xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 /// This file implements a TargetTransformInfo analysis pass specific to the
9 /// Hexagon target machine. It uses the target's detailed information to provide
10 /// more precise answers to certain TTI queries, while letting the target
11 /// independent and default TTI implementations handle the rest.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "HexagonTargetTransformInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/ValueTypes.h"
19 #include "llvm/IR/InstrTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/User.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Transforms/Utils/LoopPeel.h"
25 #include "llvm/Transforms/Utils/UnrollLoop.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "hexagontti"
30 
31 static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
32   cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
33 
34 static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
35   cl::init(true), cl::Hidden,
36   cl::desc("Control lookup table emission on Hexagon target"));
37 
38 static cl::opt<bool> HexagonMaskedVMem("hexagon-masked-vmem", cl::init(true),
39   cl::Hidden, cl::desc("Enable masked loads/stores for HVX"));
40 
41 // Constant "cost factor" to make floating point operations more expensive
42 // in terms of vectorization cost. This isn't the best way, but it should
43 // do. Ultimately, the cost should use cycles.
44 static const unsigned FloatFactor = 4;
45 
46 bool HexagonTTIImpl::useHVX() const {
47   return ST.useHVXOps() && HexagonAutoHVX;
48 }
49 
50 unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
51   if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
52     return VTy->getNumElements();
53   assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
54          "Expecting scalar type");
55   return 1;
56 }
57 
58 TargetTransformInfo::PopcntSupportKind
59 HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
60   // Return fast hardware support as every input < 64 bits will be promoted
61   // to 64 bits.
62   return TargetTransformInfo::PSK_FastHardware;
63 }
64 
65 // The Hexagon target can unroll loops with run-time trip counts.
66 void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
67                                              TTI::UnrollingPreferences &UP,
68                                              OptimizationRemarkEmitter *ORE) {
69   UP.Runtime = UP.Partial = true;
70 }
71 
72 void HexagonTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
73                                            TTI::PeelingPreferences &PP) {
74   BaseT::getPeelingPreferences(L, SE, PP);
75   // Only try to peel innermost loops with small runtime trip counts.
76   if (L && L->isInnermost() && canPeel(L) &&
77       SE.getSmallConstantTripCount(L) == 0 &&
78       SE.getSmallConstantMaxTripCount(L) > 0 &&
79       SE.getSmallConstantMaxTripCount(L) <= 5) {
80     PP.PeelCount = 2;
81   }
82 }
83 
84 TTI::AddressingModeKind
85 HexagonTTIImpl::getPreferredAddressingMode(const Loop *L,
86                                            ScalarEvolution *SE) const {
87   return TTI::AMK_PostIndexed;
88 }
89 
90 /// --- Vector TTI begin ---
91 
92 unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
93   if (Vector)
94     return useHVX() ? 32 : 0;
95   return 32;
96 }
97 
98 unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
99   return useHVX() ? 2 : 1;
100 }
101 
102 TypeSize
103 HexagonTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
104   switch (K) {
105   case TargetTransformInfo::RGK_Scalar:
106     return TypeSize::getFixed(32);
107   case TargetTransformInfo::RGK_FixedWidthVector:
108     return TypeSize::getFixed(getMinVectorRegisterBitWidth());
109   case TargetTransformInfo::RGK_ScalableVector:
110     return TypeSize::getScalable(0);
111   }
112 
113   llvm_unreachable("Unsupported register kind");
114 }
115 
116 unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
117   return useHVX() ? ST.getVectorLength()*8 : 32;
118 }
119 
120 ElementCount HexagonTTIImpl::getMinimumVF(unsigned ElemWidth,
121                                           bool IsScalable) const {
122   assert(!IsScalable && "Scalable VFs are not supported for Hexagon");
123   return ElementCount::getFixed((8 * ST.getVectorLength()) / ElemWidth);
124 }
125 
126 InstructionCost HexagonTTIImpl::getScalarizationOverhead(
127     VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract) {
128   return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
129 }
130 
131 InstructionCost
132 HexagonTTIImpl::getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
133                                                  ArrayRef<Type *> Tys) {
134   return BaseT::getOperandsScalarizationOverhead(Args, Tys);
135 }
136 
137 InstructionCost HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
138                                                  ArrayRef<Type *> Tys,
139                                                  TTI::TargetCostKind CostKind) {
140   return BaseT::getCallInstrCost(F, RetTy, Tys, CostKind);
141 }
142 
143 InstructionCost
144 HexagonTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
145                                       TTI::TargetCostKind CostKind) {
146   if (ICA.getID() == Intrinsic::bswap) {
147     std::pair<InstructionCost, MVT> LT =
148         TLI.getTypeLegalizationCost(DL, ICA.getReturnType());
149     return LT.first + 2;
150   }
151   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
152 }
153 
154 InstructionCost HexagonTTIImpl::getAddressComputationCost(Type *Tp,
155                                                           ScalarEvolution *SE,
156                                                           const SCEV *S) {
157   return 0;
158 }
159 
160 InstructionCost HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
161                                                 MaybeAlign Alignment,
162                                                 unsigned AddressSpace,
163                                                 TTI::TargetCostKind CostKind,
164                                                 const Instruction *I) {
165   assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
166   // TODO: Handle other cost kinds.
167   if (CostKind != TTI::TCK_RecipThroughput)
168     return 1;
169 
170   if (Opcode == Instruction::Store)
171     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
172                                   CostKind, I);
173 
174   if (Src->isVectorTy()) {
175     VectorType *VecTy = cast<VectorType>(Src);
176     unsigned VecWidth = VecTy->getPrimitiveSizeInBits().getFixedSize();
177     if (useHVX() && ST.isTypeForHVX(VecTy)) {
178       unsigned RegWidth =
179           getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
180               .getFixedSize();
181       assert(RegWidth && "Non-zero vector register width expected");
182       // Cost of HVX loads.
183       if (VecWidth % RegWidth == 0)
184         return VecWidth / RegWidth;
185       // Cost of constructing HVX vector from scalar loads
186       const Align RegAlign(RegWidth / 8);
187       if (!Alignment || *Alignment > RegAlign)
188         Alignment = RegAlign;
189       assert(Alignment);
190       unsigned AlignWidth = 8 * Alignment->value();
191       unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
192       return 3 * NumLoads;
193     }
194 
195     // Non-HVX vectors.
196     // Add extra cost for floating point types.
197     unsigned Cost =
198         VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
199 
200     // At this point unspecified alignment is considered as Align(1).
201     const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
202     unsigned AlignWidth = 8 * BoundAlignment.value();
203     unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
204     if (Alignment == Align(4) || Alignment == Align(8))
205       return Cost * NumLoads;
206     // Loads of less than 32 bits will need extra inserts to compose a vector.
207     assert(BoundAlignment <= Align(8));
208     unsigned LogA = Log2(BoundAlignment);
209     return (3 - LogA) * Cost * NumLoads;
210   }
211 
212   return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
213                                 CostKind, I);
214 }
215 
216 InstructionCost
217 HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
218                                       Align Alignment, unsigned AddressSpace,
219                                       TTI::TargetCostKind CostKind) {
220   return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
221                                       CostKind);
222 }
223 
224 InstructionCost HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
225                                                ArrayRef<int> Mask, int Index,
226                                                Type *SubTp,
227                                                ArrayRef<const Value *> Args) {
228   return 1;
229 }
230 
231 InstructionCost HexagonTTIImpl::getGatherScatterOpCost(
232     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
233     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
234   return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
235                                        Alignment, CostKind, I);
236 }
237 
238 InstructionCost HexagonTTIImpl::getInterleavedMemoryOpCost(
239     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
240     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
241     bool UseMaskForCond, bool UseMaskForGaps) {
242   if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
243     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
244                                              Alignment, AddressSpace,
245                                              CostKind,
246                                              UseMaskForCond, UseMaskForGaps);
247   return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
248                          CostKind);
249 }
250 
251 InstructionCost HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
252                                                    Type *CondTy,
253                                                    CmpInst::Predicate VecPred,
254                                                    TTI::TargetCostKind CostKind,
255                                                    const Instruction *I) {
256   if (ValTy->isVectorTy() && CostKind == TTI::TCK_RecipThroughput) {
257     std::pair<InstructionCost, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
258     if (Opcode == Instruction::FCmp)
259       return LT.first + FloatFactor * getTypeNumElements(ValTy);
260   }
261   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
262 }
263 
264 InstructionCost HexagonTTIImpl::getArithmeticInstrCost(
265     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
266     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
267     TTI::OperandValueProperties Opd1PropInfo,
268     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
269     const Instruction *CxtI) {
270   // TODO: Handle more cost kinds.
271   if (CostKind != TTI::TCK_RecipThroughput)
272     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
273                                          Opd2Info, Opd1PropInfo,
274                                          Opd2PropInfo, Args, CxtI);
275 
276   if (Ty->isVectorTy()) {
277     std::pair<InstructionCost, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
278     if (LT.second.isFloatingPoint())
279       return LT.first + FloatFactor * getTypeNumElements(Ty);
280   }
281   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
282                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
283 }
284 
285 InstructionCost HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
286                                                  Type *SrcTy,
287                                                  TTI::CastContextHint CCH,
288                                                  TTI::TargetCostKind CostKind,
289                                                  const Instruction *I) {
290   if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
291     unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
292     unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
293 
294     std::pair<InstructionCost, MVT> SrcLT =
295         TLI.getTypeLegalizationCost(DL, SrcTy);
296     std::pair<InstructionCost, MVT> DstLT =
297         TLI.getTypeLegalizationCost(DL, DstTy);
298     InstructionCost Cost =
299         std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
300     // TODO: Allow non-throughput costs that aren't binary.
301     if (CostKind != TTI::TCK_RecipThroughput)
302       return Cost == 0 ? 0 : 1;
303     return Cost;
304   }
305   return 1;
306 }
307 
308 InstructionCost HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
309                                                    unsigned Index) {
310   Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
311                                    : Val;
312   if (Opcode == Instruction::InsertElement) {
313     // Need two rotations for non-zero index.
314     unsigned Cost = (Index != 0) ? 2 : 0;
315     if (ElemTy->isIntegerTy(32))
316       return Cost;
317     // If it's not a 32-bit value, there will need to be an extract.
318     return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
319   }
320 
321   if (Opcode == Instruction::ExtractElement)
322     return 2;
323 
324   return 1;
325 }
326 
327 bool HexagonTTIImpl::isLegalMaskedStore(Type *DataType, Align /*Alignment*/) {
328   return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
329 }
330 
331 bool HexagonTTIImpl::isLegalMaskedLoad(Type *DataType, Align /*Alignment*/) {
332   return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
333 }
334 
335 /// --- Vector TTI end ---
336 
337 unsigned HexagonTTIImpl::getPrefetchDistance() const {
338   return ST.getL1PrefetchDistance();
339 }
340 
341 unsigned HexagonTTIImpl::getCacheLineSize() const {
342   return ST.getL1CacheLineSize();
343 }
344 
345 InstructionCost HexagonTTIImpl::getUserCost(const User *U,
346                                             ArrayRef<const Value *> Operands,
347                                             TTI::TargetCostKind CostKind) {
348   auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
349     if (!CI->isIntegerCast())
350       return false;
351     // Only extensions from an integer type shorter than 32-bit to i32
352     // can be folded into the load.
353     const DataLayout &DL = getDataLayout();
354     unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
355     unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
356     if (DBW != 32 || SBW >= DBW)
357       return false;
358 
359     const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
360     // Technically, this code could allow multiple uses of the load, and
361     // check if all the uses are the same extension operation, but this
362     // should be sufficient for most cases.
363     return LI && LI->hasOneUse();
364   };
365 
366   if (const CastInst *CI = dyn_cast<const CastInst>(U))
367     if (isCastFoldedIntoLoad(CI))
368       return TargetTransformInfo::TCC_Free;
369   return BaseT::getUserCost(U, Operands, CostKind);
370 }
371 
372 bool HexagonTTIImpl::shouldBuildLookupTables() const {
373   return EmitLookupTables;
374 }
375