1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Hexagon specific subclass of TargetSubtarget. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "HexagonSubtarget.h" 14 #include "Hexagon.h" 15 #include "HexagonInstrInfo.h" 16 #include "HexagonRegisterInfo.h" 17 #include "MCTargetDesc/HexagonMCTargetDesc.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineScheduler.h" 25 #include "llvm/CodeGen/ScheduleDAG.h" 26 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <map> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "hexagon-subtarget" 37 38 #define GET_SUBTARGETINFO_CTOR 39 #define GET_SUBTARGETINFO_TARGET_DESC 40 #include "HexagonGenSubtargetInfo.inc" 41 42 static cl::opt<bool> EnableBSBSched("enable-bsb-sched", 43 cl::Hidden, cl::ZeroOrMore, cl::init(true)); 44 45 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", 46 cl::Hidden, cl::ZeroOrMore, cl::init(false)); 47 48 static cl::opt<bool> EnableDotCurSched("enable-cur-sched", 49 cl::Hidden, cl::ZeroOrMore, cl::init(true), 50 cl::desc("Enable the scheduler to generate .cur")); 51 52 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched", 53 cl::Hidden, cl::ZeroOrMore, cl::init(false), 54 cl::desc("Disable Hexagon MI Scheduling")); 55 56 static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness", 57 cl::Hidden, cl::ZeroOrMore, cl::init(true), 58 cl::desc("Enable subregister liveness tracking for Hexagon")); 59 60 static cl::opt<bool> OverrideLongCalls("hexagon-long-calls", 61 cl::Hidden, cl::ZeroOrMore, cl::init(false), 62 cl::desc("If present, forces/disables the use of long calls")); 63 64 static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls", 65 cl::Hidden, cl::ZeroOrMore, cl::init(false), 66 cl::desc("Consider calls to be predicable")); 67 68 static cl::opt<bool> SchedPredsCloser("sched-preds-closer", 69 cl::Hidden, cl::ZeroOrMore, cl::init(true)); 70 71 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization", 72 cl::Hidden, cl::ZeroOrMore, cl::init(true)); 73 74 static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict", 75 cl::Hidden, cl::ZeroOrMore, cl::init(true), 76 cl::desc("Enable checking for cache bank conflicts")); 77 78 static cl::opt<bool> EnableV68FloatCodeGen( 79 "force-hvx-float", cl::Hidden, cl::ZeroOrMore, cl::init(false), 80 cl::desc("Enable the code-generation for vector float instructions on v68.")); 81 82 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU, 83 StringRef FS, const TargetMachine &TM) 84 : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS), 85 OptLevel(TM.getOptLevel()), 86 CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))), 87 TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)), 88 RegInfo(getHwMode()), TLInfo(TM, *this), 89 InstrItins(getInstrItineraryForCPU(CPUString)) { 90 Hexagon_MC::addArchSubtarget(this, FS); 91 // Beware of the default constructor of InstrItineraryData: it will 92 // reset all members to 0. 93 assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized"); 94 } 95 96 HexagonSubtarget & 97 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { 98 Optional<Hexagon::ArchEnum> ArchVer = 99 Hexagon::GetCpu(Hexagon::CpuTable, CPUString); 100 if (ArchVer) 101 HexagonArchVersion = *ArchVer; 102 else 103 llvm_unreachable("Unrecognized Hexagon processor version"); 104 105 UseHVX128BOps = false; 106 UseHVX64BOps = false; 107 UseAudioOps = false; 108 UseLongCalls = false; 109 110 SubtargetFeatures Features(FS); 111 112 // Turn on QFloat if the HVX version is v68+. 113 // The function ParseSubtargetFeatures will set feature bits and initialize 114 // subtarget's variables all in one, so there isn't a good way to preprocess 115 // the feature string, other than by tinkering with it directly. 116 auto IsQFloatFS = [](StringRef F) { 117 return F == "+hvx-qfloat" || F == "-hvx-qfloat"; 118 }; 119 if (!llvm::count_if(Features.getFeatures(), IsQFloatFS)) { 120 auto getHvxVersion = [&Features](StringRef FS) -> StringRef { 121 for (StringRef F : llvm::reverse(Features.getFeatures())) { 122 if (F.startswith("+hvxv")) 123 return F; 124 } 125 for (StringRef F : llvm::reverse(Features.getFeatures())) { 126 if (F == "-hvx") 127 return StringRef(); 128 if (F.startswith("+hvx") || F == "-hvx") 129 return F.take_front(4); // Return "+hvx" or "-hvx". 130 } 131 return StringRef(); 132 }; 133 134 bool AddQFloat = false; 135 StringRef HvxVer = getHvxVersion(FS); 136 if (HvxVer.startswith("+hvxv")) { 137 int Ver = 0; 138 if (!HvxVer.drop_front(5).consumeInteger(10, Ver) && Ver >= 68) 139 AddQFloat = true; 140 } else if (HvxVer == "+hvx") { 141 if (hasV68Ops()) 142 AddQFloat = true; 143 } 144 145 if (AddQFloat) 146 Features.AddFeature("+hvx-qfloat"); 147 } 148 149 std::string FeatureString = Features.getString(); 150 ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FeatureString); 151 152 // Enable float code generation only if the flag(s) are set and 153 // the feature is enabled. v68 is guarded by additional flags. 154 bool GreaterThanV68 = false; 155 if (useHVXV69Ops()) 156 GreaterThanV68 = true; 157 158 // Support for deprecated qfloat/ieee codegen flags 159 if (!GreaterThanV68) { 160 if (EnableV68FloatCodeGen) 161 UseHVXFloatingPoint = true; 162 } else { 163 UseHVXFloatingPoint = true; 164 } 165 166 if (UseHVXQFloatOps && UseHVXIEEEFPOps && UseHVXFloatingPoint) 167 LLVM_DEBUG( 168 dbgs() << "Behavior is undefined for simultaneous qfloat and ieee hvx codegen..."); 169 170 if (OverrideLongCalls.getPosition()) 171 UseLongCalls = OverrideLongCalls; 172 173 UseBSBScheduling = hasV60Ops() && EnableBSBSched; 174 175 if (isTinyCore()) { 176 // Tiny core has a single thread, so back-to-back scheduling is enabled by 177 // default. 178 if (!EnableBSBSched.getPosition()) 179 UseBSBScheduling = false; 180 } 181 182 FeatureBitset FeatureBits = getFeatureBits(); 183 if (HexagonDisableDuplex) 184 setFeatureBits(FeatureBits.reset(Hexagon::FeatureDuplex)); 185 setFeatureBits(Hexagon_MC::completeHVXFeatures(FeatureBits)); 186 187 return *this; 188 } 189 190 bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const { 191 if (!useHVXOps()) 192 return false; 193 if (Ty.isVector()) 194 Ty = Ty.getVectorElementType(); 195 if (IncludeBool && Ty == MVT::i1) 196 return true; 197 ArrayRef<MVT> ElemTypes = getHVXElementTypes(); 198 return llvm::is_contained(ElemTypes, Ty); 199 } 200 201 bool HexagonSubtarget::isHVXVectorType(MVT VecTy, bool IncludeBool) const { 202 if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector()) 203 return false; 204 MVT ElemTy = VecTy.getVectorElementType(); 205 if (!IncludeBool && ElemTy == MVT::i1) 206 return false; 207 208 unsigned HwLen = getVectorLength(); 209 unsigned NumElems = VecTy.getVectorNumElements(); 210 ArrayRef<MVT> ElemTypes = getHVXElementTypes(); 211 212 if (IncludeBool && ElemTy == MVT::i1) { 213 // Boolean HVX vector types are formed from regular HVX vector types 214 // by replacing the element type with i1. 215 for (MVT T : ElemTypes) 216 if (NumElems * T.getSizeInBits() == 8 * HwLen) 217 return true; 218 return false; 219 } 220 221 unsigned VecWidth = VecTy.getSizeInBits(); 222 if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen) 223 return false; 224 return llvm::is_contained(ElemTypes, ElemTy); 225 } 226 227 bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const { 228 if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy)) 229 return false; 230 // Avoid types like <2 x i32*>. 231 Type *ScalTy = VecTy->getScalarType(); 232 if (!ScalTy->isIntegerTy() && 233 !(ScalTy->isFloatingPointTy() && useHVXFloatingPoint())) 234 return false; 235 // The given type may be something like <17 x i32>, which is not MVT, 236 // but can be represented as (non-simple) EVT. 237 EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false); 238 if (Ty.getSizeInBits() <= 64 || !Ty.getVectorElementType().isSimple()) 239 return false; 240 241 auto isHvxTy = [this, IncludeBool](MVT SimpleTy) { 242 if (isHVXVectorType(SimpleTy, IncludeBool)) 243 return true; 244 auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy); 245 return Action == TargetLoweringBase::TypeWidenVector; 246 }; 247 248 // Round up EVT to have power-of-2 elements, and keep checking if it 249 // qualifies for HVX, dividing it in half after each step. 250 MVT ElemTy = Ty.getVectorElementType().getSimpleVT(); 251 unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements()); 252 while (ElemTy.getSizeInBits() * VecLen > 64) { 253 MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen); 254 if (SimpleTy.isValid() && isHvxTy(SimpleTy)) 255 return true; 256 VecLen /= 2; 257 } 258 259 return false; 260 } 261 262 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) { 263 for (SUnit &SU : DAG->SUnits) { 264 if (!SU.isInstr()) 265 continue; 266 SmallVector<SDep, 4> Erase; 267 for (auto &D : SU.Preds) 268 if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF) 269 Erase.push_back(D); 270 for (auto &E : Erase) 271 SU.removePred(E); 272 } 273 } 274 275 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) { 276 for (SUnit &SU : DAG->SUnits) { 277 // Update the latency of chain edges between v60 vector load or store 278 // instructions to be 1. These instruction cannot be scheduled in the 279 // same packet. 280 MachineInstr &MI1 = *SU.getInstr(); 281 auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII); 282 bool IsStoreMI1 = MI1.mayStore(); 283 bool IsLoadMI1 = MI1.mayLoad(); 284 if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1)) 285 continue; 286 for (SDep &SI : SU.Succs) { 287 if (SI.getKind() != SDep::Order || SI.getLatency() != 0) 288 continue; 289 MachineInstr &MI2 = *SI.getSUnit()->getInstr(); 290 if (!QII->isHVXVec(MI2)) 291 continue; 292 if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) { 293 SI.setLatency(1); 294 SU.setHeightDirty(); 295 // Change the dependence in the opposite direction too. 296 for (SDep &PI : SI.getSUnit()->Preds) { 297 if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order) 298 continue; 299 PI.setLatency(1); 300 SI.getSUnit()->setDepthDirty(); 301 } 302 } 303 } 304 } 305 } 306 307 // Check if a call and subsequent A2_tfrpi instructions should maintain 308 // scheduling affinity. We are looking for the TFRI to be consumed in 309 // the next instruction. This should help reduce the instances of 310 // double register pairs being allocated and scheduled before a call 311 // when not used until after the call. This situation is exacerbated 312 // by the fact that we allocate the pair from the callee saves list, 313 // leading to excess spills and restores. 314 bool HexagonSubtarget::CallMutation::shouldTFRICallBind( 315 const HexagonInstrInfo &HII, const SUnit &Inst1, 316 const SUnit &Inst2) const { 317 if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) 318 return false; 319 320 // TypeXTYPE are 64 bit operations. 321 unsigned Type = HII.getType(*Inst2.getInstr()); 322 return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op || 323 Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM; 324 } 325 326 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 327 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 328 SUnit* LastSequentialCall = nullptr; 329 // Map from virtual register to physical register from the copy. 330 DenseMap<unsigned, unsigned> VRegHoldingReg; 331 // Map from the physical register to the instruction that uses virtual 332 // register. This is used to create the barrier edge. 333 DenseMap<unsigned, SUnit *> LastVRegUse; 334 auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo(); 335 auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 336 337 // Currently we only catch the situation when compare gets scheduled 338 // before preceding call. 339 for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) { 340 // Remember the call. 341 if (DAG->SUnits[su].getInstr()->isCall()) 342 LastSequentialCall = &DAG->SUnits[su]; 343 // Look for a compare that defines a predicate. 344 else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall) 345 DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier)); 346 // Look for call and tfri* instructions. 347 else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 && 348 shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1])) 349 DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier)); 350 // Prevent redundant register copies due to reads and writes of physical 351 // registers. The original motivation for this was the code generated 352 // between two calls, which are caused both the return value and the 353 // argument for the next call being in %r0. 354 // Example: 355 // 1: <call1> 356 // 2: %vreg = COPY %r0 357 // 3: <use of %vreg> 358 // 4: %r0 = ... 359 // 5: <call2> 360 // The scheduler would often swap 3 and 4, so an additional register is 361 // needed. This code inserts a Barrier dependence between 3 & 4 to prevent 362 // this. 363 // The code below checks for all the physical registers, not just R0/D0/V0. 364 else if (SchedRetvalOptimization) { 365 const MachineInstr *MI = DAG->SUnits[su].getInstr(); 366 if (MI->isCopy() && 367 Register::isPhysicalRegister(MI->getOperand(1).getReg())) { 368 // %vregX = COPY %r0 369 VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg(); 370 LastVRegUse.erase(MI->getOperand(1).getReg()); 371 } else { 372 for (const MachineOperand &MO : MI->operands()) { 373 if (!MO.isReg()) 374 continue; 375 if (MO.isUse() && !MI->isCopy() && 376 VRegHoldingReg.count(MO.getReg())) { 377 // <use of %vregX> 378 LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su]; 379 } else if (MO.isDef() && Register::isPhysicalRegister(MO.getReg())) { 380 for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid(); 381 ++AI) { 382 if (LastVRegUse.count(*AI) && 383 LastVRegUse[*AI] != &DAG->SUnits[su]) 384 // %r0 = ... 385 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier)); 386 LastVRegUse.erase(*AI); 387 } 388 } 389 } 390 } 391 } 392 } 393 } 394 395 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) { 396 if (!EnableCheckBankConflict) 397 return; 398 399 const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII); 400 401 // Create artificial edges between loads that could likely cause a bank 402 // conflict. Since such loads would normally not have any dependency 403 // between them, we cannot rely on existing edges. 404 for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) { 405 SUnit &S0 = DAG->SUnits[i]; 406 MachineInstr &L0 = *S0.getInstr(); 407 if (!L0.mayLoad() || L0.mayStore() || 408 HII.getAddrMode(L0) != HexagonII::BaseImmOffset) 409 continue; 410 int64_t Offset0; 411 unsigned Size0; 412 MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0); 413 // Is the access size is longer than the L1 cache line, skip the check. 414 if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32) 415 continue; 416 // Scan only up to 32 instructions ahead (to avoid n^2 complexity). 417 for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) { 418 SUnit &S1 = DAG->SUnits[j]; 419 MachineInstr &L1 = *S1.getInstr(); 420 if (!L1.mayLoad() || L1.mayStore() || 421 HII.getAddrMode(L1) != HexagonII::BaseImmOffset) 422 continue; 423 int64_t Offset1; 424 unsigned Size1; 425 MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1); 426 if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 || 427 BaseOp0->getReg() != BaseOp1->getReg()) 428 continue; 429 // Check bits 3 and 4 of the offset: if they differ, a bank conflict 430 // is unlikely. 431 if (((Offset0 ^ Offset1) & 0x18) != 0) 432 continue; 433 // Bits 3 and 4 are the same, add an artificial edge and set extra 434 // latency. 435 SDep A(&S0, SDep::Artificial); 436 A.setLatency(1); 437 S1.addPred(A, true); 438 } 439 } 440 } 441 442 /// Enable use of alias analysis during code generation (during MI 443 /// scheduling, DAGCombine, etc.). 444 bool HexagonSubtarget::useAA() const { 445 if (OptLevel != CodeGenOpt::None) 446 return true; 447 return false; 448 } 449 450 /// Perform target specific adjustments to the latency of a schedule 451 /// dependency. 452 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx, 453 SUnit *Dst, int DstOpIdx, 454 SDep &Dep) const { 455 if (!Src->isInstr() || !Dst->isInstr()) 456 return; 457 458 MachineInstr *SrcInst = Src->getInstr(); 459 MachineInstr *DstInst = Dst->getInstr(); 460 const HexagonInstrInfo *QII = getInstrInfo(); 461 462 // Instructions with .new operands have zero latency. 463 SmallSet<SUnit *, 4> ExclSrc; 464 SmallSet<SUnit *, 4> ExclDst; 465 if (QII->canExecuteInBundle(*SrcInst, *DstInst) && 466 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { 467 Dep.setLatency(0); 468 return; 469 } 470 471 // Set the latency for a copy to zero since we hope that is will get 472 // removed. 473 if (DstInst->isCopy()) 474 Dep.setLatency(0); 475 476 // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine 477 // the correct latency. 478 // If there are multiple uses of the def of COPY/REG_SEQUENCE, set the latency 479 // only if the latencies on all the uses are equal, otherwise set it to 480 // default. 481 if ((DstInst->isRegSequence() || DstInst->isCopy())) { 482 Register DReg = DstInst->getOperand(0).getReg(); 483 int DLatency = -1; 484 for (const auto &DDep : Dst->Succs) { 485 MachineInstr *DDst = DDep.getSUnit()->getInstr(); 486 int UseIdx = -1; 487 for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) { 488 const MachineOperand &MO = DDst->getOperand(OpNum); 489 if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) { 490 UseIdx = OpNum; 491 break; 492 } 493 } 494 495 if (UseIdx == -1) 496 continue; 497 498 int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0, 499 *DDst, UseIdx)); 500 // Set DLatency for the first time. 501 DLatency = (DLatency == -1) ? Latency : DLatency; 502 503 // For multiple uses, if the Latency is different across uses, reset 504 // DLatency. 505 if (DLatency != Latency) { 506 DLatency = -1; 507 break; 508 } 509 } 510 511 DLatency = std::max(DLatency, 0); 512 Dep.setLatency((unsigned)DLatency); 513 } 514 515 // Try to schedule uses near definitions to generate .cur. 516 ExclSrc.clear(); 517 ExclDst.clear(); 518 if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) && 519 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { 520 Dep.setLatency(0); 521 return; 522 } 523 int Latency = Dep.getLatency(); 524 bool IsArtificial = Dep.isArtificial(); 525 Latency = updateLatency(*SrcInst, *DstInst, IsArtificial, Latency); 526 Dep.setLatency(Latency); 527 } 528 529 void HexagonSubtarget::getPostRAMutations( 530 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 531 Mutations.push_back(std::make_unique<UsrOverflowMutation>()); 532 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>()); 533 Mutations.push_back(std::make_unique<BankConflictMutation>()); 534 } 535 536 void HexagonSubtarget::getSMSMutations( 537 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 538 Mutations.push_back(std::make_unique<UsrOverflowMutation>()); 539 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>()); 540 } 541 542 // Pin the vtable to this file. 543 void HexagonSubtarget::anchor() {} 544 545 bool HexagonSubtarget::enableMachineScheduler() const { 546 if (DisableHexagonMISched.getNumOccurrences()) 547 return !DisableHexagonMISched; 548 return true; 549 } 550 551 bool HexagonSubtarget::usePredicatedCalls() const { 552 return EnablePredicatedCalls; 553 } 554 555 int HexagonSubtarget::updateLatency(MachineInstr &SrcInst, 556 MachineInstr &DstInst, bool IsArtificial, 557 int Latency) const { 558 if (IsArtificial) 559 return 1; 560 if (!hasV60Ops()) 561 return Latency; 562 563 auto &QII = static_cast<const HexagonInstrInfo &>(*getInstrInfo()); 564 // BSB scheduling. 565 if (QII.isHVXVec(SrcInst) || useBSBScheduling()) 566 Latency = (Latency + 1) >> 1; 567 return Latency; 568 } 569 570 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const { 571 MachineInstr *SrcI = Src->getInstr(); 572 for (auto &I : Src->Succs) { 573 if (!I.isAssignedRegDep() || I.getSUnit() != Dst) 574 continue; 575 Register DepR = I.getReg(); 576 int DefIdx = -1; 577 for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) { 578 const MachineOperand &MO = SrcI->getOperand(OpNum); 579 bool IsSameOrSubReg = false; 580 if (MO.isReg()) { 581 Register MOReg = MO.getReg(); 582 if (DepR.isVirtual()) { 583 IsSameOrSubReg = (MOReg == DepR); 584 } else { 585 IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg); 586 } 587 if (MO.isDef() && IsSameOrSubReg) 588 DefIdx = OpNum; 589 } 590 } 591 assert(DefIdx >= 0 && "Def Reg not found in Src MI"); 592 MachineInstr *DstI = Dst->getInstr(); 593 SDep T = I; 594 for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) { 595 const MachineOperand &MO = DstI->getOperand(OpNum); 596 if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) { 597 int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI, 598 DefIdx, *DstI, OpNum)); 599 600 // For some instructions (ex: COPY), we might end up with < 0 latency 601 // as they don't have any Itinerary class associated with them. 602 Latency = std::max(Latency, 0); 603 bool IsArtificial = I.isArtificial(); 604 Latency = updateLatency(*SrcI, *DstI, IsArtificial, Latency); 605 I.setLatency(Latency); 606 } 607 } 608 609 // Update the latency of opposite edge too. 610 T.setSUnit(Src); 611 auto F = find(Dst->Preds, T); 612 assert(F != Dst->Preds.end()); 613 F->setLatency(I.getLatency()); 614 } 615 } 616 617 /// Change the latency between the two SUnits. 618 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat) 619 const { 620 for (auto &I : Src->Succs) { 621 if (!I.isAssignedRegDep() || I.getSUnit() != Dst) 622 continue; 623 SDep T = I; 624 I.setLatency(Lat); 625 626 // Update the latency of opposite edge too. 627 T.setSUnit(Src); 628 auto F = find(Dst->Preds, T); 629 assert(F != Dst->Preds.end()); 630 F->setLatency(Lat); 631 } 632 } 633 634 /// If the SUnit has a zero latency edge, return the other SUnit. 635 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) { 636 for (auto &I : Deps) 637 if (I.isAssignedRegDep() && I.getLatency() == 0 && 638 !I.getSUnit()->getInstr()->isPseudo()) 639 return I.getSUnit(); 640 return nullptr; 641 } 642 643 // Return true if these are the best two instructions to schedule 644 // together with a zero latency. Only one dependence should have a zero 645 // latency. If there are multiple choices, choose the best, and change 646 // the others, if needed. 647 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst, 648 const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc, 649 SmallSet<SUnit*, 4> &ExclDst) const { 650 MachineInstr &SrcInst = *Src->getInstr(); 651 MachineInstr &DstInst = *Dst->getInstr(); 652 653 // Ignore Boundary SU nodes as these have null instructions. 654 if (Dst->isBoundaryNode()) 655 return false; 656 657 if (SrcInst.isPHI() || DstInst.isPHI()) 658 return false; 659 660 if (!TII->isToBeScheduledASAP(SrcInst, DstInst) && 661 !TII->canExecuteInBundle(SrcInst, DstInst)) 662 return false; 663 664 // The architecture doesn't allow three dependent instructions in the same 665 // packet. So, if the destination has a zero latency successor, then it's 666 // not a candidate for a zero latency predecessor. 667 if (getZeroLatency(Dst, Dst->Succs) != nullptr) 668 return false; 669 670 // Check if the Dst instruction is the best candidate first. 671 SUnit *Best = nullptr; 672 SUnit *DstBest = nullptr; 673 SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds); 674 if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) { 675 // Check that Src doesn't have a better candidate. 676 DstBest = getZeroLatency(Src, Src->Succs); 677 if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum) 678 Best = Dst; 679 } 680 if (Best != Dst) 681 return false; 682 683 // The caller frequently adds the same dependence twice. If so, then 684 // return true for this case too. 685 if ((Src == SrcBest && Dst == DstBest ) || 686 (SrcBest == nullptr && Dst == DstBest) || 687 (Src == SrcBest && Dst == nullptr)) 688 return true; 689 690 // Reassign the latency for the previous bests, which requires setting 691 // the dependence edge in both directions. 692 if (SrcBest != nullptr) { 693 if (!hasV60Ops()) 694 changeLatency(SrcBest, Dst, 1); 695 else 696 restoreLatency(SrcBest, Dst); 697 } 698 if (DstBest != nullptr) { 699 if (!hasV60Ops()) 700 changeLatency(Src, DstBest, 1); 701 else 702 restoreLatency(Src, DstBest); 703 } 704 705 // Attempt to find another opprotunity for zero latency in a different 706 // dependence. 707 if (SrcBest && DstBest) 708 // If there is an edge from SrcBest to DstBst, then try to change that 709 // to 0 now. 710 changeLatency(SrcBest, DstBest, 0); 711 else if (DstBest) { 712 // Check if the previous best destination instruction has a new zero 713 // latency dependence opportunity. 714 ExclSrc.insert(Src); 715 for (auto &I : DstBest->Preds) 716 if (ExclSrc.count(I.getSUnit()) == 0 && 717 isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst)) 718 changeLatency(I.getSUnit(), DstBest, 0); 719 } else if (SrcBest) { 720 // Check if previous best source instruction has a new zero latency 721 // dependence opportunity. 722 ExclDst.insert(Dst); 723 for (auto &I : SrcBest->Succs) 724 if (ExclDst.count(I.getSUnit()) == 0 && 725 isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst)) 726 changeLatency(SrcBest, I.getSUnit(), 0); 727 } 728 729 return true; 730 } 731 732 unsigned HexagonSubtarget::getL1CacheLineSize() const { 733 return 32; 734 } 735 736 unsigned HexagonSubtarget::getL1PrefetchDistance() const { 737 return 32; 738 } 739 740 bool HexagonSubtarget::enableSubRegLiveness() const { 741 return EnableSubregLiveness; 742 } 743