xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a simple VLIW packetizer using DFA. The packetizer works on
10 // machine basic blocks. For each instruction I in BB, the packetizer consults
11 // the DFA to see if machine resources are available to execute I. If so, the
12 // packetizer checks if I depends on any instruction J in the current packet.
13 // If no dependency is found, I is added to current packet and machine resource
14 // is marked as taken. If any dependency is found, a target API call is made to
15 // prune the dependence.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "HexagonVLIWPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonInstrInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "packets"
57 
58 static cl::opt<bool>
59     DisablePacketizer("disable-packetizer", cl::Hidden,
60                       cl::desc("Disable Hexagon packetizer pass"));
61 
62 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
63                                 cl::init(true),
64                                 cl::desc("Allow slot1 store and slot0 load"));
65 
66 static cl::opt<bool> PacketizeVolatiles(
67     "hexagon-packetize-volatiles", cl::Hidden, cl::init(true),
68     cl::desc("Allow non-solo packetization of volatile memory references"));
69 
70 static cl::opt<bool>
71     EnableGenAllInsnClass("enable-gen-insn", cl::Hidden,
72                           cl::desc("Generate all instruction with TC"));
73 
74 static cl::opt<bool>
75     DisableVecDblNVStores("disable-vecdbl-nv-stores", cl::Hidden,
76                           cl::desc("Disable vector double new-value-stores"));
77 
78 extern cl::opt<bool> ScheduleInlineAsm;
79 
80 namespace llvm {
81 
82 FunctionPass *createHexagonPacketizer(bool Minimal);
83 void initializeHexagonPacketizerPass(PassRegistry&);
84 
85 } // end namespace llvm
86 
87 namespace {
88 
89   class HexagonPacketizer : public MachineFunctionPass {
90   public:
91     static char ID;
92 
93     HexagonPacketizer(bool Min = false)
94       : MachineFunctionPass(ID), Minimal(Min) {}
95 
96     void getAnalysisUsage(AnalysisUsage &AU) const override {
97       AU.setPreservesCFG();
98       AU.addRequired<AAResultsWrapperPass>();
99       AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
100       AU.addRequired<MachineDominatorTreeWrapperPass>();
101       AU.addRequired<MachineLoopInfoWrapperPass>();
102       AU.addPreserved<MachineDominatorTreeWrapperPass>();
103       AU.addPreserved<MachineLoopInfoWrapperPass>();
104       MachineFunctionPass::getAnalysisUsage(AU);
105     }
106 
107     StringRef getPassName() const override { return "Hexagon Packetizer"; }
108     bool runOnMachineFunction(MachineFunction &Fn) override;
109 
110     MachineFunctionProperties getRequiredProperties() const override {
111       return MachineFunctionProperties().set(
112           MachineFunctionProperties::Property::NoVRegs);
113     }
114 
115   private:
116     const HexagonInstrInfo *HII = nullptr;
117     const HexagonRegisterInfo *HRI = nullptr;
118     const bool Minimal = false;
119   };
120 
121 } // end anonymous namespace
122 
123 char HexagonPacketizer::ID = 0;
124 
125 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
126                       "Hexagon Packetizer", false, false)
127 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
128 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
129 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
130 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
131 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
132                     "Hexagon Packetizer", false, false)
133 
134 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
135       MachineLoopInfo &MLI, AAResults *AA,
136       const MachineBranchProbabilityInfo *MBPI, bool Minimal)
137     : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
138       Minimal(Minimal) {
139   HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
140   HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
141 
142   addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
143   addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
144   addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
145 }
146 
147 // Check if FirstI modifies a register that SecondI reads.
148 static bool hasWriteToReadDep(const MachineInstr &FirstI,
149                               const MachineInstr &SecondI,
150                               const TargetRegisterInfo *TRI) {
151   for (auto &MO : FirstI.operands()) {
152     if (!MO.isReg() || !MO.isDef())
153       continue;
154     Register R = MO.getReg();
155     if (SecondI.readsRegister(R, TRI))
156       return true;
157   }
158   return false;
159 }
160 
161 
162 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
163       MachineBasicBlock::iterator BundleIt, bool Before) {
164   MachineBasicBlock::instr_iterator InsertPt;
165   if (Before)
166     InsertPt = BundleIt.getInstrIterator();
167   else
168     InsertPt = std::next(BundleIt).getInstrIterator();
169 
170   MachineBasicBlock &B = *MI.getParent();
171   // The instruction should at least be bundled with the preceding instruction
172   // (there will always be one, i.e. BUNDLE, if nothing else).
173   assert(MI.isBundledWithPred());
174   if (MI.isBundledWithSucc()) {
175     MI.clearFlag(MachineInstr::BundledSucc);
176     MI.clearFlag(MachineInstr::BundledPred);
177   } else {
178     // If it's not bundled with the successor (i.e. it is the last one
179     // in the bundle), then we can simply unbundle it from the predecessor,
180     // which will take care of updating the predecessor's flag.
181     MI.unbundleFromPred();
182   }
183   B.splice(InsertPt, &B, MI.getIterator());
184 
185   // Get the size of the bundle without asserting.
186   MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
187   MachineBasicBlock::const_instr_iterator E = B.instr_end();
188   unsigned Size = 0;
189   for (++I; I != E && I->isBundledWithPred(); ++I)
190     ++Size;
191 
192   // If there are still two or more instructions, then there is nothing
193   // else to be done.
194   if (Size > 1)
195     return BundleIt;
196 
197   // Otherwise, extract the single instruction out and delete the bundle.
198   MachineBasicBlock::iterator NextIt = std::next(BundleIt);
199   MachineInstr &SingleI = *BundleIt->getNextNode();
200   SingleI.unbundleFromPred();
201   assert(!SingleI.isBundledWithSucc());
202   BundleIt->eraseFromParent();
203   return NextIt;
204 }
205 
206 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
207   // FIXME: This pass causes verification failures.
208   MF.getProperties().set(
209       MachineFunctionProperties::Property::FailsVerification);
210 
211   auto &HST = MF.getSubtarget<HexagonSubtarget>();
212   HII = HST.getInstrInfo();
213   HRI = HST.getRegisterInfo();
214   auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
215   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
216   auto *MBPI =
217       &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
218 
219   if (EnableGenAllInsnClass)
220     HII->genAllInsnTimingClasses(MF);
221 
222   // Instantiate the packetizer.
223   bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
224                  skipFunction(MF.getFunction());
225   HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
226 
227   // DFA state table should not be empty.
228   assert(Packetizer.getResourceTracker() && "Empty DFA table!");
229 
230   // Loop over all basic blocks and remove KILL pseudo-instructions
231   // These instructions confuse the dependence analysis. Consider:
232   // D0 = ...   (Insn 0)
233   // R0 = KILL R0, D0 (Insn 1)
234   // R0 = ... (Insn 2)
235   // Here, Insn 1 will result in the dependence graph not emitting an output
236   // dependence between Insn 0 and Insn 2. This can lead to incorrect
237   // packetization
238   for (MachineBasicBlock &MB : MF) {
239     for (MachineInstr &MI : llvm::make_early_inc_range(MB))
240       if (MI.isKill())
241         MB.erase(&MI);
242   }
243 
244   // TinyCore with Duplexes: Translate to big-instructions.
245   if (HST.isTinyCoreWithDuplex())
246     HII->translateInstrsForDup(MF, true);
247 
248   // Loop over all of the basic blocks.
249   for (auto &MB : MF) {
250     auto Begin = MB.begin(), End = MB.end();
251     while (Begin != End) {
252       // Find the first non-boundary starting from the end of the last
253       // scheduling region.
254       MachineBasicBlock::iterator RB = Begin;
255       while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
256         ++RB;
257       // Find the first boundary starting from the beginning of the new
258       // region.
259       MachineBasicBlock::iterator RE = RB;
260       while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
261         ++RE;
262       // Add the scheduling boundary if it's not block end.
263       if (RE != End)
264         ++RE;
265       // If RB == End, then RE == End.
266       if (RB != End)
267         Packetizer.PacketizeMIs(&MB, RB, RE);
268 
269       Begin = RE;
270     }
271   }
272 
273   // TinyCore with Duplexes: Translate to tiny-instructions.
274   if (HST.isTinyCoreWithDuplex())
275     HII->translateInstrsForDup(MF, false);
276 
277   Packetizer.unpacketizeSoloInstrs(MF);
278   return true;
279 }
280 
281 // Reserve resources for a constant extender. Trigger an assertion if the
282 // reservation fails.
283 void HexagonPacketizerList::reserveResourcesForConstExt() {
284   if (!tryAllocateResourcesForConstExt(true))
285     llvm_unreachable("Resources not available");
286 }
287 
288 bool HexagonPacketizerList::canReserveResourcesForConstExt() {
289   return tryAllocateResourcesForConstExt(false);
290 }
291 
292 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
293 // return true, otherwise, return false.
294 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
295   auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
296   bool Avail = ResourceTracker->canReserveResources(*ExtMI);
297   if (Reserve && Avail)
298     ResourceTracker->reserveResources(*ExtMI);
299   MF.deleteMachineInstr(ExtMI);
300   return Avail;
301 }
302 
303 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
304       SDep::Kind DepType, unsigned DepReg) {
305   // Check for LR dependence.
306   if (DepReg == HRI->getRARegister())
307     return true;
308 
309   if (HII->isDeallocRet(MI))
310     if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
311       return true;
312 
313   // Call-like instructions can be packetized with preceding instructions
314   // that define registers implicitly used or modified by the call. Explicit
315   // uses are still prohibited, as in the case of indirect calls:
316   //   r0 = ...
317   //   J2_jumpr r0
318   if (DepType == SDep::Data) {
319     for (const MachineOperand &MO : MI.operands())
320       if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
321         return true;
322   }
323 
324   return false;
325 }
326 
327 static bool isRegDependence(const SDep::Kind DepType) {
328   return DepType == SDep::Data || DepType == SDep::Anti ||
329          DepType == SDep::Output;
330 }
331 
332 static bool isDirectJump(const MachineInstr &MI) {
333   return MI.getOpcode() == Hexagon::J2_jump;
334 }
335 
336 static bool isSchedBarrier(const MachineInstr &MI) {
337   switch (MI.getOpcode()) {
338   case Hexagon::Y2_barrier:
339     return true;
340   }
341   return false;
342 }
343 
344 static bool isControlFlow(const MachineInstr &MI) {
345   return MI.getDesc().isTerminator() || MI.getDesc().isCall();
346 }
347 
348 /// Returns true if the instruction modifies a callee-saved register.
349 static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
350                                      const TargetRegisterInfo *TRI) {
351   const MachineFunction &MF = *MI.getParent()->getParent();
352   for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
353     if (MI.modifiesRegister(*CSR, TRI))
354       return true;
355   return false;
356 }
357 
358 // Returns true if an instruction can be promoted to .new predicate or
359 // new-value store.
360 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
361       const TargetRegisterClass *NewRC) {
362   // Vector stores can be predicated, and can be new-value stores, but
363   // they cannot be predicated on a .new predicate value.
364   if (NewRC == &Hexagon::PredRegsRegClass) {
365     if (HII->isHVXVec(MI) && MI.mayStore())
366       return false;
367     return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
368   }
369   // If the class is not PredRegs, it could only apply to new-value stores.
370   return HII->mayBeNewStore(MI);
371 }
372 
373 // Promote an instructiont to its .cur form.
374 // At this time, we have already made a call to canPromoteToDotCur and made
375 // sure that it can *indeed* be promoted.
376 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
377       SDep::Kind DepType, MachineBasicBlock::iterator &MII,
378       const TargetRegisterClass* RC) {
379   assert(DepType == SDep::Data);
380   int CurOpcode = HII->getDotCurOp(MI);
381   MI.setDesc(HII->get(CurOpcode));
382   return true;
383 }
384 
385 void HexagonPacketizerList::cleanUpDotCur() {
386   MachineInstr *MI = nullptr;
387   for (auto *BI : CurrentPacketMIs) {
388     LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
389     if (HII->isDotCurInst(*BI)) {
390       MI = BI;
391       continue;
392     }
393     if (MI) {
394       for (auto &MO : BI->operands())
395         if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
396           return;
397     }
398   }
399   if (!MI)
400     return;
401   // We did not find a use of the CUR, so de-cur it.
402   MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
403   LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
404 }
405 
406 // Check to see if an instruction can be dot cur.
407 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
408       const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
409       const TargetRegisterClass *RC) {
410   if (!HII->isHVXVec(MI))
411     return false;
412   if (!HII->isHVXVec(*MII))
413     return false;
414 
415   // Already a dot new instruction.
416   if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
417     return false;
418 
419   if (!HII->mayBeCurLoad(MI))
420     return false;
421 
422   // The "cur value" cannot come from inline asm.
423   if (PacketSU->getInstr()->isInlineAsm())
424     return false;
425 
426   // Make sure candidate instruction uses cur.
427   LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
428              dbgs() << "in packet\n";);
429   MachineInstr &MJ = *MII;
430   LLVM_DEBUG({
431     dbgs() << "Checking CUR against ";
432     MJ.dump();
433   });
434   Register DestReg = MI.getOperand(0).getReg();
435   bool FoundMatch = false;
436   for (auto &MO : MJ.operands())
437     if (MO.isReg() && MO.getReg() == DestReg)
438       FoundMatch = true;
439   if (!FoundMatch)
440     return false;
441 
442   // Check for existing uses of a vector register within the packet which
443   // would be affected by converting a vector load into .cur formt.
444   for (auto *BI : CurrentPacketMIs) {
445     LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
446     if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
447       return false;
448   }
449 
450   LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
451   // We can convert the opcode into a .cur.
452   return true;
453 }
454 
455 // Promote an instruction to its .new form. At this time, we have already
456 // made a call to canPromoteToDotNew and made sure that it can *indeed* be
457 // promoted.
458 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
459       SDep::Kind DepType, MachineBasicBlock::iterator &MII,
460       const TargetRegisterClass* RC) {
461   assert(DepType == SDep::Data);
462   int NewOpcode;
463   if (RC == &Hexagon::PredRegsRegClass)
464     NewOpcode = HII->getDotNewPredOp(MI, MBPI);
465   else
466     NewOpcode = HII->getDotNewOp(MI);
467   MI.setDesc(HII->get(NewOpcode));
468   return true;
469 }
470 
471 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
472   int NewOpcode = HII->getDotOldOp(MI);
473   MI.setDesc(HII->get(NewOpcode));
474   return true;
475 }
476 
477 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
478   unsigned Opc = MI.getOpcode();
479   switch (Opc) {
480     case Hexagon::S2_storerd_io:
481     case Hexagon::S2_storeri_io:
482     case Hexagon::S2_storerh_io:
483     case Hexagon::S2_storerb_io:
484       break;
485     default:
486       llvm_unreachable("Unexpected instruction");
487   }
488   unsigned FrameSize = MF.getFrameInfo().getStackSize();
489   MachineOperand &Off = MI.getOperand(1);
490   int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
491   if (HII->isValidOffset(Opc, NewOff, HRI)) {
492     Off.setImm(NewOff);
493     return true;
494   }
495   return false;
496 }
497 
498 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
499   unsigned Opc = MI.getOpcode();
500   switch (Opc) {
501     case Hexagon::S2_storerd_io:
502     case Hexagon::S2_storeri_io:
503     case Hexagon::S2_storerh_io:
504     case Hexagon::S2_storerb_io:
505       break;
506     default:
507       llvm_unreachable("Unexpected instruction");
508   }
509   unsigned FrameSize = MF.getFrameInfo().getStackSize();
510   MachineOperand &Off = MI.getOperand(1);
511   Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
512 }
513 
514 /// Return true if we can update the offset in MI so that MI and MJ
515 /// can be packetized together.
516 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
517   assert(SUI->getInstr() && SUJ->getInstr());
518   MachineInstr &MI = *SUI->getInstr();
519   MachineInstr &MJ = *SUJ->getInstr();
520 
521   unsigned BPI, OPI;
522   if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
523     return false;
524   unsigned BPJ, OPJ;
525   if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
526     return false;
527   Register Reg = MI.getOperand(BPI).getReg();
528   if (Reg != MJ.getOperand(BPJ).getReg())
529     return false;
530   // Make sure that the dependences do not restrict adding MI to the packet.
531   // That is, ignore anti dependences, and make sure the only data dependence
532   // involves the specific register.
533   for (const auto &PI : SUI->Preds)
534     if (PI.getKind() != SDep::Anti &&
535         (PI.getKind() != SDep::Data || PI.getReg() != Reg))
536       return false;
537   int Incr;
538   if (!HII->getIncrementValue(MJ, Incr))
539     return false;
540 
541   int64_t Offset = MI.getOperand(OPI).getImm();
542   if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
543     return false;
544 
545   MI.getOperand(OPI).setImm(Offset + Incr);
546   ChangedOffset = Offset;
547   return true;
548 }
549 
550 /// Undo the changed offset. This is needed if the instruction cannot be
551 /// added to the current packet due to a different instruction.
552 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
553   unsigned BP, OP;
554   if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
555     llvm_unreachable("Unable to find base and offset operands.");
556   MI.getOperand(OP).setImm(ChangedOffset);
557 }
558 
559 enum PredicateKind {
560   PK_False,
561   PK_True,
562   PK_Unknown
563 };
564 
565 /// Returns true if an instruction is predicated on p0 and false if it's
566 /// predicated on !p0.
567 static PredicateKind getPredicateSense(const MachineInstr &MI,
568                                        const HexagonInstrInfo *HII) {
569   if (!HII->isPredicated(MI))
570     return PK_Unknown;
571   if (HII->isPredicatedTrue(MI))
572     return PK_True;
573   return PK_False;
574 }
575 
576 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
577       const HexagonInstrInfo *HII) {
578   assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
579 #ifndef NDEBUG
580   // Post Increment means duplicates. Use dense map to find duplicates in the
581   // list. Caution: Densemap initializes with the minimum of 64 buckets,
582   // whereas there are at most 5 operands in the post increment.
583   DenseSet<unsigned> DefRegsSet;
584   for (auto &MO : MI.operands())
585     if (MO.isReg() && MO.isDef())
586       DefRegsSet.insert(MO.getReg());
587 
588   for (auto &MO : MI.operands())
589     if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
590       return MO;
591 #else
592   if (MI.mayLoad()) {
593     const MachineOperand &Op1 = MI.getOperand(1);
594     // The 2nd operand is always the post increment operand in load.
595     assert(Op1.isReg() && "Post increment operand has be to a register.");
596     return Op1;
597   }
598   if (MI.getDesc().mayStore()) {
599     const MachineOperand &Op0 = MI.getOperand(0);
600     // The 1st operand is always the post increment operand in store.
601     assert(Op0.isReg() && "Post increment operand has be to a register.");
602     return Op0;
603   }
604 #endif
605   // we should never come here.
606   llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
607 }
608 
609 // Get the value being stored.
610 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
611   // value being stored is always the last operand.
612   return MI.getOperand(MI.getNumOperands()-1);
613 }
614 
615 static bool isLoadAbsSet(const MachineInstr &MI) {
616   unsigned Opc = MI.getOpcode();
617   switch (Opc) {
618     case Hexagon::L4_loadrd_ap:
619     case Hexagon::L4_loadrb_ap:
620     case Hexagon::L4_loadrh_ap:
621     case Hexagon::L4_loadrub_ap:
622     case Hexagon::L4_loadruh_ap:
623     case Hexagon::L4_loadri_ap:
624       return true;
625   }
626   return false;
627 }
628 
629 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
630   assert(isLoadAbsSet(MI));
631   return MI.getOperand(1);
632 }
633 
634 // Can be new value store?
635 // Following restrictions are to be respected in convert a store into
636 // a new value store.
637 // 1. If an instruction uses auto-increment, its address register cannot
638 //    be a new-value register. Arch Spec 5.4.2.1
639 // 2. If an instruction uses absolute-set addressing mode, its address
640 //    register cannot be a new-value register. Arch Spec 5.4.2.1.
641 // 3. If an instruction produces a 64-bit result, its registers cannot be used
642 //    as new-value registers. Arch Spec 5.4.2.2.
643 // 4. If the instruction that sets the new-value register is conditional, then
644 //    the instruction that uses the new-value register must also be conditional,
645 //    and both must always have their predicates evaluate identically.
646 //    Arch Spec 5.4.2.3.
647 // 5. There is an implied restriction that a packet cannot have another store,
648 //    if there is a new value store in the packet. Corollary: if there is
649 //    already a store in a packet, there can not be a new value store.
650 //    Arch Spec: 3.4.4.2
651 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
652       const MachineInstr &PacketMI, unsigned DepReg) {
653   // Make sure we are looking at the store, that can be promoted.
654   if (!HII->mayBeNewStore(MI))
655     return false;
656 
657   // Make sure there is dependency and can be new value'd.
658   const MachineOperand &Val = getStoreValueOperand(MI);
659   if (Val.isReg() && Val.getReg() != DepReg)
660     return false;
661 
662   const MCInstrDesc& MCID = PacketMI.getDesc();
663 
664   // First operand is always the result.
665   const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
666   // Double regs can not feed into new value store: PRM section: 5.4.2.2.
667   if (PacketRC == &Hexagon::DoubleRegsRegClass)
668     return false;
669 
670   // New-value stores are of class NV (slot 0), dual stores require class ST
671   // in slot 0 (PRM 5.5).
672   for (auto *I : CurrentPacketMIs) {
673     SUnit *PacketSU = MIToSUnit.find(I)->second;
674     if (PacketSU->getInstr()->mayStore())
675       return false;
676   }
677 
678   // Make sure it's NOT the post increment register that we are going to
679   // new value.
680   if (HII->isPostIncrement(MI) &&
681       getPostIncrementOperand(MI, HII).getReg() == DepReg) {
682     return false;
683   }
684 
685   if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
686       getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
687     // If source is post_inc, or absolute-set addressing, it can not feed
688     // into new value store
689     //   r3 = memw(r2++#4)
690     //   memw(r30 + #-1404) = r2.new -> can not be new value store
691     // arch spec section: 5.4.2.1.
692     return false;
693   }
694 
695   if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
696     return false;
697 
698   // If the source that feeds the store is predicated, new value store must
699   // also be predicated.
700   if (HII->isPredicated(PacketMI)) {
701     if (!HII->isPredicated(MI))
702       return false;
703 
704     // Check to make sure that they both will have their predicates
705     // evaluate identically.
706     unsigned predRegNumSrc = 0;
707     unsigned predRegNumDst = 0;
708     const TargetRegisterClass* predRegClass = nullptr;
709 
710     // Get predicate register used in the source instruction.
711     for (auto &MO : PacketMI.operands()) {
712       if (!MO.isReg())
713         continue;
714       predRegNumSrc = MO.getReg();
715       predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
716       if (predRegClass == &Hexagon::PredRegsRegClass)
717         break;
718     }
719     assert((predRegClass == &Hexagon::PredRegsRegClass) &&
720         "predicate register not found in a predicated PacketMI instruction");
721 
722     // Get predicate register used in new-value store instruction.
723     for (auto &MO : MI.operands()) {
724       if (!MO.isReg())
725         continue;
726       predRegNumDst = MO.getReg();
727       predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
728       if (predRegClass == &Hexagon::PredRegsRegClass)
729         break;
730     }
731     assert((predRegClass == &Hexagon::PredRegsRegClass) &&
732            "predicate register not found in a predicated MI instruction");
733 
734     // New-value register producer and user (store) need to satisfy these
735     // constraints:
736     // 1) Both instructions should be predicated on the same register.
737     // 2) If producer of the new-value register is .new predicated then store
738     // should also be .new predicated and if producer is not .new predicated
739     // then store should not be .new predicated.
740     // 3) Both new-value register producer and user should have same predicate
741     // sense, i.e, either both should be negated or both should be non-negated.
742     if (predRegNumDst != predRegNumSrc ||
743         HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
744         getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
745       return false;
746   }
747 
748   // Make sure that other than the new-value register no other store instruction
749   // register has been modified in the same packet. Predicate registers can be
750   // modified by they should not be modified between the producer and the store
751   // instruction as it will make them both conditional on different values.
752   // We already know this to be true for all the instructions before and
753   // including PacketMI. Howerver, we need to perform the check for the
754   // remaining instructions in the packet.
755 
756   unsigned StartCheck = 0;
757 
758   for (auto *I : CurrentPacketMIs) {
759     SUnit *TempSU = MIToSUnit.find(I)->second;
760     MachineInstr &TempMI = *TempSU->getInstr();
761 
762     // Following condition is true for all the instructions until PacketMI is
763     // reached (StartCheck is set to 0 before the for loop).
764     // StartCheck flag is 1 for all the instructions after PacketMI.
765     if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
766       continue;                              // encountering PacketMI.
767 
768     StartCheck = 1;
769     if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
770       continue;
771 
772     for (auto &MO : MI.operands())
773       if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
774         return false;
775   }
776 
777   // Make sure that for non-POST_INC stores:
778   // 1. The only use of reg is DepReg and no other registers.
779   //    This handles base+index registers.
780   //    The following store can not be dot new.
781   //    Eg.   r0 = add(r0, #3)
782   //          memw(r1+r0<<#2) = r0
783   if (!HII->isPostIncrement(MI)) {
784     for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
785       const MachineOperand &MO = MI.getOperand(opNum);
786       if (MO.isReg() && MO.getReg() == DepReg)
787         return false;
788     }
789   }
790 
791   // If data definition is because of implicit definition of the register,
792   // do not newify the store. Eg.
793   // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
794   // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
795   for (auto &MO : PacketMI.operands()) {
796     if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
797       return false;
798     if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
799       continue;
800     Register R = MO.getReg();
801     if (R == DepReg || HRI->isSuperRegister(DepReg, R))
802       return false;
803   }
804 
805   // Handle imp-use of super reg case. There is a target independent side
806   // change that should prevent this situation but I am handling it for
807   // just-in-case. For example, we cannot newify R2 in the following case:
808   // %r3 = A2_tfrsi 0;
809   // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
810   for (auto &MO : MI.operands()) {
811     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
812       return false;
813   }
814 
815   // Can be dot new store.
816   return true;
817 }
818 
819 // Can this MI to promoted to either new value store or new value jump.
820 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
821       const SUnit *PacketSU, unsigned DepReg,
822       MachineBasicBlock::iterator &MII) {
823   if (!HII->mayBeNewStore(MI))
824     return false;
825 
826   // Check to see the store can be new value'ed.
827   MachineInstr &PacketMI = *PacketSU->getInstr();
828   if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
829     return true;
830 
831   // Check to see the compare/jump can be new value'ed.
832   // This is done as a pass on its own. Don't need to check it here.
833   return false;
834 }
835 
836 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
837       unsigned DepReg) {
838   for (auto &MO : I.operands()) {
839     if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
840       return true;
841     if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
842       continue;
843     if (CheckDef == MO.isDef())
844       return true;
845   }
846   return false;
847 }
848 
849 // Check to see if an instruction can be dot new.
850 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
851       const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
852       const TargetRegisterClass* RC) {
853   // Already a dot new instruction.
854   if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
855     return false;
856 
857   if (!isNewifiable(MI, RC))
858     return false;
859 
860   const MachineInstr &PI = *PacketSU->getInstr();
861 
862   // The "new value" cannot come from inline asm.
863   if (PI.isInlineAsm())
864     return false;
865 
866   // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
867   // sense.
868   if (PI.isImplicitDef())
869     return false;
870 
871   // If dependency is trough an implicitly defined register, we should not
872   // newify the use.
873   if (isImplicitDependency(PI, true, DepReg) ||
874       isImplicitDependency(MI, false, DepReg))
875     return false;
876 
877   const MCInstrDesc& MCID = PI.getDesc();
878   const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
879   if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
880     return false;
881 
882   // predicate .new
883   if (RC == &Hexagon::PredRegsRegClass)
884     return HII->predCanBeUsedAsDotNew(PI, DepReg);
885 
886   if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
887     return false;
888 
889   // Create a dot new machine instruction to see if resources can be
890   // allocated. If not, bail out now.
891   int NewOpcode = (RC != &Hexagon::PredRegsRegClass) ? HII->getDotNewOp(MI) :
892     HII->getDotNewPredOp(MI, MBPI);
893   const MCInstrDesc &D = HII->get(NewOpcode);
894   MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
895   bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
896   MF.deleteMachineInstr(NewMI);
897   if (!ResourcesAvailable)
898     return false;
899 
900   // New Value Store only. New Value Jump generated as a separate pass.
901   if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
902     return false;
903 
904   return true;
905 }
906 
907 // Go through the packet instructions and search for an anti dependency between
908 // them and DepReg from MI. Consider this case:
909 // Trying to add
910 // a) %r1 = TFRI_cdNotPt %p3, 2
911 // to this packet:
912 // {
913 //   b) %p0 = C2_or killed %p3, killed %p0
914 //   c) %p3 = C2_tfrrp %r23
915 //   d) %r1 = C2_cmovenewit %p3, 4
916 //  }
917 // The P3 from a) and d) will be complements after
918 // a)'s P3 is converted to .new form
919 // Anti-dep between c) and b) is irrelevant for this case
920 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
921                                                         unsigned DepReg) {
922   SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
923 
924   for (auto *I : CurrentPacketMIs) {
925     // We only care for dependencies to predicated instructions
926     if (!HII->isPredicated(*I))
927       continue;
928 
929     // Scheduling Unit for current insn in the packet
930     SUnit *PacketSU = MIToSUnit.find(I)->second;
931 
932     // Look at dependencies between current members of the packet and
933     // predicate defining instruction MI. Make sure that dependency is
934     // on the exact register we care about.
935     if (PacketSU->isSucc(PacketSUDep)) {
936       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
937         auto &Dep = PacketSU->Succs[i];
938         if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
939             Dep.getReg() == DepReg)
940           return true;
941       }
942     }
943   }
944 
945   return false;
946 }
947 
948 /// Gets the predicate register of a predicated instruction.
949 static unsigned getPredicatedRegister(MachineInstr &MI,
950                                       const HexagonInstrInfo *QII) {
951   /// We use the following rule: The first predicate register that is a use is
952   /// the predicate register of a predicated instruction.
953   assert(QII->isPredicated(MI) && "Must be predicated instruction");
954 
955   for (auto &Op : MI.operands()) {
956     if (Op.isReg() && Op.getReg() && Op.isUse() &&
957         Hexagon::PredRegsRegClass.contains(Op.getReg()))
958       return Op.getReg();
959   }
960 
961   llvm_unreachable("Unknown instruction operand layout");
962   return 0;
963 }
964 
965 // Given two predicated instructions, this function detects whether
966 // the predicates are complements.
967 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
968                                                      MachineInstr &MI2) {
969   // If we don't know the predicate sense of the instructions bail out early, we
970   // need it later.
971   if (getPredicateSense(MI1, HII) == PK_Unknown ||
972       getPredicateSense(MI2, HII) == PK_Unknown)
973     return false;
974 
975   // Scheduling unit for candidate.
976   SUnit *SU = MIToSUnit[&MI1];
977 
978   // One corner case deals with the following scenario:
979   // Trying to add
980   // a) %r24 = A2_tfrt %p0, %r25
981   // to this packet:
982   // {
983   //   b) %r25 = A2_tfrf %p0, %r24
984   //   c) %p0 = C2_cmpeqi %r26, 1
985   // }
986   //
987   // On general check a) and b) are complements, but presence of c) will
988   // convert a) to .new form, and then it is not a complement.
989   // We attempt to detect it by analyzing existing dependencies in the packet.
990 
991   // Analyze relationships between all existing members of the packet.
992   // Look for Anti dependecy on the same predicate reg as used in the
993   // candidate.
994   for (auto *I : CurrentPacketMIs) {
995     // Scheduling Unit for current insn in the packet.
996     SUnit *PacketSU = MIToSUnit.find(I)->second;
997 
998     // If this instruction in the packet is succeeded by the candidate...
999     if (PacketSU->isSucc(SU)) {
1000       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
1001         auto Dep = PacketSU->Succs[i];
1002         // The corner case exist when there is true data dependency between
1003         // candidate and one of current packet members, this dep is on
1004         // predicate reg, and there already exist anti dep on the same pred in
1005         // the packet.
1006         if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
1007             Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
1008           // Here I know that I is predicate setting instruction with true
1009           // data dep to candidate on the register we care about - c) in the
1010           // above example. Now I need to see if there is an anti dependency
1011           // from c) to any other instruction in the same packet on the pred
1012           // reg of interest.
1013           if (restrictingDepExistInPacket(*I, Dep.getReg()))
1014             return false;
1015         }
1016       }
1017     }
1018   }
1019 
1020   // If the above case does not apply, check regular complement condition.
1021   // Check that the predicate register is the same and that the predicate
1022   // sense is different We also need to differentiate .old vs. .new: !p0
1023   // is not complementary to p0.new.
1024   unsigned PReg1 = getPredicatedRegister(MI1, HII);
1025   unsigned PReg2 = getPredicatedRegister(MI2, HII);
1026   return PReg1 == PReg2 &&
1027          Hexagon::PredRegsRegClass.contains(PReg1) &&
1028          Hexagon::PredRegsRegClass.contains(PReg2) &&
1029          getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
1030          HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
1031 }
1032 
1033 // Initialize packetizer flags.
1034 void HexagonPacketizerList::initPacketizerState() {
1035   Dependence = false;
1036   PromotedToDotNew = false;
1037   GlueToNewValueJump = false;
1038   GlueAllocframeStore = false;
1039   FoundSequentialDependence = false;
1040   ChangedOffset = INT64_MAX;
1041 }
1042 
1043 // Ignore bundling of pseudo instructions.
1044 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
1045                                                     const MachineBasicBlock *) {
1046   if (MI.isDebugInstr())
1047     return true;
1048 
1049   if (MI.isCFIInstruction())
1050     return false;
1051 
1052   // We must print out inline assembly.
1053   if (MI.isInlineAsm())
1054     return false;
1055 
1056   if (MI.isImplicitDef())
1057     return false;
1058 
1059   // We check if MI has any functional units mapped to it. If it doesn't,
1060   // we ignore the instruction.
1061   const MCInstrDesc& TID = MI.getDesc();
1062   auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
1063   return !IS->getUnits();
1064 }
1065 
1066 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
1067   // Ensure any bundles created by gather packetize remain separate.
1068   if (MI.isBundle())
1069     return true;
1070 
1071   if (MI.isEHLabel() || MI.isCFIInstruction())
1072     return true;
1073 
1074   // Consider inline asm to not be a solo instruction by default.
1075   // Inline asm will be put in a packet temporarily, but then it will be
1076   // removed, and placed outside of the packet (before or after, depending
1077   // on dependencies).  This is to reduce the impact of inline asm as a
1078   // "packet splitting" instruction.
1079   if (MI.isInlineAsm() && !ScheduleInlineAsm)
1080     return true;
1081 
1082   if (isSchedBarrier(MI))
1083     return true;
1084 
1085   if (HII->isSolo(MI))
1086     return true;
1087 
1088   if (MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_ENTER ||
1089       MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_EXIT ||
1090       MI.getOpcode() == Hexagon::PATCHABLE_TAIL_CALL)
1091     return true;
1092 
1093   if (MI.getOpcode() == Hexagon::A2_nop)
1094     return true;
1095 
1096   return false;
1097 }
1098 
1099 // Quick check if instructions MI and MJ cannot coexist in the same packet.
1100 // Limit the tests to be "one-way", e.g.  "if MI->isBranch and MJ->isInlineAsm",
1101 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1102 // For full test call this function twice:
1103 //   cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1104 // Doing the test only one way saves the amount of code in this function,
1105 // since every test would need to be repeated with the MI and MJ reversed.
1106 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
1107       const HexagonInstrInfo &HII) {
1108   const MachineFunction *MF = MI.getParent()->getParent();
1109   if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
1110       HII.isHVXMemWithAIndirect(MI, MJ))
1111     return true;
1112 
1113   // Don't allow a store and an instruction that must be in slot0 and
1114   // doesn't allow a slot1 instruction.
1115   if (MI.mayStore() && HII.isRestrictNoSlot1Store(MJ) && HII.isPureSlot0(MJ))
1116     return true;
1117 
1118   // An inline asm cannot be together with a branch, because we may not be
1119   // able to remove the asm out after packetizing (i.e. if the asm must be
1120   // moved past the bundle).  Similarly, two asms cannot be together to avoid
1121   // complications when determining their relative order outside of a bundle.
1122   if (MI.isInlineAsm())
1123     return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
1124            MJ.isCall() || MJ.isTerminator();
1125 
1126   // New-value stores cannot coexist with any other stores.
1127   if (HII.isNewValueStore(MI) && MJ.mayStore())
1128     return true;
1129 
1130   switch (MI.getOpcode()) {
1131   case Hexagon::S2_storew_locked:
1132   case Hexagon::S4_stored_locked:
1133   case Hexagon::L2_loadw_locked:
1134   case Hexagon::L4_loadd_locked:
1135   case Hexagon::Y2_dccleana:
1136   case Hexagon::Y2_dccleaninva:
1137   case Hexagon::Y2_dcinva:
1138   case Hexagon::Y2_dczeroa:
1139   case Hexagon::Y4_l2fetch:
1140   case Hexagon::Y5_l2fetch: {
1141     // These instructions can only be grouped with ALU32 or non-floating-point
1142     // XTYPE instructions.  Since there is no convenient way of identifying fp
1143     // XTYPE instructions, only allow grouping with ALU32 for now.
1144     unsigned TJ = HII.getType(MJ);
1145     if (TJ != HexagonII::TypeALU32_2op &&
1146         TJ != HexagonII::TypeALU32_3op &&
1147         TJ != HexagonII::TypeALU32_ADDI)
1148       return true;
1149     break;
1150   }
1151   default:
1152     break;
1153   }
1154 
1155   // "False" really means that the quick check failed to determine if
1156   // I and J cannot coexist.
1157   return false;
1158 }
1159 
1160 // Full, symmetric check.
1161 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
1162       const MachineInstr &MJ) {
1163   return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
1164 }
1165 
1166 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
1167   for (auto &B : MF) {
1168     MachineBasicBlock::iterator BundleIt;
1169     for (MachineInstr &MI : llvm::make_early_inc_range(B.instrs())) {
1170       if (MI.isBundle())
1171         BundleIt = MI.getIterator();
1172       if (!MI.isInsideBundle())
1173         continue;
1174 
1175       // Decide on where to insert the instruction that we are pulling out.
1176       // Debug instructions always go before the bundle, but the placement of
1177       // INLINE_ASM depends on potential dependencies.  By default, try to
1178       // put it before the bundle, but if the asm writes to a register that
1179       // other instructions in the bundle read, then we need to place it
1180       // after the bundle (to preserve the bundle semantics).
1181       bool InsertBeforeBundle;
1182       if (MI.isInlineAsm())
1183         InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
1184       else if (MI.isDebugInstr())
1185         InsertBeforeBundle = true;
1186       else
1187         continue;
1188 
1189       BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
1190     }
1191   }
1192 }
1193 
1194 // Check if a given instruction is of class "system".
1195 static bool isSystemInstr(const MachineInstr &MI) {
1196   unsigned Opc = MI.getOpcode();
1197   switch (Opc) {
1198     case Hexagon::Y2_barrier:
1199     case Hexagon::Y2_dcfetchbo:
1200     case Hexagon::Y4_l2fetch:
1201     case Hexagon::Y5_l2fetch:
1202       return true;
1203   }
1204   return false;
1205 }
1206 
1207 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
1208                                               const MachineInstr &J) {
1209   // The dependence graph may not include edges between dead definitions,
1210   // so without extra checks, we could end up packetizing two instruction
1211   // defining the same (dead) register.
1212   if (I.isCall() || J.isCall())
1213     return false;
1214   if (HII->isPredicated(I) || HII->isPredicated(J))
1215     return false;
1216 
1217   BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
1218   for (auto &MO : I.operands()) {
1219     if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1220       continue;
1221     DeadDefs[MO.getReg()] = true;
1222   }
1223 
1224   for (auto &MO : J.operands()) {
1225     if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1226       continue;
1227     Register R = MO.getReg();
1228     if (R != Hexagon::USR_OVF && DeadDefs[R])
1229       return true;
1230   }
1231   return false;
1232 }
1233 
1234 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
1235                                                  const MachineInstr &J) {
1236   // A save callee-save register function call can only be in a packet
1237   // with instructions that don't write to the callee-save registers.
1238   if ((HII->isSaveCalleeSavedRegsCall(I) &&
1239        doesModifyCalleeSavedReg(J, HRI)) ||
1240       (HII->isSaveCalleeSavedRegsCall(J) &&
1241        doesModifyCalleeSavedReg(I, HRI)))
1242     return true;
1243 
1244   // Two control flow instructions cannot go in the same packet.
1245   if (isControlFlow(I) && isControlFlow(J))
1246     return true;
1247 
1248   // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1249   // contain a speculative indirect jump,
1250   // a new-value compare jump or a dealloc_return.
1251   auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
1252     if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
1253       return true;
1254     if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
1255       return true;
1256     return false;
1257   };
1258 
1259   if (HII->isLoopN(I) && isBadForLoopN(J))
1260     return true;
1261   if (HII->isLoopN(J) && isBadForLoopN(I))
1262     return true;
1263 
1264   // dealloc_return cannot appear in the same packet as a conditional or
1265   // unconditional jump.
1266   return HII->isDeallocRet(I) &&
1267          (J.isBranch() || J.isCall() || J.isBarrier());
1268 }
1269 
1270 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
1271                                                  const MachineInstr &J) {
1272   // Adding I to a packet that has J.
1273 
1274   // Regmasks are not reflected in the scheduling dependency graph, so
1275   // we need to check them manually. This code assumes that regmasks only
1276   // occur on calls, and the problematic case is when we add an instruction
1277   // defining a register R to a packet that has a call that clobbers R via
1278   // a regmask. Those cannot be packetized together, because the call will
1279   // be executed last. That's also a reson why it is ok to add a call
1280   // clobbering R to a packet that defines R.
1281 
1282   // Look for regmasks in J.
1283   for (const MachineOperand &OpJ : J.operands()) {
1284     if (!OpJ.isRegMask())
1285       continue;
1286     assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
1287     for (const MachineOperand &OpI : I.operands()) {
1288       if (OpI.isReg()) {
1289         if (OpJ.clobbersPhysReg(OpI.getReg()))
1290           return true;
1291       } else if (OpI.isRegMask()) {
1292         // Both are regmasks. Assume that they intersect.
1293         return true;
1294       }
1295     }
1296   }
1297   return false;
1298 }
1299 
1300 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
1301                                                    const MachineInstr &J) {
1302   bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
1303   bool StoreI = I.mayStore(), StoreJ = J.mayStore();
1304   if ((SysI && StoreJ) || (SysJ && StoreI))
1305     return true;
1306 
1307   if (StoreI && StoreJ) {
1308     if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
1309       return true;
1310   } else {
1311     // A memop cannot be in the same packet with another memop or a store.
1312     // Two stores can be together, but here I and J cannot both be stores.
1313     bool MopStI = HII->isMemOp(I) || StoreI;
1314     bool MopStJ = HII->isMemOp(J) || StoreJ;
1315     if (MopStI && MopStJ)
1316       return true;
1317   }
1318 
1319   return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
1320 }
1321 
1322 // SUI is the current instruction that is outside of the current packet.
1323 // SUJ is the current instruction inside the current packet against which that
1324 // SUI will be packetized.
1325 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1326   assert(SUI->getInstr() && SUJ->getInstr());
1327   MachineInstr &I = *SUI->getInstr();
1328   MachineInstr &J = *SUJ->getInstr();
1329 
1330   // Clear IgnoreDepMIs when Packet starts.
1331   if (CurrentPacketMIs.size() == 1)
1332     IgnoreDepMIs.clear();
1333 
1334   MachineBasicBlock::iterator II = I.getIterator();
1335 
1336   // Solo instructions cannot go in the packet.
1337   assert(!isSoloInstruction(I) && "Unexpected solo instr!");
1338 
1339   if (cannotCoexist(I, J))
1340     return false;
1341 
1342   Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
1343   if (Dependence)
1344     return false;
1345 
1346   // Regmasks are not accounted for in the scheduling graph, so we need
1347   // to explicitly check for dependencies caused by them. They should only
1348   // appear on calls, so it's not too pessimistic to reject all regmask
1349   // dependencies.
1350   Dependence = hasRegMaskDependence(I, J);
1351   if (Dependence)
1352     return false;
1353 
1354   // Dual-store does not allow second store, if the first store is not
1355   // in SLOT0. New value store, new value jump, dealloc_return and memop
1356   // always take SLOT0. Arch spec 3.4.4.2.
1357   Dependence = hasDualStoreDependence(I, J);
1358   if (Dependence)
1359     return false;
1360 
1361   // If an instruction feeds new value jump, glue it.
1362   MachineBasicBlock::iterator NextMII = I.getIterator();
1363   ++NextMII;
1364   if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
1365     MachineInstr &NextMI = *NextMII;
1366 
1367     bool secondRegMatch = false;
1368     const MachineOperand &NOp0 = NextMI.getOperand(0);
1369     const MachineOperand &NOp1 = NextMI.getOperand(1);
1370 
1371     if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
1372       secondRegMatch = true;
1373 
1374     for (MachineInstr *PI : CurrentPacketMIs) {
1375       // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1376       if (PI->isCall()) {
1377         Dependence = true;
1378         break;
1379       }
1380       // Validate:
1381       // 1. Packet does not have a store in it.
1382       // 2. If the first operand of the nvj is newified, and the second
1383       //    operand is also a reg, it (second reg) is not defined in
1384       //    the same packet.
1385       // 3. If the second operand of the nvj is newified, (which means
1386       //    first operand is also a reg), first reg is not defined in
1387       //    the same packet.
1388       if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
1389           HII->isLoopN(*PI)) {
1390         Dependence = true;
1391         break;
1392       }
1393       // Check #2/#3.
1394       const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
1395       if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
1396         Dependence = true;
1397         break;
1398       }
1399     }
1400 
1401     GlueToNewValueJump = true;
1402     if (Dependence)
1403       return false;
1404   }
1405 
1406   // There no dependency between a prolog instruction and its successor.
1407   if (!SUJ->isSucc(SUI))
1408     return true;
1409 
1410   for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
1411     if (FoundSequentialDependence)
1412       break;
1413 
1414     if (SUJ->Succs[i].getSUnit() != SUI)
1415       continue;
1416 
1417     SDep::Kind DepType = SUJ->Succs[i].getKind();
1418     // For direct calls:
1419     // Ignore register dependences for call instructions for packetization
1420     // purposes except for those due to r31 and predicate registers.
1421     //
1422     // For indirect calls:
1423     // Same as direct calls + check for true dependences to the register
1424     // used in the indirect call.
1425     //
1426     // We completely ignore Order dependences for call instructions.
1427     //
1428     // For returns:
1429     // Ignore register dependences for return instructions like jumpr,
1430     // dealloc return unless we have dependencies on the explicit uses
1431     // of the registers used by jumpr (like r31) or dealloc return
1432     // (like r29 or r30).
1433     unsigned DepReg = 0;
1434     const TargetRegisterClass *RC = nullptr;
1435     if (DepType == SDep::Data) {
1436       DepReg = SUJ->Succs[i].getReg();
1437       RC = HRI->getMinimalPhysRegClass(DepReg);
1438     }
1439 
1440     if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
1441       if (!isRegDependence(DepType))
1442         continue;
1443       if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
1444         continue;
1445     }
1446 
1447     if (DepType == SDep::Data) {
1448       if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
1449         if (promoteToDotCur(J, DepType, II, RC))
1450           continue;
1451     }
1452 
1453     // Data dpendence ok if we have load.cur.
1454     if (DepType == SDep::Data && HII->isDotCurInst(J)) {
1455       if (HII->isHVXVec(I))
1456         continue;
1457     }
1458 
1459     // For instructions that can be promoted to dot-new, try to promote.
1460     if (DepType == SDep::Data) {
1461       if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
1462         if (promoteToDotNew(I, DepType, II, RC)) {
1463           PromotedToDotNew = true;
1464           if (cannotCoexist(I, J))
1465             FoundSequentialDependence = true;
1466           continue;
1467         }
1468       }
1469       if (HII->isNewValueJump(I))
1470         continue;
1471     }
1472 
1473     // For predicated instructions, if the predicates are complements then
1474     // there can be no dependence.
1475     if (HII->isPredicated(I) && HII->isPredicated(J) &&
1476         arePredicatesComplements(I, J)) {
1477       // Not always safe to do this translation.
1478       // DAG Builder attempts to reduce dependence edges using transitive
1479       // nature of dependencies. Here is an example:
1480       //
1481       // r0 = tfr_pt ... (1)
1482       // r0 = tfr_pf ... (2)
1483       // r0 = tfr_pt ... (3)
1484       //
1485       // There will be an output dependence between (1)->(2) and (2)->(3).
1486       // However, there is no dependence edge between (1)->(3). This results
1487       // in all 3 instructions going in the same packet. We ignore dependce
1488       // only once to avoid this situation.
1489       auto Itr = find(IgnoreDepMIs, &J);
1490       if (Itr != IgnoreDepMIs.end()) {
1491         Dependence = true;
1492         return false;
1493       }
1494       IgnoreDepMIs.push_back(&I);
1495       continue;
1496     }
1497 
1498     // Ignore Order dependences between unconditional direct branches
1499     // and non-control-flow instructions.
1500     if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
1501         DepType == SDep::Order)
1502       continue;
1503 
1504     // Ignore all dependences for jumps except for true and output
1505     // dependences.
1506     if (I.isConditionalBranch() && DepType != SDep::Data &&
1507         DepType != SDep::Output)
1508       continue;
1509 
1510     if (DepType == SDep::Output) {
1511       FoundSequentialDependence = true;
1512       break;
1513     }
1514 
1515     // For Order dependences:
1516     // 1. Volatile loads/stores can be packetized together, unless other
1517     //    rules prevent is.
1518     // 2. Store followed by a load is not allowed.
1519     // 3. Store followed by a store is valid.
1520     // 4. Load followed by any memory operation is allowed.
1521     if (DepType == SDep::Order) {
1522       if (!PacketizeVolatiles) {
1523         bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
1524         if (OrdRefs) {
1525           FoundSequentialDependence = true;
1526           break;
1527         }
1528       }
1529       // J is first, I is second.
1530       bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
1531       bool LoadI = I.mayLoad(), StoreI = I.mayStore();
1532       bool NVStoreJ = HII->isNewValueStore(J);
1533       bool NVStoreI = HII->isNewValueStore(I);
1534       bool IsVecJ = HII->isHVXVec(J);
1535       bool IsVecI = HII->isHVXVec(I);
1536 
1537       // Don't reorder the loads if there is an order dependence. This would
1538       // occur if the first instruction must go in slot0.
1539       if (LoadJ && LoadI && HII->isPureSlot0(J)) {
1540         FoundSequentialDependence = true;
1541         break;
1542       }
1543 
1544       if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
1545           ((LoadJ && StoreI && !NVStoreI) ||
1546            (StoreJ && LoadI && !NVStoreJ)) &&
1547           (J.getOpcode() != Hexagon::S2_allocframe &&
1548            I.getOpcode() != Hexagon::S2_allocframe) &&
1549           (J.getOpcode() != Hexagon::L2_deallocframe &&
1550            I.getOpcode() != Hexagon::L2_deallocframe) &&
1551           (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
1552         setmemShufDisabled(true);
1553       else
1554         if (StoreJ && LoadI && alias(J, I)) {
1555           FoundSequentialDependence = true;
1556           break;
1557         }
1558 
1559       if (!StoreJ)
1560         if (!LoadJ || (!LoadI && !StoreI)) {
1561           // If J is neither load nor store, assume a dependency.
1562           // If J is a load, but I is neither, also assume a dependency.
1563           FoundSequentialDependence = true;
1564           break;
1565         }
1566       // Store followed by store: not OK on V2.
1567       // Store followed by load: not OK on all.
1568       // Load followed by store: OK on all.
1569       // Load followed by load: OK on all.
1570       continue;
1571     }
1572 
1573     // Special case for ALLOCFRAME: even though there is dependency
1574     // between ALLOCFRAME and subsequent store, allow it to be packetized
1575     // in a same packet. This implies that the store is using the caller's
1576     // SP. Hence, offset needs to be updated accordingly.
1577     if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
1578       unsigned Opc = I.getOpcode();
1579       switch (Opc) {
1580         case Hexagon::S2_storerd_io:
1581         case Hexagon::S2_storeri_io:
1582         case Hexagon::S2_storerh_io:
1583         case Hexagon::S2_storerb_io:
1584           if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
1585             // Since this store is to be glued with allocframe in the same
1586             // packet, it will use SP of the previous stack frame, i.e.
1587             // caller's SP. Therefore, we need to recalculate offset
1588             // according to this change.
1589             GlueAllocframeStore = useCallersSP(I);
1590             if (GlueAllocframeStore)
1591               continue;
1592           }
1593           break;
1594         default:
1595           break;
1596       }
1597     }
1598 
1599     // There are certain anti-dependencies that cannot be ignored.
1600     // Specifically:
1601     //   J2_call ... implicit-def %r0   ; SUJ
1602     //   R0 = ...                   ; SUI
1603     // Those cannot be packetized together, since the call will observe
1604     // the effect of the assignment to R0.
1605     if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
1606       // Check if I defines any volatile register. We should also check
1607       // registers that the call may read, but these happen to be a
1608       // subset of the volatile register set.
1609       for (const MachineOperand &Op : I.operands()) {
1610         if (Op.isReg() && Op.isDef()) {
1611           Register R = Op.getReg();
1612           if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
1613             continue;
1614         } else if (!Op.isRegMask()) {
1615           // If I has a regmask assume dependency.
1616           continue;
1617         }
1618         FoundSequentialDependence = true;
1619         break;
1620       }
1621     }
1622 
1623     // Skip over remaining anti-dependences. Two instructions that are
1624     // anti-dependent can share a packet, since in most such cases all
1625     // operands are read before any modifications take place.
1626     // The exceptions are branch and call instructions, since they are
1627     // executed after all other instructions have completed (at least
1628     // conceptually).
1629     if (DepType != SDep::Anti) {
1630       FoundSequentialDependence = true;
1631       break;
1632     }
1633   }
1634 
1635   if (FoundSequentialDependence) {
1636     Dependence = true;
1637     return false;
1638   }
1639 
1640   return true;
1641 }
1642 
1643 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1644   assert(SUI->getInstr() && SUJ->getInstr());
1645   MachineInstr &I = *SUI->getInstr();
1646   MachineInstr &J = *SUJ->getInstr();
1647 
1648   bool Coexist = !cannotCoexist(I, J);
1649 
1650   if (Coexist && !Dependence)
1651     return true;
1652 
1653   // Check if the instruction was promoted to a dot-new. If so, demote it
1654   // back into a dot-old.
1655   if (PromotedToDotNew)
1656     demoteToDotOld(I);
1657 
1658   cleanUpDotCur();
1659   // Check if the instruction (must be a store) was glued with an allocframe
1660   // instruction. If so, restore its offset to its original value, i.e. use
1661   // current SP instead of caller's SP.
1662   if (GlueAllocframeStore) {
1663     useCalleesSP(I);
1664     GlueAllocframeStore = false;
1665   }
1666 
1667   if (ChangedOffset != INT64_MAX)
1668     undoChangedOffset(I);
1669 
1670   if (GlueToNewValueJump) {
1671     // Putting I and J together would prevent the new-value jump from being
1672     // packetized with the producer. In that case I and J must be separated.
1673     GlueToNewValueJump = false;
1674     return false;
1675   }
1676 
1677   if (!Coexist)
1678     return false;
1679 
1680   if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
1681     FoundSequentialDependence = false;
1682     Dependence = false;
1683     return true;
1684   }
1685 
1686   return false;
1687 }
1688 
1689 
1690 bool HexagonPacketizerList::foundLSInPacket() {
1691   bool FoundLoad = false;
1692   bool FoundStore = false;
1693 
1694   for (auto *MJ : CurrentPacketMIs) {
1695     unsigned Opc = MJ->getOpcode();
1696     if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
1697       continue;
1698     if (HII->isMemOp(*MJ))
1699       continue;
1700     if (MJ->mayLoad())
1701       FoundLoad = true;
1702     if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
1703       FoundStore = true;
1704   }
1705   return FoundLoad && FoundStore;
1706 }
1707 
1708 
1709 MachineBasicBlock::iterator
1710 HexagonPacketizerList::addToPacket(MachineInstr &MI) {
1711   MachineBasicBlock::iterator MII = MI.getIterator();
1712   MachineBasicBlock *MBB = MI.getParent();
1713 
1714   if (CurrentPacketMIs.empty()) {
1715     PacketStalls = false;
1716     PacketStallCycles = 0;
1717   }
1718   PacketStalls |= producesStall(MI);
1719   PacketStallCycles = std::max(PacketStallCycles, calcStall(MI));
1720 
1721   if (MI.isImplicitDef()) {
1722     // Add to the packet to allow subsequent instructions to be checked
1723     // properly.
1724     CurrentPacketMIs.push_back(&MI);
1725     return MII;
1726   }
1727   assert(ResourceTracker->canReserveResources(MI));
1728 
1729   bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
1730   bool Good = true;
1731 
1732   if (GlueToNewValueJump) {
1733     MachineInstr &NvjMI = *++MII;
1734     // We need to put both instructions in the same packet: MI and NvjMI.
1735     // Either of them can require a constant extender. Try to add both to
1736     // the current packet, and if that fails, end the packet and start a
1737     // new one.
1738     ResourceTracker->reserveResources(MI);
1739     if (ExtMI)
1740       Good = tryAllocateResourcesForConstExt(true);
1741 
1742     bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
1743     if (Good) {
1744       if (ResourceTracker->canReserveResources(NvjMI))
1745         ResourceTracker->reserveResources(NvjMI);
1746       else
1747         Good = false;
1748     }
1749     if (Good && ExtNvjMI)
1750       Good = tryAllocateResourcesForConstExt(true);
1751 
1752     if (!Good) {
1753       endPacket(MBB, MI);
1754       assert(ResourceTracker->canReserveResources(MI));
1755       ResourceTracker->reserveResources(MI);
1756       if (ExtMI) {
1757         assert(canReserveResourcesForConstExt());
1758         tryAllocateResourcesForConstExt(true);
1759       }
1760       assert(ResourceTracker->canReserveResources(NvjMI));
1761       ResourceTracker->reserveResources(NvjMI);
1762       if (ExtNvjMI) {
1763         assert(canReserveResourcesForConstExt());
1764         reserveResourcesForConstExt();
1765       }
1766     }
1767     CurrentPacketMIs.push_back(&MI);
1768     CurrentPacketMIs.push_back(&NvjMI);
1769     return MII;
1770   }
1771 
1772   ResourceTracker->reserveResources(MI);
1773   if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
1774     endPacket(MBB, MI);
1775     if (PromotedToDotNew)
1776       demoteToDotOld(MI);
1777     if (GlueAllocframeStore) {
1778       useCalleesSP(MI);
1779       GlueAllocframeStore = false;
1780     }
1781     ResourceTracker->reserveResources(MI);
1782     reserveResourcesForConstExt();
1783   }
1784 
1785   CurrentPacketMIs.push_back(&MI);
1786   return MII;
1787 }
1788 
1789 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
1790                                       MachineBasicBlock::iterator EndMI) {
1791   // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1792   LLVM_DEBUG({
1793     if (!CurrentPacketMIs.empty()) {
1794       dbgs() << "Finalizing packet:\n";
1795       unsigned Idx = 0;
1796       for (MachineInstr *MI : CurrentPacketMIs) {
1797         unsigned R = ResourceTracker->getUsedResources(Idx++);
1798         dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
1799       }
1800     }
1801   });
1802 
1803   bool memShufDisabled = getmemShufDisabled();
1804   if (memShufDisabled && !foundLSInPacket()) {
1805     setmemShufDisabled(false);
1806     LLVM_DEBUG(dbgs() << "  Not added to NoShufPacket\n");
1807   }
1808   memShufDisabled = getmemShufDisabled();
1809 
1810   OldPacketMIs.clear();
1811   for (MachineInstr *MI : CurrentPacketMIs) {
1812     MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
1813     for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
1814       OldPacketMIs.push_back(&I);
1815   }
1816   CurrentPacketMIs.clear();
1817 
1818   if (OldPacketMIs.size() > 1) {
1819     MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
1820     MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
1821     finalizeBundle(*MBB, FirstMI, LastMI);
1822     auto BundleMII = std::prev(FirstMI);
1823     if (memShufDisabled)
1824       HII->setBundleNoShuf(BundleMII);
1825 
1826     setmemShufDisabled(false);
1827   }
1828 
1829   PacketHasDuplex = false;
1830   PacketHasSLOT0OnlyInsn = false;
1831   ResourceTracker->clearResources();
1832   LLVM_DEBUG(dbgs() << "End packet\n");
1833 }
1834 
1835 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
1836   if (Minimal)
1837     return false;
1838 
1839   if (producesStall(MI))
1840     return false;
1841 
1842   // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex
1843   // with any other instruction in the existing packet.
1844   auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>();
1845   // Constraint 1: Only one duplex allowed per packet.
1846   // Constraint 2: Consider duplex checks only if there is atleast one
1847   // instruction in a packet.
1848   // Constraint 3: If one of the existing instructions in the packet has a
1849   // SLOT0 only instruction that can not be duplexed, do not attempt to form
1850   // duplexes. (TODO: This will invalidate the L4_return* instructions to form a
1851   // duplex)
1852   if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 &&
1853       !PacketHasDuplex) {
1854     // Check for SLOT0 only non-duplexable instruction in packet.
1855     for (auto &MJ : CurrentPacketMIs)
1856       PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(*MJ);
1857     // Get the Big Core Opcode (dup_*).
1858     int Opcode = HII->getDuplexOpcode(MI, false);
1859     if (Opcode >= 0) {
1860       // We now have an instruction that can be duplexed.
1861       for (auto &MJ : CurrentPacketMIs) {
1862         if (HII->isDuplexPair(MI, *MJ) && !PacketHasSLOT0OnlyInsn) {
1863           PacketHasDuplex = true;
1864           return true;
1865         }
1866       }
1867       // If it can not be duplexed, check if there is a valid transition in DFA
1868       // with the original opcode.
1869       MachineInstr &MIRef = const_cast<MachineInstr &>(MI);
1870       MIRef.setDesc(HII->get(Opcode));
1871       return ResourceTracker->canReserveResources(MIRef);
1872     }
1873   }
1874 
1875   return true;
1876 }
1877 
1878 // V60 forward scheduling.
1879 unsigned int HexagonPacketizerList::calcStall(const MachineInstr &I) {
1880   // Check whether the previous packet is in a different loop. If this is the
1881   // case, there is little point in trying to avoid a stall because that would
1882   // favor the rare case (loop entry) over the common case (loop iteration).
1883   //
1884   // TODO: We should really be able to check all the incoming edges if this is
1885   // the first packet in a basic block, so we can avoid stalls from the loop
1886   // backedge.
1887   if (!OldPacketMIs.empty()) {
1888     auto *OldBB = OldPacketMIs.front()->getParent();
1889     auto *ThisBB = I.getParent();
1890     if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
1891       return 0;
1892   }
1893 
1894   SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
1895   if (!SUI)
1896     return 0;
1897 
1898   // If the latency is 0 and there is a data dependence between this
1899   // instruction and any instruction in the current packet, we disregard any
1900   // potential stalls due to the instructions in the previous packet. Most of
1901   // the instruction pairs that can go together in the same packet have 0
1902   // latency between them. The exceptions are
1903   // 1. NewValueJumps as they're generated much later and the latencies can't
1904   // be changed at that point.
1905   // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1906   // .new). In this case, the latency between .cur and the consumer stays
1907   // non-zero even though we can have  both .cur and .new in the same packet.
1908   // Changing the latency to 0 is not an option as it causes software pipeliner
1909   // to not pipeline in some cases.
1910 
1911   // For Example:
1912   // {
1913   //   I1:  v6.cur = vmem(r0++#1)
1914   //   I2:  v7 = valign(v6,v4,r2)
1915   //   I3:  vmem(r5++#1) = v7.new
1916   // }
1917   // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1918 
1919   for (auto *J : CurrentPacketMIs) {
1920     SUnit *SUJ = MIToSUnit[J];
1921     for (auto &Pred : SUI->Preds)
1922       if (Pred.getSUnit() == SUJ)
1923         if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
1924             HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
1925           return 0;
1926   }
1927 
1928   // Check if the latency is greater than one between this instruction and any
1929   // instruction in the previous packet.
1930   for (auto *J : OldPacketMIs) {
1931     SUnit *SUJ = MIToSUnit[J];
1932     for (auto &Pred : SUI->Preds)
1933       if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
1934         return Pred.getLatency();
1935   }
1936 
1937   return 0;
1938 }
1939 
1940 bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
1941   unsigned int Latency = calcStall(I);
1942   if (Latency == 0)
1943     return false;
1944   // Ignore stall unless it stalls more than previous instruction in packet
1945   if (PacketStalls)
1946     return Latency > PacketStallCycles;
1947   return true;
1948 }
1949 
1950 //===----------------------------------------------------------------------===//
1951 //                         Public Constructor Functions
1952 //===----------------------------------------------------------------------===//
1953 
1954 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
1955   return new HexagonPacketizer(Minimal);
1956 }
1957