xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Hexagon specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonSubtarget.h"
14 #include "Hexagon.h"
15 #include "HexagonInstrInfo.h"
16 #include "HexagonRegisterInfo.h"
17 #include "MCTargetDesc/HexagonMCTargetDesc.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
27 #include "llvm/IR/IntrinsicsHexagon.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <map>
34 #include <optional>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "hexagon-subtarget"
39 
40 #define GET_SUBTARGETINFO_CTOR
41 #define GET_SUBTARGETINFO_TARGET_DESC
42 #include "HexagonGenSubtargetInfo.inc"
43 
44 static cl::opt<bool> EnableBSBSched("enable-bsb-sched", cl::Hidden,
45                                     cl::init(true));
46 
47 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", cl::Hidden,
48                                           cl::init(false));
49 
50 static cl::opt<bool>
51     EnableDotCurSched("enable-cur-sched", cl::Hidden, cl::init(true),
52                       cl::desc("Enable the scheduler to generate .cur"));
53 
54 static cl::opt<bool>
55     DisableHexagonMISched("disable-hexagon-misched", cl::Hidden,
56                           cl::desc("Disable Hexagon MI Scheduling"));
57 
58 static cl::opt<bool> EnableSubregLiveness(
59     "hexagon-subreg-liveness", cl::Hidden, cl::init(true),
60     cl::desc("Enable subregister liveness tracking for Hexagon"));
61 
62 static cl::opt<bool> OverrideLongCalls(
63     "hexagon-long-calls", cl::Hidden,
64     cl::desc("If present, forces/disables the use of long calls"));
65 
66 static cl::opt<bool>
67     EnablePredicatedCalls("hexagon-pred-calls", cl::Hidden,
68                           cl::desc("Consider calls to be predicable"));
69 
70 static cl::opt<bool> SchedPredsCloser("sched-preds-closer", cl::Hidden,
71                                       cl::init(true));
72 
73 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
74                                              cl::Hidden, cl::init(true));
75 
76 static cl::opt<bool> EnableCheckBankConflict(
77     "hexagon-check-bank-conflict", cl::Hidden, cl::init(true),
78     cl::desc("Enable checking for cache bank conflicts"));
79 
80 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
81                                    StringRef FS, const TargetMachine &TM)
82     : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
83       OptLevel(TM.getOptLevel()),
84       CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
85       TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
86       RegInfo(getHwMode()), TLInfo(TM, *this),
87       InstrItins(getInstrItineraryForCPU(CPUString)) {
88   Hexagon_MC::addArchSubtarget(this, FS);
89   // Beware of the default constructor of InstrItineraryData: it will
90   // reset all members to 0.
91   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
92 }
93 
94 HexagonSubtarget &
95 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
96   std::optional<Hexagon::ArchEnum> ArchVer = Hexagon::getCpu(CPUString);
97   if (ArchVer)
98     HexagonArchVersion = *ArchVer;
99   else
100     llvm_unreachable("Unrecognized Hexagon processor version");
101 
102   UseHVX128BOps = false;
103   UseHVX64BOps = false;
104   UseAudioOps = false;
105   UseLongCalls = false;
106 
107   SubtargetFeatures Features(FS);
108 
109   // Turn on QFloat if the HVX version is v68+.
110   // The function ParseSubtargetFeatures will set feature bits and initialize
111   // subtarget's variables all in one, so there isn't a good way to preprocess
112   // the feature string, other than by tinkering with it directly.
113   auto IsQFloatFS = [](StringRef F) {
114     return F == "+hvx-qfloat" || F == "-hvx-qfloat";
115   };
116   if (!llvm::count_if(Features.getFeatures(), IsQFloatFS)) {
117     auto getHvxVersion = [&Features](StringRef FS) -> StringRef {
118       for (StringRef F : llvm::reverse(Features.getFeatures())) {
119         if (F.starts_with("+hvxv"))
120           return F;
121       }
122       for (StringRef F : llvm::reverse(Features.getFeatures())) {
123         if (F == "-hvx")
124           return StringRef();
125         if (F.starts_with("+hvx") || F == "-hvx")
126           return F.take_front(4);  // Return "+hvx" or "-hvx".
127       }
128       return StringRef();
129     };
130 
131     bool AddQFloat = false;
132     StringRef HvxVer = getHvxVersion(FS);
133     if (HvxVer.starts_with("+hvxv")) {
134       int Ver = 0;
135       if (!HvxVer.drop_front(5).consumeInteger(10, Ver) && Ver >= 68)
136         AddQFloat = true;
137     } else if (HvxVer == "+hvx") {
138       if (hasV68Ops())
139         AddQFloat = true;
140     }
141 
142     if (AddQFloat)
143       Features.AddFeature("+hvx-qfloat");
144   }
145 
146   std::string FeatureString = Features.getString();
147   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FeatureString);
148 
149   if (useHVXV68Ops())
150     UseHVXFloatingPoint = UseHVXIEEEFPOps || UseHVXQFloatOps;
151 
152   if (UseHVXQFloatOps && UseHVXIEEEFPOps && UseHVXFloatingPoint)
153     LLVM_DEBUG(
154         dbgs() << "Behavior is undefined for simultaneous qfloat and ieee hvx codegen...");
155 
156   if (OverrideLongCalls.getPosition())
157     UseLongCalls = OverrideLongCalls;
158 
159   UseBSBScheduling = hasV60Ops() && EnableBSBSched;
160 
161   if (isTinyCore()) {
162     // Tiny core has a single thread, so back-to-back scheduling is enabled by
163     // default.
164     if (!EnableBSBSched.getPosition())
165       UseBSBScheduling = false;
166   }
167 
168   FeatureBitset FeatureBits = getFeatureBits();
169   if (HexagonDisableDuplex)
170     setFeatureBits(FeatureBits.reset(Hexagon::FeatureDuplex));
171   setFeatureBits(Hexagon_MC::completeHVXFeatures(FeatureBits));
172 
173   return *this;
174 }
175 
176 bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const {
177   if (!useHVXOps())
178     return false;
179   if (Ty.isVector())
180     Ty = Ty.getVectorElementType();
181   if (IncludeBool && Ty == MVT::i1)
182     return true;
183   ArrayRef<MVT> ElemTypes = getHVXElementTypes();
184   return llvm::is_contained(ElemTypes, Ty);
185 }
186 
187 bool HexagonSubtarget::isHVXVectorType(EVT VecTy, bool IncludeBool) const {
188   if (!VecTy.isSimple())
189     return false;
190   if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector())
191     return false;
192   MVT ElemTy = VecTy.getSimpleVT().getVectorElementType();
193   if (!IncludeBool && ElemTy == MVT::i1)
194     return false;
195 
196   unsigned HwLen = getVectorLength();
197   unsigned NumElems = VecTy.getVectorNumElements();
198   ArrayRef<MVT> ElemTypes = getHVXElementTypes();
199 
200   if (IncludeBool && ElemTy == MVT::i1) {
201     // Boolean HVX vector types are formed from regular HVX vector types
202     // by replacing the element type with i1.
203     for (MVT T : ElemTypes)
204       if (NumElems * T.getSizeInBits() == 8 * HwLen)
205         return true;
206     return false;
207   }
208 
209   unsigned VecWidth = VecTy.getSizeInBits();
210   if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen)
211     return false;
212   return llvm::is_contained(ElemTypes, ElemTy);
213 }
214 
215 bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const {
216   if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy))
217     return false;
218   // Avoid types like <2 x i32*>.
219   Type *ScalTy = VecTy->getScalarType();
220   if (!ScalTy->isIntegerTy() &&
221       !(ScalTy->isFloatingPointTy() && useHVXFloatingPoint()))
222     return false;
223   // The given type may be something like <17 x i32>, which is not MVT,
224   // but can be represented as (non-simple) EVT.
225   EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false);
226   if (!Ty.getVectorElementType().isSimple())
227     return false;
228 
229   auto isHvxTy = [this, IncludeBool](MVT SimpleTy) {
230     if (isHVXVectorType(SimpleTy, IncludeBool))
231       return true;
232     auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy);
233     return Action == TargetLoweringBase::TypeWidenVector;
234   };
235 
236   // Round up EVT to have power-of-2 elements, and keep checking if it
237   // qualifies for HVX, dividing it in half after each step.
238   MVT ElemTy = Ty.getVectorElementType().getSimpleVT();
239   unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements());
240   while (VecLen > 1) {
241     MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen);
242     if (SimpleTy.isValid() && isHvxTy(SimpleTy))
243       return true;
244     VecLen /= 2;
245   }
246 
247   return false;
248 }
249 
250 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
251   for (SUnit &SU : DAG->SUnits) {
252     if (!SU.isInstr())
253       continue;
254     SmallVector<SDep, 4> Erase;
255     for (auto &D : SU.Preds)
256       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
257         Erase.push_back(D);
258     for (auto &E : Erase)
259       SU.removePred(E);
260   }
261 }
262 
263 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
264   for (SUnit &SU : DAG->SUnits) {
265     // Update the latency of chain edges between v60 vector load or store
266     // instructions to be 1. These instruction cannot be scheduled in the
267     // same packet.
268     MachineInstr &MI1 = *SU.getInstr();
269     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
270     bool IsStoreMI1 = MI1.mayStore();
271     bool IsLoadMI1 = MI1.mayLoad();
272     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
273       continue;
274     for (SDep &SI : SU.Succs) {
275       if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
276         continue;
277       MachineInstr &MI2 = *SI.getSUnit()->getInstr();
278       if (!QII->isHVXVec(MI2))
279         continue;
280       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
281         SI.setLatency(1);
282         SU.setHeightDirty();
283         // Change the dependence in the opposite direction too.
284         for (SDep &PI : SI.getSUnit()->Preds) {
285           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
286             continue;
287           PI.setLatency(1);
288           SI.getSUnit()->setDepthDirty();
289         }
290       }
291     }
292   }
293 }
294 
295 // Check if a call and subsequent A2_tfrpi instructions should maintain
296 // scheduling affinity. We are looking for the TFRI to be consumed in
297 // the next instruction. This should help reduce the instances of
298 // double register pairs being allocated and scheduled before a call
299 // when not used until after the call. This situation is exacerbated
300 // by the fact that we allocate the pair from the callee saves list,
301 // leading to excess spills and restores.
302 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
303       const HexagonInstrInfo &HII, const SUnit &Inst1,
304       const SUnit &Inst2) const {
305   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
306     return false;
307 
308   // TypeXTYPE are 64 bit operations.
309   unsigned Type = HII.getType(*Inst2.getInstr());
310   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
311          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
312 }
313 
314 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
315   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
316   SUnit* LastSequentialCall = nullptr;
317   // Map from virtual register to physical register from the copy.
318   DenseMap<unsigned, unsigned> VRegHoldingReg;
319   // Map from the physical register to the instruction that uses virtual
320   // register. This is used to create the barrier edge.
321   DenseMap<unsigned, SUnit *> LastVRegUse;
322   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
323   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
324 
325   // Currently we only catch the situation when compare gets scheduled
326   // before preceding call.
327   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
328     // Remember the call.
329     if (DAG->SUnits[su].getInstr()->isCall())
330       LastSequentialCall = &DAG->SUnits[su];
331     // Look for a compare that defines a predicate.
332     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
333       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
334     // Look for call and tfri* instructions.
335     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
336              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
337       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
338     // Prevent redundant register copies due to reads and writes of physical
339     // registers. The original motivation for this was the code generated
340     // between two calls, which are caused both the return value and the
341     // argument for the next call being in %r0.
342     // Example:
343     //   1: <call1>
344     //   2: %vreg = COPY %r0
345     //   3: <use of %vreg>
346     //   4: %r0 = ...
347     //   5: <call2>
348     // The scheduler would often swap 3 and 4, so an additional register is
349     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
350     // this.
351     // The code below checks for all the physical registers, not just R0/D0/V0.
352     else if (SchedRetvalOptimization) {
353       const MachineInstr *MI = DAG->SUnits[su].getInstr();
354       if (MI->isCopy() && MI->getOperand(1).getReg().isPhysical()) {
355         // %vregX = COPY %r0
356         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
357         LastVRegUse.erase(MI->getOperand(1).getReg());
358       } else {
359         for (const MachineOperand &MO : MI->operands()) {
360           if (!MO.isReg())
361             continue;
362           if (MO.isUse() && !MI->isCopy() &&
363               VRegHoldingReg.count(MO.getReg())) {
364             // <use of %vregX>
365             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
366           } else if (MO.isDef() && MO.getReg().isPhysical()) {
367             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
368                  ++AI) {
369               if (LastVRegUse.count(*AI) &&
370                   LastVRegUse[*AI] != &DAG->SUnits[su])
371                 // %r0 = ...
372                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
373               LastVRegUse.erase(*AI);
374             }
375           }
376         }
377       }
378     }
379   }
380 }
381 
382 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
383   if (!EnableCheckBankConflict)
384     return;
385 
386   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
387 
388   // Create artificial edges between loads that could likely cause a bank
389   // conflict. Since such loads would normally not have any dependency
390   // between them, we cannot rely on existing edges.
391   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
392     SUnit &S0 = DAG->SUnits[i];
393     MachineInstr &L0 = *S0.getInstr();
394     if (!L0.mayLoad() || L0.mayStore() ||
395         HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
396       continue;
397     int64_t Offset0;
398     unsigned Size0;
399     MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
400     // Is the access size is longer than the L1 cache line, skip the check.
401     if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
402       continue;
403     // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
404     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
405       SUnit &S1 = DAG->SUnits[j];
406       MachineInstr &L1 = *S1.getInstr();
407       if (!L1.mayLoad() || L1.mayStore() ||
408           HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
409         continue;
410       int64_t Offset1;
411       unsigned Size1;
412       MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
413       if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
414           BaseOp0->getReg() != BaseOp1->getReg())
415         continue;
416       // Check bits 3 and 4 of the offset: if they differ, a bank conflict
417       // is unlikely.
418       if (((Offset0 ^ Offset1) & 0x18) != 0)
419         continue;
420       // Bits 3 and 4 are the same, add an artificial edge and set extra
421       // latency.
422       SDep A(&S0, SDep::Artificial);
423       A.setLatency(1);
424       S1.addPred(A, true);
425     }
426   }
427 }
428 
429 /// Enable use of alias analysis during code generation (during MI
430 /// scheduling, DAGCombine, etc.).
431 bool HexagonSubtarget::useAA() const {
432   if (OptLevel != CodeGenOptLevel::None)
433     return true;
434   return false;
435 }
436 
437 /// Perform target specific adjustments to the latency of a schedule
438 /// dependency.
439 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx,
440                                              SUnit *Dst, int DstOpIdx,
441                                              SDep &Dep) const {
442   if (!Src->isInstr() || !Dst->isInstr())
443     return;
444 
445   MachineInstr *SrcInst = Src->getInstr();
446   MachineInstr *DstInst = Dst->getInstr();
447   const HexagonInstrInfo *QII = getInstrInfo();
448 
449   // Instructions with .new operands have zero latency.
450   SmallSet<SUnit *, 4> ExclSrc;
451   SmallSet<SUnit *, 4> ExclDst;
452   if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
453       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
454     Dep.setLatency(0);
455     return;
456   }
457 
458   // Set the latency for a copy to zero since we hope that is will get
459   // removed.
460   if (DstInst->isCopy())
461     Dep.setLatency(0);
462 
463   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
464   // the correct latency.
465   // If there are multiple uses of the def of COPY/REG_SEQUENCE, set the latency
466   // only if the latencies on all the uses are equal, otherwise set it to
467   // default.
468   if ((DstInst->isRegSequence() || DstInst->isCopy())) {
469     Register DReg = DstInst->getOperand(0).getReg();
470     std::optional<unsigned> DLatency;
471     for (const auto &DDep : Dst->Succs) {
472       MachineInstr *DDst = DDep.getSUnit()->getInstr();
473       int UseIdx = -1;
474       for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
475         const MachineOperand &MO = DDst->getOperand(OpNum);
476         if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
477           UseIdx = OpNum;
478           break;
479         }
480       }
481 
482       if (UseIdx == -1)
483         continue;
484 
485       std::optional<unsigned> Latency =
486           InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0, *DDst, UseIdx);
487 
488       // Set DLatency for the first time.
489       if (!DLatency)
490         DLatency = Latency;
491 
492       // For multiple uses, if the Latency is different across uses, reset
493       // DLatency.
494       if (DLatency != Latency) {
495         DLatency = std::nullopt;
496         break;
497       }
498     }
499     Dep.setLatency(DLatency ? *DLatency : 0);
500   }
501 
502   // Try to schedule uses near definitions to generate .cur.
503   ExclSrc.clear();
504   ExclDst.clear();
505   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
506       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
507     Dep.setLatency(0);
508     return;
509   }
510   int Latency = Dep.getLatency();
511   bool IsArtificial = Dep.isArtificial();
512   Latency = updateLatency(*SrcInst, *DstInst, IsArtificial, Latency);
513   Dep.setLatency(Latency);
514 }
515 
516 void HexagonSubtarget::getPostRAMutations(
517     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
518   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
519   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
520   Mutations.push_back(std::make_unique<BankConflictMutation>());
521 }
522 
523 void HexagonSubtarget::getSMSMutations(
524     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
525   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
526   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
527 }
528 
529 // Pin the vtable to this file.
530 void HexagonSubtarget::anchor() {}
531 
532 bool HexagonSubtarget::enableMachineScheduler() const {
533   if (DisableHexagonMISched.getNumOccurrences())
534     return !DisableHexagonMISched;
535   return true;
536 }
537 
538 bool HexagonSubtarget::usePredicatedCalls() const {
539   return EnablePredicatedCalls;
540 }
541 
542 int HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
543                                     MachineInstr &DstInst, bool IsArtificial,
544                                     int Latency) const {
545   if (IsArtificial)
546     return 1;
547   if (!hasV60Ops())
548     return Latency;
549 
550   auto &QII = static_cast<const HexagonInstrInfo &>(*getInstrInfo());
551   // BSB scheduling.
552   if (QII.isHVXVec(SrcInst) || useBSBScheduling())
553     Latency = (Latency + 1) >> 1;
554   return Latency;
555 }
556 
557 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
558   MachineInstr *SrcI = Src->getInstr();
559   for (auto &I : Src->Succs) {
560     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
561       continue;
562     Register DepR = I.getReg();
563     int DefIdx = -1;
564     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
565       const MachineOperand &MO = SrcI->getOperand(OpNum);
566       bool IsSameOrSubReg = false;
567       if (MO.isReg()) {
568         Register MOReg = MO.getReg();
569         if (DepR.isVirtual()) {
570           IsSameOrSubReg = (MOReg == DepR);
571         } else {
572           IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
573         }
574         if (MO.isDef() && IsSameOrSubReg)
575           DefIdx = OpNum;
576       }
577     }
578     assert(DefIdx >= 0 && "Def Reg not found in Src MI");
579     MachineInstr *DstI = Dst->getInstr();
580     SDep T = I;
581     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
582       const MachineOperand &MO = DstI->getOperand(OpNum);
583       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
584         std::optional<unsigned> Latency = InstrInfo.getOperandLatency(
585             &InstrItins, *SrcI, DefIdx, *DstI, OpNum);
586 
587         // For some instructions (ex: COPY), we might end up with < 0 latency
588         // as they don't have any Itinerary class associated with them.
589         if (!Latency)
590           Latency = 0;
591         bool IsArtificial = I.isArtificial();
592         Latency = updateLatency(*SrcI, *DstI, IsArtificial, *Latency);
593         I.setLatency(*Latency);
594       }
595     }
596 
597     // Update the latency of opposite edge too.
598     T.setSUnit(Src);
599     auto F = find(Dst->Preds, T);
600     assert(F != Dst->Preds.end());
601     F->setLatency(I.getLatency());
602   }
603 }
604 
605 /// Change the latency between the two SUnits.
606 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
607       const {
608   for (auto &I : Src->Succs) {
609     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
610       continue;
611     SDep T = I;
612     I.setLatency(Lat);
613 
614     // Update the latency of opposite edge too.
615     T.setSUnit(Src);
616     auto F = find(Dst->Preds, T);
617     assert(F != Dst->Preds.end());
618     F->setLatency(Lat);
619   }
620 }
621 
622 /// If the SUnit has a zero latency edge, return the other SUnit.
623 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
624   for (auto &I : Deps)
625     if (I.isAssignedRegDep() && I.getLatency() == 0 &&
626         !I.getSUnit()->getInstr()->isPseudo())
627       return I.getSUnit();
628   return nullptr;
629 }
630 
631 // Return true if these are the best two instructions to schedule
632 // together with a zero latency. Only one dependence should have a zero
633 // latency. If there are multiple choices, choose the best, and change
634 // the others, if needed.
635 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
636       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
637       SmallSet<SUnit*, 4> &ExclDst) const {
638   MachineInstr &SrcInst = *Src->getInstr();
639   MachineInstr &DstInst = *Dst->getInstr();
640 
641   // Ignore Boundary SU nodes as these have null instructions.
642   if (Dst->isBoundaryNode())
643     return false;
644 
645   if (SrcInst.isPHI() || DstInst.isPHI())
646     return false;
647 
648   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
649       !TII->canExecuteInBundle(SrcInst, DstInst))
650     return false;
651 
652   // The architecture doesn't allow three dependent instructions in the same
653   // packet. So, if the destination has a zero latency successor, then it's
654   // not a candidate for a zero latency predecessor.
655   if (getZeroLatency(Dst, Dst->Succs) != nullptr)
656     return false;
657 
658   // Check if the Dst instruction is the best candidate first.
659   SUnit *Best = nullptr;
660   SUnit *DstBest = nullptr;
661   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
662   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
663     // Check that Src doesn't have a better candidate.
664     DstBest = getZeroLatency(Src, Src->Succs);
665     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
666       Best = Dst;
667   }
668   if (Best != Dst)
669     return false;
670 
671   // The caller frequently adds the same dependence twice. If so, then
672   // return true for this case too.
673   if ((Src == SrcBest && Dst == DstBest ) ||
674       (SrcBest == nullptr && Dst == DstBest) ||
675       (Src == SrcBest && Dst == nullptr))
676     return true;
677 
678   // Reassign the latency for the previous bests, which requires setting
679   // the dependence edge in both directions.
680   if (SrcBest != nullptr) {
681     if (!hasV60Ops())
682       changeLatency(SrcBest, Dst, 1);
683     else
684       restoreLatency(SrcBest, Dst);
685   }
686   if (DstBest != nullptr) {
687     if (!hasV60Ops())
688       changeLatency(Src, DstBest, 1);
689     else
690       restoreLatency(Src, DstBest);
691   }
692 
693   // Attempt to find another opprotunity for zero latency in a different
694   // dependence.
695   if (SrcBest && DstBest)
696     // If there is an edge from SrcBest to DstBst, then try to change that
697     // to 0 now.
698     changeLatency(SrcBest, DstBest, 0);
699   else if (DstBest) {
700     // Check if the previous best destination instruction has a new zero
701     // latency dependence opportunity.
702     ExclSrc.insert(Src);
703     for (auto &I : DstBest->Preds)
704       if (ExclSrc.count(I.getSUnit()) == 0 &&
705           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
706         changeLatency(I.getSUnit(), DstBest, 0);
707   } else if (SrcBest) {
708     // Check if previous best source instruction has a new zero latency
709     // dependence opportunity.
710     ExclDst.insert(Dst);
711     for (auto &I : SrcBest->Succs)
712       if (ExclDst.count(I.getSUnit()) == 0 &&
713           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
714         changeLatency(SrcBest, I.getSUnit(), 0);
715   }
716 
717   return true;
718 }
719 
720 unsigned HexagonSubtarget::getL1CacheLineSize() const {
721   return 32;
722 }
723 
724 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
725   return 32;
726 }
727 
728 bool HexagonSubtarget::enableSubRegLiveness() const {
729   return EnableSubregLiveness;
730 }
731 
732 Intrinsic::ID HexagonSubtarget::getIntrinsicId(unsigned Opc) const {
733   struct Scalar {
734     unsigned Opcode;
735     Intrinsic::ID IntId;
736   };
737   struct Hvx {
738     unsigned Opcode;
739     Intrinsic::ID Int64Id, Int128Id;
740   };
741 
742   static Scalar ScalarInts[] = {
743 #define GET_SCALAR_INTRINSICS
744 #include "HexagonDepInstrIntrinsics.inc"
745 #undef GET_SCALAR_INTRINSICS
746   };
747 
748   static Hvx HvxInts[] = {
749 #define GET_HVX_INTRINSICS
750 #include "HexagonDepInstrIntrinsics.inc"
751 #undef GET_HVX_INTRINSICS
752   };
753 
754   const auto CmpOpcode = [](auto A, auto B) { return A.Opcode < B.Opcode; };
755   [[maybe_unused]] static bool SortedScalar =
756       (llvm::sort(ScalarInts, CmpOpcode), true);
757   [[maybe_unused]] static bool SortedHvx =
758       (llvm::sort(HvxInts, CmpOpcode), true);
759 
760   auto [BS, ES] = std::make_pair(std::begin(ScalarInts), std::end(ScalarInts));
761   auto [BH, EH] = std::make_pair(std::begin(HvxInts), std::end(HvxInts));
762 
763   auto FoundScalar = std::lower_bound(BS, ES, Scalar{Opc, 0}, CmpOpcode);
764   if (FoundScalar != ES && FoundScalar->Opcode == Opc)
765     return FoundScalar->IntId;
766 
767   auto FoundHvx = std::lower_bound(BH, EH, Hvx{Opc, 0, 0}, CmpOpcode);
768   if (FoundHvx != EH && FoundHvx->Opcode == Opc) {
769     unsigned HwLen = getVectorLength();
770     if (HwLen == 64)
771       return FoundHvx->Int64Id;
772     if (HwLen == 128)
773       return FoundHvx->Int128Id;
774   }
775 
776   std::string error = "Invalid opcode (" + std::to_string(Opc) + ")";
777   llvm_unreachable(error.c_str());
778   return 0;
779 }
780