1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a simple VLIW packetizer using DFA. The packetizer works on 10 // machine basic blocks. For each instruction I in BB, the packetizer consults 11 // the DFA to see if machine resources are available to execute I. If so, the 12 // packetizer checks if I depends on any instruction J in the current packet. 13 // If no dependency is found, I is added to current packet and machine resource 14 // is marked as taken. If any dependency is found, a target API call is made to 15 // prune the dependence. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "HexagonVLIWPacketizer.h" 20 #include "Hexagon.h" 21 #include "HexagonInstrInfo.h" 22 #include "HexagonRegisterInfo.h" 23 #include "HexagonSubtarget.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBundle.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/ScheduleDAG.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <iterator> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "packets" 55 56 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden, 57 cl::ZeroOrMore, cl::init(false), 58 cl::desc("Disable Hexagon packetizer pass")); 59 60 cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden, 61 cl::ZeroOrMore, cl::init(true), 62 cl::desc("Allow slot1 store and slot0 load")); 63 64 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles", 65 cl::ZeroOrMore, cl::Hidden, cl::init(true), 66 cl::desc("Allow non-solo packetization of volatile memory references")); 67 68 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false), 69 cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC")); 70 71 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores", 72 cl::init(false), cl::Hidden, cl::ZeroOrMore, 73 cl::desc("Disable vector double new-value-stores")); 74 75 extern cl::opt<bool> ScheduleInlineAsm; 76 77 namespace llvm { 78 79 FunctionPass *createHexagonPacketizer(bool Minimal); 80 void initializeHexagonPacketizerPass(PassRegistry&); 81 82 } // end namespace llvm 83 84 namespace { 85 86 class HexagonPacketizer : public MachineFunctionPass { 87 public: 88 static char ID; 89 90 HexagonPacketizer(bool Min = false) 91 : MachineFunctionPass(ID), Minimal(Min) {} 92 93 void getAnalysisUsage(AnalysisUsage &AU) const override { 94 AU.setPreservesCFG(); 95 AU.addRequired<AAResultsWrapperPass>(); 96 AU.addRequired<MachineBranchProbabilityInfo>(); 97 AU.addRequired<MachineDominatorTree>(); 98 AU.addRequired<MachineLoopInfo>(); 99 AU.addPreserved<MachineDominatorTree>(); 100 AU.addPreserved<MachineLoopInfo>(); 101 MachineFunctionPass::getAnalysisUsage(AU); 102 } 103 104 StringRef getPassName() const override { return "Hexagon Packetizer"; } 105 bool runOnMachineFunction(MachineFunction &Fn) override; 106 107 MachineFunctionProperties getRequiredProperties() const override { 108 return MachineFunctionProperties().set( 109 MachineFunctionProperties::Property::NoVRegs); 110 } 111 112 private: 113 const HexagonInstrInfo *HII; 114 const HexagonRegisterInfo *HRI; 115 const bool Minimal; 116 }; 117 118 } // end anonymous namespace 119 120 char HexagonPacketizer::ID = 0; 121 122 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer", 123 "Hexagon Packetizer", false, false) 124 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 125 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 126 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 127 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 128 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer", 129 "Hexagon Packetizer", false, false) 130 131 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF, 132 MachineLoopInfo &MLI, AliasAnalysis *AA, 133 const MachineBranchProbabilityInfo *MBPI, bool Minimal) 134 : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI), 135 Minimal(Minimal) { 136 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 137 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 138 139 addMutation(llvm::make_unique<HexagonSubtarget::UsrOverflowMutation>()); 140 addMutation(llvm::make_unique<HexagonSubtarget::HVXMemLatencyMutation>()); 141 addMutation(llvm::make_unique<HexagonSubtarget::BankConflictMutation>()); 142 } 143 144 // Check if FirstI modifies a register that SecondI reads. 145 static bool hasWriteToReadDep(const MachineInstr &FirstI, 146 const MachineInstr &SecondI, 147 const TargetRegisterInfo *TRI) { 148 for (auto &MO : FirstI.operands()) { 149 if (!MO.isReg() || !MO.isDef()) 150 continue; 151 unsigned R = MO.getReg(); 152 if (SecondI.readsRegister(R, TRI)) 153 return true; 154 } 155 return false; 156 } 157 158 159 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI, 160 MachineBasicBlock::iterator BundleIt, bool Before) { 161 MachineBasicBlock::instr_iterator InsertPt; 162 if (Before) 163 InsertPt = BundleIt.getInstrIterator(); 164 else 165 InsertPt = std::next(BundleIt).getInstrIterator(); 166 167 MachineBasicBlock &B = *MI.getParent(); 168 // The instruction should at least be bundled with the preceding instruction 169 // (there will always be one, i.e. BUNDLE, if nothing else). 170 assert(MI.isBundledWithPred()); 171 if (MI.isBundledWithSucc()) { 172 MI.clearFlag(MachineInstr::BundledSucc); 173 MI.clearFlag(MachineInstr::BundledPred); 174 } else { 175 // If it's not bundled with the successor (i.e. it is the last one 176 // in the bundle), then we can simply unbundle it from the predecessor, 177 // which will take care of updating the predecessor's flag. 178 MI.unbundleFromPred(); 179 } 180 B.splice(InsertPt, &B, MI.getIterator()); 181 182 // Get the size of the bundle without asserting. 183 MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator(); 184 MachineBasicBlock::const_instr_iterator E = B.instr_end(); 185 unsigned Size = 0; 186 for (++I; I != E && I->isBundledWithPred(); ++I) 187 ++Size; 188 189 // If there are still two or more instructions, then there is nothing 190 // else to be done. 191 if (Size > 1) 192 return BundleIt; 193 194 // Otherwise, extract the single instruction out and delete the bundle. 195 MachineBasicBlock::iterator NextIt = std::next(BundleIt); 196 MachineInstr &SingleI = *BundleIt->getNextNode(); 197 SingleI.unbundleFromPred(); 198 assert(!SingleI.isBundledWithSucc()); 199 BundleIt->eraseFromParent(); 200 return NextIt; 201 } 202 203 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) { 204 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 205 HII = HST.getInstrInfo(); 206 HRI = HST.getRegisterInfo(); 207 auto &MLI = getAnalysis<MachineLoopInfo>(); 208 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 209 auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 210 211 if (EnableGenAllInsnClass) 212 HII->genAllInsnTimingClasses(MF); 213 214 // Instantiate the packetizer. 215 bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() || 216 skipFunction(MF.getFunction()); 217 HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly); 218 219 // DFA state table should not be empty. 220 assert(Packetizer.getResourceTracker() && "Empty DFA table!"); 221 222 // Loop over all basic blocks and remove KILL pseudo-instructions 223 // These instructions confuse the dependence analysis. Consider: 224 // D0 = ... (Insn 0) 225 // R0 = KILL R0, D0 (Insn 1) 226 // R0 = ... (Insn 2) 227 // Here, Insn 1 will result in the dependence graph not emitting an output 228 // dependence between Insn 0 and Insn 2. This can lead to incorrect 229 // packetization 230 for (MachineBasicBlock &MB : MF) { 231 auto End = MB.end(); 232 auto MI = MB.begin(); 233 while (MI != End) { 234 auto NextI = std::next(MI); 235 if (MI->isKill()) { 236 MB.erase(MI); 237 End = MB.end(); 238 } 239 MI = NextI; 240 } 241 } 242 243 // Loop over all of the basic blocks. 244 for (auto &MB : MF) { 245 auto Begin = MB.begin(), End = MB.end(); 246 while (Begin != End) { 247 // Find the first non-boundary starting from the end of the last 248 // scheduling region. 249 MachineBasicBlock::iterator RB = Begin; 250 while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF)) 251 ++RB; 252 // Find the first boundary starting from the beginning of the new 253 // region. 254 MachineBasicBlock::iterator RE = RB; 255 while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF)) 256 ++RE; 257 // Add the scheduling boundary if it's not block end. 258 if (RE != End) 259 ++RE; 260 // If RB == End, then RE == End. 261 if (RB != End) 262 Packetizer.PacketizeMIs(&MB, RB, RE); 263 264 Begin = RE; 265 } 266 } 267 268 Packetizer.unpacketizeSoloInstrs(MF); 269 return true; 270 } 271 272 // Reserve resources for a constant extender. Trigger an assertion if the 273 // reservation fails. 274 void HexagonPacketizerList::reserveResourcesForConstExt() { 275 if (!tryAllocateResourcesForConstExt(true)) 276 llvm_unreachable("Resources not available"); 277 } 278 279 bool HexagonPacketizerList::canReserveResourcesForConstExt() { 280 return tryAllocateResourcesForConstExt(false); 281 } 282 283 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded, 284 // return true, otherwise, return false. 285 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) { 286 auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc()); 287 bool Avail = ResourceTracker->canReserveResources(*ExtMI); 288 if (Reserve && Avail) 289 ResourceTracker->reserveResources(*ExtMI); 290 MF.DeleteMachineInstr(ExtMI); 291 return Avail; 292 } 293 294 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI, 295 SDep::Kind DepType, unsigned DepReg) { 296 // Check for LR dependence. 297 if (DepReg == HRI->getRARegister()) 298 return true; 299 300 if (HII->isDeallocRet(MI)) 301 if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister()) 302 return true; 303 304 // Call-like instructions can be packetized with preceding instructions 305 // that define registers implicitly used or modified by the call. Explicit 306 // uses are still prohibited, as in the case of indirect calls: 307 // r0 = ... 308 // J2_jumpr r0 309 if (DepType == SDep::Data) { 310 for (const MachineOperand MO : MI.operands()) 311 if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit()) 312 return true; 313 } 314 315 return false; 316 } 317 318 static bool isRegDependence(const SDep::Kind DepType) { 319 return DepType == SDep::Data || DepType == SDep::Anti || 320 DepType == SDep::Output; 321 } 322 323 static bool isDirectJump(const MachineInstr &MI) { 324 return MI.getOpcode() == Hexagon::J2_jump; 325 } 326 327 static bool isSchedBarrier(const MachineInstr &MI) { 328 switch (MI.getOpcode()) { 329 case Hexagon::Y2_barrier: 330 return true; 331 } 332 return false; 333 } 334 335 static bool isControlFlow(const MachineInstr &MI) { 336 return MI.getDesc().isTerminator() || MI.getDesc().isCall(); 337 } 338 339 /// Returns true if the instruction modifies a callee-saved register. 340 static bool doesModifyCalleeSavedReg(const MachineInstr &MI, 341 const TargetRegisterInfo *TRI) { 342 const MachineFunction &MF = *MI.getParent()->getParent(); 343 for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 344 if (MI.modifiesRegister(*CSR, TRI)) 345 return true; 346 return false; 347 } 348 349 // Returns true if an instruction can be promoted to .new predicate or 350 // new-value store. 351 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI, 352 const TargetRegisterClass *NewRC) { 353 // Vector stores can be predicated, and can be new-value stores, but 354 // they cannot be predicated on a .new predicate value. 355 if (NewRC == &Hexagon::PredRegsRegClass) { 356 if (HII->isHVXVec(MI) && MI.mayStore()) 357 return false; 358 return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0; 359 } 360 // If the class is not PredRegs, it could only apply to new-value stores. 361 return HII->mayBeNewStore(MI); 362 } 363 364 // Promote an instructiont to its .cur form. 365 // At this time, we have already made a call to canPromoteToDotCur and made 366 // sure that it can *indeed* be promoted. 367 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI, 368 SDep::Kind DepType, MachineBasicBlock::iterator &MII, 369 const TargetRegisterClass* RC) { 370 assert(DepType == SDep::Data); 371 int CurOpcode = HII->getDotCurOp(MI); 372 MI.setDesc(HII->get(CurOpcode)); 373 return true; 374 } 375 376 void HexagonPacketizerList::cleanUpDotCur() { 377 MachineInstr *MI = nullptr; 378 for (auto BI : CurrentPacketMIs) { 379 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump();); 380 if (HII->isDotCurInst(*BI)) { 381 MI = BI; 382 continue; 383 } 384 if (MI) { 385 for (auto &MO : BI->operands()) 386 if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg()) 387 return; 388 } 389 } 390 if (!MI) 391 return; 392 // We did not find a use of the CUR, so de-cur it. 393 MI->setDesc(HII->get(HII->getNonDotCurOp(*MI))); 394 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump();); 395 } 396 397 // Check to see if an instruction can be dot cur. 398 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI, 399 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, 400 const TargetRegisterClass *RC) { 401 if (!HII->isHVXVec(MI)) 402 return false; 403 if (!HII->isHVXVec(*MII)) 404 return false; 405 406 // Already a dot new instruction. 407 if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI)) 408 return false; 409 410 if (!HII->mayBeCurLoad(MI)) 411 return false; 412 413 // The "cur value" cannot come from inline asm. 414 if (PacketSU->getInstr()->isInlineAsm()) 415 return false; 416 417 // Make sure candidate instruction uses cur. 418 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump(); 419 dbgs() << "in packet\n";); 420 MachineInstr &MJ = *MII; 421 LLVM_DEBUG({ 422 dbgs() << "Checking CUR against "; 423 MJ.dump(); 424 }); 425 unsigned DestReg = MI.getOperand(0).getReg(); 426 bool FoundMatch = false; 427 for (auto &MO : MJ.operands()) 428 if (MO.isReg() && MO.getReg() == DestReg) 429 FoundMatch = true; 430 if (!FoundMatch) 431 return false; 432 433 // Check for existing uses of a vector register within the packet which 434 // would be affected by converting a vector load into .cur formt. 435 for (auto BI : CurrentPacketMIs) { 436 LLVM_DEBUG(dbgs() << "packet has "; BI->dump();); 437 if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo())) 438 return false; 439 } 440 441 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump();); 442 // We can convert the opcode into a .cur. 443 return true; 444 } 445 446 // Promote an instruction to its .new form. At this time, we have already 447 // made a call to canPromoteToDotNew and made sure that it can *indeed* be 448 // promoted. 449 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI, 450 SDep::Kind DepType, MachineBasicBlock::iterator &MII, 451 const TargetRegisterClass* RC) { 452 assert(DepType == SDep::Data); 453 int NewOpcode; 454 if (RC == &Hexagon::PredRegsRegClass) 455 NewOpcode = HII->getDotNewPredOp(MI, MBPI); 456 else 457 NewOpcode = HII->getDotNewOp(MI); 458 MI.setDesc(HII->get(NewOpcode)); 459 return true; 460 } 461 462 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) { 463 int NewOpcode = HII->getDotOldOp(MI); 464 MI.setDesc(HII->get(NewOpcode)); 465 return true; 466 } 467 468 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) { 469 unsigned Opc = MI.getOpcode(); 470 switch (Opc) { 471 case Hexagon::S2_storerd_io: 472 case Hexagon::S2_storeri_io: 473 case Hexagon::S2_storerh_io: 474 case Hexagon::S2_storerb_io: 475 break; 476 default: 477 llvm_unreachable("Unexpected instruction"); 478 } 479 unsigned FrameSize = MF.getFrameInfo().getStackSize(); 480 MachineOperand &Off = MI.getOperand(1); 481 int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE); 482 if (HII->isValidOffset(Opc, NewOff, HRI)) { 483 Off.setImm(NewOff); 484 return true; 485 } 486 return false; 487 } 488 489 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) { 490 unsigned Opc = MI.getOpcode(); 491 switch (Opc) { 492 case Hexagon::S2_storerd_io: 493 case Hexagon::S2_storeri_io: 494 case Hexagon::S2_storerh_io: 495 case Hexagon::S2_storerb_io: 496 break; 497 default: 498 llvm_unreachable("Unexpected instruction"); 499 } 500 unsigned FrameSize = MF.getFrameInfo().getStackSize(); 501 MachineOperand &Off = MI.getOperand(1); 502 Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE); 503 } 504 505 /// Return true if we can update the offset in MI so that MI and MJ 506 /// can be packetized together. 507 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) { 508 assert(SUI->getInstr() && SUJ->getInstr()); 509 MachineInstr &MI = *SUI->getInstr(); 510 MachineInstr &MJ = *SUJ->getInstr(); 511 512 unsigned BPI, OPI; 513 if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI)) 514 return false; 515 unsigned BPJ, OPJ; 516 if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ)) 517 return false; 518 unsigned Reg = MI.getOperand(BPI).getReg(); 519 if (Reg != MJ.getOperand(BPJ).getReg()) 520 return false; 521 // Make sure that the dependences do not restrict adding MI to the packet. 522 // That is, ignore anti dependences, and make sure the only data dependence 523 // involves the specific register. 524 for (const auto &PI : SUI->Preds) 525 if (PI.getKind() != SDep::Anti && 526 (PI.getKind() != SDep::Data || PI.getReg() != Reg)) 527 return false; 528 int Incr; 529 if (!HII->getIncrementValue(MJ, Incr)) 530 return false; 531 532 int64_t Offset = MI.getOperand(OPI).getImm(); 533 if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI)) 534 return false; 535 536 MI.getOperand(OPI).setImm(Offset + Incr); 537 ChangedOffset = Offset; 538 return true; 539 } 540 541 /// Undo the changed offset. This is needed if the instruction cannot be 542 /// added to the current packet due to a different instruction. 543 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) { 544 unsigned BP, OP; 545 if (!HII->getBaseAndOffsetPosition(MI, BP, OP)) 546 llvm_unreachable("Unable to find base and offset operands."); 547 MI.getOperand(OP).setImm(ChangedOffset); 548 } 549 550 enum PredicateKind { 551 PK_False, 552 PK_True, 553 PK_Unknown 554 }; 555 556 /// Returns true if an instruction is predicated on p0 and false if it's 557 /// predicated on !p0. 558 static PredicateKind getPredicateSense(const MachineInstr &MI, 559 const HexagonInstrInfo *HII) { 560 if (!HII->isPredicated(MI)) 561 return PK_Unknown; 562 if (HII->isPredicatedTrue(MI)) 563 return PK_True; 564 return PK_False; 565 } 566 567 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI, 568 const HexagonInstrInfo *HII) { 569 assert(HII->isPostIncrement(MI) && "Not a post increment operation."); 570 #ifndef NDEBUG 571 // Post Increment means duplicates. Use dense map to find duplicates in the 572 // list. Caution: Densemap initializes with the minimum of 64 buckets, 573 // whereas there are at most 5 operands in the post increment. 574 DenseSet<unsigned> DefRegsSet; 575 for (auto &MO : MI.operands()) 576 if (MO.isReg() && MO.isDef()) 577 DefRegsSet.insert(MO.getReg()); 578 579 for (auto &MO : MI.operands()) 580 if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg())) 581 return MO; 582 #else 583 if (MI.mayLoad()) { 584 const MachineOperand &Op1 = MI.getOperand(1); 585 // The 2nd operand is always the post increment operand in load. 586 assert(Op1.isReg() && "Post increment operand has be to a register."); 587 return Op1; 588 } 589 if (MI.getDesc().mayStore()) { 590 const MachineOperand &Op0 = MI.getOperand(0); 591 // The 1st operand is always the post increment operand in store. 592 assert(Op0.isReg() && "Post increment operand has be to a register."); 593 return Op0; 594 } 595 #endif 596 // we should never come here. 597 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation"); 598 } 599 600 // Get the value being stored. 601 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) { 602 // value being stored is always the last operand. 603 return MI.getOperand(MI.getNumOperands()-1); 604 } 605 606 static bool isLoadAbsSet(const MachineInstr &MI) { 607 unsigned Opc = MI.getOpcode(); 608 switch (Opc) { 609 case Hexagon::L4_loadrd_ap: 610 case Hexagon::L4_loadrb_ap: 611 case Hexagon::L4_loadrh_ap: 612 case Hexagon::L4_loadrub_ap: 613 case Hexagon::L4_loadruh_ap: 614 case Hexagon::L4_loadri_ap: 615 return true; 616 } 617 return false; 618 } 619 620 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) { 621 assert(isLoadAbsSet(MI)); 622 return MI.getOperand(1); 623 } 624 625 // Can be new value store? 626 // Following restrictions are to be respected in convert a store into 627 // a new value store. 628 // 1. If an instruction uses auto-increment, its address register cannot 629 // be a new-value register. Arch Spec 5.4.2.1 630 // 2. If an instruction uses absolute-set addressing mode, its address 631 // register cannot be a new-value register. Arch Spec 5.4.2.1. 632 // 3. If an instruction produces a 64-bit result, its registers cannot be used 633 // as new-value registers. Arch Spec 5.4.2.2. 634 // 4. If the instruction that sets the new-value register is conditional, then 635 // the instruction that uses the new-value register must also be conditional, 636 // and both must always have their predicates evaluate identically. 637 // Arch Spec 5.4.2.3. 638 // 5. There is an implied restriction that a packet cannot have another store, 639 // if there is a new value store in the packet. Corollary: if there is 640 // already a store in a packet, there can not be a new value store. 641 // Arch Spec: 3.4.4.2 642 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI, 643 const MachineInstr &PacketMI, unsigned DepReg) { 644 // Make sure we are looking at the store, that can be promoted. 645 if (!HII->mayBeNewStore(MI)) 646 return false; 647 648 // Make sure there is dependency and can be new value'd. 649 const MachineOperand &Val = getStoreValueOperand(MI); 650 if (Val.isReg() && Val.getReg() != DepReg) 651 return false; 652 653 const MCInstrDesc& MCID = PacketMI.getDesc(); 654 655 // First operand is always the result. 656 const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF); 657 // Double regs can not feed into new value store: PRM section: 5.4.2.2. 658 if (PacketRC == &Hexagon::DoubleRegsRegClass) 659 return false; 660 661 // New-value stores are of class NV (slot 0), dual stores require class ST 662 // in slot 0 (PRM 5.5). 663 for (auto I : CurrentPacketMIs) { 664 SUnit *PacketSU = MIToSUnit.find(I)->second; 665 if (PacketSU->getInstr()->mayStore()) 666 return false; 667 } 668 669 // Make sure it's NOT the post increment register that we are going to 670 // new value. 671 if (HII->isPostIncrement(MI) && 672 getPostIncrementOperand(MI, HII).getReg() == DepReg) { 673 return false; 674 } 675 676 if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() && 677 getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) { 678 // If source is post_inc, or absolute-set addressing, it can not feed 679 // into new value store 680 // r3 = memw(r2++#4) 681 // memw(r30 + #-1404) = r2.new -> can not be new value store 682 // arch spec section: 5.4.2.1. 683 return false; 684 } 685 686 if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg) 687 return false; 688 689 // If the source that feeds the store is predicated, new value store must 690 // also be predicated. 691 if (HII->isPredicated(PacketMI)) { 692 if (!HII->isPredicated(MI)) 693 return false; 694 695 // Check to make sure that they both will have their predicates 696 // evaluate identically. 697 unsigned predRegNumSrc = 0; 698 unsigned predRegNumDst = 0; 699 const TargetRegisterClass* predRegClass = nullptr; 700 701 // Get predicate register used in the source instruction. 702 for (auto &MO : PacketMI.operands()) { 703 if (!MO.isReg()) 704 continue; 705 predRegNumSrc = MO.getReg(); 706 predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc); 707 if (predRegClass == &Hexagon::PredRegsRegClass) 708 break; 709 } 710 assert((predRegClass == &Hexagon::PredRegsRegClass) && 711 "predicate register not found in a predicated PacketMI instruction"); 712 713 // Get predicate register used in new-value store instruction. 714 for (auto &MO : MI.operands()) { 715 if (!MO.isReg()) 716 continue; 717 predRegNumDst = MO.getReg(); 718 predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst); 719 if (predRegClass == &Hexagon::PredRegsRegClass) 720 break; 721 } 722 assert((predRegClass == &Hexagon::PredRegsRegClass) && 723 "predicate register not found in a predicated MI instruction"); 724 725 // New-value register producer and user (store) need to satisfy these 726 // constraints: 727 // 1) Both instructions should be predicated on the same register. 728 // 2) If producer of the new-value register is .new predicated then store 729 // should also be .new predicated and if producer is not .new predicated 730 // then store should not be .new predicated. 731 // 3) Both new-value register producer and user should have same predicate 732 // sense, i.e, either both should be negated or both should be non-negated. 733 if (predRegNumDst != predRegNumSrc || 734 HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) || 735 getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII)) 736 return false; 737 } 738 739 // Make sure that other than the new-value register no other store instruction 740 // register has been modified in the same packet. Predicate registers can be 741 // modified by they should not be modified between the producer and the store 742 // instruction as it will make them both conditional on different values. 743 // We already know this to be true for all the instructions before and 744 // including PacketMI. Howerver, we need to perform the check for the 745 // remaining instructions in the packet. 746 747 unsigned StartCheck = 0; 748 749 for (auto I : CurrentPacketMIs) { 750 SUnit *TempSU = MIToSUnit.find(I)->second; 751 MachineInstr &TempMI = *TempSU->getInstr(); 752 753 // Following condition is true for all the instructions until PacketMI is 754 // reached (StartCheck is set to 0 before the for loop). 755 // StartCheck flag is 1 for all the instructions after PacketMI. 756 if (&TempMI != &PacketMI && !StartCheck) // Start processing only after 757 continue; // encountering PacketMI. 758 759 StartCheck = 1; 760 if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence. 761 continue; 762 763 for (auto &MO : MI.operands()) 764 if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI)) 765 return false; 766 } 767 768 // Make sure that for non-POST_INC stores: 769 // 1. The only use of reg is DepReg and no other registers. 770 // This handles base+index registers. 771 // The following store can not be dot new. 772 // Eg. r0 = add(r0, #3) 773 // memw(r1+r0<<#2) = r0 774 if (!HII->isPostIncrement(MI)) { 775 for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) { 776 const MachineOperand &MO = MI.getOperand(opNum); 777 if (MO.isReg() && MO.getReg() == DepReg) 778 return false; 779 } 780 } 781 782 // If data definition is because of implicit definition of the register, 783 // do not newify the store. Eg. 784 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12 785 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343] 786 for (auto &MO : PacketMI.operands()) { 787 if (MO.isRegMask() && MO.clobbersPhysReg(DepReg)) 788 return false; 789 if (!MO.isReg() || !MO.isDef() || !MO.isImplicit()) 790 continue; 791 unsigned R = MO.getReg(); 792 if (R == DepReg || HRI->isSuperRegister(DepReg, R)) 793 return false; 794 } 795 796 // Handle imp-use of super reg case. There is a target independent side 797 // change that should prevent this situation but I am handling it for 798 // just-in-case. For example, we cannot newify R2 in the following case: 799 // %r3 = A2_tfrsi 0; 800 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1; 801 for (auto &MO : MI.operands()) { 802 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg) 803 return false; 804 } 805 806 // Can be dot new store. 807 return true; 808 } 809 810 // Can this MI to promoted to either new value store or new value jump. 811 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI, 812 const SUnit *PacketSU, unsigned DepReg, 813 MachineBasicBlock::iterator &MII) { 814 if (!HII->mayBeNewStore(MI)) 815 return false; 816 817 // Check to see the store can be new value'ed. 818 MachineInstr &PacketMI = *PacketSU->getInstr(); 819 if (canPromoteToNewValueStore(MI, PacketMI, DepReg)) 820 return true; 821 822 // Check to see the compare/jump can be new value'ed. 823 // This is done as a pass on its own. Don't need to check it here. 824 return false; 825 } 826 827 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef, 828 unsigned DepReg) { 829 for (auto &MO : I.operands()) { 830 if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg)) 831 return true; 832 if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit()) 833 continue; 834 if (CheckDef == MO.isDef()) 835 return true; 836 } 837 return false; 838 } 839 840 // Check to see if an instruction can be dot new. 841 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI, 842 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, 843 const TargetRegisterClass* RC) { 844 // Already a dot new instruction. 845 if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI)) 846 return false; 847 848 if (!isNewifiable(MI, RC)) 849 return false; 850 851 const MachineInstr &PI = *PacketSU->getInstr(); 852 853 // The "new value" cannot come from inline asm. 854 if (PI.isInlineAsm()) 855 return false; 856 857 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no 858 // sense. 859 if (PI.isImplicitDef()) 860 return false; 861 862 // If dependency is trough an implicitly defined register, we should not 863 // newify the use. 864 if (isImplicitDependency(PI, true, DepReg) || 865 isImplicitDependency(MI, false, DepReg)) 866 return false; 867 868 const MCInstrDesc& MCID = PI.getDesc(); 869 const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF); 870 if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass) 871 return false; 872 873 // predicate .new 874 if (RC == &Hexagon::PredRegsRegClass) 875 return HII->predCanBeUsedAsDotNew(PI, DepReg); 876 877 if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI)) 878 return false; 879 880 // Create a dot new machine instruction to see if resources can be 881 // allocated. If not, bail out now. 882 int NewOpcode = HII->getDotNewOp(MI); 883 const MCInstrDesc &D = HII->get(NewOpcode); 884 MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc()); 885 bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI); 886 MF.DeleteMachineInstr(NewMI); 887 if (!ResourcesAvailable) 888 return false; 889 890 // New Value Store only. New Value Jump generated as a separate pass. 891 if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII)) 892 return false; 893 894 return true; 895 } 896 897 // Go through the packet instructions and search for an anti dependency between 898 // them and DepReg from MI. Consider this case: 899 // Trying to add 900 // a) %r1 = TFRI_cdNotPt %p3, 2 901 // to this packet: 902 // { 903 // b) %p0 = C2_or killed %p3, killed %p0 904 // c) %p3 = C2_tfrrp %r23 905 // d) %r1 = C2_cmovenewit %p3, 4 906 // } 907 // The P3 from a) and d) will be complements after 908 // a)'s P3 is converted to .new form 909 // Anti-dep between c) and b) is irrelevant for this case 910 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI, 911 unsigned DepReg) { 912 SUnit *PacketSUDep = MIToSUnit.find(&MI)->second; 913 914 for (auto I : CurrentPacketMIs) { 915 // We only care for dependencies to predicated instructions 916 if (!HII->isPredicated(*I)) 917 continue; 918 919 // Scheduling Unit for current insn in the packet 920 SUnit *PacketSU = MIToSUnit.find(I)->second; 921 922 // Look at dependencies between current members of the packet and 923 // predicate defining instruction MI. Make sure that dependency is 924 // on the exact register we care about. 925 if (PacketSU->isSucc(PacketSUDep)) { 926 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { 927 auto &Dep = PacketSU->Succs[i]; 928 if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti && 929 Dep.getReg() == DepReg) 930 return true; 931 } 932 } 933 } 934 935 return false; 936 } 937 938 /// Gets the predicate register of a predicated instruction. 939 static unsigned getPredicatedRegister(MachineInstr &MI, 940 const HexagonInstrInfo *QII) { 941 /// We use the following rule: The first predicate register that is a use is 942 /// the predicate register of a predicated instruction. 943 assert(QII->isPredicated(MI) && "Must be predicated instruction"); 944 945 for (auto &Op : MI.operands()) { 946 if (Op.isReg() && Op.getReg() && Op.isUse() && 947 Hexagon::PredRegsRegClass.contains(Op.getReg())) 948 return Op.getReg(); 949 } 950 951 llvm_unreachable("Unknown instruction operand layout"); 952 return 0; 953 } 954 955 // Given two predicated instructions, this function detects whether 956 // the predicates are complements. 957 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1, 958 MachineInstr &MI2) { 959 // If we don't know the predicate sense of the instructions bail out early, we 960 // need it later. 961 if (getPredicateSense(MI1, HII) == PK_Unknown || 962 getPredicateSense(MI2, HII) == PK_Unknown) 963 return false; 964 965 // Scheduling unit for candidate. 966 SUnit *SU = MIToSUnit[&MI1]; 967 968 // One corner case deals with the following scenario: 969 // Trying to add 970 // a) %r24 = A2_tfrt %p0, %r25 971 // to this packet: 972 // { 973 // b) %r25 = A2_tfrf %p0, %r24 974 // c) %p0 = C2_cmpeqi %r26, 1 975 // } 976 // 977 // On general check a) and b) are complements, but presence of c) will 978 // convert a) to .new form, and then it is not a complement. 979 // We attempt to detect it by analyzing existing dependencies in the packet. 980 981 // Analyze relationships between all existing members of the packet. 982 // Look for Anti dependecy on the same predicate reg as used in the 983 // candidate. 984 for (auto I : CurrentPacketMIs) { 985 // Scheduling Unit for current insn in the packet. 986 SUnit *PacketSU = MIToSUnit.find(I)->second; 987 988 // If this instruction in the packet is succeeded by the candidate... 989 if (PacketSU->isSucc(SU)) { 990 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { 991 auto Dep = PacketSU->Succs[i]; 992 // The corner case exist when there is true data dependency between 993 // candidate and one of current packet members, this dep is on 994 // predicate reg, and there already exist anti dep on the same pred in 995 // the packet. 996 if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data && 997 Hexagon::PredRegsRegClass.contains(Dep.getReg())) { 998 // Here I know that I is predicate setting instruction with true 999 // data dep to candidate on the register we care about - c) in the 1000 // above example. Now I need to see if there is an anti dependency 1001 // from c) to any other instruction in the same packet on the pred 1002 // reg of interest. 1003 if (restrictingDepExistInPacket(*I, Dep.getReg())) 1004 return false; 1005 } 1006 } 1007 } 1008 } 1009 1010 // If the above case does not apply, check regular complement condition. 1011 // Check that the predicate register is the same and that the predicate 1012 // sense is different We also need to differentiate .old vs. .new: !p0 1013 // is not complementary to p0.new. 1014 unsigned PReg1 = getPredicatedRegister(MI1, HII); 1015 unsigned PReg2 = getPredicatedRegister(MI2, HII); 1016 return PReg1 == PReg2 && 1017 Hexagon::PredRegsRegClass.contains(PReg1) && 1018 Hexagon::PredRegsRegClass.contains(PReg2) && 1019 getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) && 1020 HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2); 1021 } 1022 1023 // Initialize packetizer flags. 1024 void HexagonPacketizerList::initPacketizerState() { 1025 Dependence = false; 1026 PromotedToDotNew = false; 1027 GlueToNewValueJump = false; 1028 GlueAllocframeStore = false; 1029 FoundSequentialDependence = false; 1030 ChangedOffset = INT64_MAX; 1031 } 1032 1033 // Ignore bundling of pseudo instructions. 1034 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI, 1035 const MachineBasicBlock *) { 1036 if (MI.isDebugInstr()) 1037 return true; 1038 1039 if (MI.isCFIInstruction()) 1040 return false; 1041 1042 // We must print out inline assembly. 1043 if (MI.isInlineAsm()) 1044 return false; 1045 1046 if (MI.isImplicitDef()) 1047 return false; 1048 1049 // We check if MI has any functional units mapped to it. If it doesn't, 1050 // we ignore the instruction. 1051 const MCInstrDesc& TID = MI.getDesc(); 1052 auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass()); 1053 unsigned FuncUnits = IS->getUnits(); 1054 return !FuncUnits; 1055 } 1056 1057 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) { 1058 // Ensure any bundles created by gather packetize remain seperate. 1059 if (MI.isBundle()) 1060 return true; 1061 1062 if (MI.isEHLabel() || MI.isCFIInstruction()) 1063 return true; 1064 1065 // Consider inline asm to not be a solo instruction by default. 1066 // Inline asm will be put in a packet temporarily, but then it will be 1067 // removed, and placed outside of the packet (before or after, depending 1068 // on dependencies). This is to reduce the impact of inline asm as a 1069 // "packet splitting" instruction. 1070 if (MI.isInlineAsm() && !ScheduleInlineAsm) 1071 return true; 1072 1073 if (isSchedBarrier(MI)) 1074 return true; 1075 1076 if (HII->isSolo(MI)) 1077 return true; 1078 1079 if (MI.getOpcode() == Hexagon::A2_nop) 1080 return true; 1081 1082 return false; 1083 } 1084 1085 // Quick check if instructions MI and MJ cannot coexist in the same packet. 1086 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm", 1087 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm". 1088 // For full test call this function twice: 1089 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI) 1090 // Doing the test only one way saves the amount of code in this function, 1091 // since every test would need to be repeated with the MI and MJ reversed. 1092 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ, 1093 const HexagonInstrInfo &HII) { 1094 const MachineFunction *MF = MI.getParent()->getParent(); 1095 if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() && 1096 HII.isHVXMemWithAIndirect(MI, MJ)) 1097 return true; 1098 1099 // An inline asm cannot be together with a branch, because we may not be 1100 // able to remove the asm out after packetizing (i.e. if the asm must be 1101 // moved past the bundle). Similarly, two asms cannot be together to avoid 1102 // complications when determining their relative order outside of a bundle. 1103 if (MI.isInlineAsm()) 1104 return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() || 1105 MJ.isCall() || MJ.isTerminator(); 1106 1107 // New-value stores cannot coexist with any other stores. 1108 if (HII.isNewValueStore(MI) && MJ.mayStore()) 1109 return true; 1110 1111 switch (MI.getOpcode()) { 1112 case Hexagon::S2_storew_locked: 1113 case Hexagon::S4_stored_locked: 1114 case Hexagon::L2_loadw_locked: 1115 case Hexagon::L4_loadd_locked: 1116 case Hexagon::Y2_dccleana: 1117 case Hexagon::Y2_dccleaninva: 1118 case Hexagon::Y2_dcinva: 1119 case Hexagon::Y2_dczeroa: 1120 case Hexagon::Y4_l2fetch: 1121 case Hexagon::Y5_l2fetch: { 1122 // These instructions can only be grouped with ALU32 or non-floating-point 1123 // XTYPE instructions. Since there is no convenient way of identifying fp 1124 // XTYPE instructions, only allow grouping with ALU32 for now. 1125 unsigned TJ = HII.getType(MJ); 1126 if (TJ != HexagonII::TypeALU32_2op && 1127 TJ != HexagonII::TypeALU32_3op && 1128 TJ != HexagonII::TypeALU32_ADDI) 1129 return true; 1130 break; 1131 } 1132 default: 1133 break; 1134 } 1135 1136 // "False" really means that the quick check failed to determine if 1137 // I and J cannot coexist. 1138 return false; 1139 } 1140 1141 // Full, symmetric check. 1142 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI, 1143 const MachineInstr &MJ) { 1144 return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII); 1145 } 1146 1147 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) { 1148 for (auto &B : MF) { 1149 MachineBasicBlock::iterator BundleIt; 1150 MachineBasicBlock::instr_iterator NextI; 1151 for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) { 1152 NextI = std::next(I); 1153 MachineInstr &MI = *I; 1154 if (MI.isBundle()) 1155 BundleIt = I; 1156 if (!MI.isInsideBundle()) 1157 continue; 1158 1159 // Decide on where to insert the instruction that we are pulling out. 1160 // Debug instructions always go before the bundle, but the placement of 1161 // INLINE_ASM depends on potential dependencies. By default, try to 1162 // put it before the bundle, but if the asm writes to a register that 1163 // other instructions in the bundle read, then we need to place it 1164 // after the bundle (to preserve the bundle semantics). 1165 bool InsertBeforeBundle; 1166 if (MI.isInlineAsm()) 1167 InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI); 1168 else if (MI.isDebugValue()) 1169 InsertBeforeBundle = true; 1170 else 1171 continue; 1172 1173 BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle); 1174 } 1175 } 1176 } 1177 1178 // Check if a given instruction is of class "system". 1179 static bool isSystemInstr(const MachineInstr &MI) { 1180 unsigned Opc = MI.getOpcode(); 1181 switch (Opc) { 1182 case Hexagon::Y2_barrier: 1183 case Hexagon::Y2_dcfetchbo: 1184 case Hexagon::Y4_l2fetch: 1185 case Hexagon::Y5_l2fetch: 1186 return true; 1187 } 1188 return false; 1189 } 1190 1191 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I, 1192 const MachineInstr &J) { 1193 // The dependence graph may not include edges between dead definitions, 1194 // so without extra checks, we could end up packetizing two instruction 1195 // defining the same (dead) register. 1196 if (I.isCall() || J.isCall()) 1197 return false; 1198 if (HII->isPredicated(I) || HII->isPredicated(J)) 1199 return false; 1200 1201 BitVector DeadDefs(Hexagon::NUM_TARGET_REGS); 1202 for (auto &MO : I.operands()) { 1203 if (!MO.isReg() || !MO.isDef() || !MO.isDead()) 1204 continue; 1205 DeadDefs[MO.getReg()] = true; 1206 } 1207 1208 for (auto &MO : J.operands()) { 1209 if (!MO.isReg() || !MO.isDef() || !MO.isDead()) 1210 continue; 1211 unsigned R = MO.getReg(); 1212 if (R != Hexagon::USR_OVF && DeadDefs[R]) 1213 return true; 1214 } 1215 return false; 1216 } 1217 1218 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I, 1219 const MachineInstr &J) { 1220 // A save callee-save register function call can only be in a packet 1221 // with instructions that don't write to the callee-save registers. 1222 if ((HII->isSaveCalleeSavedRegsCall(I) && 1223 doesModifyCalleeSavedReg(J, HRI)) || 1224 (HII->isSaveCalleeSavedRegsCall(J) && 1225 doesModifyCalleeSavedReg(I, HRI))) 1226 return true; 1227 1228 // Two control flow instructions cannot go in the same packet. 1229 if (isControlFlow(I) && isControlFlow(J)) 1230 return true; 1231 1232 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot 1233 // contain a speculative indirect jump, 1234 // a new-value compare jump or a dealloc_return. 1235 auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool { 1236 if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI)) 1237 return true; 1238 if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI)) 1239 return true; 1240 return false; 1241 }; 1242 1243 if (HII->isLoopN(I) && isBadForLoopN(J)) 1244 return true; 1245 if (HII->isLoopN(J) && isBadForLoopN(I)) 1246 return true; 1247 1248 // dealloc_return cannot appear in the same packet as a conditional or 1249 // unconditional jump. 1250 return HII->isDeallocRet(I) && 1251 (J.isBranch() || J.isCall() || J.isBarrier()); 1252 } 1253 1254 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I, 1255 const MachineInstr &J) { 1256 // Adding I to a packet that has J. 1257 1258 // Regmasks are not reflected in the scheduling dependency graph, so 1259 // we need to check them manually. This code assumes that regmasks only 1260 // occur on calls, and the problematic case is when we add an instruction 1261 // defining a register R to a packet that has a call that clobbers R via 1262 // a regmask. Those cannot be packetized together, because the call will 1263 // be executed last. That's also a reson why it is ok to add a call 1264 // clobbering R to a packet that defines R. 1265 1266 // Look for regmasks in J. 1267 for (const MachineOperand &OpJ : J.operands()) { 1268 if (!OpJ.isRegMask()) 1269 continue; 1270 assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call"); 1271 for (const MachineOperand &OpI : I.operands()) { 1272 if (OpI.isReg()) { 1273 if (OpJ.clobbersPhysReg(OpI.getReg())) 1274 return true; 1275 } else if (OpI.isRegMask()) { 1276 // Both are regmasks. Assume that they intersect. 1277 return true; 1278 } 1279 } 1280 } 1281 return false; 1282 } 1283 1284 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I, 1285 const MachineInstr &J) { 1286 bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J); 1287 bool StoreI = I.mayStore(), StoreJ = J.mayStore(); 1288 if ((SysI && StoreJ) || (SysJ && StoreI)) 1289 return true; 1290 1291 if (StoreI && StoreJ) { 1292 if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I)) 1293 return true; 1294 } else { 1295 // A memop cannot be in the same packet with another memop or a store. 1296 // Two stores can be together, but here I and J cannot both be stores. 1297 bool MopStI = HII->isMemOp(I) || StoreI; 1298 bool MopStJ = HII->isMemOp(J) || StoreJ; 1299 if (MopStI && MopStJ) 1300 return true; 1301 } 1302 1303 return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J)); 1304 } 1305 1306 // SUI is the current instruction that is out side of the current packet. 1307 // SUJ is the current instruction inside the current packet against which that 1308 // SUI will be packetized. 1309 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { 1310 assert(SUI->getInstr() && SUJ->getInstr()); 1311 MachineInstr &I = *SUI->getInstr(); 1312 MachineInstr &J = *SUJ->getInstr(); 1313 1314 // Clear IgnoreDepMIs when Packet starts. 1315 if (CurrentPacketMIs.size() == 1) 1316 IgnoreDepMIs.clear(); 1317 1318 MachineBasicBlock::iterator II = I.getIterator(); 1319 1320 // Solo instructions cannot go in the packet. 1321 assert(!isSoloInstruction(I) && "Unexpected solo instr!"); 1322 1323 if (cannotCoexist(I, J)) 1324 return false; 1325 1326 Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J); 1327 if (Dependence) 1328 return false; 1329 1330 // Regmasks are not accounted for in the scheduling graph, so we need 1331 // to explicitly check for dependencies caused by them. They should only 1332 // appear on calls, so it's not too pessimistic to reject all regmask 1333 // dependencies. 1334 Dependence = hasRegMaskDependence(I, J); 1335 if (Dependence) 1336 return false; 1337 1338 // Dual-store does not allow second store, if the first store is not 1339 // in SLOT0. New value store, new value jump, dealloc_return and memop 1340 // always take SLOT0. Arch spec 3.4.4.2. 1341 Dependence = hasDualStoreDependence(I, J); 1342 if (Dependence) 1343 return false; 1344 1345 // If an instruction feeds new value jump, glue it. 1346 MachineBasicBlock::iterator NextMII = I.getIterator(); 1347 ++NextMII; 1348 if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) { 1349 MachineInstr &NextMI = *NextMII; 1350 1351 bool secondRegMatch = false; 1352 const MachineOperand &NOp0 = NextMI.getOperand(0); 1353 const MachineOperand &NOp1 = NextMI.getOperand(1); 1354 1355 if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg()) 1356 secondRegMatch = true; 1357 1358 for (MachineInstr *PI : CurrentPacketMIs) { 1359 // NVJ can not be part of the dual jump - Arch Spec: section 7.8. 1360 if (PI->isCall()) { 1361 Dependence = true; 1362 break; 1363 } 1364 // Validate: 1365 // 1. Packet does not have a store in it. 1366 // 2. If the first operand of the nvj is newified, and the second 1367 // operand is also a reg, it (second reg) is not defined in 1368 // the same packet. 1369 // 3. If the second operand of the nvj is newified, (which means 1370 // first operand is also a reg), first reg is not defined in 1371 // the same packet. 1372 if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() || 1373 HII->isLoopN(*PI)) { 1374 Dependence = true; 1375 break; 1376 } 1377 // Check #2/#3. 1378 const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1; 1379 if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) { 1380 Dependence = true; 1381 break; 1382 } 1383 } 1384 1385 GlueToNewValueJump = true; 1386 if (Dependence) 1387 return false; 1388 } 1389 1390 // There no dependency between a prolog instruction and its successor. 1391 if (!SUJ->isSucc(SUI)) 1392 return true; 1393 1394 for (unsigned i = 0; i < SUJ->Succs.size(); ++i) { 1395 if (FoundSequentialDependence) 1396 break; 1397 1398 if (SUJ->Succs[i].getSUnit() != SUI) 1399 continue; 1400 1401 SDep::Kind DepType = SUJ->Succs[i].getKind(); 1402 // For direct calls: 1403 // Ignore register dependences for call instructions for packetization 1404 // purposes except for those due to r31 and predicate registers. 1405 // 1406 // For indirect calls: 1407 // Same as direct calls + check for true dependences to the register 1408 // used in the indirect call. 1409 // 1410 // We completely ignore Order dependences for call instructions. 1411 // 1412 // For returns: 1413 // Ignore register dependences for return instructions like jumpr, 1414 // dealloc return unless we have dependencies on the explicit uses 1415 // of the registers used by jumpr (like r31) or dealloc return 1416 // (like r29 or r30). 1417 unsigned DepReg = 0; 1418 const TargetRegisterClass *RC = nullptr; 1419 if (DepType == SDep::Data) { 1420 DepReg = SUJ->Succs[i].getReg(); 1421 RC = HRI->getMinimalPhysRegClass(DepReg); 1422 } 1423 1424 if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) { 1425 if (!isRegDependence(DepType)) 1426 continue; 1427 if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg())) 1428 continue; 1429 } 1430 1431 if (DepType == SDep::Data) { 1432 if (canPromoteToDotCur(J, SUJ, DepReg, II, RC)) 1433 if (promoteToDotCur(J, DepType, II, RC)) 1434 continue; 1435 } 1436 1437 // Data dpendence ok if we have load.cur. 1438 if (DepType == SDep::Data && HII->isDotCurInst(J)) { 1439 if (HII->isHVXVec(I)) 1440 continue; 1441 } 1442 1443 // For instructions that can be promoted to dot-new, try to promote. 1444 if (DepType == SDep::Data) { 1445 if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) { 1446 if (promoteToDotNew(I, DepType, II, RC)) { 1447 PromotedToDotNew = true; 1448 if (cannotCoexist(I, J)) 1449 FoundSequentialDependence = true; 1450 continue; 1451 } 1452 } 1453 if (HII->isNewValueJump(I)) 1454 continue; 1455 } 1456 1457 // For predicated instructions, if the predicates are complements then 1458 // there can be no dependence. 1459 if (HII->isPredicated(I) && HII->isPredicated(J) && 1460 arePredicatesComplements(I, J)) { 1461 // Not always safe to do this translation. 1462 // DAG Builder attempts to reduce dependence edges using transitive 1463 // nature of dependencies. Here is an example: 1464 // 1465 // r0 = tfr_pt ... (1) 1466 // r0 = tfr_pf ... (2) 1467 // r0 = tfr_pt ... (3) 1468 // 1469 // There will be an output dependence between (1)->(2) and (2)->(3). 1470 // However, there is no dependence edge between (1)->(3). This results 1471 // in all 3 instructions going in the same packet. We ignore dependce 1472 // only once to avoid this situation. 1473 auto Itr = find(IgnoreDepMIs, &J); 1474 if (Itr != IgnoreDepMIs.end()) { 1475 Dependence = true; 1476 return false; 1477 } 1478 IgnoreDepMIs.push_back(&I); 1479 continue; 1480 } 1481 1482 // Ignore Order dependences between unconditional direct branches 1483 // and non-control-flow instructions. 1484 if (isDirectJump(I) && !J.isBranch() && !J.isCall() && 1485 DepType == SDep::Order) 1486 continue; 1487 1488 // Ignore all dependences for jumps except for true and output 1489 // dependences. 1490 if (I.isConditionalBranch() && DepType != SDep::Data && 1491 DepType != SDep::Output) 1492 continue; 1493 1494 if (DepType == SDep::Output) { 1495 FoundSequentialDependence = true; 1496 break; 1497 } 1498 1499 // For Order dependences: 1500 // 1. Volatile loads/stores can be packetized together, unless other 1501 // rules prevent is. 1502 // 2. Store followed by a load is not allowed. 1503 // 3. Store followed by a store is valid. 1504 // 4. Load followed by any memory operation is allowed. 1505 if (DepType == SDep::Order) { 1506 if (!PacketizeVolatiles) { 1507 bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef(); 1508 if (OrdRefs) { 1509 FoundSequentialDependence = true; 1510 break; 1511 } 1512 } 1513 // J is first, I is second. 1514 bool LoadJ = J.mayLoad(), StoreJ = J.mayStore(); 1515 bool LoadI = I.mayLoad(), StoreI = I.mayStore(); 1516 bool NVStoreJ = HII->isNewValueStore(J); 1517 bool NVStoreI = HII->isNewValueStore(I); 1518 bool IsVecJ = HII->isHVXVec(J); 1519 bool IsVecI = HII->isHVXVec(I); 1520 1521 if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() && 1522 ((LoadJ && StoreI && !NVStoreI) || 1523 (StoreJ && LoadI && !NVStoreJ)) && 1524 (J.getOpcode() != Hexagon::S2_allocframe && 1525 I.getOpcode() != Hexagon::S2_allocframe) && 1526 (J.getOpcode() != Hexagon::L2_deallocframe && 1527 I.getOpcode() != Hexagon::L2_deallocframe) && 1528 (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI)) 1529 setmemShufDisabled(true); 1530 else 1531 if (StoreJ && LoadI && alias(J, I)) { 1532 FoundSequentialDependence = true; 1533 break; 1534 } 1535 1536 if (!StoreJ) 1537 if (!LoadJ || (!LoadI && !StoreI)) { 1538 // If J is neither load nor store, assume a dependency. 1539 // If J is a load, but I is neither, also assume a dependency. 1540 FoundSequentialDependence = true; 1541 break; 1542 } 1543 // Store followed by store: not OK on V2. 1544 // Store followed by load: not OK on all. 1545 // Load followed by store: OK on all. 1546 // Load followed by load: OK on all. 1547 continue; 1548 } 1549 1550 // Special case for ALLOCFRAME: even though there is dependency 1551 // between ALLOCFRAME and subsequent store, allow it to be packetized 1552 // in a same packet. This implies that the store is using the caller's 1553 // SP. Hence, offset needs to be updated accordingly. 1554 if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) { 1555 unsigned Opc = I.getOpcode(); 1556 switch (Opc) { 1557 case Hexagon::S2_storerd_io: 1558 case Hexagon::S2_storeri_io: 1559 case Hexagon::S2_storerh_io: 1560 case Hexagon::S2_storerb_io: 1561 if (I.getOperand(0).getReg() == HRI->getStackRegister()) { 1562 // Since this store is to be glued with allocframe in the same 1563 // packet, it will use SP of the previous stack frame, i.e. 1564 // caller's SP. Therefore, we need to recalculate offset 1565 // according to this change. 1566 GlueAllocframeStore = useCallersSP(I); 1567 if (GlueAllocframeStore) 1568 continue; 1569 } 1570 break; 1571 default: 1572 break; 1573 } 1574 } 1575 1576 // There are certain anti-dependencies that cannot be ignored. 1577 // Specifically: 1578 // J2_call ... implicit-def %r0 ; SUJ 1579 // R0 = ... ; SUI 1580 // Those cannot be packetized together, since the call will observe 1581 // the effect of the assignment to R0. 1582 if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) { 1583 // Check if I defines any volatile register. We should also check 1584 // registers that the call may read, but these happen to be a 1585 // subset of the volatile register set. 1586 for (const MachineOperand &Op : I.operands()) { 1587 if (Op.isReg() && Op.isDef()) { 1588 unsigned R = Op.getReg(); 1589 if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI)) 1590 continue; 1591 } else if (!Op.isRegMask()) { 1592 // If I has a regmask assume dependency. 1593 continue; 1594 } 1595 FoundSequentialDependence = true; 1596 break; 1597 } 1598 } 1599 1600 // Skip over remaining anti-dependences. Two instructions that are 1601 // anti-dependent can share a packet, since in most such cases all 1602 // operands are read before any modifications take place. 1603 // The exceptions are branch and call instructions, since they are 1604 // executed after all other instructions have completed (at least 1605 // conceptually). 1606 if (DepType != SDep::Anti) { 1607 FoundSequentialDependence = true; 1608 break; 1609 } 1610 } 1611 1612 if (FoundSequentialDependence) { 1613 Dependence = true; 1614 return false; 1615 } 1616 1617 return true; 1618 } 1619 1620 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { 1621 assert(SUI->getInstr() && SUJ->getInstr()); 1622 MachineInstr &I = *SUI->getInstr(); 1623 MachineInstr &J = *SUJ->getInstr(); 1624 1625 bool Coexist = !cannotCoexist(I, J); 1626 1627 if (Coexist && !Dependence) 1628 return true; 1629 1630 // Check if the instruction was promoted to a dot-new. If so, demote it 1631 // back into a dot-old. 1632 if (PromotedToDotNew) 1633 demoteToDotOld(I); 1634 1635 cleanUpDotCur(); 1636 // Check if the instruction (must be a store) was glued with an allocframe 1637 // instruction. If so, restore its offset to its original value, i.e. use 1638 // current SP instead of caller's SP. 1639 if (GlueAllocframeStore) { 1640 useCalleesSP(I); 1641 GlueAllocframeStore = false; 1642 } 1643 1644 if (ChangedOffset != INT64_MAX) 1645 undoChangedOffset(I); 1646 1647 if (GlueToNewValueJump) { 1648 // Putting I and J together would prevent the new-value jump from being 1649 // packetized with the producer. In that case I and J must be separated. 1650 GlueToNewValueJump = false; 1651 return false; 1652 } 1653 1654 if (!Coexist) 1655 return false; 1656 1657 if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) { 1658 FoundSequentialDependence = false; 1659 Dependence = false; 1660 return true; 1661 } 1662 1663 return false; 1664 } 1665 1666 1667 bool HexagonPacketizerList::foundLSInPacket() { 1668 bool FoundLoad = false; 1669 bool FoundStore = false; 1670 1671 for (auto MJ : CurrentPacketMIs) { 1672 unsigned Opc = MJ->getOpcode(); 1673 if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe) 1674 continue; 1675 if (HII->isMemOp(*MJ)) 1676 continue; 1677 if (MJ->mayLoad()) 1678 FoundLoad = true; 1679 if (MJ->mayStore() && !HII->isNewValueStore(*MJ)) 1680 FoundStore = true; 1681 } 1682 return FoundLoad && FoundStore; 1683 } 1684 1685 1686 MachineBasicBlock::iterator 1687 HexagonPacketizerList::addToPacket(MachineInstr &MI) { 1688 MachineBasicBlock::iterator MII = MI.getIterator(); 1689 MachineBasicBlock *MBB = MI.getParent(); 1690 1691 if (CurrentPacketMIs.empty()) 1692 PacketStalls = false; 1693 PacketStalls |= producesStall(MI); 1694 1695 if (MI.isImplicitDef()) { 1696 // Add to the packet to allow subsequent instructions to be checked 1697 // properly. 1698 CurrentPacketMIs.push_back(&MI); 1699 return MII; 1700 } 1701 assert(ResourceTracker->canReserveResources(MI)); 1702 1703 bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI); 1704 bool Good = true; 1705 1706 if (GlueToNewValueJump) { 1707 MachineInstr &NvjMI = *++MII; 1708 // We need to put both instructions in the same packet: MI and NvjMI. 1709 // Either of them can require a constant extender. Try to add both to 1710 // the current packet, and if that fails, end the packet and start a 1711 // new one. 1712 ResourceTracker->reserveResources(MI); 1713 if (ExtMI) 1714 Good = tryAllocateResourcesForConstExt(true); 1715 1716 bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI); 1717 if (Good) { 1718 if (ResourceTracker->canReserveResources(NvjMI)) 1719 ResourceTracker->reserveResources(NvjMI); 1720 else 1721 Good = false; 1722 } 1723 if (Good && ExtNvjMI) 1724 Good = tryAllocateResourcesForConstExt(true); 1725 1726 if (!Good) { 1727 endPacket(MBB, MI); 1728 assert(ResourceTracker->canReserveResources(MI)); 1729 ResourceTracker->reserveResources(MI); 1730 if (ExtMI) { 1731 assert(canReserveResourcesForConstExt()); 1732 tryAllocateResourcesForConstExt(true); 1733 } 1734 assert(ResourceTracker->canReserveResources(NvjMI)); 1735 ResourceTracker->reserveResources(NvjMI); 1736 if (ExtNvjMI) { 1737 assert(canReserveResourcesForConstExt()); 1738 reserveResourcesForConstExt(); 1739 } 1740 } 1741 CurrentPacketMIs.push_back(&MI); 1742 CurrentPacketMIs.push_back(&NvjMI); 1743 return MII; 1744 } 1745 1746 ResourceTracker->reserveResources(MI); 1747 if (ExtMI && !tryAllocateResourcesForConstExt(true)) { 1748 endPacket(MBB, MI); 1749 if (PromotedToDotNew) 1750 demoteToDotOld(MI); 1751 if (GlueAllocframeStore) { 1752 useCalleesSP(MI); 1753 GlueAllocframeStore = false; 1754 } 1755 ResourceTracker->reserveResources(MI); 1756 reserveResourcesForConstExt(); 1757 } 1758 1759 CurrentPacketMIs.push_back(&MI); 1760 return MII; 1761 } 1762 1763 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB, 1764 MachineBasicBlock::iterator EndMI) { 1765 // Replace VLIWPacketizerList::endPacket(MBB, EndMI). 1766 1767 bool memShufDisabled = getmemShufDisabled(); 1768 if (memShufDisabled && !foundLSInPacket()) { 1769 setmemShufDisabled(false); 1770 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n"); 1771 } 1772 memShufDisabled = getmemShufDisabled(); 1773 1774 OldPacketMIs.clear(); 1775 for (MachineInstr *MI : CurrentPacketMIs) { 1776 MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator()); 1777 for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI)) 1778 OldPacketMIs.push_back(&I); 1779 } 1780 CurrentPacketMIs.clear(); 1781 1782 if (OldPacketMIs.size() > 1) { 1783 MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front()); 1784 MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator()); 1785 finalizeBundle(*MBB, FirstMI, LastMI); 1786 auto BundleMII = std::prev(FirstMI); 1787 if (memShufDisabled) 1788 HII->setBundleNoShuf(BundleMII); 1789 1790 setmemShufDisabled(false); 1791 } 1792 1793 ResourceTracker->clearResources(); 1794 LLVM_DEBUG(dbgs() << "End packet\n"); 1795 } 1796 1797 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) { 1798 if (Minimal) 1799 return false; 1800 return !producesStall(MI); 1801 } 1802 1803 // V60 forward scheduling. 1804 bool HexagonPacketizerList::producesStall(const MachineInstr &I) { 1805 // If the packet already stalls, then ignore the stall from a subsequent 1806 // instruction in the same packet. 1807 if (PacketStalls) 1808 return false; 1809 1810 // Check whether the previous packet is in a different loop. If this is the 1811 // case, there is little point in trying to avoid a stall because that would 1812 // favor the rare case (loop entry) over the common case (loop iteration). 1813 // 1814 // TODO: We should really be able to check all the incoming edges if this is 1815 // the first packet in a basic block, so we can avoid stalls from the loop 1816 // backedge. 1817 if (!OldPacketMIs.empty()) { 1818 auto *OldBB = OldPacketMIs.front()->getParent(); 1819 auto *ThisBB = I.getParent(); 1820 if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB)) 1821 return false; 1822 } 1823 1824 SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)]; 1825 1826 // If the latency is 0 and there is a data dependence between this 1827 // instruction and any instruction in the current packet, we disregard any 1828 // potential stalls due to the instructions in the previous packet. Most of 1829 // the instruction pairs that can go together in the same packet have 0 1830 // latency between them. The exceptions are 1831 // 1. NewValueJumps as they're generated much later and the latencies can't 1832 // be changed at that point. 1833 // 2. .cur instructions, if its consumer has a 0 latency successor (such as 1834 // .new). In this case, the latency between .cur and the consumer stays 1835 // non-zero even though we can have both .cur and .new in the same packet. 1836 // Changing the latency to 0 is not an option as it causes software pipeliner 1837 // to not pipeline in some cases. 1838 1839 // For Example: 1840 // { 1841 // I1: v6.cur = vmem(r0++#1) 1842 // I2: v7 = valign(v6,v4,r2) 1843 // I3: vmem(r5++#1) = v7.new 1844 // } 1845 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2. 1846 1847 for (auto J : CurrentPacketMIs) { 1848 SUnit *SUJ = MIToSUnit[J]; 1849 for (auto &Pred : SUI->Preds) 1850 if (Pred.getSUnit() == SUJ) 1851 if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) || 1852 HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I)) 1853 return false; 1854 } 1855 1856 // Check if the latency is greater than one between this instruction and any 1857 // instruction in the previous packet. 1858 for (auto J : OldPacketMIs) { 1859 SUnit *SUJ = MIToSUnit[J]; 1860 for (auto &Pred : SUI->Preds) 1861 if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1) 1862 return true; 1863 } 1864 1865 return false; 1866 } 1867 1868 //===----------------------------------------------------------------------===// 1869 // Public Constructor Functions 1870 //===----------------------------------------------------------------------===// 1871 1872 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) { 1873 return new HexagonPacketizer(Minimal); 1874 } 1875