef9SDimitry Andric // The correspondence between loaded or stored values will be expressed
1426e8d8bef9SDimitry Andric // in terms of this vector. For example, the 0th element of the vector
1427e8d8bef9SDimitry Andric // from the Base address info will start at byte Start from the beginning
1428e8d8bef9SDimitry Andric // of this conceptual vector.
1429e8d8bef9SDimitry Andric //
1430e8d8bef9SDimitry Andric // This vector will be loaded/stored starting at the nearest down-aligned
1431e8d8bef9SDimitry Andric // address and the amount od the down-alignment will be AlignVal:
1432e8d8bef9SDimitry Andric // valign(load_vector(align_down(Base+Start)), AlignVal)
1433e8d8bef9SDimitry Andric
1434e8d8bef9SDimitry Andric std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
1435e8d8bef9SDimitry Andric AddrList MoveInfos;
1436e8d8bef9SDimitry Andric llvm::copy_if(
1437e8d8bef9SDimitry Andric BaseInfos, std::back_inserter(MoveInfos),
1438e8d8bef9SDimitry Andric [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
1439e8d8bef9SDimitry Andric
1440e8d8bef9SDimitry Andric // Maximum alignment present in the whole address group.
1441e8d8bef9SDimitry Andric const AddrInfo &WithMaxAlign =
144204eeddc0SDimitry Andric getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
1443e8d8bef9SDimitry Andric Align MaxGiven = WithMaxAlign.HaveAlign;
1444e8d8bef9SDimitry Andric
1445e8d8bef9SDimitry Andric // Minimum alignment present in the move address group.
1446e8d8bef9SDimitry Andric const AddrInfo &WithMinOffset =
1447e8d8bef9SDimitry Andric getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
1448e8d8bef9SDimitry Andric
1449e8d8bef9SDimitry Andric const AddrInfo &WithMaxNeeded =
1450e8d8bef9SDimitry Andric getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
1451e8d8bef9SDimitry Andric Align MinNeeded = WithMaxNeeded.NeedAlign;
1452e8d8bef9SDimitry Andric
1453bdd1243dSDimitry Andric // Set the builder's insertion point right before the load group, or
1454bdd1243dSDimitry Andric // immediately after the store group. (Instructions in a store group are
1455bdd1243dSDimitry Andric // listed in reverse order.)
1456bdd1243dSDimitry Andric Instruction *InsertAt = Move.Main.front();
1457bdd1243dSDimitry Andric if (!Move.IsLoad) {
1458bdd1243dSDimitry Andric // There should be a terminator (which store isn't, but check anyways).
1459bdd1243dSDimitry Andric assert(InsertAt->getIterator() != InsertAt->getParent()->end());
1460bdd1243dSDimitry Andric InsertAt = &*std::next(InsertAt->getIterator());
1461bdd1243dSDimitry Andric }
1462bdd1243dSDimitry Andric
1463bdd1243dSDimitry Andric IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(),
1464bdd1243dSDimitry Andric InstSimplifyFolder(HVC.DL));
1465e8d8bef9SDimitry Andric Value *AlignAddr = nullptr; // Actual aligned address.
1466e8d8bef9SDimitry Andric Value *AlignVal = nullptr; // Right-shift amount (for valign).
1467e8d8bef9SDimitry Andric
1468e8d8bef9SDimitry Andric if (MinNeeded <= MaxGiven) {
1469e8d8bef9SDimitry Andric int Start = WithMinOffset.Offset;
1470e8d8bef9SDimitry Andric int OffAtMax = WithMaxAlign.Offset;
1471e8d8bef9SDimitry Andric // Shift the offset of the maximally aligned instruction (OffAtMax)
1472e8d8bef9SDimitry Andric // back by just enough multiples of the required alignment to cover the
1473e8d8bef9SDimitry Andric // distance from Start to OffAtMax.
1474e8d8bef9SDimitry Andric // Calculate the address adjustment amount based on the address with the
1475e8d8bef9SDimitry Andric // maximum alignment. This is to allow a simple gep instruction instead
1476e8d8bef9SDimitry Andric // of potential bitcasts to i8*.
1477e8d8bef9SDimitry Andric int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
1478e8d8bef9SDimitry Andric AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
147906c3fb27SDimitry Andric WithMaxAlign.ValTy, Adjust, Move.Clones);
1480e8d8bef9SDimitry Andric int Diff = Start - (OffAtMax + Adjust);
1481e8d8bef9SDimitry Andric AlignVal = HVC.getConstInt(Diff);
1482e8d8bef9SDimitry Andric assert(Diff >= 0);
1483e8d8bef9SDimitry Andric assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
1484e8d8bef9SDimitry Andric } else {
1485e8d8bef9SDimitry Andric // WithMinOffset is the lowest address in the group,
1486e8d8bef9SDimitry Andric // WithMinOffset.Addr = Base+Start.
1487e8d8bef9SDimitry Andric // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
1488e8d8bef9SDimitry Andric // mask off unnecessary bits, so it's ok to just the original pointer as
1489e8d8bef9SDimitry Andric // the alignment amount.
1490e8d8bef9SDimitry Andric // Do an explicit down-alignment of the address to avoid creating an
1491e8d8bef9SDimitry Andric // aligned instruction with an address that is not really aligned.
149206c3fb27SDimitry Andric AlignAddr =
149306c3fb27SDimitry Andric createAlignedPointer(Builder, WithMinOffset.Addr, WithMinOffset.ValTy,
149406c3fb27SDimitry Andric MinNeeded.value(), Move.Clones);
149506c3fb27SDimitry Andric AlignVal =
149606c3fb27SDimitry Andric Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy(), "pti");
149706c3fb27SDimitry Andric if (auto *I = dyn_cast<Instruction>(AlignVal)) {
149806c3fb27SDimitry Andric for (auto [Old, New] : Move.Clones)
149906c3fb27SDimitry Andric I->replaceUsesOfWith(Old, New);
150006c3fb27SDimitry Andric }
1501e8d8bef9SDimitry Andric }
1502e8d8bef9SDimitry Andric
1503e8d8bef9SDimitry Andric ByteSpan VSpan;
1504e8d8bef9SDimitry Andric for (const AddrInfo &AI : MoveInfos) {
1505e8d8bef9SDimitry Andric VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
1506e8d8bef9SDimitry Andric AI.Offset - WithMinOffset.Offset);
1507e8d8bef9SDimitry Andric }
1508e8d8bef9SDimitry Andric
1509e8d8bef9SDimitry Andric // The aligned loads/stores will use blocks that are either scalars,
1510e8d8bef9SDimitry Andric // or HVX vectors. Let "sector" be the unified term for such a block.
1511e8d8bef9SDimitry Andric // blend(scalar, vector) -> sector...
1512e8d8bef9SDimitry Andric int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
1513e8d8bef9SDimitry Andric : std::max<int>(MinNeeded.value(), 4);
1514e8d8bef9SDimitry Andric assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
1515e8d8bef9SDimitry Andric assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
1516e8d8bef9SDimitry Andric
151706c3fb27SDimitry Andric LLVM_DEBUG({
151806c3fb27SDimitry Andric dbgs() << "ScLen: " << ScLen << "\n";
151906c3fb27SDimitry Andric dbgs() << "AlignVal:" << *AlignVal << "\n";
152006c3fb27SDimitry Andric dbgs() << "AlignAddr:" << *AlignAddr << "\n";
152106c3fb27SDimitry Andric dbgs() << "VSpan:\n" << VSpan << '\n';
152206c3fb27SDimitry Andric });
152306c3fb27SDimitry Andric
1524bdd1243dSDimitry Andric if (Move.IsLoad)
1525bdd1243dSDimitry Andric realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
1526bdd1243dSDimitry Andric else
1527bdd1243dSDimitry Andric realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
1528e8d8bef9SDimitry Andric
1529e8d8bef9SDimitry Andric for (auto *Inst : Move.Main)
1530e8d8bef9SDimitry Andric Inst->eraseFromParent();
1531e8d8bef9SDimitry Andric
1532e8d8bef9SDimitry Andric return true;
1533e8d8bef9SDimitry Andric }
1534e8d8bef9SDimitry Andric
makeTestIfUnaligned(IRBuilderBase & Builder,Value * AlignVal,int Alignment) const153506c3fb27SDimitry Andric auto AlignVectors::makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal,
153606c3fb27SDimitry Andric int Alignment) const -> Value * {
153706c3fb27SDimitry Andric auto *AlignTy = AlignVal->getType();
153806c3fb27SDimitry Andric Value *And = Builder.CreateAnd(
153906c3fb27SDimitry Andric AlignVal, ConstantInt::get(AlignTy, Alignment - 1), "and");
154006c3fb27SDimitry Andric Value *Zero = ConstantInt::get(AlignTy, 0);
154106c3fb27SDimitry Andric return Builder.CreateICmpNE(And, Zero, "isz");
154206c3fb27SDimitry Andric }
154306c3fb27SDimitry Andric
isSectorTy(Type * Ty) const1544bdd1243dSDimitry Andric auto AlignVectors::isSectorTy(Type *Ty) const -> bool {
1545bdd1243dSDimitry Andric if (!HVC.isByteVecTy(Ty))
1546bdd1243dSDimitry Andric return false;
1547bdd1243dSDimitry Andric int Size = HVC.getSizeOf(Ty);
1548bdd1243dSDimitry Andric if (HVC.HST.isTypeForHVX(Ty))
1549bdd1243dSDimitry Andric return Size == static_cast<int>(HVC.HST.getVectorLength());
1550bdd1243dSDimitry Andric return Size == 4 || Size == 8;
1551bdd1243dSDimitry Andric }
1552bdd1243dSDimitry Andric
run()1553e8d8bef9SDimitry Andric auto AlignVectors::run() -> bool {
155406c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Running HVC::AlignVectors on " << HVC.F.getName()
155506c3fb27SDimitry Andric << '\n');
1556e8d8bef9SDimitry Andric if (!createAddressGroups())
1557e8d8bef9SDimitry Andric return false;
1558e8d8bef9SDimitry Andric
155906c3fb27SDimitry Andric LLVM_DEBUG({
156006c3fb27SDimitry Andric dbgs() << "Address groups(" << AddrGroups.size() << "):\n";
156106c3fb27SDimitry Andric for (auto &[In, AL] : AddrGroups) {
156206c3fb27SDimitry Andric for (const AddrInfo &AI : AL)
156306c3fb27SDimitry Andric dbgs() << "---\n" << AI << '\n';
156406c3fb27SDimitry Andric }
156506c3fb27SDimitry Andric });
156606c3fb27SDimitry Andric
1567e8d8bef9SDimitry Andric bool Changed = false;
1568e8d8bef9SDimitry Andric MoveList LoadGroups, StoreGroups;
1569e8d8bef9SDimitry Andric
1570e8d8bef9SDimitry Andric for (auto &G : AddrGroups) {
1571e8d8bef9SDimitry Andric llvm::append_range(LoadGroups, createLoadGroups(G.second));
1572e8d8bef9SDimitry Andric llvm::append_range(StoreGroups, createStoreGroups(G.second));
1573e8d8bef9SDimitry Andric }
1574e8d8bef9SDimitry Andric
157506c3fb27SDimitry Andric LLVM_DEBUG({
157606c3fb27SDimitry Andric dbgs() << "\nLoad groups(" << LoadGroups.size() << "):\n";
157706c3fb27SDimitry Andric for (const MoveGroup &G : LoadGroups)
157806c3fb27SDimitry Andric dbgs() << G << "\n";
157906c3fb27SDimitry Andric dbgs() << "Store groups(" << StoreGroups.size() << "):\n";
158006c3fb27SDimitry Andric for (const MoveGroup &G : StoreGroups)
158106c3fb27SDimitry Andric dbgs() << G << "\n";
158206c3fb27SDimitry Andric });
158306c3fb27SDimitry Andric
158406c3fb27SDimitry Andric // Cumulative limit on the number of groups.
158506c3fb27SDimitry Andric unsigned CountLimit = VAGroupCountLimit;
158606c3fb27SDimitry Andric if (CountLimit == 0)
158706c3fb27SDimitry Andric return false;
158806c3fb27SDimitry Andric
158906c3fb27SDimitry Andric if (LoadGroups.size() > CountLimit) {
159006c3fb27SDimitry Andric LoadGroups.resize(CountLimit);
159106c3fb27SDimitry Andric StoreGroups.clear();
159206c3fb27SDimitry Andric } else {
159306c3fb27SDimitry Andric unsigned StoreLimit = CountLimit - LoadGroups.size();
159406c3fb27SDimitry Andric if (StoreGroups.size() > StoreLimit)
159506c3fb27SDimitry Andric StoreGroups.resize(StoreLimit);
159606c3fb27SDimitry Andric }
159706c3fb27SDimitry Andric
1598e8d8bef9SDimitry Andric for (auto &M : LoadGroups)
159906c3fb27SDimitry Andric Changed |= moveTogether(M);
1600e8d8bef9SDimitry Andric for (auto &M : StoreGroups)
160106c3fb27SDimitry Andric Changed |= moveTogether(M);
160206c3fb27SDimitry Andric
160306c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "After moveTogether:\n" << HVC.F);
1604e8d8bef9SDimitry Andric
1605e8d8bef9SDimitry Andric for (auto &M : LoadGroups)
1606e8d8bef9SDimitry Andric Changed |= realignGroup(M);
1607e8d8bef9SDimitry Andric for (auto &M : StoreGroups)
1608e8d8bef9SDimitry Andric Changed |= realignGroup(M);
1609e8d8bef9SDimitry Andric
1610e8d8bef9SDimitry Andric return Changed;
1611e8d8bef9SDimitry Andric }
1612e8d8bef9SDimitry Andric
1613e8d8bef9SDimitry Andric // --- End AlignVectors
1614e8d8bef9SDimitry Andric
1615bdd1243dSDimitry Andric // --- Begin HvxIdioms
1616bdd1243dSDimitry Andric
getNumSignificantBits(Value * V,Instruction * In) const1617bdd1243dSDimitry Andric auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const
1618bdd1243dSDimitry Andric -> std::pair<unsigned, Signedness> {
1619bdd1243dSDimitry Andric unsigned Bits = HVC.getNumSignificantBits(V, In);
1620bdd1243dSDimitry Andric // The significant bits are calculated including the sign bit. This may
1621bdd1243dSDimitry Andric // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may
1622bdd1243dSDimitry Andric // result in 33 significant bits. To avoid extra words, skip the extra
1623bdd1243dSDimitry Andric // sign bit, but keep information that the value is to be treated as
1624bdd1243dSDimitry Andric // unsigned.
1625bdd1243dSDimitry Andric KnownBits Known = HVC.getKnownBits(V, In);
1626bdd1243dSDimitry Andric Signedness Sign = Signed;
1627bdd1243dSDimitry Andric unsigned NumToTest = 0; // Number of bits used in test for unsignedness.
1628bdd1243dSDimitry Andric if (isPowerOf2_32(Bits))
1629bdd1243dSDimitry Andric NumToTest = Bits;
1630bdd1243dSDimitry Andric else if (Bits > 1 && isPowerOf2_32(Bits - 1))
1631bdd1243dSDimitry Andric NumToTest = Bits - 1;
1632bdd1243dSDimitry Andric
1633bdd1243dSDimitry Andric if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) {
1634bdd1243dSDimitry Andric Sign = Unsigned;
1635bdd1243dSDimitry Andric Bits = NumToTest;
1636bdd1243dSDimitry Andric }
1637bdd1243dSDimitry Andric
1638bdd1243dSDimitry Andric // If the top bit of the nearest power-of-2 is zero, this value is
1639bdd1243dSDimitry Andric // positive. It could be treated as either signed or unsigned.
1640bdd1243dSDimitry Andric if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) {
1641bdd1243dSDimitry Andric if (Known.Zero.ashr(Pow2 - 1).isAllOnes())
1642bdd1243dSDimitry Andric Sign = Positive;
1643bdd1243dSDimitry Andric }
1644bdd1243dSDimitry Andric return {Bits, Sign};
1645bdd1243dSDimitry Andric }
1646bdd1243dSDimitry Andric
canonSgn(SValue X,SValue Y) const1647bdd1243dSDimitry Andric auto HvxIdioms::canonSgn(SValue X, SValue Y) const
1648bdd1243dSDimitry Andric -> std::pair<SValue, SValue> {
1649bdd1243dSDimitry Andric // Canonicalize the signedness of X and Y, so that the result is one of:
1650bdd1243dSDimitry Andric // S, S
1651bdd1243dSDimitry Andric // U/P, S
1652bdd1243dSDimitry Andric // U/P, U/P
1653bdd1243dSDimitry Andric if (X.Sgn == Signed && Y.Sgn != Signed)
1654bdd1243dSDimitry Andric std::swap(X, Y);
1655bdd1243dSDimitry Andric return {X, Y};
1656bdd1243dSDimitry Andric }
1657bdd1243dSDimitry Andric
1658bdd1243dSDimitry Andric // Match
1659bdd1243dSDimitry Andric // (X * Y) [>> N], or
1660bdd1243dSDimitry Andric // ((X * Y) + (1 << M)) >> N
matchFxpMul(Instruction & In) const1661bdd1243dSDimitry Andric auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> {
1662bdd1243dSDimitry Andric using namespace PatternMatch;
1663bdd1243dSDimitry Andric auto *Ty = In.getType();
1664bdd1243dSDimitry Andric
1665bdd1243dSDimitry Andric if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy())
1666bdd1243dSDimitry Andric return std::nullopt;
1667bdd1243dSDimitry Andric
1668bdd1243dSDimitry Andric unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth();
1669bdd1243dSDimitry Andric
1670bdd1243dSDimitry Andric FxpOp Op;
1671bdd1243dSDimitry Andric Value *Exp = &In;
1672bdd1243dSDimitry Andric
1673bdd1243dSDimitry Andric // Fixed-point multiplication is always shifted right (except when the
1674bdd1243dSDimitry Andric // fraction is 0 bits).
1675bdd1243dSDimitry Andric auto m_Shr = [](auto &&V, auto &&S) {
1676bdd1243dSDimitry Andric return m_CombineOr(m_LShr(V, S), m_AShr(V, S));
1677bdd1243dSDimitry Andric };
1678bdd1243dSDimitry Andric
1679bdd1243dSDimitry Andric const APInt *Qn = nullptr;
1680bdd1243dSDimitry Andric if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) {
1681bdd1243dSDimitry Andric Op.Frac = Qn->getZExtValue();
1682bdd1243dSDimitry Andric Exp = T;
1683bdd1243dSDimitry Andric } else {
1684bdd1243dSDimitry Andric Op.Frac = 0;
1685bdd1243dSDimitry Andric }
1686bdd1243dSDimitry Andric
1687bdd1243dSDimitry Andric if (Op.Frac > Width)
1688bdd1243dSDimitry Andric return std::nullopt;
1689bdd1243dSDimitry Andric
1690bdd1243dSDimitry Andric // Check if there is rounding added.
1691bdd1243dSDimitry Andric const APInt *C = nullptr;
1692bdd1243dSDimitry Andric if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) {
1693bdd1243dSDimitry Andric uint64_t CV = C->getZExtValue();
1694bdd1243dSDimitry Andric if (CV != 0 && !isPowerOf2_64(CV))
1695bdd1243dSDimitry Andric return std::nullopt;
1696bdd1243dSDimitry Andric if (CV != 0)
1697bdd1243dSDimitry Andric Op.RoundAt = Log2_64(CV);
1698bdd1243dSDimitry Andric Exp = T;
1699bdd1243dSDimitry Andric }
1700bdd1243dSDimitry Andric
1701bdd1243dSDimitry Andric // Check if the rest is a multiplication.
1702bdd1243dSDimitry Andric if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) {
1703bdd1243dSDimitry Andric Op.Opcode = Instruction::Mul;
1704bdd1243dSDimitry Andric // FIXME: The information below is recomputed.
1705bdd1243dSDimitry Andric Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second;
1706bdd1243dSDimitry Andric Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second;
1707bdd1243dSDimitry Andric Op.ResTy = cast<VectorType>(Ty);
1708bdd1243dSDimitry Andric return Op;
1709bdd1243dSDimitry Andric }
1710bdd1243dSDimitry Andric
1711bdd1243dSDimitry Andric return std::nullopt;
1712bdd1243dSDimitry Andric }
1713bdd1243dSDimitry Andric
processFxpMul(Instruction & In,const FxpOp & Op) const1714bdd1243dSDimitry Andric auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const
1715bdd1243dSDimitry Andric -> Value * {
1716bdd1243dSDimitry Andric assert(Op.X.Val->getType() == Op.Y.Val->getType());
1717bdd1243dSDimitry Andric
1718bdd1243dSDimitry Andric auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType());
1719bdd1243dSDimitry Andric if (VecTy == nullptr)
1720bdd1243dSDimitry Andric return nullptr;
1721bdd1243dSDimitry Andric auto *ElemTy = cast<IntegerType>(VecTy->getElementType());
1722bdd1243dSDimitry Andric unsigned ElemWidth = ElemTy->getBitWidth();
1723bdd1243dSDimitry Andric
1724bdd1243dSDimitry Andric // TODO: This can be relaxed after legalization is done pre-isel.
1725bdd1243dSDimitry Andric if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0)
1726bdd1243dSDimitry Andric return nullptr;
1727bdd1243dSDimitry Andric
1728bdd1243dSDimitry Andric // There are no special intrinsics that should be used for multiplying
1729bdd1243dSDimitry Andric // signed 8-bit values, so just skip them. Normal codegen should handle
1730bdd1243dSDimitry Andric // this just fine.
1731bdd1243dSDimitry Andric if (ElemWidth <= 8)
1732bdd1243dSDimitry Andric return nullptr;
1733bdd1243dSDimitry Andric // Similarly, if this is just a multiplication that can be handled without
1734bdd1243dSDimitry Andric // intervention, then leave it alone.
1735bdd1243dSDimitry Andric if (ElemWidth <= 32 && Op.Frac == 0)
1736bdd1243dSDimitry Andric return nullptr;
1737bdd1243dSDimitry Andric
1738bdd1243dSDimitry Andric auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In);
1739bdd1243dSDimitry Andric auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In);
1740bdd1243dSDimitry Andric
1741bdd1243dSDimitry Andric // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes).
1742bdd1243dSDimitry Andric
1743bdd1243dSDimitry Andric Value *X = Op.X.Val, *Y = Op.Y.Val;
1744bdd1243dSDimitry Andric IRBuilder Builder(In.getParent(), In.getIterator(),
1745bdd1243dSDimitry Andric InstSimplifyFolder(HVC.DL));
1746bdd1243dSDimitry Andric
1747bdd1243dSDimitry Andric auto roundUpWidth = [](unsigned Width) -> unsigned {
1748bdd1243dSDimitry Andric if (Width <= 32 && !isPowerOf2_32(Width)) {
1749bdd1243dSDimitry Andric // If the element width is not a power of 2, round it up
1750bdd1243dSDimitry Andric // to the next one. Do this for widths not exceeding 32.
1751bdd1243dSDimitry Andric return PowerOf2Ceil(Width);
1752bdd1243dSDimitry Andric }
1753bdd1243dSDimitry Andric if (Width > 32 && Width % 32 != 0) {
1754bdd1243dSDimitry Andric // For wider elements, round it up to the multiple of 32.
1755bdd1243dSDimitry Andric return alignTo(Width, 32u);
1756bdd1243dSDimitry Andric }
1757bdd1243dSDimitry Andric return Width;
1758bdd1243dSDimitry Andric };
1759bdd1243dSDimitry Andric
1760bdd1243dSDimitry Andric BitsX = roundUpWidth(BitsX);
1761bdd1243dSDimitry Andric BitsY = roundUpWidth(BitsY);
1762bdd1243dSDimitry Andric
1763bdd1243dSDimitry Andric // For elementwise multiplication vectors must have the same lengths, so
1764bdd1243dSDimitry Andric // resize the elements of both inputs to the same width, the max of the
1765bdd1243dSDimitry Andric // calculated significant bits.
1766bdd1243dSDimitry Andric unsigned Width = std::max(BitsX, BitsY);
1767bdd1243dSDimitry Andric
1768bdd1243dSDimitry Andric auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy);
1769bdd1243dSDimitry Andric if (Width < ElemWidth) {
177006c3fb27SDimitry Andric X = Builder.CreateTrunc(X, ResizeTy, "trn");
177106c3fb27SDimitry Andric Y = Builder.CreateTrunc(Y, ResizeTy, "trn");
1772bdd1243dSDimitry Andric } else if (Width > ElemWidth) {
177306c3fb27SDimitry Andric X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy, "sxt")
177406c3fb27SDimitry Andric : Builder.CreateZExt(X, ResizeTy, "zxt");
177506c3fb27SDimitry Andric Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy, "sxt")
177606c3fb27SDimitry Andric : Builder.CreateZExt(Y, ResizeTy, "zxt");
1777bdd1243dSDimitry Andric };
1778bdd1243dSDimitry Andric
1779bdd1243dSDimitry Andric assert(X->getType() == Y->getType() && X->getType() == ResizeTy);
1780bdd1243dSDimitry Andric
1781bdd1243dSDimitry Andric unsigned VecLen = HVC.length(ResizeTy);
1782bdd1243dSDimitry Andric unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u);
1783bdd1243dSDimitry Andric
1784bdd1243dSDimitry Andric SmallVector<Value *> Results;
1785bdd1243dSDimitry Andric FxpOp ChopOp = Op;
1786bdd1243dSDimitry Andric ChopOp.ResTy = VectorType::get(Op.ResTy->getElementType(), ChopLen, false);
1787bdd1243dSDimitry Andric
1788bdd1243dSDimitry Andric for (unsigned V = 0; V != VecLen / ChopLen; ++V) {
1789bdd1243dSDimitry Andric ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen);
1790bdd1243dSDimitry Andric ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen);
1791bdd1243dSDimitry Andric Results.push_back(processFxpMulChopped(Builder, In, ChopOp));
1792bdd1243dSDimitry Andric if (Results.back() == nullptr)
1793bdd1243dSDimitry Andric break;
1794bdd1243dSDimitry Andric }
1795bdd1243dSDimitry Andric
1796bdd1243dSDimitry Andric if (Results.empty() || Results.back() == nullptr)
1797bdd1243dSDimitry Andric return nullptr;
1798bdd1243dSDimitry Andric
1799bdd1243dSDimitry Andric Value *Cat = HVC.concat(Builder, Results);
1800bdd1243dSDimitry Andric Value *Ext = SignX == Signed || SignY == Signed
180106c3fb27SDimitry Andric ? Builder.CreateSExt(Cat, VecTy, "sxt")
180206c3fb27SDimitry Andric : Builder.CreateZExt(Cat, VecTy, "zxt");
1803bdd1243dSDimitry Andric return Ext;
1804bdd1243dSDimitry Andric }
1805bdd1243dSDimitry Andric
processFxpMulChopped(IRBuilderBase & Builder,Instruction & In,const FxpOp & Op) const1806bdd1243dSDimitry Andric auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
1807bdd1243dSDimitry Andric const FxpOp &Op) const -> Value * {
1808bdd1243dSDimitry Andric assert(Op.X.Val->getType() == Op.Y.Val->getType());
1809bdd1243dSDimitry Andric auto *InpTy = cast<VectorType>(Op.X.Val->getType());
1810bdd1243dSDimitry Andric unsigned Width = InpTy->getScalarSizeInBits();
1811bdd1243dSDimitry Andric bool Rounding = Op.RoundAt.has_value();
1812bdd1243dSDimitry Andric
1813bdd1243dSDimitry Andric if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) {
1814bdd1243dSDimitry Andric // The fixed-point intrinsics do signed multiplication.
1815bdd1243dSDimitry Andric if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) {
1816bdd1243dSDimitry Andric Value *QMul = nullptr;
1817bdd1243dSDimitry Andric if (Width == 16) {
1818bdd1243dSDimitry Andric QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding);
1819bdd1243dSDimitry Andric } else if (Width == 32) {
1820bdd1243dSDimitry Andric QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding);
1821bdd1243dSDimitry Andric }
1822bdd1243dSDimitry Andric if (QMul != nullptr)
1823bdd1243dSDimitry Andric return QMul;
1824bdd1243dSDimitry Andric }
1825bdd1243dSDimitry Andric }
1826bdd1243dSDimitry Andric
1827bdd1243dSDimitry Andric assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n
1828bdd1243dSDimitry Andric assert(Width < 32 || Width % 32 == 0); // Width > 32 => Width is 32*k
1829bdd1243dSDimitry Andric
1830bdd1243dSDimitry Andric // If Width < 32, then it should really be 16.
1831bdd1243dSDimitry Andric if (Width < 32) {
1832bdd1243dSDimitry Andric if (Width < 16)
1833bdd1243dSDimitry Andric return nullptr;
1834bdd1243dSDimitry Andric // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we
1835bdd1243dSDimitry Andric // generate a full precision products, which is unnecessary if there is
1836bdd1243dSDimitry Andric // no shift.
1837bdd1243dSDimitry Andric assert(Width == 16);
1838bdd1243dSDimitry Andric assert(Op.Frac != 0 && "Unshifted mul should have been skipped");
1839bdd1243dSDimitry Andric if (Op.Frac == 16) {
1840bdd1243dSDimitry Andric // Multiply high
1841bdd1243dSDimitry Andric if (Value *MulH = createMulH16(Builder, Op.X, Op.Y))
1842bdd1243dSDimitry Andric return MulH;
1843bdd1243dSDimitry Andric }
1844bdd1243dSDimitry Andric // Do full-precision multiply and shift.
1845bdd1243dSDimitry Andric Value *Prod32 = createMul16(Builder, Op.X, Op.Y);
1846bdd1243dSDimitry Andric if (Rounding) {
1847bdd1243dSDimitry Andric Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt);
184806c3fb27SDimitry Andric Prod32 = Builder.CreateAdd(Prod32, RoundVal, "add");
1849bdd1243dSDimitry Andric }
1850bdd1243dSDimitry Andric
1851bdd1243dSDimitry Andric Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac);
1852bdd1243dSDimitry Andric Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed
185306c3fb27SDimitry Andric ? Builder.CreateAShr(Prod32, ShiftAmt, "asr")
185406c3fb27SDimitry Andric : Builder.CreateLShr(Prod32, ShiftAmt, "lsr");
185506c3fb27SDimitry Andric return Builder.CreateTrunc(Shifted, InpTy, "trn");
1856bdd1243dSDimitry Andric }
1857bdd1243dSDimitry Andric
1858bdd1243dSDimitry Andric // Width >= 32
1859bdd1243dSDimitry Andric
1860bdd1243dSDimitry Andric // Break up the arguments Op.X and Op.Y into vectors of smaller widths
1861bdd1243dSDimitry Andric // in preparation of doing the multiplication by 32-bit parts.
1862bdd1243dSDimitry Andric auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32);
1863bdd1243dSDimitry Andric auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32);
1864bdd1243dSDimitry Andric auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn);
1865bdd1243dSDimitry Andric
1866bdd1243dSDimitry Andric auto *HvxWordTy = cast<VectorType>(WordP.front()->getType());
1867bdd1243dSDimitry Andric
1868bdd1243dSDimitry Andric // Add the optional rounding to the proper word.
1869bdd1243dSDimitry Andric if (Op.RoundAt.has_value()) {
1870bdd1243dSDimitry Andric Value *Zero = HVC.getNullValue(WordX[0]->getType());
1871bdd1243dSDimitry Andric SmallVector<Value *> RoundV(WordP.size(), Zero);
1872bdd1243dSDimitry Andric RoundV[*Op.RoundAt / 32] =
1873bdd1243dSDimitry Andric HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32));
1874bdd1243dSDimitry Andric WordP = createAddLong(Builder, WordP, RoundV);
1875bdd1243dSDimitry Andric }
1876bdd1243dSDimitry Andric
1877bdd1243dSDimitry Andric // createRightShiftLong?
1878bdd1243dSDimitry Andric
1879bdd1243dSDimitry Andric // Shift all products right by Op.Frac.
1880bdd1243dSDimitry Andric unsigned SkipWords = Op.Frac / 32;
1881bdd1243dSDimitry Andric Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32);
1882bdd1243dSDimitry Andric
1883bdd1243dSDimitry Andric for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) {
1884bdd1243dSDimitry Andric int Src = Dst + SkipWords;
1885bdd1243dSDimitry Andric Value *Lo = WordP[Src];
1886bdd1243dSDimitry Andric if (Src + 1 < End) {
1887bdd1243dSDimitry Andric Value *Hi = WordP[Src + 1];
1888bdd1243dSDimitry Andric WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr,
188906c3fb27SDimitry Andric {Hi, Lo, ShiftAmt},
189006c3fb27SDimitry Andric /*FMFSource*/ nullptr, "int");
1891bdd1243dSDimitry Andric } else {
1892bdd1243dSDimitry Andric // The shift of the most significant word.
189306c3fb27SDimitry Andric WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt, "asr");
1894bdd1243dSDimitry Andric }
1895bdd1243dSDimitry Andric }
1896bdd1243dSDimitry Andric if (SkipWords != 0)
1897bdd1243dSDimitry Andric WordP.resize(WordP.size() - SkipWords);
1898bdd1243dSDimitry Andric
1899bdd1243dSDimitry Andric return HVC.joinVectorElements(Builder, WordP, Op.ResTy);
1900bdd1243dSDimitry Andric }
1901bdd1243dSDimitry Andric
createMulQ15(IRBuilderBase & Builder,SValue X,SValue Y,bool Rounding) const1902bdd1243dSDimitry Andric auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
1903bdd1243dSDimitry Andric bool Rounding) const -> Value * {
1904bdd1243dSDimitry Andric assert(X.Val->getType() == Y.Val->getType());
1905bdd1243dSDimitry Andric assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16));
1906bdd1243dSDimitry Andric assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false)));
1907bdd1243dSDimitry Andric
1908bdd1243dSDimitry Andric // There is no non-rounding intrinsic for i16.
1909bdd1243dSDimitry Andric if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned)
1910bdd1243dSDimitry Andric return nullptr;
1911bdd1243dSDimitry Andric
1912bdd1243dSDimitry Andric auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs);
1913bdd1243dSDimitry Andric return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(),
1914bdd1243dSDimitry Andric {X.Val, Y.Val});
1915bdd1243dSDimitry Andric }
1916bdd1243dSDimitry Andric
createMulQ31(IRBuilderBase & Builder,SValue X,SValue Y,bool Rounding) const1917bdd1243dSDimitry Andric auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
1918bdd1243dSDimitry Andric bool Rounding) const -> Value * {
1919bdd1243dSDimitry Andric Type *InpTy = X.Val->getType();
1920bdd1243dSDimitry Andric assert(InpTy == Y.Val->getType());
1921bdd1243dSDimitry Andric assert(InpTy->getScalarType() == HVC.getIntTy(32));
1922bdd1243dSDimitry Andric assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false)));
1923bdd1243dSDimitry Andric
1924bdd1243dSDimitry Andric if (X.Sgn == Unsigned || Y.Sgn == Unsigned)
1925bdd1243dSDimitry Andric return nullptr;
1926bdd1243dSDimitry Andric
1927bdd1243dSDimitry Andric auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh);
1928bdd1243dSDimitry Andric auto V6_vmpyo_acc = Rounding
1929bdd1243dSDimitry Andric ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc)
1930bdd1243dSDimitry Andric : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc);
1931bdd1243dSDimitry Andric Value *V1 =
1932bdd1243dSDimitry Andric HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val});
1933bdd1243dSDimitry Andric return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy,
1934bdd1243dSDimitry Andric {V1, X.Val, Y.Val});
1935bdd1243dSDimitry Andric }
1936bdd1243dSDimitry Andric
createAddCarry(IRBuilderBase & Builder,Value * X,Value * Y,Value * CarryIn) const1937bdd1243dSDimitry Andric auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
1938bdd1243dSDimitry Andric Value *CarryIn) const
1939bdd1243dSDimitry Andric -> std::pair<Value *, Value *> {
1940bdd1243dSDimitry Andric assert(X->getType() == Y->getType());
1941bdd1243dSDimitry Andric auto VecTy = cast<VectorType>(X->getType());
1942bdd1243dSDimitry Andric if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) {
1943bdd1243dSDimitry Andric SmallVector<Value *> Args = {X, Y};
1944bdd1243dSDimitry Andric Intrinsic::ID AddCarry;
1945bdd1243dSDimitry Andric if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) {
1946bdd1243dSDimitry Andric AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo);
1947bdd1243dSDimitry Andric } else {
1948bdd1243dSDimitry Andric AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry);
1949bdd1243dSDimitry Andric if (CarryIn == nullptr)
1950bdd1243dSDimitry Andric CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy)));
1951bdd1243dSDimitry Andric Args.push_back(CarryIn);
1952bdd1243dSDimitry Andric }
1953bdd1243dSDimitry Andric Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry,
1954bdd1243dSDimitry Andric /*RetTy=*/nullptr, Args);
195506c3fb27SDimitry Andric Value *Result = Builder.CreateExtractValue(Ret, {0}, "ext");
195606c3fb27SDimitry Andric Value *CarryOut = Builder.CreateExtractValue(Ret, {1}, "ext");
1957bdd1243dSDimitry Andric return {Result, CarryOut};
1958bdd1243dSDimitry Andric }
1959bdd1243dSDimitry Andric
1960bdd1243dSDimitry Andric // In other cases, do a regular add, and unsigned compare-less-than.
1961bdd1243dSDimitry Andric // The carry-out can originate in two places: adding the carry-in or adding
1962bdd1243dSDimitry Andric // the two input values.
1963bdd1243dSDimitry Andric Value *Result1 = X; // Result1 = X + CarryIn
1964bdd1243dSDimitry Andric if (CarryIn != nullptr) {
1965bdd1243dSDimitry Andric unsigned Width = VecTy->getScalarSizeInBits();
1966bdd1243dSDimitry Andric uint32_t Mask = 1;
1967bdd1243dSDimitry Andric if (Width < 32) {
1968bdd1243dSDimitry Andric for (unsigned i = 0, e = 32 / Width; i != e; ++i)
1969bdd1243dSDimitry Andric Mask = (Mask << Width) | 1;
1970bdd1243dSDimitry Andric }
1971bdd1243dSDimitry Andric auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt);
1972bdd1243dSDimitry Andric Value *ValueIn =
1973bdd1243dSDimitry Andric HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr,
1974bdd1243dSDimitry Andric {CarryIn, HVC.getConstInt(Mask)});
197506c3fb27SDimitry Andric Result1 = Builder.CreateAdd(X, ValueIn, "add");
1976bdd1243dSDimitry Andric }
1977bdd1243dSDimitry Andric
197806c3fb27SDimitry Andric Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X, "cmp");
197906c3fb27SDimitry Andric Value *Result2 = Builder.CreateAdd(Result1, Y, "add");
198006c3fb27SDimitry Andric Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y, "cmp");
198106c3fb27SDimitry Andric return {Result2, Builder.CreateOr(CarryOut1, CarryOut2, "orb")};
1982bdd1243dSDimitry Andric }
1983bdd1243dSDimitry Andric
createMul16(IRBuilderBase & Builder,SValue X,SValue Y) const1984bdd1243dSDimitry Andric auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const
1985bdd1243dSDimitry Andric -> Value * {
1986bdd1243dSDimitry Andric Intrinsic::ID V6_vmpyh = 0;
1987bdd1243dSDimitry Andric std::tie(X, Y) = canonSgn(X, Y);
1988bdd1243dSDimitry Andric
1989bdd1243dSDimitry Andric if (X.Sgn == Signed) {
1990bdd1243dSDimitry Andric V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv);
1991bdd1243dSDimitry Andric } else if (Y.Sgn == Signed) {
1992bdd1243dSDimitry Andric // In vmpyhus the second operand is unsigned
1993bdd1243dSDimitry Andric V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus);
1994bdd1243dSDimitry Andric } else {
1995bdd1243dSDimitry Andric V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv);
1996bdd1243dSDimitry Andric }
1997bdd1243dSDimitry Andric
1998bdd1243dSDimitry Andric // i16*i16 -> i32 / interleaved
1999bdd1243dSDimitry Andric Value *P =
2000bdd1243dSDimitry Andric HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val});
2001bdd1243dSDimitry Andric // Deinterleave
2002bdd1243dSDimitry Andric return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P));
2003bdd1243dSDimitry Andric }
2004bdd1243dSDimitry Andric
createMulH16(IRBuilderBase & Builder,SValue X,SValue Y) const2005bdd1243dSDimitry Andric auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
2006bdd1243dSDimitry Andric -> Value * {
2007bdd1243dSDimitry Andric Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false);
2008bdd1243dSDimitry Andric
2009bdd1243dSDimitry Andric if (HVC.HST.useHVXV69Ops()) {
2010bdd1243dSDimitry Andric if (X.Sgn != Signed && Y.Sgn != Signed) {
2011bdd1243dSDimitry Andric auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs);
2012bdd1243dSDimitry Andric return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty,
2013bdd1243dSDimitry Andric {X.Val, Y.Val});
2014bdd1243dSDimitry Andric }
2015bdd1243dSDimitry Andric }
2016bdd1243dSDimitry Andric
2017bdd1243dSDimitry Andric Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true);
201806c3fb27SDimitry Andric Value *Pair16 =
201906c3fb27SDimitry Andric Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty, "cst");
2020bdd1243dSDimitry Andric unsigned Len = HVC.length(HvxP16Ty) / 2;
2021bdd1243dSDimitry Andric
2022bdd1243dSDimitry Andric SmallVector<int, 128> PickOdd(Len);
2023bdd1243dSDimitry Andric for (int i = 0; i != static_cast<int>(Len); ++i)
2024bdd1243dSDimitry Andric PickOdd[i] = 2 * i + 1;
2025bdd1243dSDimitry Andric
202606c3fb27SDimitry Andric return Builder.CreateShuffleVector(
202706c3fb27SDimitry Andric HVC.sublo(Builder, Pair16), HVC.subhi(Builder, Pair16), PickOdd, "shf");
2028bdd1243dSDimitry Andric }
2029bdd1243dSDimitry Andric
createMul32(IRBuilderBase & Builder,SValue X,SValue Y) const2030bdd1243dSDimitry Andric auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
2031bdd1243dSDimitry Andric -> std::pair<Value *, Value *> {
2032bdd1243dSDimitry Andric assert(X.Val->getType() == Y.Val->getType());
2033bdd1243dSDimitry Andric assert(X.Val->getType() == HvxI32Ty);
2034bdd1243dSDimitry Andric
2035bdd1243dSDimitry Andric Intrinsic::ID V6_vmpy_parts;
2036bdd1243dSDimitry Andric std::tie(X, Y) = canonSgn(X, Y);
2037bdd1243dSDimitry Andric
2038bdd1243dSDimitry Andric if (X.Sgn == Signed) {
2039bdd1243dSDimitry Andric V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts;
2040bdd1243dSDimitry Andric } else if (Y.Sgn == Signed) {
2041bdd1243dSDimitry Andric V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts;
2042bdd1243dSDimitry Andric } else {
2043bdd1243dSDimitry Andric V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts;
2044bdd1243dSDimitry Andric }
2045bdd1243dSDimitry Andric
2046bdd1243dSDimitry Andric Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr,
2047bdd1243dSDimitry Andric {X.Val, Y.Val}, {HvxI32Ty});
204806c3fb27SDimitry Andric Value *Hi = Builder.CreateExtractValue(Parts, {0}, "ext");
204906c3fb27SDimitry Andric Value *Lo = Builder.CreateExtractValue(Parts, {1}, "ext");
2050bdd1243dSDimitry Andric return {Lo, Hi};
2051bdd1243dSDimitry Andric }
2052bdd1243dSDimitry Andric
createAddLong(IRBuilderBase & Builder,ArrayRef<Value * > WordX,ArrayRef<Value * > WordY) const2053bdd1243dSDimitry Andric auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
2054bdd1243dSDimitry Andric ArrayRef<Value *> WordY) const
2055bdd1243dSDimitry Andric -> SmallVector<Value *> {
2056bdd1243dSDimitry Andric assert(WordX.size() == WordY.size());
2057bdd1243dSDimitry Andric unsigned Idx = 0, Length = WordX.size();
2058bdd1243dSDimitry Andric SmallVector<Value *> Sum(Length);
2059bdd1243dSDimitry Andric
2060bdd1243dSDimitry Andric while (Idx != Length) {
2061bdd1243dSDimitry Andric if (HVC.isZero(WordX[Idx]))
2062bdd1243dSDimitry Andric Sum[Idx] = WordY[Idx];
2063bdd1243dSDimitry Andric else if (HVC.isZero(WordY[Idx]))
2064bdd1243dSDimitry Andric Sum[Idx] = WordX[Idx];
2065bdd1243dSDimitry Andric else
2066bdd1243dSDimitry Andric break;
2067bdd1243dSDimitry Andric ++Idx;
2068bdd1243dSDimitry Andric }
2069bdd1243dSDimitry Andric
2070bdd1243dSDimitry Andric Value *Carry = nullptr;
2071bdd1243dSDimitry Andric for (; Idx != Length; ++Idx) {
2072bdd1243dSDimitry Andric std::tie(Sum[Idx], Carry) =
2073bdd1243dSDimitry Andric createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry);
2074bdd1243dSDimitry Andric }
2075bdd1243dSDimitry Andric
2076bdd1243dSDimitry Andric // This drops the final carry beyond the highest word.
2077bdd1243dSDimitry Andric return Sum;
2078bdd1243dSDimitry Andric }
2079bdd1243dSDimitry Andric
createMulLong(IRBuilderBase & Builder,ArrayRef<Value * > WordX,Signedness SgnX,ArrayRef<Value * > WordY,Signedness SgnY) const2080bdd1243dSDimitry Andric auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
2081bdd1243dSDimitry Andric Signedness SgnX, ArrayRef<Value *> WordY,
2082bdd1243dSDimitry Andric Signedness SgnY) const -> SmallVector<Value *> {
2083bdd1243dSDimitry Andric SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size());
2084bdd1243dSDimitry Andric
2085bdd1243dSDimitry Andric // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results,
2086bdd1243dSDimitry Andric // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3.
2087bdd1243dSDimitry Andric for (int i = 0, e = WordX.size(); i != e; ++i) {
2088bdd1243dSDimitry Andric for (int j = 0, f = WordY.size(); j != f; ++j) {
2089bdd1243dSDimitry Andric // Check the 4 halves that this multiplication can generate.
2090bdd1243dSDimitry Andric Signedness SX = (i + 1 == e) ? SgnX : Unsigned;
2091bdd1243dSDimitry Andric Signedness SY = (j + 1 == f) ? SgnY : Unsigned;
2092bdd1243dSDimitry Andric auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY});
2093bdd1243dSDimitry Andric Products[i + j + 0].push_back(Lo);
2094bdd1243dSDimitry Andric Products[i + j + 1].push_back(Hi);
2095bdd1243dSDimitry Andric }
2096bdd1243dSDimitry Andric }
2097bdd1243dSDimitry Andric
2098bdd1243dSDimitry Andric Value *Zero = HVC.getNullValue(WordX[0]->getType());
2099bdd1243dSDimitry Andric
2100bdd1243dSDimitry Andric auto pop_back_or_zero = [Zero](auto &Vector) -> Value * {
2101bdd1243dSDimitry Andric if (Vector.empty())
2102bdd1243dSDimitry Andric return Zero;
2103bdd1243dSDimitry Andric auto Last = Vector.back();
2104bdd1243dSDimitry Andric Vector.pop_back();
2105bdd1243dSDimitry Andric return Last;
2106bdd1243dSDimitry Andric };
2107bdd1243dSDimitry Andric
2108bdd1243dSDimitry Andric for (int i = 0, e = Products.size(); i != e; ++i) {
2109bdd1243dSDimitry Andric while (Products[i].size() > 1) {
2110bdd1243dSDimitry Andric Value *Carry = nullptr; // no carry-in
2111bdd1243dSDimitry Andric for (int j = i; j != e; ++j) {
2112bdd1243dSDimitry Andric auto &ProdJ = Products[j];
2113bdd1243dSDimitry Andric auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ),
2114bdd1243dSDimitry Andric pop_back_or_zero(ProdJ), Carry);
2115bdd1243dSDimitry Andric ProdJ.insert(ProdJ.begin(), Sum);
2116bdd1243dSDimitry Andric Carry = CarryOut;
2117bdd1243dSDimitry Andric }
2118bdd1243dSDimitry Andric }
2119bdd1243dSDimitry Andric }
2120bdd1243dSDimitry Andric
2121bdd1243dSDimitry Andric SmallVector<Value *> WordP;
2122bdd1243dSDimitry Andric for (auto &P : Products) {
2123bdd1243dSDimitry Andric assert(P.size() == 1 && "Should have been added together");
2124bdd1243dSDimitry Andric WordP.push_back(P.front());
2125bdd1243dSDimitry Andric }
2126bdd1243dSDimitry Andric
2127bdd1243dSDimitry Andric return WordP;
2128bdd1243dSDimitry Andric }
2129bdd1243dSDimitry Andric
run()2130bdd1243dSDimitry Andric auto HvxIdioms::run() -> bool {
2131bdd1243dSDimitry Andric bool Changed = false;
2132bdd1243dSDimitry Andric
2133bdd1243dSDimitry Andric for (BasicBlock &B : HVC.F) {
2134bdd1243dSDimitry Andric for (auto It = B.rbegin(); It != B.rend(); ++It) {
2135bdd1243dSDimitry Andric if (auto Fxm = matchFxpMul(*It)) {
2136bdd1243dSDimitry Andric Value *New = processFxpMul(*It, *Fxm);
2137bdd1243dSDimitry Andric // Always report "changed" for now.
2138bdd1243dSDimitry Andric Changed = true;
2139bdd1243dSDimitry Andric if (!New)
2140bdd1243dSDimitry Andric continue;
2141bdd1243dSDimitry Andric bool StartOver = !isa<Instruction>(New);
2142bdd1243dSDimitry Andric It->replaceAllUsesWith(New);
2143bdd1243dSDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI);
2144bdd1243dSDimitry Andric It = StartOver ? B.rbegin()
2145bdd1243dSDimitry Andric : cast<Instruction>(New)->getReverseIterator();
2146bdd1243dSDimitry Andric Changed = true;
2147bdd1243dSDimitry Andric }
2148bdd1243dSDimitry Andric }
2149bdd1243dSDimitry Andric }
2150bdd1243dSDimitry Andric
2151bdd1243dSDimitry Andric return Changed;
2152bdd1243dSDimitry Andric }
2153bdd1243dSDimitry Andric
2154bdd1243dSDimitry Andric // --- End HvxIdioms
2155bdd1243dSDimitry Andric
run()2156e8d8bef9SDimitry Andric auto HexagonVectorCombine::run() -> bool {
215706c3fb27SDimitry Andric if (DumpModule)
215806c3fb27SDimitry Andric dbgs() << "Module before HexagonVectorCombine\n" << *F.getParent();
2159e8d8bef9SDimitry Andric
2160bdd1243dSDimitry Andric bool Changed = false;
216106c3fb27SDimitry Andric if (HST.useHVXOps()) {
216206c3fb27SDimitry Andric if (VAEnabled)
2163bdd1243dSDimitry Andric Changed |= AlignVectors(*this).run();
216406c3fb27SDimitry Andric if (VIEnabled)
2165bdd1243dSDimitry Andric Changed |= HvxIdioms(*this).run();
216606c3fb27SDimitry Andric }
2167bdd1243dSDimitry Andric
216806c3fb27SDimitry Andric if (DumpModule) {
216906c3fb27SDimitry Andric dbgs() << "Module " << (Changed ? "(modified)" : "(unchanged)")
217006c3fb27SDimitry Andric << " after HexagonVectorCombine\n"
217106c3fb27SDimitry Andric << *F.getParent();
217206c3fb27SDimitry Andric }
2173e8d8bef9SDimitry Andric return Changed;
2174e8d8bef9SDimitry Andric }
2175e8d8bef9SDimitry Andric
getIntTy(unsigned Width) const2176bdd1243dSDimitry Andric auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * {
2177bdd1243dSDimitry Andric return IntegerType::get(F.getContext(), Width);
2178e8d8bef9SDimitry Andric }
2179e8d8bef9SDimitry Andric
getByteTy(int ElemCount) const2180e8d8bef9SDimitry Andric auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
2181e8d8bef9SDimitry Andric assert(ElemCount >= 0);
2182e8d8bef9SDimitry Andric IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
2183e8d8bef9SDimitry Andric if (ElemCount == 0)
2184e8d8bef9SDimitry Andric return ByteTy;
2185bdd1243dSDimitry Andric return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false);
2186e8d8bef9SDimitry Andric }
2187e8d8bef9SDimitry Andric
getBoolTy(int ElemCount) const2188e8d8bef9SDimitry Andric auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
2189e8d8bef9SDimitry Andric assert(ElemCount >= 0);
2190e8d8bef9SDimitry Andric IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
2191e8d8bef9SDimitry Andric if (ElemCount == 0)
2192e8d8bef9SDimitry Andric return BoolTy;
2193bdd1243dSDimitry Andric return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false);
2194e8d8bef9SDimitry Andric }
2195e8d8bef9SDimitry Andric
getConstInt(int Val,unsigned Width) const2196bdd1243dSDimitry Andric auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const
2197bdd1243dSDimitry Andric -> ConstantInt * {
2198bdd1243dSDimitry Andric return ConstantInt::getSigned(getIntTy(Width), Val);
2199e8d8bef9SDimitry Andric }
2200e8d8bef9SDimitry Andric
isZero(const Value * Val) const2201e8d8bef9SDimitry Andric auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
2202e8d8bef9SDimitry Andric if (auto *C = dyn_cast<Constant>(Val))
2203e8d8bef9SDimitry Andric return C->isZeroValue();
2204e8d8bef9SDimitry Andric return false;
2205e8d8bef9SDimitry Andric }
2206e8d8bef9SDimitry Andric
getIntValue(const Value * Val) const2207e8d8bef9SDimitry Andric auto HexagonVectorCombine::getIntValue(const Value *Val) const
2208bdd1243dSDimitry Andric -> std::optional<APInt> {
2209e8d8bef9SDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(Val))
2210e8d8bef9SDimitry Andric return CI->getValue();
2211bdd1243dSDimitry Andric return std::nullopt;
2212e8d8bef9SDimitry Andric }
2213e8d8bef9SDimitry Andric
isUndef(const Value * Val) const2214e8d8bef9SDimitry Andric auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
2215e8d8bef9SDimitry Andric return isa<UndefValue>(Val);
2216e8d8bef9SDimitry Andric }
2217e8d8bef9SDimitry Andric
isTrue(const Value * Val) const221806c3fb27SDimitry Andric auto HexagonVectorCombine::isTrue(const Value *Val) const -> bool {
221906c3fb27SDimitry Andric return Val == ConstantInt::getTrue(Val->getType());
222006c3fb27SDimitry Andric }
222106c3fb27SDimitry Andric
isFalse(const Value * Val) const222206c3fb27SDimitry Andric auto HexagonVectorCombine::isFalse(const Value *Val) const -> bool {
222306c3fb27SDimitry Andric return isZero(Val);
222406c3fb27SDimitry Andric }
222506c3fb27SDimitry Andric
getHvxTy(Type * ElemTy,bool Pair) const2226bdd1243dSDimitry Andric auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const
2227bdd1243dSDimitry Andric -> VectorType * {
2228bdd1243dSDimitry Andric EVT ETy = EVT::getEVT(ElemTy, false);
2229bdd1243dSDimitry Andric assert(ETy.isSimple() && "Invalid HVX element type");
2230bdd1243dSDimitry Andric // Do not allow boolean types here: they don't have a fixed length.
2231bdd1243dSDimitry Andric assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) &&
2232bdd1243dSDimitry Andric "Invalid HVX element type");
2233bdd1243dSDimitry Andric unsigned HwLen = HST.getVectorLength();
2234bdd1243dSDimitry Andric unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits();
2235bdd1243dSDimitry Andric return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems,
2236bdd1243dSDimitry Andric /*Scalable=*/false);
2237e8d8bef9SDimitry Andric }
2238e8d8bef9SDimitry Andric
getSizeOf(const Value * Val,SizeKind Kind) const2239bdd1243dSDimitry Andric auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const
2240bdd1243dSDimitry Andric -> int {
2241bdd1243dSDimitry Andric return getSizeOf(Val->getType(), Kind);
2242e8d8bef9SDimitry Andric }
2243e8d8bef9SDimitry Andric
getSizeOf(const Type * Ty,SizeKind Kind) const2244bdd1243dSDimitry Andric auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const
2245bdd1243dSDimitry Andric -> int {
2246bdd1243dSDimitry Andric auto *NcTy = const_cast<Type *>(Ty);
2247bdd1243dSDimitry Andric switch (Kind) {
2248bdd1243dSDimitry Andric case Store:
2249bdd1243dSDimitry Andric return DL.getTypeStoreSize(NcTy).getFixedValue();
2250bdd1243dSDimitry Andric case Alloc:
2251bdd1243dSDimitry Andric return DL.getTypeAllocSize(NcTy).getFixedValue();
2252bdd1243dSDimitry Andric }
2253bdd1243dSDimitry Andric llvm_unreachable("Unhandled SizeKind enum");
2254349cc55cSDimitry Andric }
2255349cc55cSDimitry Andric
getTypeAlignment(Type * Ty) const2256e8d8bef9SDimitry Andric auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
2257e8d8bef9SDimitry Andric // The actual type may be shorter than the HVX vector, so determine
2258e8d8bef9SDimitry Andric // the alignment based on subtarget info.
2259e8d8bef9SDimitry Andric if (HST.isTypeForHVX(Ty))
2260e8d8bef9SDimitry Andric return HST.getVectorLength();
2261e8d8bef9SDimitry Andric return DL.getABITypeAlign(Ty).value();
2262e8d8bef9SDimitry Andric }
2263e8d8bef9SDimitry Andric
length(Value * Val) const2264bdd1243dSDimitry Andric auto HexagonVectorCombine::length(Value *Val) const -> size_t {
2265bdd1243dSDimitry Andric return length(Val->getType());
2266bdd1243dSDimitry Andric }
2267bdd1243dSDimitry Andric
length(Type * Ty) const2268bdd1243dSDimitry Andric auto HexagonVectorCombine::length(Type *Ty) const -> size_t {
2269bdd1243dSDimitry Andric auto *VecTy = dyn_cast<VectorType>(Ty);
2270bdd1243dSDimitry Andric assert(VecTy && "Must be a vector type");
2271bdd1243dSDimitry Andric return VecTy->getElementCount().getFixedValue();
2272bdd1243dSDimitry Andric }
2273bdd1243dSDimitry Andric
getNullValue(Type * Ty) const2274e8d8bef9SDimitry Andric auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
2275e8d8bef9SDimitry Andric assert(Ty->isIntOrIntVectorTy());
2276e8d8bef9SDimitry Andric auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
2277e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Ty))
2278e8d8bef9SDimitry Andric return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
2279e8d8bef9SDimitry Andric return Zero;
2280e8d8bef9SDimitry Andric }
2281e8d8bef9SDimitry Andric
getFullValue(Type * Ty) const2282e8d8bef9SDimitry Andric auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
2283e8d8bef9SDimitry Andric assert(Ty->isIntOrIntVectorTy());
2284e8d8bef9SDimitry Andric auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
2285e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Ty))
2286e8d8bef9SDimitry Andric return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
2287e8d8bef9SDimitry Andric return Minus1;
2288e8d8bef9SDimitry Andric }
2289e8d8bef9SDimitry Andric
getConstSplat(Type * Ty,int Val) const2290bdd1243dSDimitry Andric auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const
2291bdd1243dSDimitry Andric -> Constant * {
2292bdd1243dSDimitry Andric assert(Ty->isVectorTy());
2293bdd1243dSDimitry Andric auto VecTy = cast<VectorType>(Ty);
2294bdd1243dSDimitry Andric Type *ElemTy = VecTy->getElementType();
2295bdd1243dSDimitry Andric // Add support for floats if needed.
2296bdd1243dSDimitry Andric auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(),
2297bdd1243dSDimitry Andric ConstantInt::get(ElemTy, Val));
2298bdd1243dSDimitry Andric return Splat;
2299bdd1243dSDimitry Andric }
2300bdd1243dSDimitry Andric
simplify(Value * V) const2301bdd1243dSDimitry Andric auto HexagonVectorCombine::simplify(Value *V) const -> Value * {
2302bdd1243dSDimitry Andric if (auto *In = dyn_cast<Instruction>(V)) {
2303bdd1243dSDimitry Andric SimplifyQuery Q(DL, &TLI, &DT, &AC, In);
2304bdd1243dSDimitry Andric return simplifyInstruction(In, Q);
2305bdd1243dSDimitry Andric }
2306bdd1243dSDimitry Andric return nullptr;
2307bdd1243dSDimitry Andric }
2308bdd1243dSDimitry Andric
2309e8d8bef9SDimitry Andric // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
insertb(IRBuilderBase & Builder,Value * Dst,Value * Src,int Start,int Length,int Where) const2310bdd1243dSDimitry Andric auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst,
2311bdd1243dSDimitry Andric Value *Src, int Start, int Length,
2312bdd1243dSDimitry Andric int Where) const -> Value * {
2313e8d8bef9SDimitry Andric assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
2314e8d8bef9SDimitry Andric int SrcLen = getSizeOf(Src);
2315e8d8bef9SDimitry Andric int DstLen = getSizeOf(Dst);
2316e8d8bef9SDimitry Andric assert(0 <= Start && Start + Length <= SrcLen);
2317e8d8bef9SDimitry Andric assert(0 <= Where && Where + Length <= DstLen);
2318e8d8bef9SDimitry Andric
2319e8d8bef9SDimitry Andric int P2Len = PowerOf2Ceil(SrcLen | DstLen);
2320e8d8bef9SDimitry Andric auto *Undef = UndefValue::get(getByteTy());
2321e8d8bef9SDimitry Andric Value *P2Src = vresize(Builder, Src, P2Len, Undef);
2322e8d8bef9SDimitry Andric Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
2323e8d8bef9SDimitry Andric
2324e8d8bef9SDimitry Andric SmallVector<int, 256> SMask(P2Len);
2325e8d8bef9SDimitry Andric for (int i = 0; i != P2Len; ++i) {
2326e8d8bef9SDimitry Andric // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
2327e8d8bef9SDimitry Andric // Otherwise, pick Dst[i];
2328e8d8bef9SDimitry Andric SMask[i] =
2329e8d8bef9SDimitry Andric (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
2330e8d8bef9SDimitry Andric }
2331e8d8bef9SDimitry Andric
233206c3fb27SDimitry Andric Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask, "shf");
2333e8d8bef9SDimitry Andric return vresize(Builder, P2Insert, DstLen, Undef);
2334e8d8bef9SDimitry Andric }
2335e8d8bef9SDimitry Andric
vlalignb(IRBuilderBase & Builder,Value * Lo,Value * Hi,Value * Amt) const2336bdd1243dSDimitry Andric auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo,
2337bdd1243dSDimitry Andric Value *Hi, Value *Amt) const -> Value * {
2338e8d8bef9SDimitry Andric assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
2339e8d8bef9SDimitry Andric if (isZero(Amt))
2340e8d8bef9SDimitry Andric return Hi;
2341e8d8bef9SDimitry Andric int VecLen = getSizeOf(Hi);
2342e8d8bef9SDimitry Andric if (auto IntAmt = getIntValue(Amt))
2343e8d8bef9SDimitry Andric return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
2344e8d8bef9SDimitry Andric VecLen);
2345e8d8bef9SDimitry Andric
2346e8d8bef9SDimitry Andric if (HST.isTypeForHVX(Hi->getType())) {
2347bdd1243dSDimitry Andric assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
2348bdd1243dSDimitry Andric "Expecting an exact HVX type");
2349bdd1243dSDimitry Andric return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb),
2350bdd1243dSDimitry Andric Hi->getType(), {Hi, Lo, Amt});
2351e8d8bef9SDimitry Andric }
2352e8d8bef9SDimitry Andric
2353e8d8bef9SDimitry Andric if (VecLen == 4) {
2354e8d8bef9SDimitry Andric Value *Pair = concat(Builder, {Lo, Hi});
235506c3fb27SDimitry Andric Value *Shift =
235606c3fb27SDimitry Andric Builder.CreateLShr(Builder.CreateShl(Pair, Amt, "shl"), 32, "lsr");
235706c3fb27SDimitry Andric Value *Trunc =
235806c3fb27SDimitry Andric Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn");
235906c3fb27SDimitry Andric return Builder.CreateBitCast(Trunc, Hi->getType(), "cst");
2360e8d8bef9SDimitry Andric }
2361e8d8bef9SDimitry Andric if (VecLen == 8) {
236206c3fb27SDimitry Andric Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt, "sub");
2363e8d8bef9SDimitry Andric return vralignb(Builder, Lo, Hi, Sub);
2364e8d8bef9SDimitry Andric }
2365e8d8bef9SDimitry Andric llvm_unreachable("Unexpected vector length");
2366e8d8bef9SDimitry Andric }
2367e8d8bef9SDimitry Andric
vralignb(IRBuilderBase & Builder,Value * Lo,Value * Hi,Value * Amt) const2368bdd1243dSDimitry Andric auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo,
2369bdd1243dSDimitry Andric Value *Hi, Value *Amt) const -> Value * {
2370e8d8bef9SDimitry Andric assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
2371e8d8bef9SDimitry Andric if (isZero(Amt))
2372e8d8bef9SDimitry Andric return Lo;
2373e8d8bef9SDimitry Andric int VecLen = getSizeOf(Lo);
2374e8d8bef9SDimitry Andric if (auto IntAmt = getIntValue(Amt))
2375e8d8bef9SDimitry Andric return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
2376e8d8bef9SDimitry Andric
2377e8d8bef9SDimitry Andric if (HST.isTypeForHVX(Lo->getType())) {
2378bdd1243dSDimitry Andric assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
2379bdd1243dSDimitry Andric "Expecting an exact HVX type");
2380bdd1243dSDimitry Andric return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb),
2381bdd1243dSDimitry Andric Lo->getType(), {Hi, Lo, Amt});
2382e8d8bef9SDimitry Andric }
2383e8d8bef9SDimitry Andric
2384e8d8bef9SDimitry Andric if (VecLen == 4) {
2385e8d8bef9SDimitry Andric Value *Pair = concat(Builder, {Lo, Hi});
238606c3fb27SDimitry Andric Value *Shift = Builder.CreateLShr(Pair, Amt, "lsr");
238706c3fb27SDimitry Andric Value *Trunc =
238806c3fb27SDimitry Andric Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn");
238906c3fb27SDimitry Andric return Builder.CreateBitCast(Trunc, Lo->getType(), "cst");
2390e8d8bef9SDimitry Andric }
2391e8d8bef9SDimitry Andric if (VecLen == 8) {
2392e8d8bef9SDimitry Andric Type *Int64Ty = Type::getInt64Ty(F.getContext());
239306c3fb27SDimitry Andric Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty, "cst");
239406c3fb27SDimitry Andric Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty, "cst");
2395e8d8bef9SDimitry Andric Function *FI = Intrinsic::getDeclaration(F.getParent(),
2396e8d8bef9SDimitry Andric Intrinsic::hexagon_S2_valignrb);
239706c3fb27SDimitry Andric Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}, "cup");
239806c3fb27SDimitry Andric return Builder.CreateBitCast(Call, Lo->getType(), "cst");
2399e8d8bef9SDimitry Andric }
2400e8d8bef9SDimitry Andric llvm_unreachable("Unexpected vector length");
2401e8d8bef9SDimitry Andric }
2402e8d8bef9SDimitry Andric
2403e8d8bef9SDimitry Andric // Concatenates a sequence of vectors of the same type.
concat(IRBuilderBase & Builder,ArrayRef<Value * > Vecs) const2404bdd1243dSDimitry Andric auto HexagonVectorCombine::concat(IRBuilderBase &Builder,
2405e8d8bef9SDimitry Andric ArrayRef<Value *> Vecs) const -> Value * {
2406e8d8bef9SDimitry Andric assert(!Vecs.empty());
2407e8d8bef9SDimitry Andric SmallVector<int, 256> SMask;
2408e8d8bef9SDimitry Andric std::vector<Value *> Work[2];
2409e8d8bef9SDimitry Andric int ThisW = 0, OtherW = 1;
2410e8d8bef9SDimitry Andric
2411e8d8bef9SDimitry Andric Work[ThisW].assign(Vecs.begin(), Vecs.end());
2412e8d8bef9SDimitry Andric while (Work[ThisW].size() > 1) {
2413e8d8bef9SDimitry Andric auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
2414bdd1243dSDimitry Andric SMask.resize(length(Ty) * 2);
2415e8d8bef9SDimitry Andric std::iota(SMask.begin(), SMask.end(), 0);
2416e8d8bef9SDimitry Andric
2417e8d8bef9SDimitry Andric Work[OtherW].clear();
2418e8d8bef9SDimitry Andric if (Work[ThisW].size() % 2 != 0)
2419e8d8bef9SDimitry Andric Work[ThisW].push_back(UndefValue::get(Ty));
2420e8d8bef9SDimitry Andric for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
242106c3fb27SDimitry Andric Value *Joined = Builder.CreateShuffleVector(
242206c3fb27SDimitry Andric Work[ThisW][i], Work[ThisW][i + 1], SMask, "shf");
2423e8d8bef9SDimitry Andric Work[OtherW].push_back(Joined);
2424e8d8bef9SDimitry Andric }
2425e8d8bef9SDimitry Andric std::swap(ThisW, OtherW);
2426e8d8bef9SDimitry Andric }
2427e8d8bef9SDimitry Andric
2428e8d8bef9SDimitry Andric // Since there may have been some undefs appended to make shuffle operands
2429e8d8bef9SDimitry Andric // have the same type, perform the last shuffle to only pick the original
2430e8d8bef9SDimitry Andric // elements.
2431bdd1243dSDimitry Andric SMask.resize(Vecs.size() * length(Vecs.front()->getType()));
2432e8d8bef9SDimitry Andric std::iota(SMask.begin(), SMask.end(), 0);
2433bdd1243dSDimitry Andric Value *Total = Work[ThisW].front();
243406c3fb27SDimitry Andric return Builder.CreateShuffleVector(Total, SMask, "shf");
2435e8d8bef9SDimitry Andric }
2436e8d8bef9SDimitry Andric
vresize(IRBuilderBase & Builder,Value * Val,int NewSize,Value * Pad) const2437bdd1243dSDimitry Andric auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val,
2438e8d8bef9SDimitry Andric int NewSize, Value *Pad) const -> Value * {
2439e8d8bef9SDimitry Andric assert(isa<VectorType>(Val->getType()));
2440e8d8bef9SDimitry Andric auto *ValTy = cast<VectorType>(Val->getType());
2441e8d8bef9SDimitry Andric assert(ValTy->getElementType() == Pad->getType());
2442e8d8bef9SDimitry Andric
2443bdd1243dSDimitry Andric int CurSize = length(ValTy);
2444e8d8bef9SDimitry Andric if (CurSize == NewSize)
2445e8d8bef9SDimitry Andric return Val;
2446e8d8bef9SDimitry Andric // Truncate?
2447e8d8bef9SDimitry Andric if (CurSize > NewSize)
2448bdd1243dSDimitry Andric return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize);
2449e8d8bef9SDimitry Andric // Extend.
2450e8d8bef9SDimitry Andric SmallVector<int, 128> SMask(NewSize);
2451e8d8bef9SDimitry Andric std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
2452e8d8bef9SDimitry Andric std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
245306c3fb27SDimitry Andric Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad, "spt");
245406c3fb27SDimitry Andric return Builder.CreateShuffleVector(Val, PadVec, SMask, "shf");
2455e8d8bef9SDimitry Andric }
2456e8d8bef9SDimitry Andric
rescale(IRBuilderBase & Builder,Value * Mask,Type * FromTy,Type * ToTy) const2457bdd1243dSDimitry Andric auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask,
2458e8d8bef9SDimitry Andric Type *FromTy, Type *ToTy) const -> Value * {
2459e8d8bef9SDimitry Andric // Mask is a vector <N x i1>, where each element corresponds to an
2460e8d8bef9SDimitry Andric // element of FromTy. Remap it so that each element will correspond
2461e8d8bef9SDimitry Andric // to an element of ToTy.
2462e8d8bef9SDimitry Andric assert(isa<VectorType>(Mask->getType()));
2463e8d8bef9SDimitry Andric
2464e8d8bef9SDimitry Andric Type *FromSTy = FromTy->getScalarType();
2465e8d8bef9SDimitry Andric Type *ToSTy = ToTy->getScalarType();
2466e8d8bef9SDimitry Andric if (FromSTy == ToSTy)
2467e8d8bef9SDimitry Andric return Mask;
2468e8d8bef9SDimitry Andric
2469e8d8bef9SDimitry Andric int FromSize = getSizeOf(FromSTy);
2470e8d8bef9SDimitry Andric int ToSize = getSizeOf(ToSTy);
2471e8d8bef9SDimitry Andric assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
2472e8d8bef9SDimitry Andric
2473e8d8bef9SDimitry Andric auto *MaskTy = cast<VectorType>(Mask->getType());
2474bdd1243dSDimitry Andric int FromCount = length(MaskTy);
2475e8d8bef9SDimitry Andric int ToCount = (FromCount * FromSize) / ToSize;
2476e8d8bef9SDimitry Andric assert((FromCount * FromSize) % ToSize == 0);
2477e8d8bef9SDimitry Andric
2478bdd1243dSDimitry Andric auto *FromITy = getIntTy(FromSize * 8);
2479bdd1243dSDimitry Andric auto *ToITy = getIntTy(ToSize * 8);
248004eeddc0SDimitry Andric
2481e8d8bef9SDimitry Andric // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
2482e8d8bef9SDimitry Andric // -> trunc to <M x i1>.
2483e8d8bef9SDimitry Andric Value *Ext = Builder.CreateSExt(
248406c3fb27SDimitry Andric Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false), "sxt");
2485e8d8bef9SDimitry Andric Value *Cast = Builder.CreateBitCast(
248606c3fb27SDimitry Andric Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false), "cst");
2487e8d8bef9SDimitry Andric return Builder.CreateTrunc(
248806c3fb27SDimitry Andric Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false), "trn");
2489e8d8bef9SDimitry Andric }
2490e8d8bef9SDimitry Andric
2491e8d8bef9SDimitry Andric // Bitcast to bytes, and return least significant bits.
vlsb(IRBuilderBase & Builder,Value * Val) const2492bdd1243dSDimitry Andric auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const
2493e8d8bef9SDimitry Andric -> Value * {
2494e8d8bef9SDimitry Andric Type *ScalarTy = Val->getType()->getScalarType();
2495e8d8bef9SDimitry Andric if (ScalarTy == getBoolTy())
2496e8d8bef9SDimitry Andric return Val;
2497e8d8bef9SDimitry Andric
2498e8d8bef9SDimitry Andric Value *Bytes = vbytes(Builder, Val);
2499e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
250006c3fb27SDimitry Andric return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)), "trn");
2501e8d8bef9SDimitry Andric // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
2502e8d8bef9SDimitry Andric // <1 x i1>.
250306c3fb27SDimitry Andric return Builder.CreateTrunc(Bytes, getBoolTy(), "trn");
2504e8d8bef9SDimitry Andric }
2505e8d8bef9SDimitry Andric
2506e8d8bef9SDimitry Andric // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
vbytes(IRBuilderBase & Builder,Value * Val) const2507bdd1243dSDimitry Andric auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const
2508e8d8bef9SDimitry Andric -> Value * {
2509e8d8bef9SDimitry Andric Type *ScalarTy = Val->getType()->getScalarType();
2510e8d8bef9SDimitry Andric if (ScalarTy == getByteTy())
2511e8d8bef9SDimitry Andric return Val;
2512e8d8bef9SDimitry Andric
2513e8d8bef9SDimitry Andric if (ScalarTy != getBoolTy())
251406c3fb27SDimitry Andric return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)), "cst");
2515e8d8bef9SDimitry Andric // For bool, return a sext from i1 to i8.
2516e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
251706c3fb27SDimitry Andric return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy), "sxt");
251806c3fb27SDimitry Andric return Builder.CreateSExt(Val, getByteTy(), "sxt");
2519e8d8bef9SDimitry Andric }
2520e8d8bef9SDimitry Andric
subvector(IRBuilderBase & Builder,Value * Val,unsigned Start,unsigned Length) const2521bdd1243dSDimitry Andric auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val,
2522bdd1243dSDimitry Andric unsigned Start, unsigned Length) const
2523e8d8bef9SDimitry Andric -> Value * {
2524bdd1243dSDimitry Andric assert(Start + Length <= length(Val));
2525bdd1243dSDimitry Andric return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length);
2526e8d8bef9SDimitry Andric }
2527e8d8bef9SDimitry Andric
sublo(IRBuilderBase & Builder,Value * Val) const2528bdd1243dSDimitry Andric auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const
2529bdd1243dSDimitry Andric -> Value * {
2530bdd1243dSDimitry Andric size_t Len = length(Val);
2531bdd1243dSDimitry Andric assert(Len % 2 == 0 && "Length should be even");
2532bdd1243dSDimitry Andric return subvector(Builder, Val, 0, Len / 2);
2533bdd1243dSDimitry Andric }
2534bdd1243dSDimitry Andric
subhi(IRBuilderBase & Builder,Value * Val) const2535bdd1243dSDimitry Andric auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const
2536bdd1243dSDimitry Andric -> Value * {
2537bdd1243dSDimitry Andric size_t Len = length(Val);
2538bdd1243dSDimitry Andric assert(Len % 2 == 0 && "Length should be even");
2539bdd1243dSDimitry Andric return subvector(Builder, Val, Len / 2, Len / 2);
2540bdd1243dSDimitry Andric }
2541bdd1243dSDimitry Andric
vdeal(IRBuilderBase & Builder,Value * Val0,Value * Val1) const2542bdd1243dSDimitry Andric auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0,
2543bdd1243dSDimitry Andric Value *Val1) const -> Value * {
2544bdd1243dSDimitry Andric assert(Val0->getType() == Val1->getType());
2545bdd1243dSDimitry Andric int Len = length(Val0);
2546bdd1243dSDimitry Andric SmallVector<int, 128> Mask(2 * Len);
2547bdd1243dSDimitry Andric
2548bdd1243dSDimitry Andric for (int i = 0; i != Len; ++i) {
2549bdd1243dSDimitry Andric Mask[i] = 2 * i; // Even
2550bdd1243dSDimitry Andric Mask[i + Len] = 2 * i + 1; // Odd
2551bdd1243dSDimitry Andric }
255206c3fb27SDimitry Andric return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf");
2553bdd1243dSDimitry Andric }
2554bdd1243dSDimitry Andric
vshuff(IRBuilderBase & Builder,Value * Val0,Value * Val1) const2555bdd1243dSDimitry Andric auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0,
2556bdd1243dSDimitry Andric Value *Val1) const -> Value * { //
2557bdd1243dSDimitry Andric assert(Val0->getType() == Val1->getType());
2558bdd1243dSDimitry Andric int Len = length(Val0);
2559bdd1243dSDimitry Andric SmallVector<int, 128> Mask(2 * Len);
2560bdd1243dSDimitry Andric
2561bdd1243dSDimitry Andric for (int i = 0; i != Len; ++i) {
2562bdd1243dSDimitry Andric Mask[2 * i + 0] = i; // Val0
2563bdd1243dSDimitry Andric Mask[2 * i + 1] = i + Len; // Val1
2564bdd1243dSDimitry Andric }
256506c3fb27SDimitry Andric return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf");
2566bdd1243dSDimitry Andric }
2567bdd1243dSDimitry Andric
createHvxIntrinsic(IRBuilderBase & Builder,Intrinsic::ID IntID,Type * RetTy,ArrayRef<Value * > Args,ArrayRef<Type * > ArgTys,ArrayRef<Value * > MDSources) const2568bdd1243dSDimitry Andric auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder,
2569bdd1243dSDimitry Andric Intrinsic::ID IntID, Type *RetTy,
2570bdd1243dSDimitry Andric ArrayRef<Value *> Args,
257106c3fb27SDimitry Andric ArrayRef<Type *> ArgTys,
257206c3fb27SDimitry Andric ArrayRef<Value *> MDSources) const
2573bdd1243dSDimitry Andric -> Value * {
2574bdd1243dSDimitry Andric auto getCast = [&](IRBuilderBase &Builder, Value *Val,
2575e8d8bef9SDimitry Andric Type *DestTy) -> Value * {
2576e8d8bef9SDimitry Andric Type *SrcTy = Val->getType();
2577e8d8bef9SDimitry Andric if (SrcTy == DestTy)
2578e8d8bef9SDimitry Andric return Val;
2579bdd1243dSDimitry Andric
2580e8d8bef9SDimitry Andric // Non-HVX type. It should be a scalar, and it should already have
2581e8d8bef9SDimitry Andric // a valid type.
2582bdd1243dSDimitry Andric assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true));
2583bdd1243dSDimitry Andric
2584bdd1243dSDimitry Andric Type *BoolTy = Type::getInt1Ty(F.getContext());
2585bdd1243dSDimitry Andric if (cast<VectorType>(SrcTy)->getElementType() != BoolTy)
258606c3fb27SDimitry Andric return Builder.CreateBitCast(Val, DestTy, "cst");
2587bdd1243dSDimitry Andric
2588bdd1243dSDimitry Andric // Predicate HVX vector.
2589bdd1243dSDimitry Andric unsigned HwLen = HST.getVectorLength();
2590bdd1243dSDimitry Andric Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast
2591bdd1243dSDimitry Andric : Intrinsic::hexagon_V6_pred_typecast_128B;
2592bdd1243dSDimitry Andric Function *FI =
2593bdd1243dSDimitry Andric Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()});
259406c3fb27SDimitry Andric return Builder.CreateCall(FI, {Val}, "cup");
2595e8d8bef9SDimitry Andric };
2596e8d8bef9SDimitry Andric
2597bdd1243dSDimitry Andric Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys);
2598bdd1243dSDimitry Andric FunctionType *IntrTy = IntrFn->getFunctionType();
2599bdd1243dSDimitry Andric
2600bdd1243dSDimitry Andric SmallVector<Value *, 4> IntrArgs;
2601bdd1243dSDimitry Andric for (int i = 0, e = Args.size(); i != e; ++i) {
2602bdd1243dSDimitry Andric Value *A = Args[i];
2603bdd1243dSDimitry Andric Type *T = IntrTy->getParamType(i);
2604bdd1243dSDimitry Andric if (A->getType() != T) {
2605bdd1243dSDimitry Andric IntrArgs.push_back(getCast(Builder, A, T));
2606bdd1243dSDimitry Andric } else {
2607bdd1243dSDimitry Andric IntrArgs.push_back(A);
2608bdd1243dSDimitry Andric }
2609bdd1243dSDimitry Andric }
261006c3fb27SDimitry Andric StringRef MaybeName = !IntrTy->getReturnType()->isVoidTy() ? "cup" : "";
261106c3fb27SDimitry Andric CallInst *Call = Builder.CreateCall(IntrFn, IntrArgs, MaybeName);
261206c3fb27SDimitry Andric
261306c3fb27SDimitry Andric MemoryEffects ME = Call->getAttributes().getMemoryEffects();
261406c3fb27SDimitry Andric if (!ME.doesNotAccessMemory() && !ME.onlyAccessesInaccessibleMem())
261506c3fb27SDimitry Andric propagateMetadata(Call, MDSources);
2616e8d8bef9SDimitry Andric
2617e8d8bef9SDimitry Andric Type *CallTy = Call->getType();
2618bdd1243dSDimitry Andric if (RetTy == nullptr || CallTy == RetTy)
2619e8d8bef9SDimitry Andric return Call;
2620e8d8bef9SDimitry Andric // Scalar types should have RetTy matching the call return type.
2621bdd1243dSDimitry Andric assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true));
2622e8d8bef9SDimitry Andric return getCast(Builder, Call, RetTy);
2623bdd1243dSDimitry Andric }
2624bdd1243dSDimitry Andric
splitVectorElements(IRBuilderBase & Builder,Value * Vec,unsigned ToWidth) const2625bdd1243dSDimitry Andric auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder,
2626bdd1243dSDimitry Andric Value *Vec,
2627bdd1243dSDimitry Andric unsigned ToWidth) const
2628bdd1243dSDimitry Andric -> SmallVector<Value *> {
2629bdd1243dSDimitry Andric // Break a vector of wide elements into a series of vectors with narrow
2630bdd1243dSDimitry Andric // elements:
2631bdd1243dSDimitry Andric // (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...)
2632bdd1243dSDimitry Andric // -->
2633bdd1243dSDimitry Andric // (a0, a1, a2, ...) // lowest "ToWidth" bits
2634bdd1243dSDimitry Andric // (b0, b1, b2, ...) // the next lowest...
2635bdd1243dSDimitry Andric // (c0, c1, c2, ...) // ...
2636bdd1243dSDimitry Andric // ...
2637bdd1243dSDimitry Andric //
2638bdd1243dSDimitry Andric // The number of elements in each resulting vector is the same as
2639bdd1243dSDimitry Andric // in the original vector.
2640bdd1243dSDimitry Andric
2641bdd1243dSDimitry Andric auto *VecTy = cast<VectorType>(Vec->getType());
2642bdd1243dSDimitry Andric assert(VecTy->getElementType()->isIntegerTy());
2643bdd1243dSDimitry Andric unsigned FromWidth = VecTy->getScalarSizeInBits();
2644bdd1243dSDimitry Andric assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth));
2645bdd1243dSDimitry Andric assert(ToWidth <= FromWidth && "Breaking up into wider elements?");
2646bdd1243dSDimitry Andric unsigned NumResults = FromWidth / ToWidth;
2647bdd1243dSDimitry Andric
2648bdd1243dSDimitry Andric SmallVector<Value *> Results(NumResults);
2649bdd1243dSDimitry Andric Results[0] = Vec;
2650bdd1243dSDimitry Andric unsigned Length = length(VecTy);
2651bdd1243dSDimitry Andric
2652bdd1243dSDimitry Andric // Do it by splitting in half, since those operations correspond to deal
2653bdd1243dSDimitry Andric // instructions.
2654bdd1243dSDimitry Andric auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void {
2655bdd1243dSDimitry Andric // Take V = Results[Begin], split it in L, H.
2656bdd1243dSDimitry Andric // Store Results[Begin] = L, Results[(Begin+End)/2] = H
2657bdd1243dSDimitry Andric // Call itself recursively split(Begin, Half), split(Half+1, End)
2658bdd1243dSDimitry Andric if (Begin + 1 == End)
2659bdd1243dSDimitry Andric return;
2660bdd1243dSDimitry Andric
2661bdd1243dSDimitry Andric Value *Val = Results[Begin];
2662bdd1243dSDimitry Andric unsigned Width = Val->getType()->getScalarSizeInBits();
2663bdd1243dSDimitry Andric
2664bdd1243dSDimitry Andric auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false);
266506c3fb27SDimitry Andric Value *VVal = Builder.CreateBitCast(Val, VTy, "cst");
2666bdd1243dSDimitry Andric
2667bdd1243dSDimitry Andric Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal));
2668bdd1243dSDimitry Andric
2669bdd1243dSDimitry Andric unsigned Half = (Begin + End) / 2;
2670bdd1243dSDimitry Andric Results[Begin] = sublo(Builder, Res);
2671bdd1243dSDimitry Andric Results[Half] = subhi(Builder, Res);
2672bdd1243dSDimitry Andric
2673bdd1243dSDimitry Andric splitFunc(Begin, Half, splitFunc);
2674bdd1243dSDimitry Andric splitFunc(Half, End, splitFunc);
2675bdd1243dSDimitry Andric };
2676bdd1243dSDimitry Andric
2677bdd1243dSDimitry Andric splitInHalf(0, NumResults, splitInHalf);
2678bdd1243dSDimitry Andric return Results;
2679bdd1243dSDimitry Andric }
2680bdd1243dSDimitry Andric
joinVectorElements(IRBuilderBase & Builder,ArrayRef<Value * > Values,VectorType * ToType) const2681bdd1243dSDimitry Andric auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder,
2682bdd1243dSDimitry Andric ArrayRef<Value *> Values,
2683bdd1243dSDimitry Andric VectorType *ToType) const
2684bdd1243dSDimitry Andric -> Value * {
2685bdd1243dSDimitry Andric assert(ToType->getElementType()->isIntegerTy());
2686bdd1243dSDimitry Andric
2687bdd1243dSDimitry Andric // If the list of values does not have power-of-2 elements, append copies
2688bdd1243dSDimitry Andric // of the sign bit to it, to make the size be 2^n.
2689bdd1243dSDimitry Andric // The reason for this is that the values will be joined in pairs, because
2690bdd1243dSDimitry Andric // otherwise the shuffles will result in convoluted code. With pairwise
2691bdd1243dSDimitry Andric // joins, the shuffles will hopefully be folded into a perfect shuffle.
2692bdd1243dSDimitry Andric // The output will need to be sign-extended to a type with element width
2693bdd1243dSDimitry Andric // being a power-of-2 anyways.
2694bdd1243dSDimitry Andric SmallVector<Value *> Inputs(Values.begin(), Values.end());
2695bdd1243dSDimitry Andric
2696bdd1243dSDimitry Andric unsigned ToWidth = ToType->getScalarSizeInBits();
2697bdd1243dSDimitry Andric unsigned Width = Inputs.front()->getType()->getScalarSizeInBits();
2698bdd1243dSDimitry Andric assert(Width <= ToWidth);
2699bdd1243dSDimitry Andric assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth));
2700bdd1243dSDimitry Andric unsigned Length = length(Inputs.front()->getType());
2701bdd1243dSDimitry Andric
2702bdd1243dSDimitry Andric unsigned NeedInputs = ToWidth / Width;
2703bdd1243dSDimitry Andric if (Inputs.size() != NeedInputs) {
2704bdd1243dSDimitry Andric // Having too many inputs is ok: drop the high bits (usual wrap-around).
2705bdd1243dSDimitry Andric // If there are too few, fill them with the sign bit.
2706bdd1243dSDimitry Andric Value *Last = Inputs.back();
270706c3fb27SDimitry Andric Value *Sign = Builder.CreateAShr(
270806c3fb27SDimitry Andric Last, getConstSplat(Last->getType(), Width - 1), "asr");
2709bdd1243dSDimitry Andric Inputs.resize(NeedInputs, Sign);
2710bdd1243dSDimitry Andric }
2711bdd1243dSDimitry Andric
2712bdd1243dSDimitry Andric while (Inputs.size() > 1) {
2713bdd1243dSDimitry Andric Width *= 2;
2714bdd1243dSDimitry Andric auto *VTy = VectorType::get(getIntTy(Width), Length, false);
2715bdd1243dSDimitry Andric for (int i = 0, e = Inputs.size(); i < e; i += 2) {
2716bdd1243dSDimitry Andric Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]);
271706c3fb27SDimitry Andric Inputs[i / 2] = Builder.CreateBitCast(Res, VTy, "cst");
2718bdd1243dSDimitry Andric }
2719bdd1243dSDimitry Andric Inputs.resize(Inputs.size() / 2);
2720bdd1243dSDimitry Andric }
2721bdd1243dSDimitry Andric
2722bdd1243dSDimitry Andric assert(Inputs.front()->getType() == ToType);
2723bdd1243dSDimitry Andric return Inputs.front();
2724e8d8bef9SDimitry Andric }
2725e8d8bef9SDimitry Andric
calculatePointerDifference(Value * Ptr0,Value * Ptr1) const2726e8d8bef9SDimitry Andric auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
2727e8d8bef9SDimitry Andric Value *Ptr1) const
2728bdd1243dSDimitry Andric -> std::optional<int> {
272906c3fb27SDimitry Andric // Try SCEV first.
273006c3fb27SDimitry Andric const SCEV *Scev0 = SE.getSCEV(Ptr0);
273106c3fb27SDimitry Andric const SCEV *Scev1 = SE.getSCEV(Ptr1);
273206c3fb27SDimitry Andric const SCEV *ScevDiff = SE.getMinusSCEV(Scev0, Scev1);
273306c3fb27SDimitry Andric if (auto *Const = dyn_cast<SCEVConstant>(ScevDiff)) {
273406c3fb27SDimitry Andric APInt V = Const->getAPInt();
273506c3fb27SDimitry Andric if (V.isSignedIntN(8 * sizeof(int)))
273606c3fb27SDimitry Andric return static_cast<int>(V.getSExtValue());
273706c3fb27SDimitry Andric }
273806c3fb27SDimitry Andric
2739e8d8bef9SDimitry Andric struct Builder : IRBuilder<> {
2740bdd1243dSDimitry Andric Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {}
2741e8d8bef9SDimitry Andric ~Builder() {
2742e8d8bef9SDimitry Andric for (Instruction *I : llvm::reverse(ToErase))
2743e8d8bef9SDimitry Andric I->eraseFromParent();
2744e8d8bef9SDimitry Andric }
2745e8d8bef9SDimitry Andric SmallVector<Instruction *, 8> ToErase;
2746e8d8bef9SDimitry Andric };
2747e8d8bef9SDimitry Andric
2748e8d8bef9SDimitry Andric #define CallBuilder(B, F) \
2749e8d8bef9SDimitry Andric [&](auto &B_) { \
2750e8d8bef9SDimitry Andric Value *V = B_.F; \
2751e8d8bef9SDimitry Andric if (auto *I = dyn_cast<Instruction>(V)) \
2752e8d8bef9SDimitry Andric B_.ToErase.push_back(I); \
2753e8d8bef9SDimitry Andric return V; \
2754e8d8bef9SDimitry Andric }(B)
2755e8d8bef9SDimitry Andric
2756bdd1243dSDimitry Andric auto Simplify = [this](Value *V) {
2757bdd1243dSDimitry Andric if (Value *S = simplify(V))
2758e8d8bef9SDimitry Andric return S;
2759e8d8bef9SDimitry Andric return V;
2760e8d8bef9SDimitry Andric };
2761e8d8bef9SDimitry Andric
2762e8d8bef9SDimitry Andric auto StripBitCast = [](Value *V) {
2763e8d8bef9SDimitry Andric while (auto *C = dyn_cast<BitCastInst>(V))
2764e8d8bef9SDimitry Andric V = C->getOperand(0);
2765e8d8bef9SDimitry Andric return V;
2766e8d8bef9SDimitry Andric };
2767e8d8bef9SDimitry Andric
2768e8d8bef9SDimitry Andric Ptr0 = StripBitCast(Ptr0);
2769e8d8bef9SDimitry Andric Ptr1 = StripBitCast(Ptr1);
2770e8d8bef9SDimitry Andric if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
2771bdd1243dSDimitry Andric return std::nullopt;
2772e8d8bef9SDimitry Andric
2773e8d8bef9SDimitry Andric auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
2774e8d8bef9SDimitry Andric auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
2775e8d8bef9SDimitry Andric if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
2776bdd1243dSDimitry Andric return std::nullopt;
2777bdd1243dSDimitry Andric if (Gep0->getSourceElementType() != Gep1->getSourceElementType())
2778bdd1243dSDimitry Andric return std::nullopt;
2779e8d8bef9SDimitry Andric
2780e8d8bef9SDimitry Andric Builder B(Gep0->getParent());
2781bdd1243dSDimitry Andric int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc);
2782e8d8bef9SDimitry Andric
2783e8d8bef9SDimitry Andric // FIXME: for now only check GEPs with a single index.
2784e8d8bef9SDimitry Andric if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
2785bdd1243dSDimitry Andric return std::nullopt;
2786e8d8bef9SDimitry Andric
2787e8d8bef9SDimitry Andric Value *Idx0 = Gep0->getOperand(1);
2788e8d8bef9SDimitry Andric Value *Idx1 = Gep1->getOperand(1);
2789e8d8bef9SDimitry Andric
2790e8d8bef9SDimitry Andric // First, try to simplify the subtraction directly.
2791e8d8bef9SDimitry Andric if (auto *Diff = dyn_cast<ConstantInt>(
2792e8d8bef9SDimitry Andric Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
2793e8d8bef9SDimitry Andric return Diff->getSExtValue() * Scale;
2794e8d8bef9SDimitry Andric
2795bdd1243dSDimitry Andric KnownBits Known0 = getKnownBits(Idx0, Gep0);
2796bdd1243dSDimitry Andric KnownBits Known1 = getKnownBits(Idx1, Gep1);
2797e8d8bef9SDimitry Andric APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
2798349cc55cSDimitry Andric if (Unknown.isAllOnes())
2799bdd1243dSDimitry Andric return std::nullopt;
2800e8d8bef9SDimitry Andric
2801e8d8bef9SDimitry Andric Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
2802e8d8bef9SDimitry Andric Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
2803e8d8bef9SDimitry Andric Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
2804e8d8bef9SDimitry Andric Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
2805e8d8bef9SDimitry Andric int Diff0 = 0;
2806e8d8bef9SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(SubU)) {
2807e8d8bef9SDimitry Andric Diff0 = C->getSExtValue();
2808e8d8bef9SDimitry Andric } else {
2809bdd1243dSDimitry Andric return std::nullopt;
2810e8d8bef9SDimitry Andric }
2811e8d8bef9SDimitry Andric
2812e8d8bef9SDimitry Andric Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
2813e8d8bef9SDimitry Andric Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
2814e8d8bef9SDimitry Andric Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
2815e8d8bef9SDimitry Andric Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
2816e8d8bef9SDimitry Andric int Diff1 = 0;
2817e8d8bef9SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(SubK)) {
2818e8d8bef9SDimitry Andric Diff1 = C->getSExtValue();
2819e8d8bef9SDimitry Andric } else {
2820bdd1243dSDimitry Andric return std::nullopt;
2821e8d8bef9SDimitry Andric }
2822e8d8bef9SDimitry Andric
2823e8d8bef9SDimitry Andric return (Diff0 + Diff1) * Scale;
2824e8d8bef9SDimitry Andric
2825e8d8bef9SDimitry Andric #undef CallBuilder
2826e8d8bef9SDimitry Andric }
2827e8d8bef9SDimitry Andric
getNumSignificantBits(const Value * V,const Instruction * CtxI) const2828bdd1243dSDimitry Andric auto HexagonVectorCombine::getNumSignificantBits(const Value *V,
2829bdd1243dSDimitry Andric const Instruction *CtxI) const
2830bdd1243dSDimitry Andric -> unsigned {
2831bdd1243dSDimitry Andric return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
2832bdd1243dSDimitry Andric }
2833bdd1243dSDimitry Andric
getKnownBits(const Value * V,const Instruction * CtxI) const2834bdd1243dSDimitry Andric auto HexagonVectorCombine::getKnownBits(const Value *V,
2835bdd1243dSDimitry Andric const Instruction *CtxI) const
2836bdd1243dSDimitry Andric -> KnownBits {
283706c3fb27SDimitry Andric return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
283806c3fb27SDimitry Andric }
283906c3fb27SDimitry Andric
isSafeToClone(const Instruction & In) const284006c3fb27SDimitry Andric auto HexagonVectorCombine::isSafeToClone(const Instruction &In) const -> bool {
284106c3fb27SDimitry Andric if (In.mayHaveSideEffects() || In.isAtomic() || In.isVolatile() ||
284206c3fb27SDimitry Andric In.isFenceLike() || In.mayReadOrWriteMemory()) {
284306c3fb27SDimitry Andric return false;
284406c3fb27SDimitry Andric }
284506c3fb27SDimitry Andric if (isa<CallBase>(In) || isa<AllocaInst>(In))
284606c3fb27SDimitry Andric return false;
284706c3fb27SDimitry Andric return true;
2848bdd1243dSDimitry Andric }
2849bdd1243dSDimitry Andric
2850e8d8bef9SDimitry Andric template <typename T>
isSafeToMoveBeforeInBB(const Instruction & In,BasicBlock::const_iterator To,const T & IgnoreInsts) const2851e8d8bef9SDimitry Andric auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
2852e8d8bef9SDimitry Andric BasicBlock::const_iterator To,
2853bdd1243dSDimitry Andric const T &IgnoreInsts) const
2854e8d8bef9SDimitry Andric -> bool {
2855bdd1243dSDimitry Andric auto getLocOrNone =
2856bdd1243dSDimitry Andric [this](const Instruction &I) -> std::optional<MemoryLocation> {
2857e8d8bef9SDimitry Andric if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
2858e8d8bef9SDimitry Andric switch (II->getIntrinsicID()) {
2859e8d8bef9SDimitry Andric case Intrinsic::masked_load:
2860e8d8bef9SDimitry Andric return MemoryLocation::getForArgument(II, 0, TLI);
2861e8d8bef9SDimitry Andric case Intrinsic::masked_store:
2862e8d8bef9SDimitry Andric return MemoryLocation::getForArgument(II, 1, TLI);
2863e8d8bef9SDimitry Andric }
2864e8d8bef9SDimitry Andric }
2865e8d8bef9SDimitry Andric return MemoryLocation::getOrNone(&I);
2866e8d8bef9SDimitry Andric };
2867e8d8bef9SDimitry Andric
2868e8d8bef9SDimitry Andric // The source and the destination must be in the same basic block.
2869e8d8bef9SDimitry Andric const BasicBlock &Block = *In.getParent();
2870e8d8bef9SDimitry Andric assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
2871e8d8bef9SDimitry Andric // No PHIs.
2872e8d8bef9SDimitry Andric if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
2873e8d8bef9SDimitry Andric return false;
2874e8d8bef9SDimitry Andric
287581ad6265SDimitry Andric if (!mayHaveNonDefUseDependency(In))
2876e8d8bef9SDimitry Andric return true;
2877e8d8bef9SDimitry Andric bool MayWrite = In.mayWriteToMemory();
2878e8d8bef9SDimitry Andric auto MaybeLoc = getLocOrNone(In);
2879e8d8bef9SDimitry Andric
2880e8d8bef9SDimitry Andric auto From = In.getIterator();
2881e8d8bef9SDimitry Andric if (From == To)
2882e8d8bef9SDimitry Andric return true;
2883e8d8bef9SDimitry Andric bool MoveUp = (To != Block.end() && To->comesBefore(&In));
2884e8d8bef9SDimitry Andric auto Range =
2885e8d8bef9SDimitry Andric MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
2886e8d8bef9SDimitry Andric for (auto It = Range.first; It != Range.second; ++It) {
2887e8d8bef9SDimitry Andric const Instruction &I = *It;
2888bdd1243dSDimitry Andric if (llvm::is_contained(IgnoreInsts, &I))
2889e8d8bef9SDimitry Andric continue;
2890fe6060f1SDimitry Andric // assume intrinsic can be ignored
2891fe6060f1SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2892fe6060f1SDimitry Andric if (II->getIntrinsicID() == Intrinsic::assume)
2893fe6060f1SDimitry Andric continue;
2894fe6060f1SDimitry Andric }
2895e8d8bef9SDimitry Andric // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
2896e8d8bef9SDimitry Andric if (I.mayThrow())
2897e8d8bef9SDimitry Andric return false;
2898e8d8bef9SDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I)) {
2899e8d8bef9SDimitry Andric if (!CB->hasFnAttr(Attribute::WillReturn))
2900e8d8bef9SDimitry Andric return false;
2901e8d8bef9SDimitry Andric if (!CB->hasFnAttr(Attribute::NoSync))
2902e8d8bef9SDimitry Andric return false;
2903e8d8bef9SDimitry Andric }
2904e8d8bef9SDimitry Andric if (I.mayReadOrWriteMemory()) {
2905e8d8bef9SDimitry Andric auto MaybeLocI = getLocOrNone(I);
2906e8d8bef9SDimitry Andric if (MayWrite || I.mayWriteToMemory()) {
2907e8d8bef9SDimitry Andric if (!MaybeLoc || !MaybeLocI)
2908e8d8bef9SDimitry Andric return false;
2909e8d8bef9SDimitry Andric if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
2910e8d8bef9SDimitry Andric return false;
2911e8d8bef9SDimitry Andric }
2912e8d8bef9SDimitry Andric }
2913e8d8bef9SDimitry Andric }
2914e8d8bef9SDimitry Andric return true;
2915e8d8bef9SDimitry Andric }
2916e8d8bef9SDimitry Andric
isByteVecTy(Type * Ty) const2917e8d8bef9SDimitry Andric auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
2918e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Ty))
2919e8d8bef9SDimitry Andric return VecTy->getElementType() == getByteTy();
2920e8d8bef9SDimitry Andric return false;
2921e8d8bef9SDimitry Andric }
2922e8d8bef9SDimitry Andric
getElementRange(IRBuilderBase & Builder,Value * Lo,Value * Hi,int Start,int Length) const2923bdd1243dSDimitry Andric auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo,
2924e8d8bef9SDimitry Andric Value *Hi, int Start,
2925e8d8bef9SDimitry Andric int Length) const -> Value * {
2926bdd1243dSDimitry Andric assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi));
2927e8d8bef9SDimitry Andric SmallVector<int, 128> SMask(Length);
2928e8d8bef9SDimitry Andric std::iota(SMask.begin(), SMask.end(), Start);
292906c3fb27SDimitry Andric return Builder.CreateShuffleVector(Lo, Hi, SMask, "shf");
2930e8d8bef9SDimitry Andric }
2931e8d8bef9SDimitry Andric
2932e8d8bef9SDimitry Andric // Pass management.
2933e8d8bef9SDimitry Andric
2934e8d8bef9SDimitry Andric namespace llvm {
2935e8d8bef9SDimitry Andric void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
2936e8d8bef9SDimitry Andric FunctionPass *createHexagonVectorCombineLegacyPass();
2937e8d8bef9SDimitry Andric } // namespace llvm
2938e8d8bef9SDimitry Andric
2939e8d8bef9SDimitry Andric namespace {
2940e8d8bef9SDimitry Andric class HexagonVectorCombineLegacy : public FunctionPass {
2941e8d8bef9SDimitry Andric public:
2942e8d8bef9SDimitry Andric static char ID;
2943e8d8bef9SDimitry Andric
HexagonVectorCombineLegacy()2944e8d8bef9SDimitry Andric HexagonVectorCombineLegacy() : FunctionPass(ID) {}
2945e8d8bef9SDimitry Andric
getPassName() const2946e8d8bef9SDimitry Andric StringRef getPassName() const override { return "Hexagon Vector Combine"; }
2947e8d8bef9SDimitry Andric
getAnalysisUsage(AnalysisUsage & AU) const2948e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override {
2949e8d8bef9SDimitry Andric AU.setPreservesCFG();
2950e8d8bef9SDimitry Andric AU.addRequired<AAResultsWrapperPass>();
2951e8d8bef9SDimitry Andric AU.addRequired<AssumptionCacheTracker>();
2952e8d8bef9SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>();
295306c3fb27SDimitry Andric AU.addRequired<ScalarEvolutionWrapperPass>();
2954e8d8bef9SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>();
2955e8d8bef9SDimitry Andric AU.addRequired<TargetPassConfig>();
2956e8d8bef9SDimitry Andric FunctionPass::getAnalysisUsage(AU);
2957e8d8bef9SDimitry Andric }
2958e8d8bef9SDimitry Andric
runOnFunction(Function & F)2959e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override {
2960fe6060f1SDimitry Andric if (skipFunction(F))
2961fe6060f1SDimitry Andric return false;
2962e8d8bef9SDimitry Andric AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2963e8d8bef9SDimitry Andric AssumptionCache &AC =
2964e8d8bef9SDimitry Andric getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2965e8d8bef9SDimitry Andric DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
296606c3fb27SDimitry Andric ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2967e8d8bef9SDimitry Andric TargetLibraryInfo &TLI =
2968e8d8bef9SDimitry Andric getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2969e8d8bef9SDimitry Andric auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
297006c3fb27SDimitry Andric HexagonVectorCombine HVC(F, AA, AC, DT, SE, TLI, TM);
2971e8d8bef9SDimitry Andric return HVC.run();
2972e8d8bef9SDimitry Andric }
2973e8d8bef9SDimitry Andric };
2974e8d8bef9SDimitry Andric } // namespace
2975e8d8bef9SDimitry Andric
2976e8d8bef9SDimitry Andric char HexagonVectorCombineLegacy::ID = 0;
2977e8d8bef9SDimitry Andric
2978e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
2979e8d8bef9SDimitry Andric "Hexagon Vector Combine", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)2980e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2981e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2982e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
298306c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2984e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2985e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
2986e8d8bef9SDimitry Andric INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
2987e8d8bef9SDimitry Andric "Hexagon Vector Combine", false, false)
2988e8d8bef9SDimitry Andric
2989e8d8bef9SDimitry Andric FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
2990e8d8bef9SDimitry Andric return new HexagonVectorCombineLegacy();
2991e8d8bef9SDimitry Andric }
2992