xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 //===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 /// This file implements a TargetTransformInfo analysis pass specific to the
9 /// Hexagon target machine. It uses the target's detailed information to provide
10 /// more precise answers to certain TTI queries, while letting the target
11 /// independent and default TTI implementations handle the rest.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "HexagonTargetTransformInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/ValueTypes.h"
19 #include "llvm/IR/InstrTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/User.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "hexagontti"
29 
30 static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
31   cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
32 
33 static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
34   cl::init(true), cl::Hidden,
35   cl::desc("Control lookup table emission on Hexagon target"));
36 
37 // Constant "cost factor" to make floating point operations more expensive
38 // in terms of vectorization cost. This isn't the best way, but it should
39 // do. Ultimately, the cost should use cycles.
40 static const unsigned FloatFactor = 4;
41 
42 bool HexagonTTIImpl::useHVX() const {
43   return ST.useHVXOps() && HexagonAutoHVX;
44 }
45 
46 bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
47   assert(VecTy->isVectorTy());
48   if (isa<ScalableVectorType>(VecTy))
49     return false;
50   // Avoid types like <2 x i32*>.
51   if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
52     return false;
53   EVT VecVT = EVT::getEVT(VecTy);
54   if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
55     return false;
56   if (ST.isHVXVectorType(VecVT.getSimpleVT()))
57     return true;
58   auto Action = TLI.getPreferredVectorAction(VecVT.getSimpleVT());
59   return Action == TargetLoweringBase::TypeWidenVector;
60 }
61 
62 unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
63   if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
64     return VTy->getNumElements();
65   assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
66          "Expecting scalar type");
67   return 1;
68 }
69 
70 TargetTransformInfo::PopcntSupportKind
71 HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
72   // Return fast hardware support as every input < 64 bits will be promoted
73   // to 64 bits.
74   return TargetTransformInfo::PSK_FastHardware;
75 }
76 
77 // The Hexagon target can unroll loops with run-time trip counts.
78 void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
79                                              TTI::UnrollingPreferences &UP) {
80   UP.Runtime = UP.Partial = true;
81 }
82 
83 void HexagonTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
84                                            TTI::PeelingPreferences &PP) {
85   BaseT::getPeelingPreferences(L, SE, PP);
86   // Only try to peel innermost loops with small runtime trip counts.
87   if (L && L->empty() && canPeel(L) &&
88       SE.getSmallConstantTripCount(L) == 0 &&
89       SE.getSmallConstantMaxTripCount(L) > 0 &&
90       SE.getSmallConstantMaxTripCount(L) <= 5) {
91     PP.PeelCount = 2;
92   }
93 }
94 
95 bool HexagonTTIImpl::shouldFavorPostInc() const {
96   return true;
97 }
98 
99 /// --- Vector TTI begin ---
100 
101 unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
102   if (Vector)
103     return useHVX() ? 32 : 0;
104   return 32;
105 }
106 
107 unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
108   return useHVX() ? 2 : 0;
109 }
110 
111 unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
112   return Vector ? getMinVectorRegisterBitWidth() : 32;
113 }
114 
115 unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
116   return useHVX() ? ST.getVectorLength()*8 : 0;
117 }
118 
119 unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
120   return (8 * ST.getVectorLength()) / ElemWidth;
121 }
122 
123 unsigned HexagonTTIImpl::getScalarizationOverhead(VectorType *Ty,
124                                                   const APInt &DemandedElts,
125                                                   bool Insert, bool Extract) {
126   return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
127 }
128 
129 unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
130       ArrayRef<const Value*> Args, unsigned VF) {
131   return BaseT::getOperandsScalarizationOverhead(Args, VF);
132 }
133 
134 unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
135       ArrayRef<Type*> Tys, TTI::TargetCostKind CostKind) {
136   return BaseT::getCallInstrCost(F, RetTy, Tys, CostKind);
137 }
138 
139 unsigned
140 HexagonTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
141                                       TTI::TargetCostKind CostKind) {
142   if (ICA.getID() == Intrinsic::bswap) {
143     std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ICA.getReturnType());
144     return LT.first + 2;
145   }
146   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
147 }
148 
149 unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
150       ScalarEvolution *SE, const SCEV *S) {
151   return 0;
152 }
153 
154 unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
155                                          MaybeAlign Alignment,
156                                          unsigned AddressSpace,
157                                          TTI::TargetCostKind CostKind,
158                                          const Instruction *I) {
159   assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
160   // TODO: Handle other cost kinds.
161   if (CostKind != TTI::TCK_RecipThroughput)
162     return 1;
163 
164   if (Opcode == Instruction::Store)
165     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
166                                   CostKind, I);
167 
168   if (Src->isVectorTy()) {
169     VectorType *VecTy = cast<VectorType>(Src);
170     unsigned VecWidth = VecTy->getPrimitiveSizeInBits().getFixedSize();
171     if (useHVX() && isTypeForHVX(VecTy)) {
172       unsigned RegWidth = getRegisterBitWidth(true);
173       assert(RegWidth && "Non-zero vector register width expected");
174       // Cost of HVX loads.
175       if (VecWidth % RegWidth == 0)
176         return VecWidth / RegWidth;
177       // Cost of constructing HVX vector from scalar loads
178       const Align RegAlign(RegWidth / 8);
179       if (!Alignment || *Alignment > RegAlign)
180         Alignment = RegAlign;
181       assert(Alignment);
182       unsigned AlignWidth = 8 * Alignment->value();
183       unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
184       return 3 * NumLoads;
185     }
186 
187     // Non-HVX vectors.
188     // Add extra cost for floating point types.
189     unsigned Cost =
190         VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
191 
192     // At this point unspecified alignment is considered as Align(1).
193     const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
194     unsigned AlignWidth = 8 * BoundAlignment.value();
195     unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
196     if (Alignment == Align(4) || Alignment == Align(8))
197       return Cost * NumLoads;
198     // Loads of less than 32 bits will need extra inserts to compose a vector.
199     assert(BoundAlignment <= Align(8));
200     unsigned LogA = Log2(BoundAlignment);
201     return (3 - LogA) * Cost * NumLoads;
202   }
203 
204   return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
205                                 CostKind, I);
206 }
207 
208 unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
209                                                Align Alignment,
210                                                unsigned AddressSpace,
211                                                TTI::TargetCostKind CostKind) {
212   return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
213                                       CostKind);
214 }
215 
216 unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
217       int Index, Type *SubTp) {
218   return 1;
219 }
220 
221 unsigned HexagonTTIImpl::getGatherScatterOpCost(
222     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
223     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
224   return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
225                                        Alignment, CostKind, I);
226 }
227 
228 unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(
229     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
230     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
231     bool UseMaskForCond, bool UseMaskForGaps) {
232   if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
233     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
234                                              Alignment, AddressSpace,
235                                              CostKind,
236                                              UseMaskForCond, UseMaskForGaps);
237   return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
238                          CostKind);
239 }
240 
241 unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
242       Type *CondTy, TTI::TargetCostKind CostKind, const Instruction *I) {
243   if (ValTy->isVectorTy() && CostKind == TTI::TCK_RecipThroughput) {
244     std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
245     if (Opcode == Instruction::FCmp)
246       return LT.first + FloatFactor * getTypeNumElements(ValTy);
247   }
248   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
249 }
250 
251 unsigned HexagonTTIImpl::getArithmeticInstrCost(
252     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
253     TTI::OperandValueKind Opd1Info,
254     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
255     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
256     const Instruction *CxtI) {
257   // TODO: Handle more cost kinds.
258   if (CostKind != TTI::TCK_RecipThroughput)
259     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
260                                          Opd2Info, Opd1PropInfo,
261                                          Opd2PropInfo, Args, CxtI);
262 
263   if (Ty->isVectorTy()) {
264     std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
265     if (LT.second.isFloatingPoint())
266       return LT.first + FloatFactor * getTypeNumElements(Ty);
267   }
268   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
269                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
270 }
271 
272 unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
273       Type *SrcTy, TTI::TargetCostKind CostKind, const Instruction *I) {
274   if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
275     unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
276     unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
277 
278     std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
279     std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
280     unsigned Cost = std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
281     // TODO: Allow non-throughput costs that aren't binary.
282     if (CostKind != TTI::TCK_RecipThroughput)
283       return Cost == 0 ? 0 : 1;
284     return Cost;
285   }
286   return 1;
287 }
288 
289 unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
290       unsigned Index) {
291   Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
292                                    : Val;
293   if (Opcode == Instruction::InsertElement) {
294     // Need two rotations for non-zero index.
295     unsigned Cost = (Index != 0) ? 2 : 0;
296     if (ElemTy->isIntegerTy(32))
297       return Cost;
298     // If it's not a 32-bit value, there will need to be an extract.
299     return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
300   }
301 
302   if (Opcode == Instruction::ExtractElement)
303     return 2;
304 
305   return 1;
306 }
307 
308 /// --- Vector TTI end ---
309 
310 unsigned HexagonTTIImpl::getPrefetchDistance() const {
311   return ST.getL1PrefetchDistance();
312 }
313 
314 unsigned HexagonTTIImpl::getCacheLineSize() const {
315   return ST.getL1CacheLineSize();
316 }
317 
318 int
319 HexagonTTIImpl::getUserCost(const User *U,
320                             ArrayRef<const Value *> Operands,
321                             TTI::TargetCostKind CostKind) {
322   auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
323     if (!CI->isIntegerCast())
324       return false;
325     // Only extensions from an integer type shorter than 32-bit to i32
326     // can be folded into the load.
327     const DataLayout &DL = getDataLayout();
328     unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
329     unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
330     if (DBW != 32 || SBW >= DBW)
331       return false;
332 
333     const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
334     // Technically, this code could allow multiple uses of the load, and
335     // check if all the uses are the same extension operation, but this
336     // should be sufficient for most cases.
337     return LI && LI->hasOneUse();
338   };
339 
340   if (const CastInst *CI = dyn_cast<const CastInst>(U))
341     if (isCastFoldedIntoLoad(CI))
342       return TargetTransformInfo::TCC_Free;
343   return BaseT::getUserCost(U, Operands, CostKind);
344 }
345 
346 bool HexagonTTIImpl::shouldBuildLookupTables() const {
347   return EmitLookupTables;
348 }
349