xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 //===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 /// This file implements a TargetTransformInfo analysis pass specific to the
9 /// Hexagon target machine. It uses the target's detailed information to provide
10 /// more precise answers to certain TTI queries, while letting the target
11 /// independent and default TTI implementations handle the rest.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "HexagonTargetTransformInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/ValueTypes.h"
19 #include "llvm/IR/InstrTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/User.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Transforms/Utils/LoopPeel.h"
25 #include "llvm/Transforms/Utils/UnrollLoop.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "hexagontti"
30 
31 static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
32     cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
33 
34 static cl::opt<bool> EnableV68FloatAutoHVX(
35     "force-hvx-float", cl::Hidden,
36     cl::desc("Enable auto-vectorization of floatint point types on v68."));
37 
38 static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
39     cl::init(true), cl::Hidden,
40     cl::desc("Control lookup table emission on Hexagon target"));
41 
42 static cl::opt<bool> HexagonMaskedVMem("hexagon-masked-vmem", cl::init(true),
43     cl::Hidden, cl::desc("Enable masked loads/stores for HVX"));
44 
45 // Constant "cost factor" to make floating point operations more expensive
46 // in terms of vectorization cost. This isn't the best way, but it should
47 // do. Ultimately, the cost should use cycles.
48 static const unsigned FloatFactor = 4;
49 
50 bool HexagonTTIImpl::useHVX() const {
51   return ST.useHVXOps() && HexagonAutoHVX;
52 }
53 
54 bool HexagonTTIImpl::isHVXVectorType(Type *Ty) const {
55   auto *VecTy = dyn_cast<VectorType>(Ty);
56   if (!VecTy)
57     return false;
58   if (!ST.isTypeForHVX(VecTy))
59     return false;
60   if (ST.useHVXV69Ops() || !VecTy->getElementType()->isFloatingPointTy())
61     return true;
62   return ST.useHVXV68Ops() && EnableV68FloatAutoHVX;
63 }
64 
65 unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
66   if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
67     return VTy->getNumElements();
68   assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
69          "Expecting scalar type");
70   return 1;
71 }
72 
73 TargetTransformInfo::PopcntSupportKind
74 HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
75   // Return fast hardware support as every input < 64 bits will be promoted
76   // to 64 bits.
77   return TargetTransformInfo::PSK_FastHardware;
78 }
79 
80 // The Hexagon target can unroll loops with run-time trip counts.
81 void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
82                                              TTI::UnrollingPreferences &UP,
83                                              OptimizationRemarkEmitter *ORE) {
84   UP.Runtime = UP.Partial = true;
85 }
86 
87 void HexagonTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
88                                            TTI::PeelingPreferences &PP) {
89   BaseT::getPeelingPreferences(L, SE, PP);
90   // Only try to peel innermost loops with small runtime trip counts.
91   if (L && L->isInnermost() && canPeel(L) &&
92       SE.getSmallConstantTripCount(L) == 0 &&
93       SE.getSmallConstantMaxTripCount(L) > 0 &&
94       SE.getSmallConstantMaxTripCount(L) <= 5) {
95     PP.PeelCount = 2;
96   }
97 }
98 
99 TTI::AddressingModeKind
100 HexagonTTIImpl::getPreferredAddressingMode(const Loop *L,
101                                            ScalarEvolution *SE) const {
102   return TTI::AMK_PostIndexed;
103 }
104 
105 /// --- Vector TTI begin ---
106 
107 unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
108   if (Vector)
109     return useHVX() ? 32 : 0;
110   return 32;
111 }
112 
113 unsigned HexagonTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
114   return useHVX() ? 2 : 1;
115 }
116 
117 TypeSize
118 HexagonTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
119   switch (K) {
120   case TargetTransformInfo::RGK_Scalar:
121     return TypeSize::getFixed(32);
122   case TargetTransformInfo::RGK_FixedWidthVector:
123     return TypeSize::getFixed(getMinVectorRegisterBitWidth());
124   case TargetTransformInfo::RGK_ScalableVector:
125     return TypeSize::getScalable(0);
126   }
127 
128   llvm_unreachable("Unsupported register kind");
129 }
130 
131 unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
132   return useHVX() ? ST.getVectorLength()*8 : 32;
133 }
134 
135 ElementCount HexagonTTIImpl::getMinimumVF(unsigned ElemWidth,
136                                           bool IsScalable) const {
137   assert(!IsScalable && "Scalable VFs are not supported for Hexagon");
138   return ElementCount::getFixed((8 * ST.getVectorLength()) / ElemWidth);
139 }
140 
141 InstructionCost HexagonTTIImpl::getScalarizationOverhead(
142     VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
143     TTI::TargetCostKind CostKind) {
144   return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
145                                          CostKind);
146 }
147 
148 InstructionCost
149 HexagonTTIImpl::getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
150                                                  ArrayRef<Type *> Tys,
151                                                  TTI::TargetCostKind CostKind) {
152   return BaseT::getOperandsScalarizationOverhead(Args, Tys, CostKind);
153 }
154 
155 InstructionCost HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
156                                                  ArrayRef<Type *> Tys,
157                                                  TTI::TargetCostKind CostKind) {
158   return BaseT::getCallInstrCost(F, RetTy, Tys, CostKind);
159 }
160 
161 InstructionCost
162 HexagonTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
163                                       TTI::TargetCostKind CostKind) {
164   if (ICA.getID() == Intrinsic::bswap) {
165     std::pair<InstructionCost, MVT> LT =
166         getTypeLegalizationCost(ICA.getReturnType());
167     return LT.first + 2;
168   }
169   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
170 }
171 
172 InstructionCost HexagonTTIImpl::getAddressComputationCost(Type *Tp,
173                                                           ScalarEvolution *SE,
174                                                           const SCEV *S) {
175   return 0;
176 }
177 
178 InstructionCost HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
179                                                 MaybeAlign Alignment,
180                                                 unsigned AddressSpace,
181                                                 TTI::TargetCostKind CostKind,
182                                                 TTI::OperandValueInfo OpInfo,
183                                                 const Instruction *I) {
184   assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
185   // TODO: Handle other cost kinds.
186   if (CostKind != TTI::TCK_RecipThroughput)
187     return 1;
188 
189   if (Opcode == Instruction::Store)
190     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
191                                   CostKind, OpInfo, I);
192 
193   if (Src->isVectorTy()) {
194     VectorType *VecTy = cast<VectorType>(Src);
195     unsigned VecWidth = VecTy->getPrimitiveSizeInBits().getFixedValue();
196     if (isHVXVectorType(VecTy)) {
197       unsigned RegWidth =
198           getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
199               .getFixedValue();
200       assert(RegWidth && "Non-zero vector register width expected");
201       // Cost of HVX loads.
202       if (VecWidth % RegWidth == 0)
203         return VecWidth / RegWidth;
204       // Cost of constructing HVX vector from scalar loads
205       const Align RegAlign(RegWidth / 8);
206       if (!Alignment || *Alignment > RegAlign)
207         Alignment = RegAlign;
208       assert(Alignment);
209       unsigned AlignWidth = 8 * Alignment->value();
210       unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
211       return 3 * NumLoads;
212     }
213 
214     // Non-HVX vectors.
215     // Add extra cost for floating point types.
216     unsigned Cost =
217         VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
218 
219     // At this point unspecified alignment is considered as Align(1).
220     const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
221     unsigned AlignWidth = 8 * BoundAlignment.value();
222     unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
223     if (Alignment == Align(4) || Alignment == Align(8))
224       return Cost * NumLoads;
225     // Loads of less than 32 bits will need extra inserts to compose a vector.
226     assert(BoundAlignment <= Align(8));
227     unsigned LogA = Log2(BoundAlignment);
228     return (3 - LogA) * Cost * NumLoads;
229   }
230 
231   return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
232                                 OpInfo, I);
233 }
234 
235 InstructionCost
236 HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
237                                       Align Alignment, unsigned AddressSpace,
238                                       TTI::TargetCostKind CostKind) {
239   return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
240                                       CostKind);
241 }
242 
243 InstructionCost HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
244                                                ArrayRef<int> Mask,
245                                                TTI::TargetCostKind CostKind,
246                                                int Index, Type *SubTp,
247                                                ArrayRef<const Value *> Args) {
248   return 1;
249 }
250 
251 InstructionCost HexagonTTIImpl::getGatherScatterOpCost(
252     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
253     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
254   return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
255                                        Alignment, CostKind, I);
256 }
257 
258 InstructionCost HexagonTTIImpl::getInterleavedMemoryOpCost(
259     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
260     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
261     bool UseMaskForCond, bool UseMaskForGaps) {
262   if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
263     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
264                                              Alignment, AddressSpace,
265                                              CostKind,
266                                              UseMaskForCond, UseMaskForGaps);
267   return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
268                          CostKind);
269 }
270 
271 InstructionCost HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
272                                                    Type *CondTy,
273                                                    CmpInst::Predicate VecPred,
274                                                    TTI::TargetCostKind CostKind,
275                                                    const Instruction *I) {
276   if (ValTy->isVectorTy() && CostKind == TTI::TCK_RecipThroughput) {
277     if (!isHVXVectorType(ValTy) && ValTy->isFPOrFPVectorTy())
278       return InstructionCost::getMax();
279     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
280     if (Opcode == Instruction::FCmp)
281       return LT.first + FloatFactor * getTypeNumElements(ValTy);
282   }
283   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
284 }
285 
286 InstructionCost HexagonTTIImpl::getArithmeticInstrCost(
287     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
288     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
289     ArrayRef<const Value *> Args,
290     const Instruction *CxtI) {
291   // TODO: Handle more cost kinds.
292   if (CostKind != TTI::TCK_RecipThroughput)
293     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
294                                          Op2Info, Args, CxtI);
295 
296   if (Ty->isVectorTy()) {
297     if (!isHVXVectorType(Ty) && Ty->isFPOrFPVectorTy())
298       return InstructionCost::getMax();
299     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
300     if (LT.second.isFloatingPoint())
301       return LT.first + FloatFactor * getTypeNumElements(Ty);
302   }
303   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
304                                        Args, CxtI);
305 }
306 
307 InstructionCost HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
308                                                  Type *SrcTy,
309                                                  TTI::CastContextHint CCH,
310                                                  TTI::TargetCostKind CostKind,
311                                                  const Instruction *I) {
312   auto isNonHVXFP = [this] (Type *Ty) {
313     return Ty->isVectorTy() && !isHVXVectorType(Ty) && Ty->isFPOrFPVectorTy();
314   };
315   if (isNonHVXFP(SrcTy) || isNonHVXFP(DstTy))
316     return InstructionCost::getMax();
317 
318   if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
319     unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
320     unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
321 
322     std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(SrcTy);
323     std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(DstTy);
324     InstructionCost Cost =
325         std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
326     // TODO: Allow non-throughput costs that aren't binary.
327     if (CostKind != TTI::TCK_RecipThroughput)
328       return Cost == 0 ? 0 : 1;
329     return Cost;
330   }
331   return 1;
332 }
333 
334 InstructionCost HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
335                                                    TTI::TargetCostKind CostKind,
336                                                    unsigned Index, Value *Op0,
337                                                    Value *Op1) {
338   Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
339                                    : Val;
340   if (Opcode == Instruction::InsertElement) {
341     // Need two rotations for non-zero index.
342     unsigned Cost = (Index != 0) ? 2 : 0;
343     if (ElemTy->isIntegerTy(32))
344       return Cost;
345     // If it's not a 32-bit value, there will need to be an extract.
346     return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, CostKind,
347                                      Index, Op0, Op1);
348   }
349 
350   if (Opcode == Instruction::ExtractElement)
351     return 2;
352 
353   return 1;
354 }
355 
356 bool HexagonTTIImpl::isLegalMaskedStore(Type *DataType, Align /*Alignment*/) {
357   // This function is called from scalarize-masked-mem-intrin, which runs
358   // in pre-isel. Use ST directly instead of calling isHVXVectorType.
359   return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
360 }
361 
362 bool HexagonTTIImpl::isLegalMaskedLoad(Type *DataType, Align /*Alignment*/) {
363   // This function is called from scalarize-masked-mem-intrin, which runs
364   // in pre-isel. Use ST directly instead of calling isHVXVectorType.
365   return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
366 }
367 
368 /// --- Vector TTI end ---
369 
370 unsigned HexagonTTIImpl::getPrefetchDistance() const {
371   return ST.getL1PrefetchDistance();
372 }
373 
374 unsigned HexagonTTIImpl::getCacheLineSize() const {
375   return ST.getL1CacheLineSize();
376 }
377 
378 InstructionCost
379 HexagonTTIImpl::getInstructionCost(const User *U,
380                                    ArrayRef<const Value *> Operands,
381                                    TTI::TargetCostKind CostKind) {
382   auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
383     if (!CI->isIntegerCast())
384       return false;
385     // Only extensions from an integer type shorter than 32-bit to i32
386     // can be folded into the load.
387     const DataLayout &DL = getDataLayout();
388     unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
389     unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
390     if (DBW != 32 || SBW >= DBW)
391       return false;
392 
393     const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
394     // Technically, this code could allow multiple uses of the load, and
395     // check if all the uses are the same extension operation, but this
396     // should be sufficient for most cases.
397     return LI && LI->hasOneUse();
398   };
399 
400   if (const CastInst *CI = dyn_cast<const CastInst>(U))
401     if (isCastFoldedIntoLoad(CI))
402       return TargetTransformInfo::TCC_Free;
403   return BaseT::getInstructionCost(U, Operands, CostKind);
404 }
405 
406 bool HexagonTTIImpl::shouldBuildLookupTables() const {
407   return EmitLookupTables;
408 }
409