1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a simple VLIW packetizer using DFA. The packetizer works on 10 // machine basic blocks. For each instruction I in BB, the packetizer consults 11 // the DFA to see if machine resources are available to execute I. If so, the 12 // packetizer checks if I depends on any instruction J in the current packet. 13 // If no dependency is found, I is added to current packet and machine resource 14 // is marked as taken. If any dependency is found, a target API call is made to 15 // prune the dependence. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "HexagonVLIWPacketizer.h" 20 #include "Hexagon.h" 21 #include "HexagonInstrInfo.h" 22 #include "HexagonRegisterInfo.h" 23 #include "HexagonSubtarget.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBundle.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "packets" 56 57 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden, 58 cl::ZeroOrMore, cl::init(false), 59 cl::desc("Disable Hexagon packetizer pass")); 60 61 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden, 62 cl::ZeroOrMore, cl::init(true), 63 cl::desc("Allow slot1 store and slot0 load")); 64 65 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles", 66 cl::ZeroOrMore, cl::Hidden, cl::init(true), 67 cl::desc("Allow non-solo packetization of volatile memory references")); 68 69 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false), 70 cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC")); 71 72 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores", 73 cl::init(false), cl::Hidden, cl::ZeroOrMore, 74 cl::desc("Disable vector double new-value-stores")); 75 76 extern cl::opt<bool> ScheduleInlineAsm; 77 78 namespace llvm { 79 80 FunctionPass *createHexagonPacketizer(bool Minimal); 81 void initializeHexagonPacketizerPass(PassRegistry&); 82 83 } // end namespace llvm 84 85 namespace { 86 87 class HexagonPacketizer : public MachineFunctionPass { 88 public: 89 static char ID; 90 91 HexagonPacketizer(bool Min = false) 92 : MachineFunctionPass(ID), Minimal(Min) {} 93 94 void getAnalysisUsage(AnalysisUsage &AU) const override { 95 AU.setPreservesCFG(); 96 AU.addRequired<AAResultsWrapperPass>(); 97 AU.addRequired<MachineBranchProbabilityInfo>(); 98 AU.addRequired<MachineDominatorTree>(); 99 AU.addRequired<MachineLoopInfo>(); 100 AU.addPreserved<MachineDominatorTree>(); 101 AU.addPreserved<MachineLoopInfo>(); 102 MachineFunctionPass::getAnalysisUsage(AU); 103 } 104 105 StringRef getPassName() const override { return "Hexagon Packetizer"; } 106 bool runOnMachineFunction(MachineFunction &Fn) override; 107 108 MachineFunctionProperties getRequiredProperties() const override { 109 return MachineFunctionProperties().set( 110 MachineFunctionProperties::Property::NoVRegs); 111 } 112 113 private: 114 const HexagonInstrInfo *HII; 115 const HexagonRegisterInfo *HRI; 116 const bool Minimal; 117 }; 118 119 } // end anonymous namespace 120 121 char HexagonPacketizer::ID = 0; 122 123 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer", 124 "Hexagon Packetizer", false, false) 125 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 126 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 127 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 128 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 129 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer", 130 "Hexagon Packetizer", false, false) 131 132 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF, 133 MachineLoopInfo &MLI, AAResults *AA, 134 const MachineBranchProbabilityInfo *MBPI, bool Minimal) 135 : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI), 136 Minimal(Minimal) { 137 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 138 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 139 140 addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>()); 141 addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>()); 142 addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>()); 143 } 144 145 // Check if FirstI modifies a register that SecondI reads. 146 static bool hasWriteToReadDep(const MachineInstr &FirstI, 147 const MachineInstr &SecondI, 148 const TargetRegisterInfo *TRI) { 149 for (auto &MO : FirstI.operands()) { 150 if (!MO.isReg() || !MO.isDef()) 151 continue; 152 Register R = MO.getReg(); 153 if (SecondI.readsRegister(R, TRI)) 154 return true; 155 } 156 return false; 157 } 158 159 160 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI, 161 MachineBasicBlock::iterator BundleIt, bool Before) { 162 MachineBasicBlock::instr_iterator InsertPt; 163 if (Before) 164 InsertPt = BundleIt.getInstrIterator(); 165 else 166 InsertPt = std::next(BundleIt).getInstrIterator(); 167 168 MachineBasicBlock &B = *MI.getParent(); 169 // The instruction should at least be bundled with the preceding instruction 170 // (there will always be one, i.e. BUNDLE, if nothing else). 171 assert(MI.isBundledWithPred()); 172 if (MI.isBundledWithSucc()) { 173 MI.clearFlag(MachineInstr::BundledSucc); 174 MI.clearFlag(MachineInstr::BundledPred); 175 } else { 176 // If it's not bundled with the successor (i.e. it is the last one 177 // in the bundle), then we can simply unbundle it from the predecessor, 178 // which will take care of updating the predecessor's flag. 179 MI.unbundleFromPred(); 180 } 181 B.splice(InsertPt, &B, MI.getIterator()); 182 183 // Get the size of the bundle without asserting. 184 MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator(); 185 MachineBasicBlock::const_instr_iterator E = B.instr_end(); 186 unsigned Size = 0; 187 for (++I; I != E && I->isBundledWithPred(); ++I) 188 ++Size; 189 190 // If there are still two or more instructions, then there is nothing 191 // else to be done. 192 if (Size > 1) 193 return BundleIt; 194 195 // Otherwise, extract the single instruction out and delete the bundle. 196 MachineBasicBlock::iterator NextIt = std::next(BundleIt); 197 MachineInstr &SingleI = *BundleIt->getNextNode(); 198 SingleI.unbundleFromPred(); 199 assert(!SingleI.isBundledWithSucc()); 200 BundleIt->eraseFromParent(); 201 return NextIt; 202 } 203 204 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) { 205 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 206 HII = HST.getInstrInfo(); 207 HRI = HST.getRegisterInfo(); 208 auto &MLI = getAnalysis<MachineLoopInfo>(); 209 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 210 auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 211 212 if (EnableGenAllInsnClass) 213 HII->genAllInsnTimingClasses(MF); 214 215 // Instantiate the packetizer. 216 bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() || 217 skipFunction(MF.getFunction()); 218 HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly); 219 220 // DFA state table should not be empty. 221 assert(Packetizer.getResourceTracker() && "Empty DFA table!"); 222 223 // Loop over all basic blocks and remove KILL pseudo-instructions 224 // These instructions confuse the dependence analysis. Consider: 225 // D0 = ... (Insn 0) 226 // R0 = KILL R0, D0 (Insn 1) 227 // R0 = ... (Insn 2) 228 // Here, Insn 1 will result in the dependence graph not emitting an output 229 // dependence between Insn 0 and Insn 2. This can lead to incorrect 230 // packetization 231 for (MachineBasicBlock &MB : MF) { 232 auto End = MB.end(); 233 auto MI = MB.begin(); 234 while (MI != End) { 235 auto NextI = std::next(MI); 236 if (MI->isKill()) { 237 MB.erase(MI); 238 End = MB.end(); 239 } 240 MI = NextI; 241 } 242 } 243 244 // Loop over all of the basic blocks. 245 for (auto &MB : MF) { 246 auto Begin = MB.begin(), End = MB.end(); 247 while (Begin != End) { 248 // Find the first non-boundary starting from the end of the last 249 // scheduling region. 250 MachineBasicBlock::iterator RB = Begin; 251 while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF)) 252 ++RB; 253 // Find the first boundary starting from the beginning of the new 254 // region. 255 MachineBasicBlock::iterator RE = RB; 256 while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF)) 257 ++RE; 258 // Add the scheduling boundary if it's not block end. 259 if (RE != End) 260 ++RE; 261 // If RB == End, then RE == End. 262 if (RB != End) 263 Packetizer.PacketizeMIs(&MB, RB, RE); 264 265 Begin = RE; 266 } 267 } 268 269 Packetizer.unpacketizeSoloInstrs(MF); 270 return true; 271 } 272 273 // Reserve resources for a constant extender. Trigger an assertion if the 274 // reservation fails. 275 void HexagonPacketizerList::reserveResourcesForConstExt() { 276 if (!tryAllocateResourcesForConstExt(true)) 277 llvm_unreachable("Resources not available"); 278 } 279 280 bool HexagonPacketizerList::canReserveResourcesForConstExt() { 281 return tryAllocateResourcesForConstExt(false); 282 } 283 284 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded, 285 // return true, otherwise, return false. 286 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) { 287 auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc()); 288 bool Avail = ResourceTracker->canReserveResources(*ExtMI); 289 if (Reserve && Avail) 290 ResourceTracker->reserveResources(*ExtMI); 291 MF.DeleteMachineInstr(ExtMI); 292 return Avail; 293 } 294 295 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI, 296 SDep::Kind DepType, unsigned DepReg) { 297 // Check for LR dependence. 298 if (DepReg == HRI->getRARegister()) 299 return true; 300 301 if (HII->isDeallocRet(MI)) 302 if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister()) 303 return true; 304 305 // Call-like instructions can be packetized with preceding instructions 306 // that define registers implicitly used or modified by the call. Explicit 307 // uses are still prohibited, as in the case of indirect calls: 308 // r0 = ... 309 // J2_jumpr r0 310 if (DepType == SDep::Data) { 311 for (const MachineOperand MO : MI.operands()) 312 if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit()) 313 return true; 314 } 315 316 return false; 317 } 318 319 static bool isRegDependence(const SDep::Kind DepType) { 320 return DepType == SDep::Data || DepType == SDep::Anti || 321 DepType == SDep::Output; 322 } 323 324 static bool isDirectJump(const MachineInstr &MI) { 325 return MI.getOpcode() == Hexagon::J2_jump; 326 } 327 328 static bool isSchedBarrier(const MachineInstr &MI) { 329 switch (MI.getOpcode()) { 330 case Hexagon::Y2_barrier: 331 return true; 332 } 333 return false; 334 } 335 336 static bool isControlFlow(const MachineInstr &MI) { 337 return MI.getDesc().isTerminator() || MI.getDesc().isCall(); 338 } 339 340 /// Returns true if the instruction modifies a callee-saved register. 341 static bool doesModifyCalleeSavedReg(const MachineInstr &MI, 342 const TargetRegisterInfo *TRI) { 343 const MachineFunction &MF = *MI.getParent()->getParent(); 344 for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 345 if (MI.modifiesRegister(*CSR, TRI)) 346 return true; 347 return false; 348 } 349 350 // Returns true if an instruction can be promoted to .new predicate or 351 // new-value store. 352 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI, 353 const TargetRegisterClass *NewRC) { 354 // Vector stores can be predicated, and can be new-value stores, but 355 // they cannot be predicated on a .new predicate value. 356 if (NewRC == &Hexagon::PredRegsRegClass) { 357 if (HII->isHVXVec(MI) && MI.mayStore()) 358 return false; 359 return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0; 360 } 361 // If the class is not PredRegs, it could only apply to new-value stores. 362 return HII->mayBeNewStore(MI); 363 } 364 365 // Promote an instructiont to its .cur form. 366 // At this time, we have already made a call to canPromoteToDotCur and made 367 // sure that it can *indeed* be promoted. 368 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI, 369 SDep::Kind DepType, MachineBasicBlock::iterator &MII, 370 const TargetRegisterClass* RC) { 371 assert(DepType == SDep::Data); 372 int CurOpcode = HII->getDotCurOp(MI); 373 MI.setDesc(HII->get(CurOpcode)); 374 return true; 375 } 376 377 void HexagonPacketizerList::cleanUpDotCur() { 378 MachineInstr *MI = nullptr; 379 for (auto BI : CurrentPacketMIs) { 380 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump();); 381 if (HII->isDotCurInst(*BI)) { 382 MI = BI; 383 continue; 384 } 385 if (MI) { 386 for (auto &MO : BI->operands()) 387 if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg()) 388 return; 389 } 390 } 391 if (!MI) 392 return; 393 // We did not find a use of the CUR, so de-cur it. 394 MI->setDesc(HII->get(HII->getNonDotCurOp(*MI))); 395 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump();); 396 } 397 398 // Check to see if an instruction can be dot cur. 399 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI, 400 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, 401 const TargetRegisterClass *RC) { 402 if (!HII->isHVXVec(MI)) 403 return false; 404 if (!HII->isHVXVec(*MII)) 405 return false; 406 407 // Already a dot new instruction. 408 if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI)) 409 return false; 410 411 if (!HII->mayBeCurLoad(MI)) 412 return false; 413 414 // The "cur value" cannot come from inline asm. 415 if (PacketSU->getInstr()->isInlineAsm()) 416 return false; 417 418 // Make sure candidate instruction uses cur. 419 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump(); 420 dbgs() << "in packet\n";); 421 MachineInstr &MJ = *MII; 422 LLVM_DEBUG({ 423 dbgs() << "Checking CUR against "; 424 MJ.dump(); 425 }); 426 Register DestReg = MI.getOperand(0).getReg(); 427 bool FoundMatch = false; 428 for (auto &MO : MJ.operands()) 429 if (MO.isReg() && MO.getReg() == DestReg) 430 FoundMatch = true; 431 if (!FoundMatch) 432 return false; 433 434 // Check for existing uses of a vector register within the packet which 435 // would be affected by converting a vector load into .cur formt. 436 for (auto BI : CurrentPacketMIs) { 437 LLVM_DEBUG(dbgs() << "packet has "; BI->dump();); 438 if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo())) 439 return false; 440 } 441 442 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump();); 443 // We can convert the opcode into a .cur. 444 return true; 445 } 446 447 // Promote an instruction to its .new form. At this time, we have already 448 // made a call to canPromoteToDotNew and made sure that it can *indeed* be 449 // promoted. 450 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI, 451 SDep::Kind DepType, MachineBasicBlock::iterator &MII, 452 const TargetRegisterClass* RC) { 453 assert(DepType == SDep::Data); 454 int NewOpcode; 455 if (RC == &Hexagon::PredRegsRegClass) 456 NewOpcode = HII->getDotNewPredOp(MI, MBPI); 457 else 458 NewOpcode = HII->getDotNewOp(MI); 459 MI.setDesc(HII->get(NewOpcode)); 460 return true; 461 } 462 463 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) { 464 int NewOpcode = HII->getDotOldOp(MI); 465 MI.setDesc(HII->get(NewOpcode)); 466 return true; 467 } 468 469 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) { 470 unsigned Opc = MI.getOpcode(); 471 switch (Opc) { 472 case Hexagon::S2_storerd_io: 473 case Hexagon::S2_storeri_io: 474 case Hexagon::S2_storerh_io: 475 case Hexagon::S2_storerb_io: 476 break; 477 default: 478 llvm_unreachable("Unexpected instruction"); 479 } 480 unsigned FrameSize = MF.getFrameInfo().getStackSize(); 481 MachineOperand &Off = MI.getOperand(1); 482 int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE); 483 if (HII->isValidOffset(Opc, NewOff, HRI)) { 484 Off.setImm(NewOff); 485 return true; 486 } 487 return false; 488 } 489 490 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) { 491 unsigned Opc = MI.getOpcode(); 492 switch (Opc) { 493 case Hexagon::S2_storerd_io: 494 case Hexagon::S2_storeri_io: 495 case Hexagon::S2_storerh_io: 496 case Hexagon::S2_storerb_io: 497 break; 498 default: 499 llvm_unreachable("Unexpected instruction"); 500 } 501 unsigned FrameSize = MF.getFrameInfo().getStackSize(); 502 MachineOperand &Off = MI.getOperand(1); 503 Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE); 504 } 505 506 /// Return true if we can update the offset in MI so that MI and MJ 507 /// can be packetized together. 508 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) { 509 assert(SUI->getInstr() && SUJ->getInstr()); 510 MachineInstr &MI = *SUI->getInstr(); 511 MachineInstr &MJ = *SUJ->getInstr(); 512 513 unsigned BPI, OPI; 514 if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI)) 515 return false; 516 unsigned BPJ, OPJ; 517 if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ)) 518 return false; 519 Register Reg = MI.getOperand(BPI).getReg(); 520 if (Reg != MJ.getOperand(BPJ).getReg()) 521 return false; 522 // Make sure that the dependences do not restrict adding MI to the packet. 523 // That is, ignore anti dependences, and make sure the only data dependence 524 // involves the specific register. 525 for (const auto &PI : SUI->Preds) 526 if (PI.getKind() != SDep::Anti && 527 (PI.getKind() != SDep::Data || PI.getReg() != Reg)) 528 return false; 529 int Incr; 530 if (!HII->getIncrementValue(MJ, Incr)) 531 return false; 532 533 int64_t Offset = MI.getOperand(OPI).getImm(); 534 if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI)) 535 return false; 536 537 MI.getOperand(OPI).setImm(Offset + Incr); 538 ChangedOffset = Offset; 539 return true; 540 } 541 542 /// Undo the changed offset. This is needed if the instruction cannot be 543 /// added to the current packet due to a different instruction. 544 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) { 545 unsigned BP, OP; 546 if (!HII->getBaseAndOffsetPosition(MI, BP, OP)) 547 llvm_unreachable("Unable to find base and offset operands."); 548 MI.getOperand(OP).setImm(ChangedOffset); 549 } 550 551 enum PredicateKind { 552 PK_False, 553 PK_True, 554 PK_Unknown 555 }; 556 557 /// Returns true if an instruction is predicated on p0 and false if it's 558 /// predicated on !p0. 559 static PredicateKind getPredicateSense(const MachineInstr &MI, 560 const HexagonInstrInfo *HII) { 561 if (!HII->isPredicated(MI)) 562 return PK_Unknown; 563 if (HII->isPredicatedTrue(MI)) 564 return PK_True; 565 return PK_False; 566 } 567 568 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI, 569 const HexagonInstrInfo *HII) { 570 assert(HII->isPostIncrement(MI) && "Not a post increment operation."); 571 #ifndef NDEBUG 572 // Post Increment means duplicates. Use dense map to find duplicates in the 573 // list. Caution: Densemap initializes with the minimum of 64 buckets, 574 // whereas there are at most 5 operands in the post increment. 575 DenseSet<unsigned> DefRegsSet; 576 for (auto &MO : MI.operands()) 577 if (MO.isReg() && MO.isDef()) 578 DefRegsSet.insert(MO.getReg()); 579 580 for (auto &MO : MI.operands()) 581 if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg())) 582 return MO; 583 #else 584 if (MI.mayLoad()) { 585 const MachineOperand &Op1 = MI.getOperand(1); 586 // The 2nd operand is always the post increment operand in load. 587 assert(Op1.isReg() && "Post increment operand has be to a register."); 588 return Op1; 589 } 590 if (MI.getDesc().mayStore()) { 591 const MachineOperand &Op0 = MI.getOperand(0); 592 // The 1st operand is always the post increment operand in store. 593 assert(Op0.isReg() && "Post increment operand has be to a register."); 594 return Op0; 595 } 596 #endif 597 // we should never come here. 598 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation"); 599 } 600 601 // Get the value being stored. 602 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) { 603 // value being stored is always the last operand. 604 return MI.getOperand(MI.getNumOperands()-1); 605 } 606 607 static bool isLoadAbsSet(const MachineInstr &MI) { 608 unsigned Opc = MI.getOpcode(); 609 switch (Opc) { 610 case Hexagon::L4_loadrd_ap: 611 case Hexagon::L4_loadrb_ap: 612 case Hexagon::L4_loadrh_ap: 613 case Hexagon::L4_loadrub_ap: 614 case Hexagon::L4_loadruh_ap: 615 case Hexagon::L4_loadri_ap: 616 return true; 617 } 618 return false; 619 } 620 621 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) { 622 assert(isLoadAbsSet(MI)); 623 return MI.getOperand(1); 624 } 625 626 // Can be new value store? 627 // Following restrictions are to be respected in convert a store into 628 // a new value store. 629 // 1. If an instruction uses auto-increment, its address register cannot 630 // be a new-value register. Arch Spec 5.4.2.1 631 // 2. If an instruction uses absolute-set addressing mode, its address 632 // register cannot be a new-value register. Arch Spec 5.4.2.1. 633 // 3. If an instruction produces a 64-bit result, its registers cannot be used 634 // as new-value registers. Arch Spec 5.4.2.2. 635 // 4. If the instruction that sets the new-value register is conditional, then 636 // the instruction that uses the new-value register must also be conditional, 637 // and both must always have their predicates evaluate identically. 638 // Arch Spec 5.4.2.3. 639 // 5. There is an implied restriction that a packet cannot have another store, 640 // if there is a new value store in the packet. Corollary: if there is 641 // already a store in a packet, there can not be a new value store. 642 // Arch Spec: 3.4.4.2 643 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI, 644 const MachineInstr &PacketMI, unsigned DepReg) { 645 // Make sure we are looking at the store, that can be promoted. 646 if (!HII->mayBeNewStore(MI)) 647 return false; 648 649 // Make sure there is dependency and can be new value'd. 650 const MachineOperand &Val = getStoreValueOperand(MI); 651 if (Val.isReg() && Val.getReg() != DepReg) 652 return false; 653 654 const MCInstrDesc& MCID = PacketMI.getDesc(); 655 656 // First operand is always the result. 657 const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF); 658 // Double regs can not feed into new value store: PRM section: 5.4.2.2. 659 if (PacketRC == &Hexagon::DoubleRegsRegClass) 660 return false; 661 662 // New-value stores are of class NV (slot 0), dual stores require class ST 663 // in slot 0 (PRM 5.5). 664 for (auto I : CurrentPacketMIs) { 665 SUnit *PacketSU = MIToSUnit.find(I)->second; 666 if (PacketSU->getInstr()->mayStore()) 667 return false; 668 } 669 670 // Make sure it's NOT the post increment register that we are going to 671 // new value. 672 if (HII->isPostIncrement(MI) && 673 getPostIncrementOperand(MI, HII).getReg() == DepReg) { 674 return false; 675 } 676 677 if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() && 678 getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) { 679 // If source is post_inc, or absolute-set addressing, it can not feed 680 // into new value store 681 // r3 = memw(r2++#4) 682 // memw(r30 + #-1404) = r2.new -> can not be new value store 683 // arch spec section: 5.4.2.1. 684 return false; 685 } 686 687 if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg) 688 return false; 689 690 // If the source that feeds the store is predicated, new value store must 691 // also be predicated. 692 if (HII->isPredicated(PacketMI)) { 693 if (!HII->isPredicated(MI)) 694 return false; 695 696 // Check to make sure that they both will have their predicates 697 // evaluate identically. 698 unsigned predRegNumSrc = 0; 699 unsigned predRegNumDst = 0; 700 const TargetRegisterClass* predRegClass = nullptr; 701 702 // Get predicate register used in the source instruction. 703 for (auto &MO : PacketMI.operands()) { 704 if (!MO.isReg()) 705 continue; 706 predRegNumSrc = MO.getReg(); 707 predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc); 708 if (predRegClass == &Hexagon::PredRegsRegClass) 709 break; 710 } 711 assert((predRegClass == &Hexagon::PredRegsRegClass) && 712 "predicate register not found in a predicated PacketMI instruction"); 713 714 // Get predicate register used in new-value store instruction. 715 for (auto &MO : MI.operands()) { 716 if (!MO.isReg()) 717 continue; 718 predRegNumDst = MO.getReg(); 719 predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst); 720 if (predRegClass == &Hexagon::PredRegsRegClass) 721 break; 722 } 723 assert((predRegClass == &Hexagon::PredRegsRegClass) && 724 "predicate register not found in a predicated MI instruction"); 725 726 // New-value register producer and user (store) need to satisfy these 727 // constraints: 728 // 1) Both instructions should be predicated on the same register. 729 // 2) If producer of the new-value register is .new predicated then store 730 // should also be .new predicated and if producer is not .new predicated 731 // then store should not be .new predicated. 732 // 3) Both new-value register producer and user should have same predicate 733 // sense, i.e, either both should be negated or both should be non-negated. 734 if (predRegNumDst != predRegNumSrc || 735 HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) || 736 getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII)) 737 return false; 738 } 739 740 // Make sure that other than the new-value register no other store instruction 741 // register has been modified in the same packet. Predicate registers can be 742 // modified by they should not be modified between the producer and the store 743 // instruction as it will make them both conditional on different values. 744 // We already know this to be true for all the instructions before and 745 // including PacketMI. Howerver, we need to perform the check for the 746 // remaining instructions in the packet. 747 748 unsigned StartCheck = 0; 749 750 for (auto I : CurrentPacketMIs) { 751 SUnit *TempSU = MIToSUnit.find(I)->second; 752 MachineInstr &TempMI = *TempSU->getInstr(); 753 754 // Following condition is true for all the instructions until PacketMI is 755 // reached (StartCheck is set to 0 before the for loop). 756 // StartCheck flag is 1 for all the instructions after PacketMI. 757 if (&TempMI != &PacketMI && !StartCheck) // Start processing only after 758 continue; // encountering PacketMI. 759 760 StartCheck = 1; 761 if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence. 762 continue; 763 764 for (auto &MO : MI.operands()) 765 if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI)) 766 return false; 767 } 768 769 // Make sure that for non-POST_INC stores: 770 // 1. The only use of reg is DepReg and no other registers. 771 // This handles base+index registers. 772 // The following store can not be dot new. 773 // Eg. r0 = add(r0, #3) 774 // memw(r1+r0<<#2) = r0 775 if (!HII->isPostIncrement(MI)) { 776 for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) { 777 const MachineOperand &MO = MI.getOperand(opNum); 778 if (MO.isReg() && MO.getReg() == DepReg) 779 return false; 780 } 781 } 782 783 // If data definition is because of implicit definition of the register, 784 // do not newify the store. Eg. 785 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12 786 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343] 787 for (auto &MO : PacketMI.operands()) { 788 if (MO.isRegMask() && MO.clobbersPhysReg(DepReg)) 789 return false; 790 if (!MO.isReg() || !MO.isDef() || !MO.isImplicit()) 791 continue; 792 Register R = MO.getReg(); 793 if (R == DepReg || HRI->isSuperRegister(DepReg, R)) 794 return false; 795 } 796 797 // Handle imp-use of super reg case. There is a target independent side 798 // change that should prevent this situation but I am handling it for 799 // just-in-case. For example, we cannot newify R2 in the following case: 800 // %r3 = A2_tfrsi 0; 801 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1; 802 for (auto &MO : MI.operands()) { 803 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg) 804 return false; 805 } 806 807 // Can be dot new store. 808 return true; 809 } 810 811 // Can this MI to promoted to either new value store or new value jump. 812 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI, 813 const SUnit *PacketSU, unsigned DepReg, 814 MachineBasicBlock::iterator &MII) { 815 if (!HII->mayBeNewStore(MI)) 816 return false; 817 818 // Check to see the store can be new value'ed. 819 MachineInstr &PacketMI = *PacketSU->getInstr(); 820 if (canPromoteToNewValueStore(MI, PacketMI, DepReg)) 821 return true; 822 823 // Check to see the compare/jump can be new value'ed. 824 // This is done as a pass on its own. Don't need to check it here. 825 return false; 826 } 827 828 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef, 829 unsigned DepReg) { 830 for (auto &MO : I.operands()) { 831 if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg)) 832 return true; 833 if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit()) 834 continue; 835 if (CheckDef == MO.isDef()) 836 return true; 837 } 838 return false; 839 } 840 841 // Check to see if an instruction can be dot new. 842 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI, 843 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, 844 const TargetRegisterClass* RC) { 845 // Already a dot new instruction. 846 if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI)) 847 return false; 848 849 if (!isNewifiable(MI, RC)) 850 return false; 851 852 const MachineInstr &PI = *PacketSU->getInstr(); 853 854 // The "new value" cannot come from inline asm. 855 if (PI.isInlineAsm()) 856 return false; 857 858 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no 859 // sense. 860 if (PI.isImplicitDef()) 861 return false; 862 863 // If dependency is trough an implicitly defined register, we should not 864 // newify the use. 865 if (isImplicitDependency(PI, true, DepReg) || 866 isImplicitDependency(MI, false, DepReg)) 867 return false; 868 869 const MCInstrDesc& MCID = PI.getDesc(); 870 const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF); 871 if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass) 872 return false; 873 874 // predicate .new 875 if (RC == &Hexagon::PredRegsRegClass) 876 return HII->predCanBeUsedAsDotNew(PI, DepReg); 877 878 if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI)) 879 return false; 880 881 // Create a dot new machine instruction to see if resources can be 882 // allocated. If not, bail out now. 883 int NewOpcode = HII->getDotNewOp(MI); 884 const MCInstrDesc &D = HII->get(NewOpcode); 885 MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc()); 886 bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI); 887 MF.DeleteMachineInstr(NewMI); 888 if (!ResourcesAvailable) 889 return false; 890 891 // New Value Store only. New Value Jump generated as a separate pass. 892 if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII)) 893 return false; 894 895 return true; 896 } 897 898 // Go through the packet instructions and search for an anti dependency between 899 // them and DepReg from MI. Consider this case: 900 // Trying to add 901 // a) %r1 = TFRI_cdNotPt %p3, 2 902 // to this packet: 903 // { 904 // b) %p0 = C2_or killed %p3, killed %p0 905 // c) %p3 = C2_tfrrp %r23 906 // d) %r1 = C2_cmovenewit %p3, 4 907 // } 908 // The P3 from a) and d) will be complements after 909 // a)'s P3 is converted to .new form 910 // Anti-dep between c) and b) is irrelevant for this case 911 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI, 912 unsigned DepReg) { 913 SUnit *PacketSUDep = MIToSUnit.find(&MI)->second; 914 915 for (auto I : CurrentPacketMIs) { 916 // We only care for dependencies to predicated instructions 917 if (!HII->isPredicated(*I)) 918 continue; 919 920 // Scheduling Unit for current insn in the packet 921 SUnit *PacketSU = MIToSUnit.find(I)->second; 922 923 // Look at dependencies between current members of the packet and 924 // predicate defining instruction MI. Make sure that dependency is 925 // on the exact register we care about. 926 if (PacketSU->isSucc(PacketSUDep)) { 927 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { 928 auto &Dep = PacketSU->Succs[i]; 929 if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti && 930 Dep.getReg() == DepReg) 931 return true; 932 } 933 } 934 } 935 936 return false; 937 } 938 939 /// Gets the predicate register of a predicated instruction. 940 static unsigned getPredicatedRegister(MachineInstr &MI, 941 const HexagonInstrInfo *QII) { 942 /// We use the following rule: The first predicate register that is a use is 943 /// the predicate register of a predicated instruction. 944 assert(QII->isPredicated(MI) && "Must be predicated instruction"); 945 946 for (auto &Op : MI.operands()) { 947 if (Op.isReg() && Op.getReg() && Op.isUse() && 948 Hexagon::PredRegsRegClass.contains(Op.getReg())) 949 return Op.getReg(); 950 } 951 952 llvm_unreachable("Unknown instruction operand layout"); 953 return 0; 954 } 955 956 // Given two predicated instructions, this function detects whether 957 // the predicates are complements. 958 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1, 959 MachineInstr &MI2) { 960 // If we don't know the predicate sense of the instructions bail out early, we 961 // need it later. 962 if (getPredicateSense(MI1, HII) == PK_Unknown || 963 getPredicateSense(MI2, HII) == PK_Unknown) 964 return false; 965 966 // Scheduling unit for candidate. 967 SUnit *SU = MIToSUnit[&MI1]; 968 969 // One corner case deals with the following scenario: 970 // Trying to add 971 // a) %r24 = A2_tfrt %p0, %r25 972 // to this packet: 973 // { 974 // b) %r25 = A2_tfrf %p0, %r24 975 // c) %p0 = C2_cmpeqi %r26, 1 976 // } 977 // 978 // On general check a) and b) are complements, but presence of c) will 979 // convert a) to .new form, and then it is not a complement. 980 // We attempt to detect it by analyzing existing dependencies in the packet. 981 982 // Analyze relationships between all existing members of the packet. 983 // Look for Anti dependecy on the same predicate reg as used in the 984 // candidate. 985 for (auto I : CurrentPacketMIs) { 986 // Scheduling Unit for current insn in the packet. 987 SUnit *PacketSU = MIToSUnit.find(I)->second; 988 989 // If this instruction in the packet is succeeded by the candidate... 990 if (PacketSU->isSucc(SU)) { 991 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { 992 auto Dep = PacketSU->Succs[i]; 993 // The corner case exist when there is true data dependency between 994 // candidate and one of current packet members, this dep is on 995 // predicate reg, and there already exist anti dep on the same pred in 996 // the packet. 997 if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data && 998 Hexagon::PredRegsRegClass.contains(Dep.getReg())) { 999 // Here I know that I is predicate setting instruction with true 1000 // data dep to candidate on the register we care about - c) in the 1001 // above example. Now I need to see if there is an anti dependency 1002 // from c) to any other instruction in the same packet on the pred 1003 // reg of interest. 1004 if (restrictingDepExistInPacket(*I, Dep.getReg())) 1005 return false; 1006 } 1007 } 1008 } 1009 } 1010 1011 // If the above case does not apply, check regular complement condition. 1012 // Check that the predicate register is the same and that the predicate 1013 // sense is different We also need to differentiate .old vs. .new: !p0 1014 // is not complementary to p0.new. 1015 unsigned PReg1 = getPredicatedRegister(MI1, HII); 1016 unsigned PReg2 = getPredicatedRegister(MI2, HII); 1017 return PReg1 == PReg2 && 1018 Hexagon::PredRegsRegClass.contains(PReg1) && 1019 Hexagon::PredRegsRegClass.contains(PReg2) && 1020 getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) && 1021 HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2); 1022 } 1023 1024 // Initialize packetizer flags. 1025 void HexagonPacketizerList::initPacketizerState() { 1026 Dependence = false; 1027 PromotedToDotNew = false; 1028 GlueToNewValueJump = false; 1029 GlueAllocframeStore = false; 1030 FoundSequentialDependence = false; 1031 ChangedOffset = INT64_MAX; 1032 } 1033 1034 // Ignore bundling of pseudo instructions. 1035 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI, 1036 const MachineBasicBlock *) { 1037 if (MI.isDebugInstr()) 1038 return true; 1039 1040 if (MI.isCFIInstruction()) 1041 return false; 1042 1043 // We must print out inline assembly. 1044 if (MI.isInlineAsm()) 1045 return false; 1046 1047 if (MI.isImplicitDef()) 1048 return false; 1049 1050 // We check if MI has any functional units mapped to it. If it doesn't, 1051 // we ignore the instruction. 1052 const MCInstrDesc& TID = MI.getDesc(); 1053 auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass()); 1054 unsigned FuncUnits = IS->getUnits(); 1055 return !FuncUnits; 1056 } 1057 1058 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) { 1059 // Ensure any bundles created by gather packetize remain seperate. 1060 if (MI.isBundle()) 1061 return true; 1062 1063 if (MI.isEHLabel() || MI.isCFIInstruction()) 1064 return true; 1065 1066 // Consider inline asm to not be a solo instruction by default. 1067 // Inline asm will be put in a packet temporarily, but then it will be 1068 // removed, and placed outside of the packet (before or after, depending 1069 // on dependencies). This is to reduce the impact of inline asm as a 1070 // "packet splitting" instruction. 1071 if (MI.isInlineAsm() && !ScheduleInlineAsm) 1072 return true; 1073 1074 if (isSchedBarrier(MI)) 1075 return true; 1076 1077 if (HII->isSolo(MI)) 1078 return true; 1079 1080 if (MI.getOpcode() == Hexagon::A2_nop) 1081 return true; 1082 1083 return false; 1084 } 1085 1086 // Quick check if instructions MI and MJ cannot coexist in the same packet. 1087 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm", 1088 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm". 1089 // For full test call this function twice: 1090 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI) 1091 // Doing the test only one way saves the amount of code in this function, 1092 // since every test would need to be repeated with the MI and MJ reversed. 1093 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ, 1094 const HexagonInstrInfo &HII) { 1095 const MachineFunction *MF = MI.getParent()->getParent(); 1096 if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() && 1097 HII.isHVXMemWithAIndirect(MI, MJ)) 1098 return true; 1099 1100 // An inline asm cannot be together with a branch, because we may not be 1101 // able to remove the asm out after packetizing (i.e. if the asm must be 1102 // moved past the bundle). Similarly, two asms cannot be together to avoid 1103 // complications when determining their relative order outside of a bundle. 1104 if (MI.isInlineAsm()) 1105 return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() || 1106 MJ.isCall() || MJ.isTerminator(); 1107 1108 // New-value stores cannot coexist with any other stores. 1109 if (HII.isNewValueStore(MI) && MJ.mayStore()) 1110 return true; 1111 1112 switch (MI.getOpcode()) { 1113 case Hexagon::S2_storew_locked: 1114 case Hexagon::S4_stored_locked: 1115 case Hexagon::L2_loadw_locked: 1116 case Hexagon::L4_loadd_locked: 1117 case Hexagon::Y2_dccleana: 1118 case Hexagon::Y2_dccleaninva: 1119 case Hexagon::Y2_dcinva: 1120 case Hexagon::Y2_dczeroa: 1121 case Hexagon::Y4_l2fetch: 1122 case Hexagon::Y5_l2fetch: { 1123 // These instructions can only be grouped with ALU32 or non-floating-point 1124 // XTYPE instructions. Since there is no convenient way of identifying fp 1125 // XTYPE instructions, only allow grouping with ALU32 for now. 1126 unsigned TJ = HII.getType(MJ); 1127 if (TJ != HexagonII::TypeALU32_2op && 1128 TJ != HexagonII::TypeALU32_3op && 1129 TJ != HexagonII::TypeALU32_ADDI) 1130 return true; 1131 break; 1132 } 1133 default: 1134 break; 1135 } 1136 1137 // "False" really means that the quick check failed to determine if 1138 // I and J cannot coexist. 1139 return false; 1140 } 1141 1142 // Full, symmetric check. 1143 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI, 1144 const MachineInstr &MJ) { 1145 return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII); 1146 } 1147 1148 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) { 1149 for (auto &B : MF) { 1150 MachineBasicBlock::iterator BundleIt; 1151 MachineBasicBlock::instr_iterator NextI; 1152 for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) { 1153 NextI = std::next(I); 1154 MachineInstr &MI = *I; 1155 if (MI.isBundle()) 1156 BundleIt = I; 1157 if (!MI.isInsideBundle()) 1158 continue; 1159 1160 // Decide on where to insert the instruction that we are pulling out. 1161 // Debug instructions always go before the bundle, but the placement of 1162 // INLINE_ASM depends on potential dependencies. By default, try to 1163 // put it before the bundle, but if the asm writes to a register that 1164 // other instructions in the bundle read, then we need to place it 1165 // after the bundle (to preserve the bundle semantics). 1166 bool InsertBeforeBundle; 1167 if (MI.isInlineAsm()) 1168 InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI); 1169 else if (MI.isDebugValue()) 1170 InsertBeforeBundle = true; 1171 else 1172 continue; 1173 1174 BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle); 1175 } 1176 } 1177 } 1178 1179 // Check if a given instruction is of class "system". 1180 static bool isSystemInstr(const MachineInstr &MI) { 1181 unsigned Opc = MI.getOpcode(); 1182 switch (Opc) { 1183 case Hexagon::Y2_barrier: 1184 case Hexagon::Y2_dcfetchbo: 1185 case Hexagon::Y4_l2fetch: 1186 case Hexagon::Y5_l2fetch: 1187 return true; 1188 } 1189 return false; 1190 } 1191 1192 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I, 1193 const MachineInstr &J) { 1194 // The dependence graph may not include edges between dead definitions, 1195 // so without extra checks, we could end up packetizing two instruction 1196 // defining the same (dead) register. 1197 if (I.isCall() || J.isCall()) 1198 return false; 1199 if (HII->isPredicated(I) || HII->isPredicated(J)) 1200 return false; 1201 1202 BitVector DeadDefs(Hexagon::NUM_TARGET_REGS); 1203 for (auto &MO : I.operands()) { 1204 if (!MO.isReg() || !MO.isDef() || !MO.isDead()) 1205 continue; 1206 DeadDefs[MO.getReg()] = true; 1207 } 1208 1209 for (auto &MO : J.operands()) { 1210 if (!MO.isReg() || !MO.isDef() || !MO.isDead()) 1211 continue; 1212 Register R = MO.getReg(); 1213 if (R != Hexagon::USR_OVF && DeadDefs[R]) 1214 return true; 1215 } 1216 return false; 1217 } 1218 1219 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I, 1220 const MachineInstr &J) { 1221 // A save callee-save register function call can only be in a packet 1222 // with instructions that don't write to the callee-save registers. 1223 if ((HII->isSaveCalleeSavedRegsCall(I) && 1224 doesModifyCalleeSavedReg(J, HRI)) || 1225 (HII->isSaveCalleeSavedRegsCall(J) && 1226 doesModifyCalleeSavedReg(I, HRI))) 1227 return true; 1228 1229 // Two control flow instructions cannot go in the same packet. 1230 if (isControlFlow(I) && isControlFlow(J)) 1231 return true; 1232 1233 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot 1234 // contain a speculative indirect jump, 1235 // a new-value compare jump or a dealloc_return. 1236 auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool { 1237 if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI)) 1238 return true; 1239 if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI)) 1240 return true; 1241 return false; 1242 }; 1243 1244 if (HII->isLoopN(I) && isBadForLoopN(J)) 1245 return true; 1246 if (HII->isLoopN(J) && isBadForLoopN(I)) 1247 return true; 1248 1249 // dealloc_return cannot appear in the same packet as a conditional or 1250 // unconditional jump. 1251 return HII->isDeallocRet(I) && 1252 (J.isBranch() || J.isCall() || J.isBarrier()); 1253 } 1254 1255 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I, 1256 const MachineInstr &J) { 1257 // Adding I to a packet that has J. 1258 1259 // Regmasks are not reflected in the scheduling dependency graph, so 1260 // we need to check them manually. This code assumes that regmasks only 1261 // occur on calls, and the problematic case is when we add an instruction 1262 // defining a register R to a packet that has a call that clobbers R via 1263 // a regmask. Those cannot be packetized together, because the call will 1264 // be executed last. That's also a reson why it is ok to add a call 1265 // clobbering R to a packet that defines R. 1266 1267 // Look for regmasks in J. 1268 for (const MachineOperand &OpJ : J.operands()) { 1269 if (!OpJ.isRegMask()) 1270 continue; 1271 assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call"); 1272 for (const MachineOperand &OpI : I.operands()) { 1273 if (OpI.isReg()) { 1274 if (OpJ.clobbersPhysReg(OpI.getReg())) 1275 return true; 1276 } else if (OpI.isRegMask()) { 1277 // Both are regmasks. Assume that they intersect. 1278 return true; 1279 } 1280 } 1281 } 1282 return false; 1283 } 1284 1285 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I, 1286 const MachineInstr &J) { 1287 bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J); 1288 bool StoreI = I.mayStore(), StoreJ = J.mayStore(); 1289 if ((SysI && StoreJ) || (SysJ && StoreI)) 1290 return true; 1291 1292 if (StoreI && StoreJ) { 1293 if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I)) 1294 return true; 1295 } else { 1296 // A memop cannot be in the same packet with another memop or a store. 1297 // Two stores can be together, but here I and J cannot both be stores. 1298 bool MopStI = HII->isMemOp(I) || StoreI; 1299 bool MopStJ = HII->isMemOp(J) || StoreJ; 1300 if (MopStI && MopStJ) 1301 return true; 1302 } 1303 1304 return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J)); 1305 } 1306 1307 // SUI is the current instruction that is out side of the current packet. 1308 // SUJ is the current instruction inside the current packet against which that 1309 // SUI will be packetized. 1310 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { 1311 assert(SUI->getInstr() && SUJ->getInstr()); 1312 MachineInstr &I = *SUI->getInstr(); 1313 MachineInstr &J = *SUJ->getInstr(); 1314 1315 // Clear IgnoreDepMIs when Packet starts. 1316 if (CurrentPacketMIs.size() == 1) 1317 IgnoreDepMIs.clear(); 1318 1319 MachineBasicBlock::iterator II = I.getIterator(); 1320 1321 // Solo instructions cannot go in the packet. 1322 assert(!isSoloInstruction(I) && "Unexpected solo instr!"); 1323 1324 if (cannotCoexist(I, J)) 1325 return false; 1326 1327 Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J); 1328 if (Dependence) 1329 return false; 1330 1331 // Regmasks are not accounted for in the scheduling graph, so we need 1332 // to explicitly check for dependencies caused by them. They should only 1333 // appear on calls, so it's not too pessimistic to reject all regmask 1334 // dependencies. 1335 Dependence = hasRegMaskDependence(I, J); 1336 if (Dependence) 1337 return false; 1338 1339 // Dual-store does not allow second store, if the first store is not 1340 // in SLOT0. New value store, new value jump, dealloc_return and memop 1341 // always take SLOT0. Arch spec 3.4.4.2. 1342 Dependence = hasDualStoreDependence(I, J); 1343 if (Dependence) 1344 return false; 1345 1346 // If an instruction feeds new value jump, glue it. 1347 MachineBasicBlock::iterator NextMII = I.getIterator(); 1348 ++NextMII; 1349 if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) { 1350 MachineInstr &NextMI = *NextMII; 1351 1352 bool secondRegMatch = false; 1353 const MachineOperand &NOp0 = NextMI.getOperand(0); 1354 const MachineOperand &NOp1 = NextMI.getOperand(1); 1355 1356 if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg()) 1357 secondRegMatch = true; 1358 1359 for (MachineInstr *PI : CurrentPacketMIs) { 1360 // NVJ can not be part of the dual jump - Arch Spec: section 7.8. 1361 if (PI->isCall()) { 1362 Dependence = true; 1363 break; 1364 } 1365 // Validate: 1366 // 1. Packet does not have a store in it. 1367 // 2. If the first operand of the nvj is newified, and the second 1368 // operand is also a reg, it (second reg) is not defined in 1369 // the same packet. 1370 // 3. If the second operand of the nvj is newified, (which means 1371 // first operand is also a reg), first reg is not defined in 1372 // the same packet. 1373 if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() || 1374 HII->isLoopN(*PI)) { 1375 Dependence = true; 1376 break; 1377 } 1378 // Check #2/#3. 1379 const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1; 1380 if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) { 1381 Dependence = true; 1382 break; 1383 } 1384 } 1385 1386 GlueToNewValueJump = true; 1387 if (Dependence) 1388 return false; 1389 } 1390 1391 // There no dependency between a prolog instruction and its successor. 1392 if (!SUJ->isSucc(SUI)) 1393 return true; 1394 1395 for (unsigned i = 0; i < SUJ->Succs.size(); ++i) { 1396 if (FoundSequentialDependence) 1397 break; 1398 1399 if (SUJ->Succs[i].getSUnit() != SUI) 1400 continue; 1401 1402 SDep::Kind DepType = SUJ->Succs[i].getKind(); 1403 // For direct calls: 1404 // Ignore register dependences for call instructions for packetization 1405 // purposes except for those due to r31 and predicate registers. 1406 // 1407 // For indirect calls: 1408 // Same as direct calls + check for true dependences to the register 1409 // used in the indirect call. 1410 // 1411 // We completely ignore Order dependences for call instructions. 1412 // 1413 // For returns: 1414 // Ignore register dependences for return instructions like jumpr, 1415 // dealloc return unless we have dependencies on the explicit uses 1416 // of the registers used by jumpr (like r31) or dealloc return 1417 // (like r29 or r30). 1418 unsigned DepReg = 0; 1419 const TargetRegisterClass *RC = nullptr; 1420 if (DepType == SDep::Data) { 1421 DepReg = SUJ->Succs[i].getReg(); 1422 RC = HRI->getMinimalPhysRegClass(DepReg); 1423 } 1424 1425 if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) { 1426 if (!isRegDependence(DepType)) 1427 continue; 1428 if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg())) 1429 continue; 1430 } 1431 1432 if (DepType == SDep::Data) { 1433 if (canPromoteToDotCur(J, SUJ, DepReg, II, RC)) 1434 if (promoteToDotCur(J, DepType, II, RC)) 1435 continue; 1436 } 1437 1438 // Data dpendence ok if we have load.cur. 1439 if (DepType == SDep::Data && HII->isDotCurInst(J)) { 1440 if (HII->isHVXVec(I)) 1441 continue; 1442 } 1443 1444 // For instructions that can be promoted to dot-new, try to promote. 1445 if (DepType == SDep::Data) { 1446 if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) { 1447 if (promoteToDotNew(I, DepType, II, RC)) { 1448 PromotedToDotNew = true; 1449 if (cannotCoexist(I, J)) 1450 FoundSequentialDependence = true; 1451 continue; 1452 } 1453 } 1454 if (HII->isNewValueJump(I)) 1455 continue; 1456 } 1457 1458 // For predicated instructions, if the predicates are complements then 1459 // there can be no dependence. 1460 if (HII->isPredicated(I) && HII->isPredicated(J) && 1461 arePredicatesComplements(I, J)) { 1462 // Not always safe to do this translation. 1463 // DAG Builder attempts to reduce dependence edges using transitive 1464 // nature of dependencies. Here is an example: 1465 // 1466 // r0 = tfr_pt ... (1) 1467 // r0 = tfr_pf ... (2) 1468 // r0 = tfr_pt ... (3) 1469 // 1470 // There will be an output dependence between (1)->(2) and (2)->(3). 1471 // However, there is no dependence edge between (1)->(3). This results 1472 // in all 3 instructions going in the same packet. We ignore dependce 1473 // only once to avoid this situation. 1474 auto Itr = find(IgnoreDepMIs, &J); 1475 if (Itr != IgnoreDepMIs.end()) { 1476 Dependence = true; 1477 return false; 1478 } 1479 IgnoreDepMIs.push_back(&I); 1480 continue; 1481 } 1482 1483 // Ignore Order dependences between unconditional direct branches 1484 // and non-control-flow instructions. 1485 if (isDirectJump(I) && !J.isBranch() && !J.isCall() && 1486 DepType == SDep::Order) 1487 continue; 1488 1489 // Ignore all dependences for jumps except for true and output 1490 // dependences. 1491 if (I.isConditionalBranch() && DepType != SDep::Data && 1492 DepType != SDep::Output) 1493 continue; 1494 1495 if (DepType == SDep::Output) { 1496 FoundSequentialDependence = true; 1497 break; 1498 } 1499 1500 // For Order dependences: 1501 // 1. Volatile loads/stores can be packetized together, unless other 1502 // rules prevent is. 1503 // 2. Store followed by a load is not allowed. 1504 // 3. Store followed by a store is valid. 1505 // 4. Load followed by any memory operation is allowed. 1506 if (DepType == SDep::Order) { 1507 if (!PacketizeVolatiles) { 1508 bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef(); 1509 if (OrdRefs) { 1510 FoundSequentialDependence = true; 1511 break; 1512 } 1513 } 1514 // J is first, I is second. 1515 bool LoadJ = J.mayLoad(), StoreJ = J.mayStore(); 1516 bool LoadI = I.mayLoad(), StoreI = I.mayStore(); 1517 bool NVStoreJ = HII->isNewValueStore(J); 1518 bool NVStoreI = HII->isNewValueStore(I); 1519 bool IsVecJ = HII->isHVXVec(J); 1520 bool IsVecI = HII->isHVXVec(I); 1521 1522 if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() && 1523 ((LoadJ && StoreI && !NVStoreI) || 1524 (StoreJ && LoadI && !NVStoreJ)) && 1525 (J.getOpcode() != Hexagon::S2_allocframe && 1526 I.getOpcode() != Hexagon::S2_allocframe) && 1527 (J.getOpcode() != Hexagon::L2_deallocframe && 1528 I.getOpcode() != Hexagon::L2_deallocframe) && 1529 (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI)) 1530 setmemShufDisabled(true); 1531 else 1532 if (StoreJ && LoadI && alias(J, I)) { 1533 FoundSequentialDependence = true; 1534 break; 1535 } 1536 1537 if (!StoreJ) 1538 if (!LoadJ || (!LoadI && !StoreI)) { 1539 // If J is neither load nor store, assume a dependency. 1540 // If J is a load, but I is neither, also assume a dependency. 1541 FoundSequentialDependence = true; 1542 break; 1543 } 1544 // Store followed by store: not OK on V2. 1545 // Store followed by load: not OK on all. 1546 // Load followed by store: OK on all. 1547 // Load followed by load: OK on all. 1548 continue; 1549 } 1550 1551 // Special case for ALLOCFRAME: even though there is dependency 1552 // between ALLOCFRAME and subsequent store, allow it to be packetized 1553 // in a same packet. This implies that the store is using the caller's 1554 // SP. Hence, offset needs to be updated accordingly. 1555 if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) { 1556 unsigned Opc = I.getOpcode(); 1557 switch (Opc) { 1558 case Hexagon::S2_storerd_io: 1559 case Hexagon::S2_storeri_io: 1560 case Hexagon::S2_storerh_io: 1561 case Hexagon::S2_storerb_io: 1562 if (I.getOperand(0).getReg() == HRI->getStackRegister()) { 1563 // Since this store is to be glued with allocframe in the same 1564 // packet, it will use SP of the previous stack frame, i.e. 1565 // caller's SP. Therefore, we need to recalculate offset 1566 // according to this change. 1567 GlueAllocframeStore = useCallersSP(I); 1568 if (GlueAllocframeStore) 1569 continue; 1570 } 1571 break; 1572 default: 1573 break; 1574 } 1575 } 1576 1577 // There are certain anti-dependencies that cannot be ignored. 1578 // Specifically: 1579 // J2_call ... implicit-def %r0 ; SUJ 1580 // R0 = ... ; SUI 1581 // Those cannot be packetized together, since the call will observe 1582 // the effect of the assignment to R0. 1583 if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) { 1584 // Check if I defines any volatile register. We should also check 1585 // registers that the call may read, but these happen to be a 1586 // subset of the volatile register set. 1587 for (const MachineOperand &Op : I.operands()) { 1588 if (Op.isReg() && Op.isDef()) { 1589 Register R = Op.getReg(); 1590 if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI)) 1591 continue; 1592 } else if (!Op.isRegMask()) { 1593 // If I has a regmask assume dependency. 1594 continue; 1595 } 1596 FoundSequentialDependence = true; 1597 break; 1598 } 1599 } 1600 1601 // Skip over remaining anti-dependences. Two instructions that are 1602 // anti-dependent can share a packet, since in most such cases all 1603 // operands are read before any modifications take place. 1604 // The exceptions are branch and call instructions, since they are 1605 // executed after all other instructions have completed (at least 1606 // conceptually). 1607 if (DepType != SDep::Anti) { 1608 FoundSequentialDependence = true; 1609 break; 1610 } 1611 } 1612 1613 if (FoundSequentialDependence) { 1614 Dependence = true; 1615 return false; 1616 } 1617 1618 return true; 1619 } 1620 1621 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { 1622 assert(SUI->getInstr() && SUJ->getInstr()); 1623 MachineInstr &I = *SUI->getInstr(); 1624 MachineInstr &J = *SUJ->getInstr(); 1625 1626 bool Coexist = !cannotCoexist(I, J); 1627 1628 if (Coexist && !Dependence) 1629 return true; 1630 1631 // Check if the instruction was promoted to a dot-new. If so, demote it 1632 // back into a dot-old. 1633 if (PromotedToDotNew) 1634 demoteToDotOld(I); 1635 1636 cleanUpDotCur(); 1637 // Check if the instruction (must be a store) was glued with an allocframe 1638 // instruction. If so, restore its offset to its original value, i.e. use 1639 // current SP instead of caller's SP. 1640 if (GlueAllocframeStore) { 1641 useCalleesSP(I); 1642 GlueAllocframeStore = false; 1643 } 1644 1645 if (ChangedOffset != INT64_MAX) 1646 undoChangedOffset(I); 1647 1648 if (GlueToNewValueJump) { 1649 // Putting I and J together would prevent the new-value jump from being 1650 // packetized with the producer. In that case I and J must be separated. 1651 GlueToNewValueJump = false; 1652 return false; 1653 } 1654 1655 if (!Coexist) 1656 return false; 1657 1658 if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) { 1659 FoundSequentialDependence = false; 1660 Dependence = false; 1661 return true; 1662 } 1663 1664 return false; 1665 } 1666 1667 1668 bool HexagonPacketizerList::foundLSInPacket() { 1669 bool FoundLoad = false; 1670 bool FoundStore = false; 1671 1672 for (auto MJ : CurrentPacketMIs) { 1673 unsigned Opc = MJ->getOpcode(); 1674 if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe) 1675 continue; 1676 if (HII->isMemOp(*MJ)) 1677 continue; 1678 if (MJ->mayLoad()) 1679 FoundLoad = true; 1680 if (MJ->mayStore() && !HII->isNewValueStore(*MJ)) 1681 FoundStore = true; 1682 } 1683 return FoundLoad && FoundStore; 1684 } 1685 1686 1687 MachineBasicBlock::iterator 1688 HexagonPacketizerList::addToPacket(MachineInstr &MI) { 1689 MachineBasicBlock::iterator MII = MI.getIterator(); 1690 MachineBasicBlock *MBB = MI.getParent(); 1691 1692 if (CurrentPacketMIs.empty()) 1693 PacketStalls = false; 1694 PacketStalls |= producesStall(MI); 1695 1696 if (MI.isImplicitDef()) { 1697 // Add to the packet to allow subsequent instructions to be checked 1698 // properly. 1699 CurrentPacketMIs.push_back(&MI); 1700 return MII; 1701 } 1702 assert(ResourceTracker->canReserveResources(MI)); 1703 1704 bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI); 1705 bool Good = true; 1706 1707 if (GlueToNewValueJump) { 1708 MachineInstr &NvjMI = *++MII; 1709 // We need to put both instructions in the same packet: MI and NvjMI. 1710 // Either of them can require a constant extender. Try to add both to 1711 // the current packet, and if that fails, end the packet and start a 1712 // new one. 1713 ResourceTracker->reserveResources(MI); 1714 if (ExtMI) 1715 Good = tryAllocateResourcesForConstExt(true); 1716 1717 bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI); 1718 if (Good) { 1719 if (ResourceTracker->canReserveResources(NvjMI)) 1720 ResourceTracker->reserveResources(NvjMI); 1721 else 1722 Good = false; 1723 } 1724 if (Good && ExtNvjMI) 1725 Good = tryAllocateResourcesForConstExt(true); 1726 1727 if (!Good) { 1728 endPacket(MBB, MI); 1729 assert(ResourceTracker->canReserveResources(MI)); 1730 ResourceTracker->reserveResources(MI); 1731 if (ExtMI) { 1732 assert(canReserveResourcesForConstExt()); 1733 tryAllocateResourcesForConstExt(true); 1734 } 1735 assert(ResourceTracker->canReserveResources(NvjMI)); 1736 ResourceTracker->reserveResources(NvjMI); 1737 if (ExtNvjMI) { 1738 assert(canReserveResourcesForConstExt()); 1739 reserveResourcesForConstExt(); 1740 } 1741 } 1742 CurrentPacketMIs.push_back(&MI); 1743 CurrentPacketMIs.push_back(&NvjMI); 1744 return MII; 1745 } 1746 1747 ResourceTracker->reserveResources(MI); 1748 if (ExtMI && !tryAllocateResourcesForConstExt(true)) { 1749 endPacket(MBB, MI); 1750 if (PromotedToDotNew) 1751 demoteToDotOld(MI); 1752 if (GlueAllocframeStore) { 1753 useCalleesSP(MI); 1754 GlueAllocframeStore = false; 1755 } 1756 ResourceTracker->reserveResources(MI); 1757 reserveResourcesForConstExt(); 1758 } 1759 1760 CurrentPacketMIs.push_back(&MI); 1761 return MII; 1762 } 1763 1764 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB, 1765 MachineBasicBlock::iterator EndMI) { 1766 // Replace VLIWPacketizerList::endPacket(MBB, EndMI). 1767 LLVM_DEBUG({ 1768 if (!CurrentPacketMIs.empty()) { 1769 dbgs() << "Finalizing packet:\n"; 1770 unsigned Idx = 0; 1771 for (MachineInstr *MI : CurrentPacketMIs) { 1772 unsigned R = ResourceTracker->getUsedResources(Idx++); 1773 dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI; 1774 } 1775 } 1776 }); 1777 1778 bool memShufDisabled = getmemShufDisabled(); 1779 if (memShufDisabled && !foundLSInPacket()) { 1780 setmemShufDisabled(false); 1781 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n"); 1782 } 1783 memShufDisabled = getmemShufDisabled(); 1784 1785 OldPacketMIs.clear(); 1786 for (MachineInstr *MI : CurrentPacketMIs) { 1787 MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator()); 1788 for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI)) 1789 OldPacketMIs.push_back(&I); 1790 } 1791 CurrentPacketMIs.clear(); 1792 1793 if (OldPacketMIs.size() > 1) { 1794 MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front()); 1795 MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator()); 1796 finalizeBundle(*MBB, FirstMI, LastMI); 1797 auto BundleMII = std::prev(FirstMI); 1798 if (memShufDisabled) 1799 HII->setBundleNoShuf(BundleMII); 1800 1801 setmemShufDisabled(false); 1802 } 1803 1804 ResourceTracker->clearResources(); 1805 LLVM_DEBUG(dbgs() << "End packet\n"); 1806 } 1807 1808 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) { 1809 if (Minimal) 1810 return false; 1811 return !producesStall(MI); 1812 } 1813 1814 // V60 forward scheduling. 1815 bool HexagonPacketizerList::producesStall(const MachineInstr &I) { 1816 // If the packet already stalls, then ignore the stall from a subsequent 1817 // instruction in the same packet. 1818 if (PacketStalls) 1819 return false; 1820 1821 // Check whether the previous packet is in a different loop. If this is the 1822 // case, there is little point in trying to avoid a stall because that would 1823 // favor the rare case (loop entry) over the common case (loop iteration). 1824 // 1825 // TODO: We should really be able to check all the incoming edges if this is 1826 // the first packet in a basic block, so we can avoid stalls from the loop 1827 // backedge. 1828 if (!OldPacketMIs.empty()) { 1829 auto *OldBB = OldPacketMIs.front()->getParent(); 1830 auto *ThisBB = I.getParent(); 1831 if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB)) 1832 return false; 1833 } 1834 1835 SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)]; 1836 1837 // If the latency is 0 and there is a data dependence between this 1838 // instruction and any instruction in the current packet, we disregard any 1839 // potential stalls due to the instructions in the previous packet. Most of 1840 // the instruction pairs that can go together in the same packet have 0 1841 // latency between them. The exceptions are 1842 // 1. NewValueJumps as they're generated much later and the latencies can't 1843 // be changed at that point. 1844 // 2. .cur instructions, if its consumer has a 0 latency successor (such as 1845 // .new). In this case, the latency between .cur and the consumer stays 1846 // non-zero even though we can have both .cur and .new in the same packet. 1847 // Changing the latency to 0 is not an option as it causes software pipeliner 1848 // to not pipeline in some cases. 1849 1850 // For Example: 1851 // { 1852 // I1: v6.cur = vmem(r0++#1) 1853 // I2: v7 = valign(v6,v4,r2) 1854 // I3: vmem(r5++#1) = v7.new 1855 // } 1856 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2. 1857 1858 for (auto J : CurrentPacketMIs) { 1859 SUnit *SUJ = MIToSUnit[J]; 1860 for (auto &Pred : SUI->Preds) 1861 if (Pred.getSUnit() == SUJ) 1862 if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) || 1863 HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I)) 1864 return false; 1865 } 1866 1867 // Check if the latency is greater than one between this instruction and any 1868 // instruction in the previous packet. 1869 for (auto J : OldPacketMIs) { 1870 SUnit *SUJ = MIToSUnit[J]; 1871 for (auto &Pred : SUI->Preds) 1872 if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1) 1873 return true; 1874 } 1875 1876 return false; 1877 } 1878 1879 //===----------------------------------------------------------------------===// 1880 // Public Constructor Functions 1881 //===----------------------------------------------------------------------===// 1882 1883 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) { 1884 return new HexagonPacketizer(Minimal); 1885 } 1886