1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a simple VLIW packetizer using DFA. The packetizer works on 10 // machine basic blocks. For each instruction I in BB, the packetizer consults 11 // the DFA to see if machine resources are available to execute I. If so, the 12 // packetizer checks if I depends on any instruction J in the current packet. 13 // If no dependency is found, I is added to current packet and machine resource 14 // is marked as taken. If any dependency is found, a target API call is made to 15 // prune the dependence. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "HexagonVLIWPacketizer.h" 20 #include "Hexagon.h" 21 #include "HexagonInstrInfo.h" 22 #include "HexagonRegisterInfo.h" 23 #include "HexagonSubtarget.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBundle.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "packets" 57 58 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden, 59 cl::ZeroOrMore, cl::init(false), 60 cl::desc("Disable Hexagon packetizer pass")); 61 62 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden, 63 cl::ZeroOrMore, cl::init(true), 64 cl::desc("Allow slot1 store and slot0 load")); 65 66 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles", 67 cl::ZeroOrMore, cl::Hidden, cl::init(true), 68 cl::desc("Allow non-solo packetization of volatile memory references")); 69 70 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false), 71 cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC")); 72 73 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores", 74 cl::init(false), cl::Hidden, cl::ZeroOrMore, 75 cl::desc("Disable vector double new-value-stores")); 76 77 extern cl::opt<bool> ScheduleInlineAsm; 78 79 namespace llvm { 80 81 FunctionPass *createHexagonPacketizer(bool Minimal); 82 void initializeHexagonPacketizerPass(PassRegistry&); 83 84 } // end namespace llvm 85 86 namespace { 87 88 class HexagonPacketizer : public MachineFunctionPass { 89 public: 90 static char ID; 91 92 HexagonPacketizer(bool Min = false) 93 : MachineFunctionPass(ID), Minimal(Min) {} 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override { 96 AU.setPreservesCFG(); 97 AU.addRequired<AAResultsWrapperPass>(); 98 AU.addRequired<MachineBranchProbabilityInfo>(); 99 AU.addRequired<MachineDominatorTree>(); 100 AU.addRequired<MachineLoopInfo>(); 101 AU.addPreserved<MachineDominatorTree>(); 102 AU.addPreserved<MachineLoopInfo>(); 103 MachineFunctionPass::getAnalysisUsage(AU); 104 } 105 106 StringRef getPassName() const override { return "Hexagon Packetizer"; } 107 bool runOnMachineFunction(MachineFunction &Fn) override; 108 109 MachineFunctionProperties getRequiredProperties() const override { 110 return MachineFunctionProperties().set( 111 MachineFunctionProperties::Property::NoVRegs); 112 } 113 114 private: 115 const HexagonInstrInfo *HII = nullptr; 116 const HexagonRegisterInfo *HRI = nullptr; 117 const bool Minimal = false; 118 }; 119 120 } // end anonymous namespace 121 122 char HexagonPacketizer::ID = 0; 123 124 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer", 125 "Hexagon Packetizer", false, false) 126 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 127 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 129 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 130 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer", 131 "Hexagon Packetizer", false, false) 132 133 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF, 134 MachineLoopInfo &MLI, AAResults *AA, 135 const MachineBranchProbabilityInfo *MBPI, bool Minimal) 136 : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI), 137 Minimal(Minimal) { 138 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 139 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 140 141 addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>()); 142 addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>()); 143 addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>()); 144 } 145 146 // Check if FirstI modifies a register that SecondI reads. 147 static bool hasWriteToReadDep(const MachineInstr &FirstI, 148 const MachineInstr &SecondI, 149 const TargetRegisterInfo *TRI) { 150 for (auto &MO : FirstI.operands()) { 151 if (!MO.isReg() || !MO.isDef()) 152 continue; 153 Register R = MO.getReg(); 154 if (SecondI.readsRegister(R, TRI)) 155 return true; 156 } 157 return false; 158 } 159 160 161 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI, 162 MachineBasicBlock::iterator BundleIt, bool Before) { 163 MachineBasicBlock::instr_iterator InsertPt; 164 if (Before) 165 InsertPt = BundleIt.getInstrIterator(); 166 else 167 InsertPt = std::next(BundleIt).getInstrIterator(); 168 169 MachineBasicBlock &B = *MI.getParent(); 170 // The instruction should at least be bundled with the preceding instruction 171 // (there will always be one, i.e. BUNDLE, if nothing else). 172 assert(MI.isBundledWithPred()); 173 if (MI.isBundledWithSucc()) { 174 MI.clearFlag(MachineInstr::BundledSucc); 175 MI.clearFlag(MachineInstr::BundledPred); 176 } else { 177 // If it's not bundled with the successor (i.e. it is the last one 178 // in the bundle), then we can simply unbundle it from the predecessor, 179 // which will take care of updating the predecessor's flag. 180 MI.unbundleFromPred(); 181 } 182 B.splice(InsertPt, &B, MI.getIterator()); 183 184 // Get the size of the bundle without asserting. 185 MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator(); 186 MachineBasicBlock::const_instr_iterator E = B.instr_end(); 187 unsigned Size = 0; 188 for (++I; I != E && I->isBundledWithPred(); ++I) 189 ++Size; 190 191 // If there are still two or more instructions, then there is nothing 192 // else to be done. 193 if (Size > 1) 194 return BundleIt; 195 196 // Otherwise, extract the single instruction out and delete the bundle. 197 MachineBasicBlock::iterator NextIt = std::next(BundleIt); 198 MachineInstr &SingleI = *BundleIt->getNextNode(); 199 SingleI.unbundleFromPred(); 200 assert(!SingleI.isBundledWithSucc()); 201 BundleIt->eraseFromParent(); 202 return NextIt; 203 } 204 205 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) { 206 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 207 HII = HST.getInstrInfo(); 208 HRI = HST.getRegisterInfo(); 209 auto &MLI = getAnalysis<MachineLoopInfo>(); 210 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 211 auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 212 213 if (EnableGenAllInsnClass) 214 HII->genAllInsnTimingClasses(MF); 215 216 // Instantiate the packetizer. 217 bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() || 218 skipFunction(MF.getFunction()); 219 HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly); 220 221 // DFA state table should not be empty. 222 assert(Packetizer.getResourceTracker() && "Empty DFA table!"); 223 224 // Loop over all basic blocks and remove KILL pseudo-instructions 225 // These instructions confuse the dependence analysis. Consider: 226 // D0 = ... (Insn 0) 227 // R0 = KILL R0, D0 (Insn 1) 228 // R0 = ... (Insn 2) 229 // Here, Insn 1 will result in the dependence graph not emitting an output 230 // dependence between Insn 0 and Insn 2. This can lead to incorrect 231 // packetization 232 for (MachineBasicBlock &MB : MF) { 233 auto End = MB.end(); 234 auto MI = MB.begin(); 235 while (MI != End) { 236 auto NextI = std::next(MI); 237 if (MI->isKill()) { 238 MB.erase(MI); 239 End = MB.end(); 240 } 241 MI = NextI; 242 } 243 } 244 245 // Loop over all of the basic blocks. 246 for (auto &MB : MF) { 247 auto Begin = MB.begin(), End = MB.end(); 248 while (Begin != End) { 249 // Find the first non-boundary starting from the end of the last 250 // scheduling region. 251 MachineBasicBlock::iterator RB = Begin; 252 while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF)) 253 ++RB; 254 // Find the first boundary starting from the beginning of the new 255 // region. 256 MachineBasicBlock::iterator RE = RB; 257 while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF)) 258 ++RE; 259 // Add the scheduling boundary if it's not block end. 260 if (RE != End) 261 ++RE; 262 // If RB == End, then RE == End. 263 if (RB != End) 264 Packetizer.PacketizeMIs(&MB, RB, RE); 265 266 Begin = RE; 267 } 268 } 269 270 Packetizer.unpacketizeSoloInstrs(MF); 271 return true; 272 } 273 274 // Reserve resources for a constant extender. Trigger an assertion if the 275 // reservation fails. 276 void HexagonPacketizerList::reserveResourcesForConstExt() { 277 if (!tryAllocateResourcesForConstExt(true)) 278 llvm_unreachable("Resources not available"); 279 } 280 281 bool HexagonPacketizerList::canReserveResourcesForConstExt() { 282 return tryAllocateResourcesForConstExt(false); 283 } 284 285 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded, 286 // return true, otherwise, return false. 287 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) { 288 auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc()); 289 bool Avail = ResourceTracker->canReserveResources(*ExtMI); 290 if (Reserve && Avail) 291 ResourceTracker->reserveResources(*ExtMI); 292 MF.DeleteMachineInstr(ExtMI); 293 return Avail; 294 } 295 296 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI, 297 SDep::Kind DepType, unsigned DepReg) { 298 // Check for LR dependence. 299 if (DepReg == HRI->getRARegister()) 300 return true; 301 302 if (HII->isDeallocRet(MI)) 303 if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister()) 304 return true; 305 306 // Call-like instructions can be packetized with preceding instructions 307 // that define registers implicitly used or modified by the call. Explicit 308 // uses are still prohibited, as in the case of indirect calls: 309 // r0 = ... 310 // J2_jumpr r0 311 if (DepType == SDep::Data) { 312 for (const MachineOperand &MO : MI.operands()) 313 if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit()) 314 return true; 315 } 316 317 return false; 318 } 319 320 static bool isRegDependence(const SDep::Kind DepType) { 321 return DepType == SDep::Data || DepType == SDep::Anti || 322 DepType == SDep::Output; 323 } 324 325 static bool isDirectJump(const MachineInstr &MI) { 326 return MI.getOpcode() == Hexagon::J2_jump; 327 } 328 329 static bool isSchedBarrier(const MachineInstr &MI) { 330 switch (MI.getOpcode()) { 331 case Hexagon::Y2_barrier: 332 return true; 333 } 334 return false; 335 } 336 337 static bool isControlFlow(const MachineInstr &MI) { 338 return MI.getDesc().isTerminator() || MI.getDesc().isCall(); 339 } 340 341 /// Returns true if the instruction modifies a callee-saved register. 342 static bool doesModifyCalleeSavedReg(const MachineInstr &MI, 343 const TargetRegisterInfo *TRI) { 344 const MachineFunction &MF = *MI.getParent()->getParent(); 345 for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 346 if (MI.modifiesRegister(*CSR, TRI)) 347 return true; 348 return false; 349 } 350 351 // Returns true if an instruction can be promoted to .new predicate or 352 // new-value store. 353 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI, 354 const TargetRegisterClass *NewRC) { 355 // Vector stores can be predicated, and can be new-value stores, but 356 // they cannot be predicated on a .new predicate value. 357 if (NewRC == &Hexagon::PredRegsRegClass) { 358 if (HII->isHVXVec(MI) && MI.mayStore()) 359 return false; 360 return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0; 361 } 362 // If the class is not PredRegs, it could only apply to new-value stores. 363 return HII->mayBeNewStore(MI); 364 } 365 366 // Promote an instructiont to its .cur form. 367 // At this time, we have already made a call to canPromoteToDotCur and made 368 // sure that it can *indeed* be promoted. 369 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI, 370 SDep::Kind DepType, MachineBasicBlock::iterator &MII, 371 const TargetRegisterClass* RC) { 372 assert(DepType == SDep::Data); 373 int CurOpcode = HII->getDotCurOp(MI); 374 MI.setDesc(HII->get(CurOpcode)); 375 return true; 376 } 377 378 void HexagonPacketizerList::cleanUpDotCur() { 379 MachineInstr *MI = nullptr; 380 for (auto BI : CurrentPacketMIs) { 381 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump();); 382 if (HII->isDotCurInst(*BI)) { 383 MI = BI; 384 continue; 385 } 386 if (MI) { 387 for (auto &MO : BI->operands()) 388 if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg()) 389 return; 390 } 391 } 392 if (!MI) 393 return; 394 // We did not find a use of the CUR, so de-cur it. 395 MI->setDesc(HII->get(HII->getNonDotCurOp(*MI))); 396 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump();); 397 } 398 399 // Check to see if an instruction can be dot cur. 400 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI, 401 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, 402 const TargetRegisterClass *RC) { 403 if (!HII->isHVXVec(MI)) 404 return false; 405 if (!HII->isHVXVec(*MII)) 406 return false; 407 408 // Already a dot new instruction. 409 if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI)) 410 return false; 411 412 if (!HII->mayBeCurLoad(MI)) 413 return false; 414 415 // The "cur value" cannot come from inline asm. 416 if (PacketSU->getInstr()->isInlineAsm()) 417 return false; 418 419 // Make sure candidate instruction uses cur. 420 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump(); 421 dbgs() << "in packet\n";); 422 MachineInstr &MJ = *MII; 423 LLVM_DEBUG({ 424 dbgs() << "Checking CUR against "; 425 MJ.dump(); 426 }); 427 Register DestReg = MI.getOperand(0).getReg(); 428 bool FoundMatch = false; 429 for (auto &MO : MJ.operands()) 430 if (MO.isReg() && MO.getReg() == DestReg) 431 FoundMatch = true; 432 if (!FoundMatch) 433 return false; 434 435 // Check for existing uses of a vector register within the packet which 436 // would be affected by converting a vector load into .cur formt. 437 for (auto BI : CurrentPacketMIs) { 438 LLVM_DEBUG(dbgs() << "packet has "; BI->dump();); 439 if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo())) 440 return false; 441 } 442 443 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump();); 444 // We can convert the opcode into a .cur. 445 return true; 446 } 447 448 // Promote an instruction to its .new form. At this time, we have already 449 // made a call to canPromoteToDotNew and made sure that it can *indeed* be 450 // promoted. 451 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI, 452 SDep::Kind DepType, MachineBasicBlock::iterator &MII, 453 const TargetRegisterClass* RC) { 454 assert(DepType == SDep::Data); 455 int NewOpcode; 456 if (RC == &Hexagon::PredRegsRegClass) 457 NewOpcode = HII->getDotNewPredOp(MI, MBPI); 458 else 459 NewOpcode = HII->getDotNewOp(MI); 460 MI.setDesc(HII->get(NewOpcode)); 461 return true; 462 } 463 464 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) { 465 int NewOpcode = HII->getDotOldOp(MI); 466 MI.setDesc(HII->get(NewOpcode)); 467 return true; 468 } 469 470 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) { 471 unsigned Opc = MI.getOpcode(); 472 switch (Opc) { 473 case Hexagon::S2_storerd_io: 474 case Hexagon::S2_storeri_io: 475 case Hexagon::S2_storerh_io: 476 case Hexagon::S2_storerb_io: 477 break; 478 default: 479 llvm_unreachable("Unexpected instruction"); 480 } 481 unsigned FrameSize = MF.getFrameInfo().getStackSize(); 482 MachineOperand &Off = MI.getOperand(1); 483 int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE); 484 if (HII->isValidOffset(Opc, NewOff, HRI)) { 485 Off.setImm(NewOff); 486 return true; 487 } 488 return false; 489 } 490 491 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) { 492 unsigned Opc = MI.getOpcode(); 493 switch (Opc) { 494 case Hexagon::S2_storerd_io: 495 case Hexagon::S2_storeri_io: 496 case Hexagon::S2_storerh_io: 497 case Hexagon::S2_storerb_io: 498 break; 499 default: 500 llvm_unreachable("Unexpected instruction"); 501 } 502 unsigned FrameSize = MF.getFrameInfo().getStackSize(); 503 MachineOperand &Off = MI.getOperand(1); 504 Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE); 505 } 506 507 /// Return true if we can update the offset in MI so that MI and MJ 508 /// can be packetized together. 509 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) { 510 assert(SUI->getInstr() && SUJ->getInstr()); 511 MachineInstr &MI = *SUI->getInstr(); 512 MachineInstr &MJ = *SUJ->getInstr(); 513 514 unsigned BPI, OPI; 515 if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI)) 516 return false; 517 unsigned BPJ, OPJ; 518 if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ)) 519 return false; 520 Register Reg = MI.getOperand(BPI).getReg(); 521 if (Reg != MJ.getOperand(BPJ).getReg()) 522 return false; 523 // Make sure that the dependences do not restrict adding MI to the packet. 524 // That is, ignore anti dependences, and make sure the only data dependence 525 // involves the specific register. 526 for (const auto &PI : SUI->Preds) 527 if (PI.getKind() != SDep::Anti && 528 (PI.getKind() != SDep::Data || PI.getReg() != Reg)) 529 return false; 530 int Incr; 531 if (!HII->getIncrementValue(MJ, Incr)) 532 return false; 533 534 int64_t Offset = MI.getOperand(OPI).getImm(); 535 if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI)) 536 return false; 537 538 MI.getOperand(OPI).setImm(Offset + Incr); 539 ChangedOffset = Offset; 540 return true; 541 } 542 543 /// Undo the changed offset. This is needed if the instruction cannot be 544 /// added to the current packet due to a different instruction. 545 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) { 546 unsigned BP, OP; 547 if (!HII->getBaseAndOffsetPosition(MI, BP, OP)) 548 llvm_unreachable("Unable to find base and offset operands."); 549 MI.getOperand(OP).setImm(ChangedOffset); 550 } 551 552 enum PredicateKind { 553 PK_False, 554 PK_True, 555 PK_Unknown 556 }; 557 558 /// Returns true if an instruction is predicated on p0 and false if it's 559 /// predicated on !p0. 560 static PredicateKind getPredicateSense(const MachineInstr &MI, 561 const HexagonInstrInfo *HII) { 562 if (!HII->isPredicated(MI)) 563 return PK_Unknown; 564 if (HII->isPredicatedTrue(MI)) 565 return PK_True; 566 return PK_False; 567 } 568 569 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI, 570 const HexagonInstrInfo *HII) { 571 assert(HII->isPostIncrement(MI) && "Not a post increment operation."); 572 #ifndef NDEBUG 573 // Post Increment means duplicates. Use dense map to find duplicates in the 574 // list. Caution: Densemap initializes with the minimum of 64 buckets, 575 // whereas there are at most 5 operands in the post increment. 576 DenseSet<unsigned> DefRegsSet; 577 for (auto &MO : MI.operands()) 578 if (MO.isReg() && MO.isDef()) 579 DefRegsSet.insert(MO.getReg()); 580 581 for (auto &MO : MI.operands()) 582 if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg())) 583 return MO; 584 #else 585 if (MI.mayLoad()) { 586 const MachineOperand &Op1 = MI.getOperand(1); 587 // The 2nd operand is always the post increment operand in load. 588 assert(Op1.isReg() && "Post increment operand has be to a register."); 589 return Op1; 590 } 591 if (MI.getDesc().mayStore()) { 592 const MachineOperand &Op0 = MI.getOperand(0); 593 // The 1st operand is always the post increment operand in store. 594 assert(Op0.isReg() && "Post increment operand has be to a register."); 595 return Op0; 596 } 597 #endif 598 // we should never come here. 599 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation"); 600 } 601 602 // Get the value being stored. 603 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) { 604 // value being stored is always the last operand. 605 return MI.getOperand(MI.getNumOperands()-1); 606 } 607 608 static bool isLoadAbsSet(const MachineInstr &MI) { 609 unsigned Opc = MI.getOpcode(); 610 switch (Opc) { 611 case Hexagon::L4_loadrd_ap: 612 case Hexagon::L4_loadrb_ap: 613 case Hexagon::L4_loadrh_ap: 614 case Hexagon::L4_loadrub_ap: 615 case Hexagon::L4_loadruh_ap: 616 case Hexagon::L4_loadri_ap: 617 return true; 618 } 619 return false; 620 } 621 622 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) { 623 assert(isLoadAbsSet(MI)); 624 return MI.getOperand(1); 625 } 626 627 // Can be new value store? 628 // Following restrictions are to be respected in convert a store into 629 // a new value store. 630 // 1. If an instruction uses auto-increment, its address register cannot 631 // be a new-value register. Arch Spec 5.4.2.1 632 // 2. If an instruction uses absolute-set addressing mode, its address 633 // register cannot be a new-value register. Arch Spec 5.4.2.1. 634 // 3. If an instruction produces a 64-bit result, its registers cannot be used 635 // as new-value registers. Arch Spec 5.4.2.2. 636 // 4. If the instruction that sets the new-value register is conditional, then 637 // the instruction that uses the new-value register must also be conditional, 638 // and both must always have their predicates evaluate identically. 639 // Arch Spec 5.4.2.3. 640 // 5. There is an implied restriction that a packet cannot have another store, 641 // if there is a new value store in the packet. Corollary: if there is 642 // already a store in a packet, there can not be a new value store. 643 // Arch Spec: 3.4.4.2 644 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI, 645 const MachineInstr &PacketMI, unsigned DepReg) { 646 // Make sure we are looking at the store, that can be promoted. 647 if (!HII->mayBeNewStore(MI)) 648 return false; 649 650 // Make sure there is dependency and can be new value'd. 651 const MachineOperand &Val = getStoreValueOperand(MI); 652 if (Val.isReg() && Val.getReg() != DepReg) 653 return false; 654 655 const MCInstrDesc& MCID = PacketMI.getDesc(); 656 657 // First operand is always the result. 658 const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF); 659 // Double regs can not feed into new value store: PRM section: 5.4.2.2. 660 if (PacketRC == &Hexagon::DoubleRegsRegClass) 661 return false; 662 663 // New-value stores are of class NV (slot 0), dual stores require class ST 664 // in slot 0 (PRM 5.5). 665 for (auto I : CurrentPacketMIs) { 666 SUnit *PacketSU = MIToSUnit.find(I)->second; 667 if (PacketSU->getInstr()->mayStore()) 668 return false; 669 } 670 671 // Make sure it's NOT the post increment register that we are going to 672 // new value. 673 if (HII->isPostIncrement(MI) && 674 getPostIncrementOperand(MI, HII).getReg() == DepReg) { 675 return false; 676 } 677 678 if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() && 679 getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) { 680 // If source is post_inc, or absolute-set addressing, it can not feed 681 // into new value store 682 // r3 = memw(r2++#4) 683 // memw(r30 + #-1404) = r2.new -> can not be new value store 684 // arch spec section: 5.4.2.1. 685 return false; 686 } 687 688 if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg) 689 return false; 690 691 // If the source that feeds the store is predicated, new value store must 692 // also be predicated. 693 if (HII->isPredicated(PacketMI)) { 694 if (!HII->isPredicated(MI)) 695 return false; 696 697 // Check to make sure that they both will have their predicates 698 // evaluate identically. 699 unsigned predRegNumSrc = 0; 700 unsigned predRegNumDst = 0; 701 const TargetRegisterClass* predRegClass = nullptr; 702 703 // Get predicate register used in the source instruction. 704 for (auto &MO : PacketMI.operands()) { 705 if (!MO.isReg()) 706 continue; 707 predRegNumSrc = MO.getReg(); 708 predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc); 709 if (predRegClass == &Hexagon::PredRegsRegClass) 710 break; 711 } 712 assert((predRegClass == &Hexagon::PredRegsRegClass) && 713 "predicate register not found in a predicated PacketMI instruction"); 714 715 // Get predicate register used in new-value store instruction. 716 for (auto &MO : MI.operands()) { 717 if (!MO.isReg()) 718 continue; 719 predRegNumDst = MO.getReg(); 720 predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst); 721 if (predRegClass == &Hexagon::PredRegsRegClass) 722 break; 723 } 724 assert((predRegClass == &Hexagon::PredRegsRegClass) && 725 "predicate register not found in a predicated MI instruction"); 726 727 // New-value register producer and user (store) need to satisfy these 728 // constraints: 729 // 1) Both instructions should be predicated on the same register. 730 // 2) If producer of the new-value register is .new predicated then store 731 // should also be .new predicated and if producer is not .new predicated 732 // then store should not be .new predicated. 733 // 3) Both new-value register producer and user should have same predicate 734 // sense, i.e, either both should be negated or both should be non-negated. 735 if (predRegNumDst != predRegNumSrc || 736 HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) || 737 getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII)) 738 return false; 739 } 740 741 // Make sure that other than the new-value register no other store instruction 742 // register has been modified in the same packet. Predicate registers can be 743 // modified by they should not be modified between the producer and the store 744 // instruction as it will make them both conditional on different values. 745 // We already know this to be true for all the instructions before and 746 // including PacketMI. Howerver, we need to perform the check for the 747 // remaining instructions in the packet. 748 749 unsigned StartCheck = 0; 750 751 for (auto I : CurrentPacketMIs) { 752 SUnit *TempSU = MIToSUnit.find(I)->second; 753 MachineInstr &TempMI = *TempSU->getInstr(); 754 755 // Following condition is true for all the instructions until PacketMI is 756 // reached (StartCheck is set to 0 before the for loop). 757 // StartCheck flag is 1 for all the instructions after PacketMI. 758 if (&TempMI != &PacketMI && !StartCheck) // Start processing only after 759 continue; // encountering PacketMI. 760 761 StartCheck = 1; 762 if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence. 763 continue; 764 765 for (auto &MO : MI.operands()) 766 if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI)) 767 return false; 768 } 769 770 // Make sure that for non-POST_INC stores: 771 // 1. The only use of reg is DepReg and no other registers. 772 // This handles base+index registers. 773 // The following store can not be dot new. 774 // Eg. r0 = add(r0, #3) 775 // memw(r1+r0<<#2) = r0 776 if (!HII->isPostIncrement(MI)) { 777 for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) { 778 const MachineOperand &MO = MI.getOperand(opNum); 779 if (MO.isReg() && MO.getReg() == DepReg) 780 return false; 781 } 782 } 783 784 // If data definition is because of implicit definition of the register, 785 // do not newify the store. Eg. 786 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12 787 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343] 788 for (auto &MO : PacketMI.operands()) { 789 if (MO.isRegMask() && MO.clobbersPhysReg(DepReg)) 790 return false; 791 if (!MO.isReg() || !MO.isDef() || !MO.isImplicit()) 792 continue; 793 Register R = MO.getReg(); 794 if (R == DepReg || HRI->isSuperRegister(DepReg, R)) 795 return false; 796 } 797 798 // Handle imp-use of super reg case. There is a target independent side 799 // change that should prevent this situation but I am handling it for 800 // just-in-case. For example, we cannot newify R2 in the following case: 801 // %r3 = A2_tfrsi 0; 802 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1; 803 for (auto &MO : MI.operands()) { 804 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg) 805 return false; 806 } 807 808 // Can be dot new store. 809 return true; 810 } 811 812 // Can this MI to promoted to either new value store or new value jump. 813 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI, 814 const SUnit *PacketSU, unsigned DepReg, 815 MachineBasicBlock::iterator &MII) { 816 if (!HII->mayBeNewStore(MI)) 817 return false; 818 819 // Check to see the store can be new value'ed. 820 MachineInstr &PacketMI = *PacketSU->getInstr(); 821 if (canPromoteToNewValueStore(MI, PacketMI, DepReg)) 822 return true; 823 824 // Check to see the compare/jump can be new value'ed. 825 // This is done as a pass on its own. Don't need to check it here. 826 return false; 827 } 828 829 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef, 830 unsigned DepReg) { 831 for (auto &MO : I.operands()) { 832 if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg)) 833 return true; 834 if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit()) 835 continue; 836 if (CheckDef == MO.isDef()) 837 return true; 838 } 839 return false; 840 } 841 842 // Check to see if an instruction can be dot new. 843 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI, 844 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, 845 const TargetRegisterClass* RC) { 846 // Already a dot new instruction. 847 if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI)) 848 return false; 849 850 if (!isNewifiable(MI, RC)) 851 return false; 852 853 const MachineInstr &PI = *PacketSU->getInstr(); 854 855 // The "new value" cannot come from inline asm. 856 if (PI.isInlineAsm()) 857 return false; 858 859 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no 860 // sense. 861 if (PI.isImplicitDef()) 862 return false; 863 864 // If dependency is trough an implicitly defined register, we should not 865 // newify the use. 866 if (isImplicitDependency(PI, true, DepReg) || 867 isImplicitDependency(MI, false, DepReg)) 868 return false; 869 870 const MCInstrDesc& MCID = PI.getDesc(); 871 const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF); 872 if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass) 873 return false; 874 875 // predicate .new 876 if (RC == &Hexagon::PredRegsRegClass) 877 return HII->predCanBeUsedAsDotNew(PI, DepReg); 878 879 if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI)) 880 return false; 881 882 // Create a dot new machine instruction to see if resources can be 883 // allocated. If not, bail out now. 884 int NewOpcode = HII->getDotNewOp(MI); 885 const MCInstrDesc &D = HII->get(NewOpcode); 886 MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc()); 887 bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI); 888 MF.DeleteMachineInstr(NewMI); 889 if (!ResourcesAvailable) 890 return false; 891 892 // New Value Store only. New Value Jump generated as a separate pass. 893 if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII)) 894 return false; 895 896 return true; 897 } 898 899 // Go through the packet instructions and search for an anti dependency between 900 // them and DepReg from MI. Consider this case: 901 // Trying to add 902 // a) %r1 = TFRI_cdNotPt %p3, 2 903 // to this packet: 904 // { 905 // b) %p0 = C2_or killed %p3, killed %p0 906 // c) %p3 = C2_tfrrp %r23 907 // d) %r1 = C2_cmovenewit %p3, 4 908 // } 909 // The P3 from a) and d) will be complements after 910 // a)'s P3 is converted to .new form 911 // Anti-dep between c) and b) is irrelevant for this case 912 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI, 913 unsigned DepReg) { 914 SUnit *PacketSUDep = MIToSUnit.find(&MI)->second; 915 916 for (auto I : CurrentPacketMIs) { 917 // We only care for dependencies to predicated instructions 918 if (!HII->isPredicated(*I)) 919 continue; 920 921 // Scheduling Unit for current insn in the packet 922 SUnit *PacketSU = MIToSUnit.find(I)->second; 923 924 // Look at dependencies between current members of the packet and 925 // predicate defining instruction MI. Make sure that dependency is 926 // on the exact register we care about. 927 if (PacketSU->isSucc(PacketSUDep)) { 928 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { 929 auto &Dep = PacketSU->Succs[i]; 930 if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti && 931 Dep.getReg() == DepReg) 932 return true; 933 } 934 } 935 } 936 937 return false; 938 } 939 940 /// Gets the predicate register of a predicated instruction. 941 static unsigned getPredicatedRegister(MachineInstr &MI, 942 const HexagonInstrInfo *QII) { 943 /// We use the following rule: The first predicate register that is a use is 944 /// the predicate register of a predicated instruction. 945 assert(QII->isPredicated(MI) && "Must be predicated instruction"); 946 947 for (auto &Op : MI.operands()) { 948 if (Op.isReg() && Op.getReg() && Op.isUse() && 949 Hexagon::PredRegsRegClass.contains(Op.getReg())) 950 return Op.getReg(); 951 } 952 953 llvm_unreachable("Unknown instruction operand layout"); 954 return 0; 955 } 956 957 // Given two predicated instructions, this function detects whether 958 // the predicates are complements. 959 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1, 960 MachineInstr &MI2) { 961 // If we don't know the predicate sense of the instructions bail out early, we 962 // need it later. 963 if (getPredicateSense(MI1, HII) == PK_Unknown || 964 getPredicateSense(MI2, HII) == PK_Unknown) 965 return false; 966 967 // Scheduling unit for candidate. 968 SUnit *SU = MIToSUnit[&MI1]; 969 970 // One corner case deals with the following scenario: 971 // Trying to add 972 // a) %r24 = A2_tfrt %p0, %r25 973 // to this packet: 974 // { 975 // b) %r25 = A2_tfrf %p0, %r24 976 // c) %p0 = C2_cmpeqi %r26, 1 977 // } 978 // 979 // On general check a) and b) are complements, but presence of c) will 980 // convert a) to .new form, and then it is not a complement. 981 // We attempt to detect it by analyzing existing dependencies in the packet. 982 983 // Analyze relationships between all existing members of the packet. 984 // Look for Anti dependecy on the same predicate reg as used in the 985 // candidate. 986 for (auto I : CurrentPacketMIs) { 987 // Scheduling Unit for current insn in the packet. 988 SUnit *PacketSU = MIToSUnit.find(I)->second; 989 990 // If this instruction in the packet is succeeded by the candidate... 991 if (PacketSU->isSucc(SU)) { 992 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { 993 auto Dep = PacketSU->Succs[i]; 994 // The corner case exist when there is true data dependency between 995 // candidate and one of current packet members, this dep is on 996 // predicate reg, and there already exist anti dep on the same pred in 997 // the packet. 998 if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data && 999 Hexagon::PredRegsRegClass.contains(Dep.getReg())) { 1000 // Here I know that I is predicate setting instruction with true 1001 // data dep to candidate on the register we care about - c) in the 1002 // above example. Now I need to see if there is an anti dependency 1003 // from c) to any other instruction in the same packet on the pred 1004 // reg of interest. 1005 if (restrictingDepExistInPacket(*I, Dep.getReg())) 1006 return false; 1007 } 1008 } 1009 } 1010 } 1011 1012 // If the above case does not apply, check regular complement condition. 1013 // Check that the predicate register is the same and that the predicate 1014 // sense is different We also need to differentiate .old vs. .new: !p0 1015 // is not complementary to p0.new. 1016 unsigned PReg1 = getPredicatedRegister(MI1, HII); 1017 unsigned PReg2 = getPredicatedRegister(MI2, HII); 1018 return PReg1 == PReg2 && 1019 Hexagon::PredRegsRegClass.contains(PReg1) && 1020 Hexagon::PredRegsRegClass.contains(PReg2) && 1021 getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) && 1022 HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2); 1023 } 1024 1025 // Initialize packetizer flags. 1026 void HexagonPacketizerList::initPacketizerState() { 1027 Dependence = false; 1028 PromotedToDotNew = false; 1029 GlueToNewValueJump = false; 1030 GlueAllocframeStore = false; 1031 FoundSequentialDependence = false; 1032 ChangedOffset = INT64_MAX; 1033 } 1034 1035 // Ignore bundling of pseudo instructions. 1036 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI, 1037 const MachineBasicBlock *) { 1038 if (MI.isDebugInstr()) 1039 return true; 1040 1041 if (MI.isCFIInstruction()) 1042 return false; 1043 1044 // We must print out inline assembly. 1045 if (MI.isInlineAsm()) 1046 return false; 1047 1048 if (MI.isImplicitDef()) 1049 return false; 1050 1051 // We check if MI has any functional units mapped to it. If it doesn't, 1052 // we ignore the instruction. 1053 const MCInstrDesc& TID = MI.getDesc(); 1054 auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass()); 1055 unsigned FuncUnits = IS->getUnits(); 1056 return !FuncUnits; 1057 } 1058 1059 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) { 1060 // Ensure any bundles created by gather packetize remain seperate. 1061 if (MI.isBundle()) 1062 return true; 1063 1064 if (MI.isEHLabel() || MI.isCFIInstruction()) 1065 return true; 1066 1067 // Consider inline asm to not be a solo instruction by default. 1068 // Inline asm will be put in a packet temporarily, but then it will be 1069 // removed, and placed outside of the packet (before or after, depending 1070 // on dependencies). This is to reduce the impact of inline asm as a 1071 // "packet splitting" instruction. 1072 if (MI.isInlineAsm() && !ScheduleInlineAsm) 1073 return true; 1074 1075 if (isSchedBarrier(MI)) 1076 return true; 1077 1078 if (HII->isSolo(MI)) 1079 return true; 1080 1081 if (MI.getOpcode() == Hexagon::A2_nop) 1082 return true; 1083 1084 return false; 1085 } 1086 1087 // Quick check if instructions MI and MJ cannot coexist in the same packet. 1088 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm", 1089 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm". 1090 // For full test call this function twice: 1091 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI) 1092 // Doing the test only one way saves the amount of code in this function, 1093 // since every test would need to be repeated with the MI and MJ reversed. 1094 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ, 1095 const HexagonInstrInfo &HII) { 1096 const MachineFunction *MF = MI.getParent()->getParent(); 1097 if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() && 1098 HII.isHVXMemWithAIndirect(MI, MJ)) 1099 return true; 1100 1101 // An inline asm cannot be together with a branch, because we may not be 1102 // able to remove the asm out after packetizing (i.e. if the asm must be 1103 // moved past the bundle). Similarly, two asms cannot be together to avoid 1104 // complications when determining their relative order outside of a bundle. 1105 if (MI.isInlineAsm()) 1106 return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() || 1107 MJ.isCall() || MJ.isTerminator(); 1108 1109 // New-value stores cannot coexist with any other stores. 1110 if (HII.isNewValueStore(MI) && MJ.mayStore()) 1111 return true; 1112 1113 switch (MI.getOpcode()) { 1114 case Hexagon::S2_storew_locked: 1115 case Hexagon::S4_stored_locked: 1116 case Hexagon::L2_loadw_locked: 1117 case Hexagon::L4_loadd_locked: 1118 case Hexagon::Y2_dccleana: 1119 case Hexagon::Y2_dccleaninva: 1120 case Hexagon::Y2_dcinva: 1121 case Hexagon::Y2_dczeroa: 1122 case Hexagon::Y4_l2fetch: 1123 case Hexagon::Y5_l2fetch: { 1124 // These instructions can only be grouped with ALU32 or non-floating-point 1125 // XTYPE instructions. Since there is no convenient way of identifying fp 1126 // XTYPE instructions, only allow grouping with ALU32 for now. 1127 unsigned TJ = HII.getType(MJ); 1128 if (TJ != HexagonII::TypeALU32_2op && 1129 TJ != HexagonII::TypeALU32_3op && 1130 TJ != HexagonII::TypeALU32_ADDI) 1131 return true; 1132 break; 1133 } 1134 default: 1135 break; 1136 } 1137 1138 // "False" really means that the quick check failed to determine if 1139 // I and J cannot coexist. 1140 return false; 1141 } 1142 1143 // Full, symmetric check. 1144 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI, 1145 const MachineInstr &MJ) { 1146 return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII); 1147 } 1148 1149 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) { 1150 for (auto &B : MF) { 1151 MachineBasicBlock::iterator BundleIt; 1152 MachineBasicBlock::instr_iterator NextI; 1153 for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) { 1154 NextI = std::next(I); 1155 MachineInstr &MI = *I; 1156 if (MI.isBundle()) 1157 BundleIt = I; 1158 if (!MI.isInsideBundle()) 1159 continue; 1160 1161 // Decide on where to insert the instruction that we are pulling out. 1162 // Debug instructions always go before the bundle, but the placement of 1163 // INLINE_ASM depends on potential dependencies. By default, try to 1164 // put it before the bundle, but if the asm writes to a register that 1165 // other instructions in the bundle read, then we need to place it 1166 // after the bundle (to preserve the bundle semantics). 1167 bool InsertBeforeBundle; 1168 if (MI.isInlineAsm()) 1169 InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI); 1170 else if (MI.isDebugValue()) 1171 InsertBeforeBundle = true; 1172 else 1173 continue; 1174 1175 BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle); 1176 } 1177 } 1178 } 1179 1180 // Check if a given instruction is of class "system". 1181 static bool isSystemInstr(const MachineInstr &MI) { 1182 unsigned Opc = MI.getOpcode(); 1183 switch (Opc) { 1184 case Hexagon::Y2_barrier: 1185 case Hexagon::Y2_dcfetchbo: 1186 case Hexagon::Y4_l2fetch: 1187 case Hexagon::Y5_l2fetch: 1188 return true; 1189 } 1190 return false; 1191 } 1192 1193 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I, 1194 const MachineInstr &J) { 1195 // The dependence graph may not include edges between dead definitions, 1196 // so without extra checks, we could end up packetizing two instruction 1197 // defining the same (dead) register. 1198 if (I.isCall() || J.isCall()) 1199 return false; 1200 if (HII->isPredicated(I) || HII->isPredicated(J)) 1201 return false; 1202 1203 BitVector DeadDefs(Hexagon::NUM_TARGET_REGS); 1204 for (auto &MO : I.operands()) { 1205 if (!MO.isReg() || !MO.isDef() || !MO.isDead()) 1206 continue; 1207 DeadDefs[MO.getReg()] = true; 1208 } 1209 1210 for (auto &MO : J.operands()) { 1211 if (!MO.isReg() || !MO.isDef() || !MO.isDead()) 1212 continue; 1213 Register R = MO.getReg(); 1214 if (R != Hexagon::USR_OVF && DeadDefs[R]) 1215 return true; 1216 } 1217 return false; 1218 } 1219 1220 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I, 1221 const MachineInstr &J) { 1222 // A save callee-save register function call can only be in a packet 1223 // with instructions that don't write to the callee-save registers. 1224 if ((HII->isSaveCalleeSavedRegsCall(I) && 1225 doesModifyCalleeSavedReg(J, HRI)) || 1226 (HII->isSaveCalleeSavedRegsCall(J) && 1227 doesModifyCalleeSavedReg(I, HRI))) 1228 return true; 1229 1230 // Two control flow instructions cannot go in the same packet. 1231 if (isControlFlow(I) && isControlFlow(J)) 1232 return true; 1233 1234 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot 1235 // contain a speculative indirect jump, 1236 // a new-value compare jump or a dealloc_return. 1237 auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool { 1238 if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI)) 1239 return true; 1240 if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI)) 1241 return true; 1242 return false; 1243 }; 1244 1245 if (HII->isLoopN(I) && isBadForLoopN(J)) 1246 return true; 1247 if (HII->isLoopN(J) && isBadForLoopN(I)) 1248 return true; 1249 1250 // dealloc_return cannot appear in the same packet as a conditional or 1251 // unconditional jump. 1252 return HII->isDeallocRet(I) && 1253 (J.isBranch() || J.isCall() || J.isBarrier()); 1254 } 1255 1256 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I, 1257 const MachineInstr &J) { 1258 // Adding I to a packet that has J. 1259 1260 // Regmasks are not reflected in the scheduling dependency graph, so 1261 // we need to check them manually. This code assumes that regmasks only 1262 // occur on calls, and the problematic case is when we add an instruction 1263 // defining a register R to a packet that has a call that clobbers R via 1264 // a regmask. Those cannot be packetized together, because the call will 1265 // be executed last. That's also a reson why it is ok to add a call 1266 // clobbering R to a packet that defines R. 1267 1268 // Look for regmasks in J. 1269 for (const MachineOperand &OpJ : J.operands()) { 1270 if (!OpJ.isRegMask()) 1271 continue; 1272 assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call"); 1273 for (const MachineOperand &OpI : I.operands()) { 1274 if (OpI.isReg()) { 1275 if (OpJ.clobbersPhysReg(OpI.getReg())) 1276 return true; 1277 } else if (OpI.isRegMask()) { 1278 // Both are regmasks. Assume that they intersect. 1279 return true; 1280 } 1281 } 1282 } 1283 return false; 1284 } 1285 1286 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I, 1287 const MachineInstr &J) { 1288 bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J); 1289 bool StoreI = I.mayStore(), StoreJ = J.mayStore(); 1290 if ((SysI && StoreJ) || (SysJ && StoreI)) 1291 return true; 1292 1293 if (StoreI && StoreJ) { 1294 if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I)) 1295 return true; 1296 } else { 1297 // A memop cannot be in the same packet with another memop or a store. 1298 // Two stores can be together, but here I and J cannot both be stores. 1299 bool MopStI = HII->isMemOp(I) || StoreI; 1300 bool MopStJ = HII->isMemOp(J) || StoreJ; 1301 if (MopStI && MopStJ) 1302 return true; 1303 } 1304 1305 return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J)); 1306 } 1307 1308 // SUI is the current instruction that is out side of the current packet. 1309 // SUJ is the current instruction inside the current packet against which that 1310 // SUI will be packetized. 1311 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { 1312 assert(SUI->getInstr() && SUJ->getInstr()); 1313 MachineInstr &I = *SUI->getInstr(); 1314 MachineInstr &J = *SUJ->getInstr(); 1315 1316 // Clear IgnoreDepMIs when Packet starts. 1317 if (CurrentPacketMIs.size() == 1) 1318 IgnoreDepMIs.clear(); 1319 1320 MachineBasicBlock::iterator II = I.getIterator(); 1321 1322 // Solo instructions cannot go in the packet. 1323 assert(!isSoloInstruction(I) && "Unexpected solo instr!"); 1324 1325 if (cannotCoexist(I, J)) 1326 return false; 1327 1328 Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J); 1329 if (Dependence) 1330 return false; 1331 1332 // Regmasks are not accounted for in the scheduling graph, so we need 1333 // to explicitly check for dependencies caused by them. They should only 1334 // appear on calls, so it's not too pessimistic to reject all regmask 1335 // dependencies. 1336 Dependence = hasRegMaskDependence(I, J); 1337 if (Dependence) 1338 return false; 1339 1340 // Dual-store does not allow second store, if the first store is not 1341 // in SLOT0. New value store, new value jump, dealloc_return and memop 1342 // always take SLOT0. Arch spec 3.4.4.2. 1343 Dependence = hasDualStoreDependence(I, J); 1344 if (Dependence) 1345 return false; 1346 1347 // If an instruction feeds new value jump, glue it. 1348 MachineBasicBlock::iterator NextMII = I.getIterator(); 1349 ++NextMII; 1350 if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) { 1351 MachineInstr &NextMI = *NextMII; 1352 1353 bool secondRegMatch = false; 1354 const MachineOperand &NOp0 = NextMI.getOperand(0); 1355 const MachineOperand &NOp1 = NextMI.getOperand(1); 1356 1357 if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg()) 1358 secondRegMatch = true; 1359 1360 for (MachineInstr *PI : CurrentPacketMIs) { 1361 // NVJ can not be part of the dual jump - Arch Spec: section 7.8. 1362 if (PI->isCall()) { 1363 Dependence = true; 1364 break; 1365 } 1366 // Validate: 1367 // 1. Packet does not have a store in it. 1368 // 2. If the first operand of the nvj is newified, and the second 1369 // operand is also a reg, it (second reg) is not defined in 1370 // the same packet. 1371 // 3. If the second operand of the nvj is newified, (which means 1372 // first operand is also a reg), first reg is not defined in 1373 // the same packet. 1374 if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() || 1375 HII->isLoopN(*PI)) { 1376 Dependence = true; 1377 break; 1378 } 1379 // Check #2/#3. 1380 const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1; 1381 if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) { 1382 Dependence = true; 1383 break; 1384 } 1385 } 1386 1387 GlueToNewValueJump = true; 1388 if (Dependence) 1389 return false; 1390 } 1391 1392 // There no dependency between a prolog instruction and its successor. 1393 if (!SUJ->isSucc(SUI)) 1394 return true; 1395 1396 for (unsigned i = 0; i < SUJ->Succs.size(); ++i) { 1397 if (FoundSequentialDependence) 1398 break; 1399 1400 if (SUJ->Succs[i].getSUnit() != SUI) 1401 continue; 1402 1403 SDep::Kind DepType = SUJ->Succs[i].getKind(); 1404 // For direct calls: 1405 // Ignore register dependences for call instructions for packetization 1406 // purposes except for those due to r31 and predicate registers. 1407 // 1408 // For indirect calls: 1409 // Same as direct calls + check for true dependences to the register 1410 // used in the indirect call. 1411 // 1412 // We completely ignore Order dependences for call instructions. 1413 // 1414 // For returns: 1415 // Ignore register dependences for return instructions like jumpr, 1416 // dealloc return unless we have dependencies on the explicit uses 1417 // of the registers used by jumpr (like r31) or dealloc return 1418 // (like r29 or r30). 1419 unsigned DepReg = 0; 1420 const TargetRegisterClass *RC = nullptr; 1421 if (DepType == SDep::Data) { 1422 DepReg = SUJ->Succs[i].getReg(); 1423 RC = HRI->getMinimalPhysRegClass(DepReg); 1424 } 1425 1426 if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) { 1427 if (!isRegDependence(DepType)) 1428 continue; 1429 if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg())) 1430 continue; 1431 } 1432 1433 if (DepType == SDep::Data) { 1434 if (canPromoteToDotCur(J, SUJ, DepReg, II, RC)) 1435 if (promoteToDotCur(J, DepType, II, RC)) 1436 continue; 1437 } 1438 1439 // Data dpendence ok if we have load.cur. 1440 if (DepType == SDep::Data && HII->isDotCurInst(J)) { 1441 if (HII->isHVXVec(I)) 1442 continue; 1443 } 1444 1445 // For instructions that can be promoted to dot-new, try to promote. 1446 if (DepType == SDep::Data) { 1447 if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) { 1448 if (promoteToDotNew(I, DepType, II, RC)) { 1449 PromotedToDotNew = true; 1450 if (cannotCoexist(I, J)) 1451 FoundSequentialDependence = true; 1452 continue; 1453 } 1454 } 1455 if (HII->isNewValueJump(I)) 1456 continue; 1457 } 1458 1459 // For predicated instructions, if the predicates are complements then 1460 // there can be no dependence. 1461 if (HII->isPredicated(I) && HII->isPredicated(J) && 1462 arePredicatesComplements(I, J)) { 1463 // Not always safe to do this translation. 1464 // DAG Builder attempts to reduce dependence edges using transitive 1465 // nature of dependencies. Here is an example: 1466 // 1467 // r0 = tfr_pt ... (1) 1468 // r0 = tfr_pf ... (2) 1469 // r0 = tfr_pt ... (3) 1470 // 1471 // There will be an output dependence between (1)->(2) and (2)->(3). 1472 // However, there is no dependence edge between (1)->(3). This results 1473 // in all 3 instructions going in the same packet. We ignore dependce 1474 // only once to avoid this situation. 1475 auto Itr = find(IgnoreDepMIs, &J); 1476 if (Itr != IgnoreDepMIs.end()) { 1477 Dependence = true; 1478 return false; 1479 } 1480 IgnoreDepMIs.push_back(&I); 1481 continue; 1482 } 1483 1484 // Ignore Order dependences between unconditional direct branches 1485 // and non-control-flow instructions. 1486 if (isDirectJump(I) && !J.isBranch() && !J.isCall() && 1487 DepType == SDep::Order) 1488 continue; 1489 1490 // Ignore all dependences for jumps except for true and output 1491 // dependences. 1492 if (I.isConditionalBranch() && DepType != SDep::Data && 1493 DepType != SDep::Output) 1494 continue; 1495 1496 if (DepType == SDep::Output) { 1497 FoundSequentialDependence = true; 1498 break; 1499 } 1500 1501 // For Order dependences: 1502 // 1. Volatile loads/stores can be packetized together, unless other 1503 // rules prevent is. 1504 // 2. Store followed by a load is not allowed. 1505 // 3. Store followed by a store is valid. 1506 // 4. Load followed by any memory operation is allowed. 1507 if (DepType == SDep::Order) { 1508 if (!PacketizeVolatiles) { 1509 bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef(); 1510 if (OrdRefs) { 1511 FoundSequentialDependence = true; 1512 break; 1513 } 1514 } 1515 // J is first, I is second. 1516 bool LoadJ = J.mayLoad(), StoreJ = J.mayStore(); 1517 bool LoadI = I.mayLoad(), StoreI = I.mayStore(); 1518 bool NVStoreJ = HII->isNewValueStore(J); 1519 bool NVStoreI = HII->isNewValueStore(I); 1520 bool IsVecJ = HII->isHVXVec(J); 1521 bool IsVecI = HII->isHVXVec(I); 1522 1523 if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() && 1524 ((LoadJ && StoreI && !NVStoreI) || 1525 (StoreJ && LoadI && !NVStoreJ)) && 1526 (J.getOpcode() != Hexagon::S2_allocframe && 1527 I.getOpcode() != Hexagon::S2_allocframe) && 1528 (J.getOpcode() != Hexagon::L2_deallocframe && 1529 I.getOpcode() != Hexagon::L2_deallocframe) && 1530 (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI)) 1531 setmemShufDisabled(true); 1532 else 1533 if (StoreJ && LoadI && alias(J, I)) { 1534 FoundSequentialDependence = true; 1535 break; 1536 } 1537 1538 if (!StoreJ) 1539 if (!LoadJ || (!LoadI && !StoreI)) { 1540 // If J is neither load nor store, assume a dependency. 1541 // If J is a load, but I is neither, also assume a dependency. 1542 FoundSequentialDependence = true; 1543 break; 1544 } 1545 // Store followed by store: not OK on V2. 1546 // Store followed by load: not OK on all. 1547 // Load followed by store: OK on all. 1548 // Load followed by load: OK on all. 1549 continue; 1550 } 1551 1552 // Special case for ALLOCFRAME: even though there is dependency 1553 // between ALLOCFRAME and subsequent store, allow it to be packetized 1554 // in a same packet. This implies that the store is using the caller's 1555 // SP. Hence, offset needs to be updated accordingly. 1556 if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) { 1557 unsigned Opc = I.getOpcode(); 1558 switch (Opc) { 1559 case Hexagon::S2_storerd_io: 1560 case Hexagon::S2_storeri_io: 1561 case Hexagon::S2_storerh_io: 1562 case Hexagon::S2_storerb_io: 1563 if (I.getOperand(0).getReg() == HRI->getStackRegister()) { 1564 // Since this store is to be glued with allocframe in the same 1565 // packet, it will use SP of the previous stack frame, i.e. 1566 // caller's SP. Therefore, we need to recalculate offset 1567 // according to this change. 1568 GlueAllocframeStore = useCallersSP(I); 1569 if (GlueAllocframeStore) 1570 continue; 1571 } 1572 break; 1573 default: 1574 break; 1575 } 1576 } 1577 1578 // There are certain anti-dependencies that cannot be ignored. 1579 // Specifically: 1580 // J2_call ... implicit-def %r0 ; SUJ 1581 // R0 = ... ; SUI 1582 // Those cannot be packetized together, since the call will observe 1583 // the effect of the assignment to R0. 1584 if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) { 1585 // Check if I defines any volatile register. We should also check 1586 // registers that the call may read, but these happen to be a 1587 // subset of the volatile register set. 1588 for (const MachineOperand &Op : I.operands()) { 1589 if (Op.isReg() && Op.isDef()) { 1590 Register R = Op.getReg(); 1591 if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI)) 1592 continue; 1593 } else if (!Op.isRegMask()) { 1594 // If I has a regmask assume dependency. 1595 continue; 1596 } 1597 FoundSequentialDependence = true; 1598 break; 1599 } 1600 } 1601 1602 // Skip over remaining anti-dependences. Two instructions that are 1603 // anti-dependent can share a packet, since in most such cases all 1604 // operands are read before any modifications take place. 1605 // The exceptions are branch and call instructions, since they are 1606 // executed after all other instructions have completed (at least 1607 // conceptually). 1608 if (DepType != SDep::Anti) { 1609 FoundSequentialDependence = true; 1610 break; 1611 } 1612 } 1613 1614 if (FoundSequentialDependence) { 1615 Dependence = true; 1616 return false; 1617 } 1618 1619 return true; 1620 } 1621 1622 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { 1623 assert(SUI->getInstr() && SUJ->getInstr()); 1624 MachineInstr &I = *SUI->getInstr(); 1625 MachineInstr &J = *SUJ->getInstr(); 1626 1627 bool Coexist = !cannotCoexist(I, J); 1628 1629 if (Coexist && !Dependence) 1630 return true; 1631 1632 // Check if the instruction was promoted to a dot-new. If so, demote it 1633 // back into a dot-old. 1634 if (PromotedToDotNew) 1635 demoteToDotOld(I); 1636 1637 cleanUpDotCur(); 1638 // Check if the instruction (must be a store) was glued with an allocframe 1639 // instruction. If so, restore its offset to its original value, i.e. use 1640 // current SP instead of caller's SP. 1641 if (GlueAllocframeStore) { 1642 useCalleesSP(I); 1643 GlueAllocframeStore = false; 1644 } 1645 1646 if (ChangedOffset != INT64_MAX) 1647 undoChangedOffset(I); 1648 1649 if (GlueToNewValueJump) { 1650 // Putting I and J together would prevent the new-value jump from being 1651 // packetized with the producer. In that case I and J must be separated. 1652 GlueToNewValueJump = false; 1653 return false; 1654 } 1655 1656 if (!Coexist) 1657 return false; 1658 1659 if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) { 1660 FoundSequentialDependence = false; 1661 Dependence = false; 1662 return true; 1663 } 1664 1665 return false; 1666 } 1667 1668 1669 bool HexagonPacketizerList::foundLSInPacket() { 1670 bool FoundLoad = false; 1671 bool FoundStore = false; 1672 1673 for (auto MJ : CurrentPacketMIs) { 1674 unsigned Opc = MJ->getOpcode(); 1675 if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe) 1676 continue; 1677 if (HII->isMemOp(*MJ)) 1678 continue; 1679 if (MJ->mayLoad()) 1680 FoundLoad = true; 1681 if (MJ->mayStore() && !HII->isNewValueStore(*MJ)) 1682 FoundStore = true; 1683 } 1684 return FoundLoad && FoundStore; 1685 } 1686 1687 1688 MachineBasicBlock::iterator 1689 HexagonPacketizerList::addToPacket(MachineInstr &MI) { 1690 MachineBasicBlock::iterator MII = MI.getIterator(); 1691 MachineBasicBlock *MBB = MI.getParent(); 1692 1693 if (CurrentPacketMIs.empty()) 1694 PacketStalls = false; 1695 PacketStalls |= producesStall(MI); 1696 1697 if (MI.isImplicitDef()) { 1698 // Add to the packet to allow subsequent instructions to be checked 1699 // properly. 1700 CurrentPacketMIs.push_back(&MI); 1701 return MII; 1702 } 1703 assert(ResourceTracker->canReserveResources(MI)); 1704 1705 bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI); 1706 bool Good = true; 1707 1708 if (GlueToNewValueJump) { 1709 MachineInstr &NvjMI = *++MII; 1710 // We need to put both instructions in the same packet: MI and NvjMI. 1711 // Either of them can require a constant extender. Try to add both to 1712 // the current packet, and if that fails, end the packet and start a 1713 // new one. 1714 ResourceTracker->reserveResources(MI); 1715 if (ExtMI) 1716 Good = tryAllocateResourcesForConstExt(true); 1717 1718 bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI); 1719 if (Good) { 1720 if (ResourceTracker->canReserveResources(NvjMI)) 1721 ResourceTracker->reserveResources(NvjMI); 1722 else 1723 Good = false; 1724 } 1725 if (Good && ExtNvjMI) 1726 Good = tryAllocateResourcesForConstExt(true); 1727 1728 if (!Good) { 1729 endPacket(MBB, MI); 1730 assert(ResourceTracker->canReserveResources(MI)); 1731 ResourceTracker->reserveResources(MI); 1732 if (ExtMI) { 1733 assert(canReserveResourcesForConstExt()); 1734 tryAllocateResourcesForConstExt(true); 1735 } 1736 assert(ResourceTracker->canReserveResources(NvjMI)); 1737 ResourceTracker->reserveResources(NvjMI); 1738 if (ExtNvjMI) { 1739 assert(canReserveResourcesForConstExt()); 1740 reserveResourcesForConstExt(); 1741 } 1742 } 1743 CurrentPacketMIs.push_back(&MI); 1744 CurrentPacketMIs.push_back(&NvjMI); 1745 return MII; 1746 } 1747 1748 ResourceTracker->reserveResources(MI); 1749 if (ExtMI && !tryAllocateResourcesForConstExt(true)) { 1750 endPacket(MBB, MI); 1751 if (PromotedToDotNew) 1752 demoteToDotOld(MI); 1753 if (GlueAllocframeStore) { 1754 useCalleesSP(MI); 1755 GlueAllocframeStore = false; 1756 } 1757 ResourceTracker->reserveResources(MI); 1758 reserveResourcesForConstExt(); 1759 } 1760 1761 CurrentPacketMIs.push_back(&MI); 1762 return MII; 1763 } 1764 1765 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB, 1766 MachineBasicBlock::iterator EndMI) { 1767 // Replace VLIWPacketizerList::endPacket(MBB, EndMI). 1768 LLVM_DEBUG({ 1769 if (!CurrentPacketMIs.empty()) { 1770 dbgs() << "Finalizing packet:\n"; 1771 unsigned Idx = 0; 1772 for (MachineInstr *MI : CurrentPacketMIs) { 1773 unsigned R = ResourceTracker->getUsedResources(Idx++); 1774 dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI; 1775 } 1776 } 1777 }); 1778 1779 bool memShufDisabled = getmemShufDisabled(); 1780 if (memShufDisabled && !foundLSInPacket()) { 1781 setmemShufDisabled(false); 1782 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n"); 1783 } 1784 memShufDisabled = getmemShufDisabled(); 1785 1786 OldPacketMIs.clear(); 1787 for (MachineInstr *MI : CurrentPacketMIs) { 1788 MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator()); 1789 for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI)) 1790 OldPacketMIs.push_back(&I); 1791 } 1792 CurrentPacketMIs.clear(); 1793 1794 if (OldPacketMIs.size() > 1) { 1795 MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front()); 1796 MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator()); 1797 finalizeBundle(*MBB, FirstMI, LastMI); 1798 auto BundleMII = std::prev(FirstMI); 1799 if (memShufDisabled) 1800 HII->setBundleNoShuf(BundleMII); 1801 1802 setmemShufDisabled(false); 1803 } 1804 1805 ResourceTracker->clearResources(); 1806 LLVM_DEBUG(dbgs() << "End packet\n"); 1807 } 1808 1809 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) { 1810 if (Minimal) 1811 return false; 1812 return !producesStall(MI); 1813 } 1814 1815 // V60 forward scheduling. 1816 bool HexagonPacketizerList::producesStall(const MachineInstr &I) { 1817 // If the packet already stalls, then ignore the stall from a subsequent 1818 // instruction in the same packet. 1819 if (PacketStalls) 1820 return false; 1821 1822 // Check whether the previous packet is in a different loop. If this is the 1823 // case, there is little point in trying to avoid a stall because that would 1824 // favor the rare case (loop entry) over the common case (loop iteration). 1825 // 1826 // TODO: We should really be able to check all the incoming edges if this is 1827 // the first packet in a basic block, so we can avoid stalls from the loop 1828 // backedge. 1829 if (!OldPacketMIs.empty()) { 1830 auto *OldBB = OldPacketMIs.front()->getParent(); 1831 auto *ThisBB = I.getParent(); 1832 if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB)) 1833 return false; 1834 } 1835 1836 SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)]; 1837 1838 // If the latency is 0 and there is a data dependence between this 1839 // instruction and any instruction in the current packet, we disregard any 1840 // potential stalls due to the instructions in the previous packet. Most of 1841 // the instruction pairs that can go together in the same packet have 0 1842 // latency between them. The exceptions are 1843 // 1. NewValueJumps as they're generated much later and the latencies can't 1844 // be changed at that point. 1845 // 2. .cur instructions, if its consumer has a 0 latency successor (such as 1846 // .new). In this case, the latency between .cur and the consumer stays 1847 // non-zero even though we can have both .cur and .new in the same packet. 1848 // Changing the latency to 0 is not an option as it causes software pipeliner 1849 // to not pipeline in some cases. 1850 1851 // For Example: 1852 // { 1853 // I1: v6.cur = vmem(r0++#1) 1854 // I2: v7 = valign(v6,v4,r2) 1855 // I3: vmem(r5++#1) = v7.new 1856 // } 1857 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2. 1858 1859 for (auto J : CurrentPacketMIs) { 1860 SUnit *SUJ = MIToSUnit[J]; 1861 for (auto &Pred : SUI->Preds) 1862 if (Pred.getSUnit() == SUJ) 1863 if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) || 1864 HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I)) 1865 return false; 1866 } 1867 1868 // Check if the latency is greater than one between this instruction and any 1869 // instruction in the previous packet. 1870 for (auto J : OldPacketMIs) { 1871 SUnit *SUJ = MIToSUnit[J]; 1872 for (auto &Pred : SUI->Preds) 1873 if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1) 1874 return true; 1875 } 1876 1877 return false; 1878 } 1879 1880 //===----------------------------------------------------------------------===// 1881 // Public Constructor Functions 1882 //===----------------------------------------------------------------------===// 1883 1884 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) { 1885 return new HexagonPacketizer(Minimal); 1886 } 1887