1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a simple VLIW packetizer using DFA. The packetizer works on 10 // machine basic blocks. For each instruction I in BB, the packetizer consults 11 // the DFA to see if machine resources are available to execute I. If so, the 12 // packetizer checks if I depends on any instruction J in the current packet. 13 // If no dependency is found, I is added to current packet and machine resource 14 // is marked as taken. If any dependency is found, a target API call is made to 15 // prune the dependence. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "HexagonVLIWPacketizer.h" 20 #include "Hexagon.h" 21 #include "HexagonInstrInfo.h" 22 #include "HexagonRegisterInfo.h" 23 #include "HexagonSubtarget.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBundle.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "packets" 57 58 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden, 59 cl::ZeroOrMore, cl::init(false), 60 cl::desc("Disable Hexagon packetizer pass")); 61 62 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden, 63 cl::ZeroOrMore, cl::init(true), 64 cl::desc("Allow slot1 store and slot0 load")); 65 66 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles", 67 cl::ZeroOrMore, cl::Hidden, cl::init(true), 68 cl::desc("Allow non-solo packetization of volatile memory references")); 69 70 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false), 71 cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC")); 72 73 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores", 74 cl::init(false), cl::Hidden, cl::ZeroOrMore, 75 cl::desc("Disable vector double new-value-stores")); 76 77 extern cl::opt<bool> ScheduleInlineAsm; 78 79 namespace llvm { 80 81 FunctionPass *createHexagonPacketizer(bool Minimal); 82 void initializeHexagonPacketizerPass(PassRegistry&); 83 84 } // end namespace llvm 85 86 namespace { 87 88 class HexagonPacketizer : public MachineFunctionPass { 89 public: 90 static char ID; 91 92 HexagonPacketizer(bool Min = false) 93 : MachineFunctionPass(ID), Minimal(Min) {} 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override { 96 AU.setPreservesCFG(); 97 AU.addRequired<AAResultsWrapperPass>(); 98 AU.addRequired<MachineBranchProbabilityInfo>(); 99 AU.addRequired<MachineDominatorTree>(); 100 AU.addRequired<MachineLoopInfo>(); 101 AU.addPreserved<MachineDominatorTree>(); 102 AU.addPreserved<MachineLoopInfo>(); 103 MachineFunctionPass::getAnalysisUsage(AU); 104 } 105 106 StringRef getPassName() const override { return "Hexagon Packetizer"; } 107 bool runOnMachineFunction(MachineFunction &Fn) override; 108 109 MachineFunctionProperties getRequiredProperties() const override { 110 return MachineFunctionProperties().set( 111 MachineFunctionProperties::Property::NoVRegs); 112 } 113 114 private: 115 const HexagonInstrInfo *HII = nullptr; 116 const HexagonRegisterInfo *HRI = nullptr; 117 const bool Minimal = false; 118 }; 119 120 } // end anonymous namespace 121 122 char HexagonPacketizer::ID = 0; 123 124 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer", 125 "Hexagon Packetizer", false, false) 126 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 127 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 129 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 130 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer", 131 "Hexagon Packetizer", false, false) 132 133 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF, 134 MachineLoopInfo &MLI, AAResults *AA, 135 const MachineBranchProbabilityInfo *MBPI, bool Minimal) 136 : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI), 137 Minimal(Minimal) { 138 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 139 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 140 141 addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>()); 142 addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>()); 143 addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>()); 144 } 145 146 // Check if FirstI modifies a register that SecondI reads. 147 static bool hasWriteToReadDep(const MachineInstr &FirstI, 148 const MachineInstr &SecondI, 149 const TargetRegisterInfo *TRI) { 150 for (auto &MO : FirstI.operands()) { 151 if (!MO.isReg() || !MO.isDef()) 152 continue; 153 Register R = MO.getReg(); 154 if (SecondI.readsRegister(R, TRI)) 155 return true; 156 } 157 return false; 158 } 159 160 161 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI, 162 MachineBasicBlock::iterator BundleIt, bool Before) { 163 MachineBasicBlock::instr_iterator InsertPt; 164 if (Before) 165 InsertPt = BundleIt.getInstrIterator(); 166 else 167 InsertPt = std::next(BundleIt).getInstrIterator(); 168 169 MachineBasicBlock &B = *MI.getParent(); 170 // The instruction should at least be bundled with the preceding instruction 171 // (there will always be one, i.e. BUNDLE, if nothing else). 172 assert(MI.isBundledWithPred()); 173 if (MI.isBundledWithSucc()) { 174 MI.clearFlag(MachineInstr::BundledSucc); 175 MI.clearFlag(MachineInstr::BundledPred); 176 } else { 177 // If it's not bundled with the successor (i.e. it is the last one 178 // in the bundle), then we can simply unbundle it from the predecessor, 179 // which will take care of updating the predecessor's flag. 180 MI.unbundleFromPred(); 181 } 182 B.splice(InsertPt, &B, MI.getIterator()); 183 184 // Get the size of the bundle without asserting. 185 MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator(); 186 MachineBasicBlock::const_instr_iterator E = B.instr_end(); 187 unsigned Size = 0; 188 for (++I; I != E && I->isBundledWithPred(); ++I) 189 ++Size; 190 191 // If there are still two or more instructions, then there is nothing 192 // else to be done. 193 if (Size > 1) 194 return BundleIt; 195 196 // Otherwise, extract the single instruction out and delete the bundle. 197 MachineBasicBlock::iterator NextIt = std::next(BundleIt); 198 MachineInstr &SingleI = *BundleIt->getNextNode(); 199 SingleI.unbundleFromPred(); 200 assert(!SingleI.isBundledWithSucc()); 201 BundleIt->eraseFromParent(); 202 return NextIt; 203 } 204 205 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) { 206 // FIXME: This pass causes verification failures. 207 MF.getProperties().set( 208 MachineFunctionProperties::Property::FailsVerification); 209 210 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 211 HII = HST.getInstrInfo(); 212 HRI = HST.getRegisterInfo(); 213 auto &MLI = getAnalysis<MachineLoopInfo>(); 214 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 215 auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 216 217 if (EnableGenAllInsnClass) 218 HII->genAllInsnTimingClasses(MF); 219 220 // Instantiate the packetizer. 221 bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() || 222 skipFunction(MF.getFunction()); 223 HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly); 224 225 // DFA state table should not be empty. 226 assert(Packetizer.getResourceTracker() && "Empty DFA table!"); 227 228 // Loop over all basic blocks and remove KILL pseudo-instructions 229 // These instructions confuse the dependence analysis. Consider: 230 // D0 = ... (Insn 0) 231 // R0 = KILL R0, D0 (Insn 1) 232 // R0 = ... (Insn 2) 233 // Here, Insn 1 will result in the dependence graph not emitting an output 234 // dependence between Insn 0 and Insn 2. This can lead to incorrect 235 // packetization 236 for (MachineBasicBlock &MB : MF) { 237 for (MachineInstr &MI : llvm::make_early_inc_range(MB)) 238 if (MI.isKill()) 239 MB.erase(&MI); 240 } 241 242 // TinyCore with Duplexes: Translate to big-instructions. 243 if (HST.isTinyCoreWithDuplex()) 244 HII->translateInstrsForDup(MF, true); 245 246 // Loop over all of the basic blocks. 247 for (auto &MB : MF) { 248 auto Begin = MB.begin(), End = MB.end(); 249 while (Begin != End) { 250 // Find the first non-boundary starting from the end of the last 251 // scheduling region. 252 MachineBasicBlock::iterator RB = Begin; 253 while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF)) 254 ++RB; 255 // Find the first boundary starting from the beginning of the new 256 // region. 257 MachineBasicBlock::iterator RE = RB; 258 while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF)) 259 ++RE; 260 // Add the scheduling boundary if it's not block end. 261 if (RE != End) 262 ++RE; 263 // If RB == End, then RE == End. 264 if (RB != End) 265 Packetizer.PacketizeMIs(&MB, RB, RE); 266 267 Begin = RE; 268 } 269 } 270 271 // TinyCore with Duplexes: Translate to tiny-instructions. 272 if (HST.isTinyCoreWithDuplex()) 273 HII->translateInstrsForDup(MF, false); 274 275 Packetizer.unpacketizeSoloInstrs(MF); 276 return true; 277 } 278 279 // Reserve resources for a constant extender. Trigger an assertion if the 280 // reservation fails. 281 void HexagonPacketizerList::reserveResourcesForConstExt() { 282 if (!tryAllocateResourcesForConstExt(true)) 283 llvm_unreachable("Resources not available"); 284 } 285 286 bool HexagonPacketizerList::canReserveResourcesForConstExt() { 287 return tryAllocateResourcesForConstExt(false); 288 } 289 290 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded, 291 // return true, otherwise, return false. 292 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) { 293 auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc()); 294 bool Avail = ResourceTracker->canReserveResources(*ExtMI); 295 if (Reserve && Avail) 296 ResourceTracker->reserveResources(*ExtMI); 297 MF.deleteMachineInstr(ExtMI); 298 return Avail; 299 } 300 301 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI, 302 SDep::Kind DepType, unsigned DepReg) { 303 // Check for LR dependence. 304 if (DepReg == HRI->getRARegister()) 305 return true; 306 307 if (HII->isDeallocRet(MI)) 308 if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister()) 309 return true; 310 311 // Call-like instructions can be packetized with preceding instructions 312 // that define registers implicitly used or modified by the call. Explicit 313 // uses are still prohibited, as in the case of indirect calls: 314 // r0 = ... 315 // J2_jumpr r0 316 if (DepType == SDep::Data) { 317 for (const MachineOperand &MO : MI.operands()) 318 if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit()) 319 return true; 320 } 321 322 return false; 323 } 324 325 static bool isRegDependence(const SDep::Kind DepType) { 326 return DepType == SDep::Data || DepType == SDep::Anti || 327 DepType == SDep::Output; 328 } 329 330 static bool isDirectJump(const MachineInstr &MI) { 331 return MI.getOpcode() == Hexagon::J2_jump; 332 } 333 334 static bool isSchedBarrier(const MachineInstr &MI) { 335 switch (MI.getOpcode()) { 336 case Hexagon::Y2_barrier: 337 return true; 338 } 339 return false; 340 } 341 342 static bool isControlFlow(const MachineInstr &MI) { 343 return MI.getDesc().isTerminator() || MI.getDesc().isCall(); 344 } 345 346 /// Returns true if the instruction modifies a callee-saved register. 347 static bool doesModifyCalleeSavedReg(const MachineInstr &MI, 348 const TargetRegisterInfo *TRI) { 349 const MachineFunction &MF = *MI.getParent()->getParent(); 350 for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 351 if (MI.modifiesRegister(*CSR, TRI)) 352 return true; 353 return false; 354 } 355 356 // Returns true if an instruction can be promoted to .new predicate or 357 // new-value store. 358 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI, 359 const TargetRegisterClass *NewRC) { 360 // Vector stores can be predicated, and can be new-value stores, but 361 // they cannot be predicated on a .new predicate value. 362 if (NewRC == &Hexagon::PredRegsRegClass) { 363 if (HII->isHVXVec(MI) && MI.mayStore()) 364 return false; 365 return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0; 366 } 367 // If the class is not PredRegs, it could only apply to new-value stores. 368 return HII->mayBeNewStore(MI); 369 } 370 371 // Promote an instructiont to its .cur form. 372 // At this time, we have already made a call to canPromoteToDotCur and made 373 // sure that it can *indeed* be promoted. 374 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI, 375 SDep::Kind DepType, MachineBasicBlock::iterator &MII, 376 const TargetRegisterClass* RC) { 377 assert(DepType == SDep::Data); 378 int CurOpcode = HII->getDotCurOp(MI); 379 MI.setDesc(HII->get(CurOpcode)); 380 return true; 381 } 382 383 void HexagonPacketizerList::cleanUpDotCur() { 384 MachineInstr *MI = nullptr; 385 for (auto BI : CurrentPacketMIs) { 386 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump();); 387 if (HII->isDotCurInst(*BI)) { 388 MI = BI; 389 continue; 390 } 391 if (MI) { 392 for (auto &MO : BI->operands()) 393 if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg()) 394 return; 395 } 396 } 397 if (!MI) 398 return; 399 // We did not find a use of the CUR, so de-cur it. 400 MI->setDesc(HII->get(HII->getNonDotCurOp(*MI))); 401 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump();); 402 } 403 404 // Check to see if an instruction can be dot cur. 405 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI, 406 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, 407 const TargetRegisterClass *RC) { 408 if (!HII->isHVXVec(MI)) 409 return false; 410 if (!HII->isHVXVec(*MII)) 411 return false; 412 413 // Already a dot new instruction. 414 if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI)) 415 return false; 416 417 if (!HII->mayBeCurLoad(MI)) 418 return false; 419 420 // The "cur value" cannot come from inline asm. 421 if (PacketSU->getInstr()->isInlineAsm()) 422 return false; 423 424 // Make sure candidate instruction uses cur. 425 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump(); 426 dbgs() << "in packet\n";); 427 MachineInstr &MJ = *MII; 428 LLVM_DEBUG({ 429 dbgs() << "Checking CUR against "; 430 MJ.dump(); 431 }); 432 Register DestReg = MI.getOperand(0).getReg(); 433 bool FoundMatch = false; 434 for (auto &MO : MJ.operands()) 435 if (MO.isReg() && MO.getReg() == DestReg) 436 FoundMatch = true; 437 if (!FoundMatch) 438 return false; 439 440 // Check for existing uses of a vector register within the packet which 441 // would be affected by converting a vector load into .cur formt. 442 for (auto BI : CurrentPacketMIs) { 443 LLVM_DEBUG(dbgs() << "packet has "; BI->dump();); 444 if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo())) 445 return false; 446 } 447 448 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump();); 449 // We can convert the opcode into a .cur. 450 return true; 451 } 452 453 // Promote an instruction to its .new form. At this time, we have already 454 // made a call to canPromoteToDotNew and made sure that it can *indeed* be 455 // promoted. 456 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI, 457 SDep::Kind DepType, MachineBasicBlock::iterator &MII, 458 const TargetRegisterClass* RC) { 459 assert(DepType == SDep::Data); 460 int NewOpcode; 461 if (RC == &Hexagon::PredRegsRegClass) 462 NewOpcode = HII->getDotNewPredOp(MI, MBPI); 463 else 464 NewOpcode = HII->getDotNewOp(MI); 465 MI.setDesc(HII->get(NewOpcode)); 466 return true; 467 } 468 469 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) { 470 int NewOpcode = HII->getDotOldOp(MI); 471 MI.setDesc(HII->get(NewOpcode)); 472 return true; 473 } 474 475 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) { 476 unsigned Opc = MI.getOpcode(); 477 switch (Opc) { 478 case Hexagon::S2_storerd_io: 479 case Hexagon::S2_storeri_io: 480 case Hexagon::S2_storerh_io: 481 case Hexagon::S2_storerb_io: 482 break; 483 default: 484 llvm_unreachable("Unexpected instruction"); 485 } 486 unsigned FrameSize = MF.getFrameInfo().getStackSize(); 487 MachineOperand &Off = MI.getOperand(1); 488 int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE); 489 if (HII->isValidOffset(Opc, NewOff, HRI)) { 490 Off.setImm(NewOff); 491 return true; 492 } 493 return false; 494 } 495 496 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) { 497 unsigned Opc = MI.getOpcode(); 498 switch (Opc) { 499 case Hexagon::S2_storerd_io: 500 case Hexagon::S2_storeri_io: 501 case Hexagon::S2_storerh_io: 502 case Hexagon::S2_storerb_io: 503 break; 504 default: 505 llvm_unreachable("Unexpected instruction"); 506 } 507 unsigned FrameSize = MF.getFrameInfo().getStackSize(); 508 MachineOperand &Off = MI.getOperand(1); 509 Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE); 510 } 511 512 /// Return true if we can update the offset in MI so that MI and MJ 513 /// can be packetized together. 514 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) { 515 assert(SUI->getInstr() && SUJ->getInstr()); 516 MachineInstr &MI = *SUI->getInstr(); 517 MachineInstr &MJ = *SUJ->getInstr(); 518 519 unsigned BPI, OPI; 520 if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI)) 521 return false; 522 unsigned BPJ, OPJ; 523 if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ)) 524 return false; 525 Register Reg = MI.getOperand(BPI).getReg(); 526 if (Reg != MJ.getOperand(BPJ).getReg()) 527 return false; 528 // Make sure that the dependences do not restrict adding MI to the packet. 529 // That is, ignore anti dependences, and make sure the only data dependence 530 // involves the specific register. 531 for (const auto &PI : SUI->Preds) 532 if (PI.getKind() != SDep::Anti && 533 (PI.getKind() != SDep::Data || PI.getReg() != Reg)) 534 return false; 535 int Incr; 536 if (!HII->getIncrementValue(MJ, Incr)) 537 return false; 538 539 int64_t Offset = MI.getOperand(OPI).getImm(); 540 if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI)) 541 return false; 542 543 MI.getOperand(OPI).setImm(Offset + Incr); 544 ChangedOffset = Offset; 545 return true; 546 } 547 548 /// Undo the changed offset. This is needed if the instruction cannot be 549 /// added to the current packet due to a different instruction. 550 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) { 551 unsigned BP, OP; 552 if (!HII->getBaseAndOffsetPosition(MI, BP, OP)) 553 llvm_unreachable("Unable to find base and offset operands."); 554 MI.getOperand(OP).setImm(ChangedOffset); 555 } 556 557 enum PredicateKind { 558 PK_False, 559 PK_True, 560 PK_Unknown 561 }; 562 563 /// Returns true if an instruction is predicated on p0 and false if it's 564 /// predicated on !p0. 565 static PredicateKind getPredicateSense(const MachineInstr &MI, 566 const HexagonInstrInfo *HII) { 567 if (!HII->isPredicated(MI)) 568 return PK_Unknown; 569 if (HII->isPredicatedTrue(MI)) 570 return PK_True; 571 return PK_False; 572 } 573 574 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI, 575 const HexagonInstrInfo *HII) { 576 assert(HII->isPostIncrement(MI) && "Not a post increment operation."); 577 #ifndef NDEBUG 578 // Post Increment means duplicates. Use dense map to find duplicates in the 579 // list. Caution: Densemap initializes with the minimum of 64 buckets, 580 // whereas there are at most 5 operands in the post increment. 581 DenseSet<unsigned> DefRegsSet; 582 for (auto &MO : MI.operands()) 583 if (MO.isReg() && MO.isDef()) 584 DefRegsSet.insert(MO.getReg()); 585 586 for (auto &MO : MI.operands()) 587 if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg())) 588 return MO; 589 #else 590 if (MI.mayLoad()) { 591 const MachineOperand &Op1 = MI.getOperand(1); 592 // The 2nd operand is always the post increment operand in load. 593 assert(Op1.isReg() && "Post increment operand has be to a register."); 594 return Op1; 595 } 596 if (MI.getDesc().mayStore()) { 597 const MachineOperand &Op0 = MI.getOperand(0); 598 // The 1st operand is always the post increment operand in store. 599 assert(Op0.isReg() && "Post increment operand has be to a register."); 600 return Op0; 601 } 602 #endif 603 // we should never come here. 604 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation"); 605 } 606 607 // Get the value being stored. 608 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) { 609 // value being stored is always the last operand. 610 return MI.getOperand(MI.getNumOperands()-1); 611 } 612 613 static bool isLoadAbsSet(const MachineInstr &MI) { 614 unsigned Opc = MI.getOpcode(); 615 switch (Opc) { 616 case Hexagon::L4_loadrd_ap: 617 case Hexagon::L4_loadrb_ap: 618 case Hexagon::L4_loadrh_ap: 619 case Hexagon::L4_loadrub_ap: 620 case Hexagon::L4_loadruh_ap: 621 case Hexagon::L4_loadri_ap: 622 return true; 623 } 624 return false; 625 } 626 627 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) { 628 assert(isLoadAbsSet(MI)); 629 return MI.getOperand(1); 630 } 631 632 // Can be new value store? 633 // Following restrictions are to be respected in convert a store into 634 // a new value store. 635 // 1. If an instruction uses auto-increment, its address register cannot 636 // be a new-value register. Arch Spec 5.4.2.1 637 // 2. If an instruction uses absolute-set addressing mode, its address 638 // register cannot be a new-value register. Arch Spec 5.4.2.1. 639 // 3. If an instruction produces a 64-bit result, its registers cannot be used 640 // as new-value registers. Arch Spec 5.4.2.2. 641 // 4. If the instruction that sets the new-value register is conditional, then 642 // the instruction that uses the new-value register must also be conditional, 643 // and both must always have their predicates evaluate identically. 644 // Arch Spec 5.4.2.3. 645 // 5. There is an implied restriction that a packet cannot have another store, 646 // if there is a new value store in the packet. Corollary: if there is 647 // already a store in a packet, there can not be a new value store. 648 // Arch Spec: 3.4.4.2 649 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI, 650 const MachineInstr &PacketMI, unsigned DepReg) { 651 // Make sure we are looking at the store, that can be promoted. 652 if (!HII->mayBeNewStore(MI)) 653 return false; 654 655 // Make sure there is dependency and can be new value'd. 656 const MachineOperand &Val = getStoreValueOperand(MI); 657 if (Val.isReg() && Val.getReg() != DepReg) 658 return false; 659 660 const MCInstrDesc& MCID = PacketMI.getDesc(); 661 662 // First operand is always the result. 663 const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF); 664 // Double regs can not feed into new value store: PRM section: 5.4.2.2. 665 if (PacketRC == &Hexagon::DoubleRegsRegClass) 666 return false; 667 668 // New-value stores are of class NV (slot 0), dual stores require class ST 669 // in slot 0 (PRM 5.5). 670 for (auto I : CurrentPacketMIs) { 671 SUnit *PacketSU = MIToSUnit.find(I)->second; 672 if (PacketSU->getInstr()->mayStore()) 673 return false; 674 } 675 676 // Make sure it's NOT the post increment register that we are going to 677 // new value. 678 if (HII->isPostIncrement(MI) && 679 getPostIncrementOperand(MI, HII).getReg() == DepReg) { 680 return false; 681 } 682 683 if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() && 684 getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) { 685 // If source is post_inc, or absolute-set addressing, it can not feed 686 // into new value store 687 // r3 = memw(r2++#4) 688 // memw(r30 + #-1404) = r2.new -> can not be new value store 689 // arch spec section: 5.4.2.1. 690 return false; 691 } 692 693 if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg) 694 return false; 695 696 // If the source that feeds the store is predicated, new value store must 697 // also be predicated. 698 if (HII->isPredicated(PacketMI)) { 699 if (!HII->isPredicated(MI)) 700 return false; 701 702 // Check to make sure that they both will have their predicates 703 // evaluate identically. 704 unsigned predRegNumSrc = 0; 705 unsigned predRegNumDst = 0; 706 const TargetRegisterClass* predRegClass = nullptr; 707 708 // Get predicate register used in the source instruction. 709 for (auto &MO : PacketMI.operands()) { 710 if (!MO.isReg()) 711 continue; 712 predRegNumSrc = MO.getReg(); 713 predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc); 714 if (predRegClass == &Hexagon::PredRegsRegClass) 715 break; 716 } 717 assert((predRegClass == &Hexagon::PredRegsRegClass) && 718 "predicate register not found in a predicated PacketMI instruction"); 719 720 // Get predicate register used in new-value store instruction. 721 for (auto &MO : MI.operands()) { 722 if (!MO.isReg()) 723 continue; 724 predRegNumDst = MO.getReg(); 725 predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst); 726 if (predRegClass == &Hexagon::PredRegsRegClass) 727 break; 728 } 729 assert((predRegClass == &Hexagon::PredRegsRegClass) && 730 "predicate register not found in a predicated MI instruction"); 731 732 // New-value register producer and user (store) need to satisfy these 733 // constraints: 734 // 1) Both instructions should be predicated on the same register. 735 // 2) If producer of the new-value register is .new predicated then store 736 // should also be .new predicated and if producer is not .new predicated 737 // then store should not be .new predicated. 738 // 3) Both new-value register producer and user should have same predicate 739 // sense, i.e, either both should be negated or both should be non-negated. 740 if (predRegNumDst != predRegNumSrc || 741 HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) || 742 getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII)) 743 return false; 744 } 745 746 // Make sure that other than the new-value register no other store instruction 747 // register has been modified in the same packet. Predicate registers can be 748 // modified by they should not be modified between the producer and the store 749 // instruction as it will make them both conditional on different values. 750 // We already know this to be true for all the instructions before and 751 // including PacketMI. Howerver, we need to perform the check for the 752 // remaining instructions in the packet. 753 754 unsigned StartCheck = 0; 755 756 for (auto I : CurrentPacketMIs) { 757 SUnit *TempSU = MIToSUnit.find(I)->second; 758 MachineInstr &TempMI = *TempSU->getInstr(); 759 760 // Following condition is true for all the instructions until PacketMI is 761 // reached (StartCheck is set to 0 before the for loop). 762 // StartCheck flag is 1 for all the instructions after PacketMI. 763 if (&TempMI != &PacketMI && !StartCheck) // Start processing only after 764 continue; // encountering PacketMI. 765 766 StartCheck = 1; 767 if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence. 768 continue; 769 770 for (auto &MO : MI.operands()) 771 if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI)) 772 return false; 773 } 774 775 // Make sure that for non-POST_INC stores: 776 // 1. The only use of reg is DepReg and no other registers. 777 // This handles base+index registers. 778 // The following store can not be dot new. 779 // Eg. r0 = add(r0, #3) 780 // memw(r1+r0<<#2) = r0 781 if (!HII->isPostIncrement(MI)) { 782 for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) { 783 const MachineOperand &MO = MI.getOperand(opNum); 784 if (MO.isReg() && MO.getReg() == DepReg) 785 return false; 786 } 787 } 788 789 // If data definition is because of implicit definition of the register, 790 // do not newify the store. Eg. 791 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12 792 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343] 793 for (auto &MO : PacketMI.operands()) { 794 if (MO.isRegMask() && MO.clobbersPhysReg(DepReg)) 795 return false; 796 if (!MO.isReg() || !MO.isDef() || !MO.isImplicit()) 797 continue; 798 Register R = MO.getReg(); 799 if (R == DepReg || HRI->isSuperRegister(DepReg, R)) 800 return false; 801 } 802 803 // Handle imp-use of super reg case. There is a target independent side 804 // change that should prevent this situation but I am handling it for 805 // just-in-case. For example, we cannot newify R2 in the following case: 806 // %r3 = A2_tfrsi 0; 807 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1; 808 for (auto &MO : MI.operands()) { 809 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg) 810 return false; 811 } 812 813 // Can be dot new store. 814 return true; 815 } 816 817 // Can this MI to promoted to either new value store or new value jump. 818 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI, 819 const SUnit *PacketSU, unsigned DepReg, 820 MachineBasicBlock::iterator &MII) { 821 if (!HII->mayBeNewStore(MI)) 822 return false; 823 824 // Check to see the store can be new value'ed. 825 MachineInstr &PacketMI = *PacketSU->getInstr(); 826 if (canPromoteToNewValueStore(MI, PacketMI, DepReg)) 827 return true; 828 829 // Check to see the compare/jump can be new value'ed. 830 // This is done as a pass on its own. Don't need to check it here. 831 return false; 832 } 833 834 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef, 835 unsigned DepReg) { 836 for (auto &MO : I.operands()) { 837 if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg)) 838 return true; 839 if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit()) 840 continue; 841 if (CheckDef == MO.isDef()) 842 return true; 843 } 844 return false; 845 } 846 847 // Check to see if an instruction can be dot new. 848 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI, 849 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, 850 const TargetRegisterClass* RC) { 851 // Already a dot new instruction. 852 if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI)) 853 return false; 854 855 if (!isNewifiable(MI, RC)) 856 return false; 857 858 const MachineInstr &PI = *PacketSU->getInstr(); 859 860 // The "new value" cannot come from inline asm. 861 if (PI.isInlineAsm()) 862 return false; 863 864 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no 865 // sense. 866 if (PI.isImplicitDef()) 867 return false; 868 869 // If dependency is trough an implicitly defined register, we should not 870 // newify the use. 871 if (isImplicitDependency(PI, true, DepReg) || 872 isImplicitDependency(MI, false, DepReg)) 873 return false; 874 875 const MCInstrDesc& MCID = PI.getDesc(); 876 const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF); 877 if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass) 878 return false; 879 880 // predicate .new 881 if (RC == &Hexagon::PredRegsRegClass) 882 return HII->predCanBeUsedAsDotNew(PI, DepReg); 883 884 if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI)) 885 return false; 886 887 // Create a dot new machine instruction to see if resources can be 888 // allocated. If not, bail out now. 889 int NewOpcode = (RC != &Hexagon::PredRegsRegClass) ? HII->getDotNewOp(MI) : 890 HII->getDotNewPredOp(MI, MBPI); 891 const MCInstrDesc &D = HII->get(NewOpcode); 892 MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc()); 893 bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI); 894 MF.deleteMachineInstr(NewMI); 895 if (!ResourcesAvailable) 896 return false; 897 898 // New Value Store only. New Value Jump generated as a separate pass. 899 if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII)) 900 return false; 901 902 return true; 903 } 904 905 // Go through the packet instructions and search for an anti dependency between 906 // them and DepReg from MI. Consider this case: 907 // Trying to add 908 // a) %r1 = TFRI_cdNotPt %p3, 2 909 // to this packet: 910 // { 911 // b) %p0 = C2_or killed %p3, killed %p0 912 // c) %p3 = C2_tfrrp %r23 913 // d) %r1 = C2_cmovenewit %p3, 4 914 // } 915 // The P3 from a) and d) will be complements after 916 // a)'s P3 is converted to .new form 917 // Anti-dep between c) and b) is irrelevant for this case 918 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI, 919 unsigned DepReg) { 920 SUnit *PacketSUDep = MIToSUnit.find(&MI)->second; 921 922 for (auto I : CurrentPacketMIs) { 923 // We only care for dependencies to predicated instructions 924 if (!HII->isPredicated(*I)) 925 continue; 926 927 // Scheduling Unit for current insn in the packet 928 SUnit *PacketSU = MIToSUnit.find(I)->second; 929 930 // Look at dependencies between current members of the packet and 931 // predicate defining instruction MI. Make sure that dependency is 932 // on the exact register we care about. 933 if (PacketSU->isSucc(PacketSUDep)) { 934 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { 935 auto &Dep = PacketSU->Succs[i]; 936 if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti && 937 Dep.getReg() == DepReg) 938 return true; 939 } 940 } 941 } 942 943 return false; 944 } 945 946 /// Gets the predicate register of a predicated instruction. 947 static unsigned getPredicatedRegister(MachineInstr &MI, 948 const HexagonInstrInfo *QII) { 949 /// We use the following rule: The first predicate register that is a use is 950 /// the predicate register of a predicated instruction. 951 assert(QII->isPredicated(MI) && "Must be predicated instruction"); 952 953 for (auto &Op : MI.operands()) { 954 if (Op.isReg() && Op.getReg() && Op.isUse() && 955 Hexagon::PredRegsRegClass.contains(Op.getReg())) 956 return Op.getReg(); 957 } 958 959 llvm_unreachable("Unknown instruction operand layout"); 960 return 0; 961 } 962 963 // Given two predicated instructions, this function detects whether 964 // the predicates are complements. 965 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1, 966 MachineInstr &MI2) { 967 // If we don't know the predicate sense of the instructions bail out early, we 968 // need it later. 969 if (getPredicateSense(MI1, HII) == PK_Unknown || 970 getPredicateSense(MI2, HII) == PK_Unknown) 971 return false; 972 973 // Scheduling unit for candidate. 974 SUnit *SU = MIToSUnit[&MI1]; 975 976 // One corner case deals with the following scenario: 977 // Trying to add 978 // a) %r24 = A2_tfrt %p0, %r25 979 // to this packet: 980 // { 981 // b) %r25 = A2_tfrf %p0, %r24 982 // c) %p0 = C2_cmpeqi %r26, 1 983 // } 984 // 985 // On general check a) and b) are complements, but presence of c) will 986 // convert a) to .new form, and then it is not a complement. 987 // We attempt to detect it by analyzing existing dependencies in the packet. 988 989 // Analyze relationships between all existing members of the packet. 990 // Look for Anti dependecy on the same predicate reg as used in the 991 // candidate. 992 for (auto I : CurrentPacketMIs) { 993 // Scheduling Unit for current insn in the packet. 994 SUnit *PacketSU = MIToSUnit.find(I)->second; 995 996 // If this instruction in the packet is succeeded by the candidate... 997 if (PacketSU->isSucc(SU)) { 998 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { 999 auto Dep = PacketSU->Succs[i]; 1000 // The corner case exist when there is true data dependency between 1001 // candidate and one of current packet members, this dep is on 1002 // predicate reg, and there already exist anti dep on the same pred in 1003 // the packet. 1004 if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data && 1005 Hexagon::PredRegsRegClass.contains(Dep.getReg())) { 1006 // Here I know that I is predicate setting instruction with true 1007 // data dep to candidate on the register we care about - c) in the 1008 // above example. Now I need to see if there is an anti dependency 1009 // from c) to any other instruction in the same packet on the pred 1010 // reg of interest. 1011 if (restrictingDepExistInPacket(*I, Dep.getReg())) 1012 return false; 1013 } 1014 } 1015 } 1016 } 1017 1018 // If the above case does not apply, check regular complement condition. 1019 // Check that the predicate register is the same and that the predicate 1020 // sense is different We also need to differentiate .old vs. .new: !p0 1021 // is not complementary to p0.new. 1022 unsigned PReg1 = getPredicatedRegister(MI1, HII); 1023 unsigned PReg2 = getPredicatedRegister(MI2, HII); 1024 return PReg1 == PReg2 && 1025 Hexagon::PredRegsRegClass.contains(PReg1) && 1026 Hexagon::PredRegsRegClass.contains(PReg2) && 1027 getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) && 1028 HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2); 1029 } 1030 1031 // Initialize packetizer flags. 1032 void HexagonPacketizerList::initPacketizerState() { 1033 Dependence = false; 1034 PromotedToDotNew = false; 1035 GlueToNewValueJump = false; 1036 GlueAllocframeStore = false; 1037 FoundSequentialDependence = false; 1038 ChangedOffset = INT64_MAX; 1039 } 1040 1041 // Ignore bundling of pseudo instructions. 1042 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI, 1043 const MachineBasicBlock *) { 1044 if (MI.isDebugInstr()) 1045 return true; 1046 1047 if (MI.isCFIInstruction()) 1048 return false; 1049 1050 // We must print out inline assembly. 1051 if (MI.isInlineAsm()) 1052 return false; 1053 1054 if (MI.isImplicitDef()) 1055 return false; 1056 1057 // We check if MI has any functional units mapped to it. If it doesn't, 1058 // we ignore the instruction. 1059 const MCInstrDesc& TID = MI.getDesc(); 1060 auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass()); 1061 return !IS->getUnits(); 1062 } 1063 1064 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) { 1065 // Ensure any bundles created by gather packetize remain separate. 1066 if (MI.isBundle()) 1067 return true; 1068 1069 if (MI.isEHLabel() || MI.isCFIInstruction()) 1070 return true; 1071 1072 // Consider inline asm to not be a solo instruction by default. 1073 // Inline asm will be put in a packet temporarily, but then it will be 1074 // removed, and placed outside of the packet (before or after, depending 1075 // on dependencies). This is to reduce the impact of inline asm as a 1076 // "packet splitting" instruction. 1077 if (MI.isInlineAsm() && !ScheduleInlineAsm) 1078 return true; 1079 1080 if (isSchedBarrier(MI)) 1081 return true; 1082 1083 if (HII->isSolo(MI)) 1084 return true; 1085 1086 if (MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_ENTER || 1087 MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_EXIT || 1088 MI.getOpcode() == Hexagon::PATCHABLE_TAIL_CALL) 1089 return true; 1090 1091 if (MI.getOpcode() == Hexagon::A2_nop) 1092 return true; 1093 1094 return false; 1095 } 1096 1097 // Quick check if instructions MI and MJ cannot coexist in the same packet. 1098 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm", 1099 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm". 1100 // For full test call this function twice: 1101 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI) 1102 // Doing the test only one way saves the amount of code in this function, 1103 // since every test would need to be repeated with the MI and MJ reversed. 1104 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ, 1105 const HexagonInstrInfo &HII) { 1106 const MachineFunction *MF = MI.getParent()->getParent(); 1107 if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() && 1108 HII.isHVXMemWithAIndirect(MI, MJ)) 1109 return true; 1110 1111 // Don't allow a store and an instruction that must be in slot0 and 1112 // doesn't allow a slot1 instruction. 1113 if (MI.mayStore() && HII.isRestrictNoSlot1Store(MJ) && HII.isPureSlot0(MJ)) 1114 return true; 1115 1116 // An inline asm cannot be together with a branch, because we may not be 1117 // able to remove the asm out after packetizing (i.e. if the asm must be 1118 // moved past the bundle). Similarly, two asms cannot be together to avoid 1119 // complications when determining their relative order outside of a bundle. 1120 if (MI.isInlineAsm()) 1121 return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() || 1122 MJ.isCall() || MJ.isTerminator(); 1123 1124 // New-value stores cannot coexist with any other stores. 1125 if (HII.isNewValueStore(MI) && MJ.mayStore()) 1126 return true; 1127 1128 switch (MI.getOpcode()) { 1129 case Hexagon::S2_storew_locked: 1130 case Hexagon::S4_stored_locked: 1131 case Hexagon::L2_loadw_locked: 1132 case Hexagon::L4_loadd_locked: 1133 case Hexagon::Y2_dccleana: 1134 case Hexagon::Y2_dccleaninva: 1135 case Hexagon::Y2_dcinva: 1136 case Hexagon::Y2_dczeroa: 1137 case Hexagon::Y4_l2fetch: 1138 case Hexagon::Y5_l2fetch: { 1139 // These instructions can only be grouped with ALU32 or non-floating-point 1140 // XTYPE instructions. Since there is no convenient way of identifying fp 1141 // XTYPE instructions, only allow grouping with ALU32 for now. 1142 unsigned TJ = HII.getType(MJ); 1143 if (TJ != HexagonII::TypeALU32_2op && 1144 TJ != HexagonII::TypeALU32_3op && 1145 TJ != HexagonII::TypeALU32_ADDI) 1146 return true; 1147 break; 1148 } 1149 default: 1150 break; 1151 } 1152 1153 // "False" really means that the quick check failed to determine if 1154 // I and J cannot coexist. 1155 return false; 1156 } 1157 1158 // Full, symmetric check. 1159 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI, 1160 const MachineInstr &MJ) { 1161 return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII); 1162 } 1163 1164 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) { 1165 for (auto &B : MF) { 1166 MachineBasicBlock::iterator BundleIt; 1167 for (MachineInstr &MI : llvm::make_early_inc_range(B.instrs())) { 1168 if (MI.isBundle()) 1169 BundleIt = MI.getIterator(); 1170 if (!MI.isInsideBundle()) 1171 continue; 1172 1173 // Decide on where to insert the instruction that we are pulling out. 1174 // Debug instructions always go before the bundle, but the placement of 1175 // INLINE_ASM depends on potential dependencies. By default, try to 1176 // put it before the bundle, but if the asm writes to a register that 1177 // other instructions in the bundle read, then we need to place it 1178 // after the bundle (to preserve the bundle semantics). 1179 bool InsertBeforeBundle; 1180 if (MI.isInlineAsm()) 1181 InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI); 1182 else if (MI.isDebugValue()) 1183 InsertBeforeBundle = true; 1184 else 1185 continue; 1186 1187 BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle); 1188 } 1189 } 1190 } 1191 1192 // Check if a given instruction is of class "system". 1193 static bool isSystemInstr(const MachineInstr &MI) { 1194 unsigned Opc = MI.getOpcode(); 1195 switch (Opc) { 1196 case Hexagon::Y2_barrier: 1197 case Hexagon::Y2_dcfetchbo: 1198 case Hexagon::Y4_l2fetch: 1199 case Hexagon::Y5_l2fetch: 1200 return true; 1201 } 1202 return false; 1203 } 1204 1205 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I, 1206 const MachineInstr &J) { 1207 // The dependence graph may not include edges between dead definitions, 1208 // so without extra checks, we could end up packetizing two instruction 1209 // defining the same (dead) register. 1210 if (I.isCall() || J.isCall()) 1211 return false; 1212 if (HII->isPredicated(I) || HII->isPredicated(J)) 1213 return false; 1214 1215 BitVector DeadDefs(Hexagon::NUM_TARGET_REGS); 1216 for (auto &MO : I.operands()) { 1217 if (!MO.isReg() || !MO.isDef() || !MO.isDead()) 1218 continue; 1219 DeadDefs[MO.getReg()] = true; 1220 } 1221 1222 for (auto &MO : J.operands()) { 1223 if (!MO.isReg() || !MO.isDef() || !MO.isDead()) 1224 continue; 1225 Register R = MO.getReg(); 1226 if (R != Hexagon::USR_OVF && DeadDefs[R]) 1227 return true; 1228 } 1229 return false; 1230 } 1231 1232 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I, 1233 const MachineInstr &J) { 1234 // A save callee-save register function call can only be in a packet 1235 // with instructions that don't write to the callee-save registers. 1236 if ((HII->isSaveCalleeSavedRegsCall(I) && 1237 doesModifyCalleeSavedReg(J, HRI)) || 1238 (HII->isSaveCalleeSavedRegsCall(J) && 1239 doesModifyCalleeSavedReg(I, HRI))) 1240 return true; 1241 1242 // Two control flow instructions cannot go in the same packet. 1243 if (isControlFlow(I) && isControlFlow(J)) 1244 return true; 1245 1246 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot 1247 // contain a speculative indirect jump, 1248 // a new-value compare jump or a dealloc_return. 1249 auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool { 1250 if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI)) 1251 return true; 1252 if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI)) 1253 return true; 1254 return false; 1255 }; 1256 1257 if (HII->isLoopN(I) && isBadForLoopN(J)) 1258 return true; 1259 if (HII->isLoopN(J) && isBadForLoopN(I)) 1260 return true; 1261 1262 // dealloc_return cannot appear in the same packet as a conditional or 1263 // unconditional jump. 1264 return HII->isDeallocRet(I) && 1265 (J.isBranch() || J.isCall() || J.isBarrier()); 1266 } 1267 1268 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I, 1269 const MachineInstr &J) { 1270 // Adding I to a packet that has J. 1271 1272 // Regmasks are not reflected in the scheduling dependency graph, so 1273 // we need to check them manually. This code assumes that regmasks only 1274 // occur on calls, and the problematic case is when we add an instruction 1275 // defining a register R to a packet that has a call that clobbers R via 1276 // a regmask. Those cannot be packetized together, because the call will 1277 // be executed last. That's also a reson why it is ok to add a call 1278 // clobbering R to a packet that defines R. 1279 1280 // Look for regmasks in J. 1281 for (const MachineOperand &OpJ : J.operands()) { 1282 if (!OpJ.isRegMask()) 1283 continue; 1284 assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call"); 1285 for (const MachineOperand &OpI : I.operands()) { 1286 if (OpI.isReg()) { 1287 if (OpJ.clobbersPhysReg(OpI.getReg())) 1288 return true; 1289 } else if (OpI.isRegMask()) { 1290 // Both are regmasks. Assume that they intersect. 1291 return true; 1292 } 1293 } 1294 } 1295 return false; 1296 } 1297 1298 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I, 1299 const MachineInstr &J) { 1300 bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J); 1301 bool StoreI = I.mayStore(), StoreJ = J.mayStore(); 1302 if ((SysI && StoreJ) || (SysJ && StoreI)) 1303 return true; 1304 1305 if (StoreI && StoreJ) { 1306 if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I)) 1307 return true; 1308 } else { 1309 // A memop cannot be in the same packet with another memop or a store. 1310 // Two stores can be together, but here I and J cannot both be stores. 1311 bool MopStI = HII->isMemOp(I) || StoreI; 1312 bool MopStJ = HII->isMemOp(J) || StoreJ; 1313 if (MopStI && MopStJ) 1314 return true; 1315 } 1316 1317 return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J)); 1318 } 1319 1320 // SUI is the current instruction that is out side of the current packet. 1321 // SUJ is the current instruction inside the current packet against which that 1322 // SUI will be packetized. 1323 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { 1324 assert(SUI->getInstr() && SUJ->getInstr()); 1325 MachineInstr &I = *SUI->getInstr(); 1326 MachineInstr &J = *SUJ->getInstr(); 1327 1328 // Clear IgnoreDepMIs when Packet starts. 1329 if (CurrentPacketMIs.size() == 1) 1330 IgnoreDepMIs.clear(); 1331 1332 MachineBasicBlock::iterator II = I.getIterator(); 1333 1334 // Solo instructions cannot go in the packet. 1335 assert(!isSoloInstruction(I) && "Unexpected solo instr!"); 1336 1337 if (cannotCoexist(I, J)) 1338 return false; 1339 1340 Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J); 1341 if (Dependence) 1342 return false; 1343 1344 // Regmasks are not accounted for in the scheduling graph, so we need 1345 // to explicitly check for dependencies caused by them. They should only 1346 // appear on calls, so it's not too pessimistic to reject all regmask 1347 // dependencies. 1348 Dependence = hasRegMaskDependence(I, J); 1349 if (Dependence) 1350 return false; 1351 1352 // Dual-store does not allow second store, if the first store is not 1353 // in SLOT0. New value store, new value jump, dealloc_return and memop 1354 // always take SLOT0. Arch spec 3.4.4.2. 1355 Dependence = hasDualStoreDependence(I, J); 1356 if (Dependence) 1357 return false; 1358 1359 // If an instruction feeds new value jump, glue it. 1360 MachineBasicBlock::iterator NextMII = I.getIterator(); 1361 ++NextMII; 1362 if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) { 1363 MachineInstr &NextMI = *NextMII; 1364 1365 bool secondRegMatch = false; 1366 const MachineOperand &NOp0 = NextMI.getOperand(0); 1367 const MachineOperand &NOp1 = NextMI.getOperand(1); 1368 1369 if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg()) 1370 secondRegMatch = true; 1371 1372 for (MachineInstr *PI : CurrentPacketMIs) { 1373 // NVJ can not be part of the dual jump - Arch Spec: section 7.8. 1374 if (PI->isCall()) { 1375 Dependence = true; 1376 break; 1377 } 1378 // Validate: 1379 // 1. Packet does not have a store in it. 1380 // 2. If the first operand of the nvj is newified, and the second 1381 // operand is also a reg, it (second reg) is not defined in 1382 // the same packet. 1383 // 3. If the second operand of the nvj is newified, (which means 1384 // first operand is also a reg), first reg is not defined in 1385 // the same packet. 1386 if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() || 1387 HII->isLoopN(*PI)) { 1388 Dependence = true; 1389 break; 1390 } 1391 // Check #2/#3. 1392 const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1; 1393 if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) { 1394 Dependence = true; 1395 break; 1396 } 1397 } 1398 1399 GlueToNewValueJump = true; 1400 if (Dependence) 1401 return false; 1402 } 1403 1404 // There no dependency between a prolog instruction and its successor. 1405 if (!SUJ->isSucc(SUI)) 1406 return true; 1407 1408 for (unsigned i = 0; i < SUJ->Succs.size(); ++i) { 1409 if (FoundSequentialDependence) 1410 break; 1411 1412 if (SUJ->Succs[i].getSUnit() != SUI) 1413 continue; 1414 1415 SDep::Kind DepType = SUJ->Succs[i].getKind(); 1416 // For direct calls: 1417 // Ignore register dependences for call instructions for packetization 1418 // purposes except for those due to r31 and predicate registers. 1419 // 1420 // For indirect calls: 1421 // Same as direct calls + check for true dependences to the register 1422 // used in the indirect call. 1423 // 1424 // We completely ignore Order dependences for call instructions. 1425 // 1426 // For returns: 1427 // Ignore register dependences for return instructions like jumpr, 1428 // dealloc return unless we have dependencies on the explicit uses 1429 // of the registers used by jumpr (like r31) or dealloc return 1430 // (like r29 or r30). 1431 unsigned DepReg = 0; 1432 const TargetRegisterClass *RC = nullptr; 1433 if (DepType == SDep::Data) { 1434 DepReg = SUJ->Succs[i].getReg(); 1435 RC = HRI->getMinimalPhysRegClass(DepReg); 1436 } 1437 1438 if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) { 1439 if (!isRegDependence(DepType)) 1440 continue; 1441 if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg())) 1442 continue; 1443 } 1444 1445 if (DepType == SDep::Data) { 1446 if (canPromoteToDotCur(J, SUJ, DepReg, II, RC)) 1447 if (promoteToDotCur(J, DepType, II, RC)) 1448 continue; 1449 } 1450 1451 // Data dpendence ok if we have load.cur. 1452 if (DepType == SDep::Data && HII->isDotCurInst(J)) { 1453 if (HII->isHVXVec(I)) 1454 continue; 1455 } 1456 1457 // For instructions that can be promoted to dot-new, try to promote. 1458 if (DepType == SDep::Data) { 1459 if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) { 1460 if (promoteToDotNew(I, DepType, II, RC)) { 1461 PromotedToDotNew = true; 1462 if (cannotCoexist(I, J)) 1463 FoundSequentialDependence = true; 1464 continue; 1465 } 1466 } 1467 if (HII->isNewValueJump(I)) 1468 continue; 1469 } 1470 1471 // For predicated instructions, if the predicates are complements then 1472 // there can be no dependence. 1473 if (HII->isPredicated(I) && HII->isPredicated(J) && 1474 arePredicatesComplements(I, J)) { 1475 // Not always safe to do this translation. 1476 // DAG Builder attempts to reduce dependence edges using transitive 1477 // nature of dependencies. Here is an example: 1478 // 1479 // r0 = tfr_pt ... (1) 1480 // r0 = tfr_pf ... (2) 1481 // r0 = tfr_pt ... (3) 1482 // 1483 // There will be an output dependence between (1)->(2) and (2)->(3). 1484 // However, there is no dependence edge between (1)->(3). This results 1485 // in all 3 instructions going in the same packet. We ignore dependce 1486 // only once to avoid this situation. 1487 auto Itr = find(IgnoreDepMIs, &J); 1488 if (Itr != IgnoreDepMIs.end()) { 1489 Dependence = true; 1490 return false; 1491 } 1492 IgnoreDepMIs.push_back(&I); 1493 continue; 1494 } 1495 1496 // Ignore Order dependences between unconditional direct branches 1497 // and non-control-flow instructions. 1498 if (isDirectJump(I) && !J.isBranch() && !J.isCall() && 1499 DepType == SDep::Order) 1500 continue; 1501 1502 // Ignore all dependences for jumps except for true and output 1503 // dependences. 1504 if (I.isConditionalBranch() && DepType != SDep::Data && 1505 DepType != SDep::Output) 1506 continue; 1507 1508 if (DepType == SDep::Output) { 1509 FoundSequentialDependence = true; 1510 break; 1511 } 1512 1513 // For Order dependences: 1514 // 1. Volatile loads/stores can be packetized together, unless other 1515 // rules prevent is. 1516 // 2. Store followed by a load is not allowed. 1517 // 3. Store followed by a store is valid. 1518 // 4. Load followed by any memory operation is allowed. 1519 if (DepType == SDep::Order) { 1520 if (!PacketizeVolatiles) { 1521 bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef(); 1522 if (OrdRefs) { 1523 FoundSequentialDependence = true; 1524 break; 1525 } 1526 } 1527 // J is first, I is second. 1528 bool LoadJ = J.mayLoad(), StoreJ = J.mayStore(); 1529 bool LoadI = I.mayLoad(), StoreI = I.mayStore(); 1530 bool NVStoreJ = HII->isNewValueStore(J); 1531 bool NVStoreI = HII->isNewValueStore(I); 1532 bool IsVecJ = HII->isHVXVec(J); 1533 bool IsVecI = HII->isHVXVec(I); 1534 1535 // Don't reorder the loads if there is an order dependence. This would 1536 // occur if the first instruction must go in slot0. 1537 if (LoadJ && LoadI && HII->isPureSlot0(J)) { 1538 FoundSequentialDependence = true; 1539 break; 1540 } 1541 1542 if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() && 1543 ((LoadJ && StoreI && !NVStoreI) || 1544 (StoreJ && LoadI && !NVStoreJ)) && 1545 (J.getOpcode() != Hexagon::S2_allocframe && 1546 I.getOpcode() != Hexagon::S2_allocframe) && 1547 (J.getOpcode() != Hexagon::L2_deallocframe && 1548 I.getOpcode() != Hexagon::L2_deallocframe) && 1549 (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI)) 1550 setmemShufDisabled(true); 1551 else 1552 if (StoreJ && LoadI && alias(J, I)) { 1553 FoundSequentialDependence = true; 1554 break; 1555 } 1556 1557 if (!StoreJ) 1558 if (!LoadJ || (!LoadI && !StoreI)) { 1559 // If J is neither load nor store, assume a dependency. 1560 // If J is a load, but I is neither, also assume a dependency. 1561 FoundSequentialDependence = true; 1562 break; 1563 } 1564 // Store followed by store: not OK on V2. 1565 // Store followed by load: not OK on all. 1566 // Load followed by store: OK on all. 1567 // Load followed by load: OK on all. 1568 continue; 1569 } 1570 1571 // Special case for ALLOCFRAME: even though there is dependency 1572 // between ALLOCFRAME and subsequent store, allow it to be packetized 1573 // in a same packet. This implies that the store is using the caller's 1574 // SP. Hence, offset needs to be updated accordingly. 1575 if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) { 1576 unsigned Opc = I.getOpcode(); 1577 switch (Opc) { 1578 case Hexagon::S2_storerd_io: 1579 case Hexagon::S2_storeri_io: 1580 case Hexagon::S2_storerh_io: 1581 case Hexagon::S2_storerb_io: 1582 if (I.getOperand(0).getReg() == HRI->getStackRegister()) { 1583 // Since this store is to be glued with allocframe in the same 1584 // packet, it will use SP of the previous stack frame, i.e. 1585 // caller's SP. Therefore, we need to recalculate offset 1586 // according to this change. 1587 GlueAllocframeStore = useCallersSP(I); 1588 if (GlueAllocframeStore) 1589 continue; 1590 } 1591 break; 1592 default: 1593 break; 1594 } 1595 } 1596 1597 // There are certain anti-dependencies that cannot be ignored. 1598 // Specifically: 1599 // J2_call ... implicit-def %r0 ; SUJ 1600 // R0 = ... ; SUI 1601 // Those cannot be packetized together, since the call will observe 1602 // the effect of the assignment to R0. 1603 if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) { 1604 // Check if I defines any volatile register. We should also check 1605 // registers that the call may read, but these happen to be a 1606 // subset of the volatile register set. 1607 for (const MachineOperand &Op : I.operands()) { 1608 if (Op.isReg() && Op.isDef()) { 1609 Register R = Op.getReg(); 1610 if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI)) 1611 continue; 1612 } else if (!Op.isRegMask()) { 1613 // If I has a regmask assume dependency. 1614 continue; 1615 } 1616 FoundSequentialDependence = true; 1617 break; 1618 } 1619 } 1620 1621 // Skip over remaining anti-dependences. Two instructions that are 1622 // anti-dependent can share a packet, since in most such cases all 1623 // operands are read before any modifications take place. 1624 // The exceptions are branch and call instructions, since they are 1625 // executed after all other instructions have completed (at least 1626 // conceptually). 1627 if (DepType != SDep::Anti) { 1628 FoundSequentialDependence = true; 1629 break; 1630 } 1631 } 1632 1633 if (FoundSequentialDependence) { 1634 Dependence = true; 1635 return false; 1636 } 1637 1638 return true; 1639 } 1640 1641 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { 1642 assert(SUI->getInstr() && SUJ->getInstr()); 1643 MachineInstr &I = *SUI->getInstr(); 1644 MachineInstr &J = *SUJ->getInstr(); 1645 1646 bool Coexist = !cannotCoexist(I, J); 1647 1648 if (Coexist && !Dependence) 1649 return true; 1650 1651 // Check if the instruction was promoted to a dot-new. If so, demote it 1652 // back into a dot-old. 1653 if (PromotedToDotNew) 1654 demoteToDotOld(I); 1655 1656 cleanUpDotCur(); 1657 // Check if the instruction (must be a store) was glued with an allocframe 1658 // instruction. If so, restore its offset to its original value, i.e. use 1659 // current SP instead of caller's SP. 1660 if (GlueAllocframeStore) { 1661 useCalleesSP(I); 1662 GlueAllocframeStore = false; 1663 } 1664 1665 if (ChangedOffset != INT64_MAX) 1666 undoChangedOffset(I); 1667 1668 if (GlueToNewValueJump) { 1669 // Putting I and J together would prevent the new-value jump from being 1670 // packetized with the producer. In that case I and J must be separated. 1671 GlueToNewValueJump = false; 1672 return false; 1673 } 1674 1675 if (!Coexist) 1676 return false; 1677 1678 if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) { 1679 FoundSequentialDependence = false; 1680 Dependence = false; 1681 return true; 1682 } 1683 1684 return false; 1685 } 1686 1687 1688 bool HexagonPacketizerList::foundLSInPacket() { 1689 bool FoundLoad = false; 1690 bool FoundStore = false; 1691 1692 for (auto MJ : CurrentPacketMIs) { 1693 unsigned Opc = MJ->getOpcode(); 1694 if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe) 1695 continue; 1696 if (HII->isMemOp(*MJ)) 1697 continue; 1698 if (MJ->mayLoad()) 1699 FoundLoad = true; 1700 if (MJ->mayStore() && !HII->isNewValueStore(*MJ)) 1701 FoundStore = true; 1702 } 1703 return FoundLoad && FoundStore; 1704 } 1705 1706 1707 MachineBasicBlock::iterator 1708 HexagonPacketizerList::addToPacket(MachineInstr &MI) { 1709 MachineBasicBlock::iterator MII = MI.getIterator(); 1710 MachineBasicBlock *MBB = MI.getParent(); 1711 1712 if (CurrentPacketMIs.empty()) { 1713 PacketStalls = false; 1714 PacketStallCycles = 0; 1715 } 1716 PacketStalls |= producesStall(MI); 1717 PacketStallCycles = std::max(PacketStallCycles, calcStall(MI)); 1718 1719 if (MI.isImplicitDef()) { 1720 // Add to the packet to allow subsequent instructions to be checked 1721 // properly. 1722 CurrentPacketMIs.push_back(&MI); 1723 return MII; 1724 } 1725 assert(ResourceTracker->canReserveResources(MI)); 1726 1727 bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI); 1728 bool Good = true; 1729 1730 if (GlueToNewValueJump) { 1731 MachineInstr &NvjMI = *++MII; 1732 // We need to put both instructions in the same packet: MI and NvjMI. 1733 // Either of them can require a constant extender. Try to add both to 1734 // the current packet, and if that fails, end the packet and start a 1735 // new one. 1736 ResourceTracker->reserveResources(MI); 1737 if (ExtMI) 1738 Good = tryAllocateResourcesForConstExt(true); 1739 1740 bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI); 1741 if (Good) { 1742 if (ResourceTracker->canReserveResources(NvjMI)) 1743 ResourceTracker->reserveResources(NvjMI); 1744 else 1745 Good = false; 1746 } 1747 if (Good && ExtNvjMI) 1748 Good = tryAllocateResourcesForConstExt(true); 1749 1750 if (!Good) { 1751 endPacket(MBB, MI); 1752 assert(ResourceTracker->canReserveResources(MI)); 1753 ResourceTracker->reserveResources(MI); 1754 if (ExtMI) { 1755 assert(canReserveResourcesForConstExt()); 1756 tryAllocateResourcesForConstExt(true); 1757 } 1758 assert(ResourceTracker->canReserveResources(NvjMI)); 1759 ResourceTracker->reserveResources(NvjMI); 1760 if (ExtNvjMI) { 1761 assert(canReserveResourcesForConstExt()); 1762 reserveResourcesForConstExt(); 1763 } 1764 } 1765 CurrentPacketMIs.push_back(&MI); 1766 CurrentPacketMIs.push_back(&NvjMI); 1767 return MII; 1768 } 1769 1770 ResourceTracker->reserveResources(MI); 1771 if (ExtMI && !tryAllocateResourcesForConstExt(true)) { 1772 endPacket(MBB, MI); 1773 if (PromotedToDotNew) 1774 demoteToDotOld(MI); 1775 if (GlueAllocframeStore) { 1776 useCalleesSP(MI); 1777 GlueAllocframeStore = false; 1778 } 1779 ResourceTracker->reserveResources(MI); 1780 reserveResourcesForConstExt(); 1781 } 1782 1783 CurrentPacketMIs.push_back(&MI); 1784 return MII; 1785 } 1786 1787 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB, 1788 MachineBasicBlock::iterator EndMI) { 1789 // Replace VLIWPacketizerList::endPacket(MBB, EndMI). 1790 LLVM_DEBUG({ 1791 if (!CurrentPacketMIs.empty()) { 1792 dbgs() << "Finalizing packet:\n"; 1793 unsigned Idx = 0; 1794 for (MachineInstr *MI : CurrentPacketMIs) { 1795 unsigned R = ResourceTracker->getUsedResources(Idx++); 1796 dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI; 1797 } 1798 } 1799 }); 1800 1801 bool memShufDisabled = getmemShufDisabled(); 1802 if (memShufDisabled && !foundLSInPacket()) { 1803 setmemShufDisabled(false); 1804 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n"); 1805 } 1806 memShufDisabled = getmemShufDisabled(); 1807 1808 OldPacketMIs.clear(); 1809 for (MachineInstr *MI : CurrentPacketMIs) { 1810 MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator()); 1811 for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI)) 1812 OldPacketMIs.push_back(&I); 1813 } 1814 CurrentPacketMIs.clear(); 1815 1816 if (OldPacketMIs.size() > 1) { 1817 MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front()); 1818 MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator()); 1819 finalizeBundle(*MBB, FirstMI, LastMI); 1820 auto BundleMII = std::prev(FirstMI); 1821 if (memShufDisabled) 1822 HII->setBundleNoShuf(BundleMII); 1823 1824 setmemShufDisabled(false); 1825 } 1826 1827 PacketHasDuplex = false; 1828 PacketHasSLOT0OnlyInsn = false; 1829 ResourceTracker->clearResources(); 1830 LLVM_DEBUG(dbgs() << "End packet\n"); 1831 } 1832 1833 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) { 1834 if (Minimal) 1835 return false; 1836 1837 if (producesStall(MI)) 1838 return false; 1839 1840 // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex 1841 // with any other instruction in the existing packet. 1842 auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>(); 1843 // Constraint 1: Only one duplex allowed per packet. 1844 // Constraint 2: Consider duplex checks only if there is atleast one 1845 // instruction in a packet. 1846 // Constraint 3: If one of the existing instructions in the packet has a 1847 // SLOT0 only instruction that can not be duplexed, do not attempt to form 1848 // duplexes. (TODO: This will invalidate the L4_return* instructions to form a 1849 // duplex) 1850 if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 && 1851 !PacketHasDuplex) { 1852 // Check for SLOT0 only non-duplexable instruction in packet. 1853 for (auto &MJ : CurrentPacketMIs) 1854 PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(*MJ); 1855 // Get the Big Core Opcode (dup_*). 1856 int Opcode = HII->getDuplexOpcode(MI, false); 1857 if (Opcode >= 0) { 1858 // We now have an instruction that can be duplexed. 1859 for (auto &MJ : CurrentPacketMIs) { 1860 if (HII->isDuplexPair(MI, *MJ) && !PacketHasSLOT0OnlyInsn) { 1861 PacketHasDuplex = true; 1862 return true; 1863 } 1864 } 1865 // If it can not be duplexed, check if there is a valid transition in DFA 1866 // with the original opcode. 1867 MachineInstr &MIRef = const_cast<MachineInstr &>(MI); 1868 MIRef.setDesc(HII->get(Opcode)); 1869 return ResourceTracker->canReserveResources(MIRef); 1870 } 1871 } 1872 1873 return true; 1874 } 1875 1876 // V60 forward scheduling. 1877 unsigned int HexagonPacketizerList::calcStall(const MachineInstr &I) { 1878 // Check whether the previous packet is in a different loop. If this is the 1879 // case, there is little point in trying to avoid a stall because that would 1880 // favor the rare case (loop entry) over the common case (loop iteration). 1881 // 1882 // TODO: We should really be able to check all the incoming edges if this is 1883 // the first packet in a basic block, so we can avoid stalls from the loop 1884 // backedge. 1885 if (!OldPacketMIs.empty()) { 1886 auto *OldBB = OldPacketMIs.front()->getParent(); 1887 auto *ThisBB = I.getParent(); 1888 if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB)) 1889 return 0; 1890 } 1891 1892 SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)]; 1893 if (!SUI) 1894 return 0; 1895 1896 // If the latency is 0 and there is a data dependence between this 1897 // instruction and any instruction in the current packet, we disregard any 1898 // potential stalls due to the instructions in the previous packet. Most of 1899 // the instruction pairs that can go together in the same packet have 0 1900 // latency between them. The exceptions are 1901 // 1. NewValueJumps as they're generated much later and the latencies can't 1902 // be changed at that point. 1903 // 2. .cur instructions, if its consumer has a 0 latency successor (such as 1904 // .new). In this case, the latency between .cur and the consumer stays 1905 // non-zero even though we can have both .cur and .new in the same packet. 1906 // Changing the latency to 0 is not an option as it causes software pipeliner 1907 // to not pipeline in some cases. 1908 1909 // For Example: 1910 // { 1911 // I1: v6.cur = vmem(r0++#1) 1912 // I2: v7 = valign(v6,v4,r2) 1913 // I3: vmem(r5++#1) = v7.new 1914 // } 1915 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2. 1916 1917 for (auto J : CurrentPacketMIs) { 1918 SUnit *SUJ = MIToSUnit[J]; 1919 for (auto &Pred : SUI->Preds) 1920 if (Pred.getSUnit() == SUJ) 1921 if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) || 1922 HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I)) 1923 return 0; 1924 } 1925 1926 // Check if the latency is greater than one between this instruction and any 1927 // instruction in the previous packet. 1928 for (auto J : OldPacketMIs) { 1929 SUnit *SUJ = MIToSUnit[J]; 1930 for (auto &Pred : SUI->Preds) 1931 if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1) 1932 return Pred.getLatency(); 1933 } 1934 1935 return 0; 1936 } 1937 1938 bool HexagonPacketizerList::producesStall(const MachineInstr &I) { 1939 unsigned int Latency = calcStall(I); 1940 if (Latency == 0) 1941 return false; 1942 // Ignore stall unless it stalls more than previous instruction in packet 1943 if (PacketStalls) 1944 return Latency > PacketStallCycles; 1945 return true; 1946 } 1947 1948 //===----------------------------------------------------------------------===// 1949 // Public Constructor Functions 1950 //===----------------------------------------------------------------------===// 1951 1952 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) { 1953 return new HexagonPacketizer(Minimal); 1954 } 1955