xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Hexagon specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Hexagon.h"
14 #include "HexagonInstrInfo.h"
15 #include "HexagonRegisterInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "MCTargetDesc/HexagonMCTargetDesc.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <map>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "hexagon-subtarget"
36 
37 #define GET_SUBTARGETINFO_CTOR
38 #define GET_SUBTARGETINFO_TARGET_DESC
39 #include "HexagonGenSubtargetInfo.inc"
40 
41 
42 static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
43   cl::Hidden, cl::ZeroOrMore, cl::init(true));
44 
45 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
46   cl::Hidden, cl::ZeroOrMore, cl::init(false));
47 
48 static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
49   cl::Hidden, cl::ZeroOrMore, cl::init(true),
50   cl::desc("Enable the scheduler to generate .cur"));
51 
52 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
53   cl::Hidden, cl::ZeroOrMore, cl::init(false),
54   cl::desc("Disable Hexagon MI Scheduling"));
55 
56 static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
57   cl::Hidden, cl::ZeroOrMore, cl::init(true),
58   cl::desc("Enable subregister liveness tracking for Hexagon"));
59 
60 static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
61   cl::Hidden, cl::ZeroOrMore, cl::init(false),
62   cl::desc("If present, forces/disables the use of long calls"));
63 
64 static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
65   cl::Hidden, cl::ZeroOrMore, cl::init(false),
66   cl::desc("Consider calls to be predicable"));
67 
68 static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
69   cl::Hidden, cl::ZeroOrMore, cl::init(true));
70 
71 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
72   cl::Hidden, cl::ZeroOrMore, cl::init(true));
73 
74 static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
75   cl::Hidden, cl::ZeroOrMore, cl::init(true),
76   cl::desc("Enable checking for cache bank conflicts"));
77 
78 
79 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
80                                    StringRef FS, const TargetMachine &TM)
81     : HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()),
82       CPUString(Hexagon_MC::selectHexagonCPU(CPU)),
83       InstrInfo(initializeSubtargetDependencies(CPU, FS)),
84       RegInfo(getHwMode()), TLInfo(TM, *this),
85       InstrItins(getInstrItineraryForCPU(CPUString)) {
86   // Beware of the default constructor of InstrItineraryData: it will
87   // reset all members to 0.
88   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
89 }
90 
91 HexagonSubtarget &
92 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
93   static std::map<StringRef, Hexagon::ArchEnum> CpuTable{
94       {"generic", Hexagon::ArchEnum::V60},
95       {"hexagonv5", Hexagon::ArchEnum::V5},
96       {"hexagonv55", Hexagon::ArchEnum::V55},
97       {"hexagonv60", Hexagon::ArchEnum::V60},
98       {"hexagonv62", Hexagon::ArchEnum::V62},
99       {"hexagonv65", Hexagon::ArchEnum::V65},
100       {"hexagonv66", Hexagon::ArchEnum::V66},
101   };
102 
103   auto FoundIt = CpuTable.find(CPUString);
104   if (FoundIt != CpuTable.end())
105     HexagonArchVersion = FoundIt->second;
106   else
107     llvm_unreachable("Unrecognized Hexagon processor version");
108 
109   UseHVX128BOps = false;
110   UseHVX64BOps = false;
111   UseLongCalls = false;
112 
113   UseBSBScheduling = hasV60Ops() && EnableBSBSched;
114 
115   ParseSubtargetFeatures(CPUString, FS);
116 
117   if (OverrideLongCalls.getPosition())
118     UseLongCalls = OverrideLongCalls;
119 
120   FeatureBitset Features = getFeatureBits();
121   if (HexagonDisableDuplex)
122     setFeatureBits(Features.reset(Hexagon::FeatureDuplex));
123   setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
124 
125   return *this;
126 }
127 
128 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
129   for (SUnit &SU : DAG->SUnits) {
130     if (!SU.isInstr())
131       continue;
132     SmallVector<SDep, 4> Erase;
133     for (auto &D : SU.Preds)
134       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
135         Erase.push_back(D);
136     for (auto &E : Erase)
137       SU.removePred(E);
138   }
139 }
140 
141 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
142   for (SUnit &SU : DAG->SUnits) {
143     // Update the latency of chain edges between v60 vector load or store
144     // instructions to be 1. These instruction cannot be scheduled in the
145     // same packet.
146     MachineInstr &MI1 = *SU.getInstr();
147     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
148     bool IsStoreMI1 = MI1.mayStore();
149     bool IsLoadMI1 = MI1.mayLoad();
150     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
151       continue;
152     for (SDep &SI : SU.Succs) {
153       if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
154         continue;
155       MachineInstr &MI2 = *SI.getSUnit()->getInstr();
156       if (!QII->isHVXVec(MI2))
157         continue;
158       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
159         SI.setLatency(1);
160         SU.setHeightDirty();
161         // Change the dependence in the opposite direction too.
162         for (SDep &PI : SI.getSUnit()->Preds) {
163           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
164             continue;
165           PI.setLatency(1);
166           SI.getSUnit()->setDepthDirty();
167         }
168       }
169     }
170   }
171 }
172 
173 // Check if a call and subsequent A2_tfrpi instructions should maintain
174 // scheduling affinity. We are looking for the TFRI to be consumed in
175 // the next instruction. This should help reduce the instances of
176 // double register pairs being allocated and scheduled before a call
177 // when not used until after the call. This situation is exacerbated
178 // by the fact that we allocate the pair from the callee saves list,
179 // leading to excess spills and restores.
180 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
181       const HexagonInstrInfo &HII, const SUnit &Inst1,
182       const SUnit &Inst2) const {
183   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
184     return false;
185 
186   // TypeXTYPE are 64 bit operations.
187   unsigned Type = HII.getType(*Inst2.getInstr());
188   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
189          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
190 }
191 
192 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
193   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
194   SUnit* LastSequentialCall = nullptr;
195   // Map from virtual register to physical register from the copy.
196   DenseMap<unsigned, unsigned> VRegHoldingReg;
197   // Map from the physical register to the instruction that uses virtual
198   // register. This is used to create the barrier edge.
199   DenseMap<unsigned, SUnit *> LastVRegUse;
200   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
201   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
202 
203   // Currently we only catch the situation when compare gets scheduled
204   // before preceding call.
205   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
206     // Remember the call.
207     if (DAG->SUnits[su].getInstr()->isCall())
208       LastSequentialCall = &DAG->SUnits[su];
209     // Look for a compare that defines a predicate.
210     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
211       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
212     // Look for call and tfri* instructions.
213     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
214              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
215       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
216     // Prevent redundant register copies due to reads and writes of physical
217     // registers. The original motivation for this was the code generated
218     // between two calls, which are caused both the return value and the
219     // argument for the next call being in %r0.
220     // Example:
221     //   1: <call1>
222     //   2: %vreg = COPY %r0
223     //   3: <use of %vreg>
224     //   4: %r0 = ...
225     //   5: <call2>
226     // The scheduler would often swap 3 and 4, so an additional register is
227     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
228     // this.
229     // The code below checks for all the physical registers, not just R0/D0/V0.
230     else if (SchedRetvalOptimization) {
231       const MachineInstr *MI = DAG->SUnits[su].getInstr();
232       if (MI->isCopy() &&
233           Register::isPhysicalRegister(MI->getOperand(1).getReg())) {
234         // %vregX = COPY %r0
235         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
236         LastVRegUse.erase(MI->getOperand(1).getReg());
237       } else {
238         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
239           const MachineOperand &MO = MI->getOperand(i);
240           if (!MO.isReg())
241             continue;
242           if (MO.isUse() && !MI->isCopy() &&
243               VRegHoldingReg.count(MO.getReg())) {
244             // <use of %vregX>
245             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
246           } else if (MO.isDef() && Register::isPhysicalRegister(MO.getReg())) {
247             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
248                  ++AI) {
249               if (LastVRegUse.count(*AI) &&
250                   LastVRegUse[*AI] != &DAG->SUnits[su])
251                 // %r0 = ...
252                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
253               LastVRegUse.erase(*AI);
254             }
255           }
256         }
257       }
258     }
259   }
260 }
261 
262 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
263   if (!EnableCheckBankConflict)
264     return;
265 
266   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
267 
268   // Create artificial edges between loads that could likely cause a bank
269   // conflict. Since such loads would normally not have any dependency
270   // between them, we cannot rely on existing edges.
271   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
272     SUnit &S0 = DAG->SUnits[i];
273     MachineInstr &L0 = *S0.getInstr();
274     if (!L0.mayLoad() || L0.mayStore() ||
275         HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
276       continue;
277     int64_t Offset0;
278     unsigned Size0;
279     MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
280     // Is the access size is longer than the L1 cache line, skip the check.
281     if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
282       continue;
283     // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
284     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
285       SUnit &S1 = DAG->SUnits[j];
286       MachineInstr &L1 = *S1.getInstr();
287       if (!L1.mayLoad() || L1.mayStore() ||
288           HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
289         continue;
290       int64_t Offset1;
291       unsigned Size1;
292       MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
293       if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
294           BaseOp0->getReg() != BaseOp1->getReg())
295         continue;
296       // Check bits 3 and 4 of the offset: if they differ, a bank conflict
297       // is unlikely.
298       if (((Offset0 ^ Offset1) & 0x18) != 0)
299         continue;
300       // Bits 3 and 4 are the same, add an artificial edge and set extra
301       // latency.
302       SDep A(&S0, SDep::Artificial);
303       A.setLatency(1);
304       S1.addPred(A, true);
305     }
306   }
307 }
308 
309 /// Enable use of alias analysis during code generation (during MI
310 /// scheduling, DAGCombine, etc.).
311 bool HexagonSubtarget::useAA() const {
312   if (OptLevel != CodeGenOpt::None)
313     return true;
314   return false;
315 }
316 
317 /// Perform target specific adjustments to the latency of a schedule
318 /// dependency.
319 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst,
320                                              SDep &Dep) const {
321   MachineInstr *SrcInst = Src->getInstr();
322   MachineInstr *DstInst = Dst->getInstr();
323   if (!Src->isInstr() || !Dst->isInstr())
324     return;
325 
326   const HexagonInstrInfo *QII = getInstrInfo();
327 
328   // Instructions with .new operands have zero latency.
329   SmallSet<SUnit *, 4> ExclSrc;
330   SmallSet<SUnit *, 4> ExclDst;
331   if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
332       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
333     Dep.setLatency(0);
334     return;
335   }
336 
337   if (!hasV60Ops())
338     return;
339 
340   // Set the latency for a copy to zero since we hope that is will get removed.
341   if (DstInst->isCopy())
342     Dep.setLatency(0);
343 
344   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
345   // the correct latency.
346   if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
347     Register DReg = DstInst->getOperand(0).getReg();
348     MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
349     unsigned UseIdx = -1;
350     for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
351       const MachineOperand &MO = DDst->getOperand(OpNum);
352       if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
353         UseIdx = OpNum;
354         break;
355       }
356     }
357     int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
358                                                 0, *DDst, UseIdx));
359     DLatency = std::max(DLatency, 0);
360     Dep.setLatency((unsigned)DLatency);
361   }
362 
363   // Try to schedule uses near definitions to generate .cur.
364   ExclSrc.clear();
365   ExclDst.clear();
366   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
367       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
368     Dep.setLatency(0);
369     return;
370   }
371 
372   updateLatency(*SrcInst, *DstInst, Dep);
373 }
374 
375 void HexagonSubtarget::getPostRAMutations(
376     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
377   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
378   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
379   Mutations.push_back(std::make_unique<BankConflictMutation>());
380 }
381 
382 void HexagonSubtarget::getSMSMutations(
383     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
384   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
385   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
386 }
387 
388 // Pin the vtable to this file.
389 void HexagonSubtarget::anchor() {}
390 
391 bool HexagonSubtarget::enableMachineScheduler() const {
392   if (DisableHexagonMISched.getNumOccurrences())
393     return !DisableHexagonMISched;
394   return true;
395 }
396 
397 bool HexagonSubtarget::usePredicatedCalls() const {
398   return EnablePredicatedCalls;
399 }
400 
401 void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
402       MachineInstr &DstInst, SDep &Dep) const {
403   if (Dep.isArtificial()) {
404     Dep.setLatency(1);
405     return;
406   }
407 
408   if (!hasV60Ops())
409     return;
410 
411   auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
412 
413   // BSB scheduling.
414   if (QII.isHVXVec(SrcInst) || useBSBScheduling())
415     Dep.setLatency((Dep.getLatency() + 1) >> 1);
416 }
417 
418 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
419   MachineInstr *SrcI = Src->getInstr();
420   for (auto &I : Src->Succs) {
421     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
422       continue;
423     unsigned DepR = I.getReg();
424     int DefIdx = -1;
425     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
426       const MachineOperand &MO = SrcI->getOperand(OpNum);
427       if (MO.isReg() && MO.isDef() && MO.getReg() == DepR)
428         DefIdx = OpNum;
429     }
430     assert(DefIdx >= 0 && "Def Reg not found in Src MI");
431     MachineInstr *DstI = Dst->getInstr();
432     SDep T = I;
433     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
434       const MachineOperand &MO = DstI->getOperand(OpNum);
435       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
436         int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
437                                                    DefIdx, *DstI, OpNum));
438 
439         // For some instructions (ex: COPY), we might end up with < 0 latency
440         // as they don't have any Itinerary class associated with them.
441         Latency = std::max(Latency, 0);
442 
443         I.setLatency(Latency);
444         updateLatency(*SrcI, *DstI, I);
445       }
446     }
447 
448     // Update the latency of opposite edge too.
449     T.setSUnit(Src);
450     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
451     assert(F != Dst->Preds.end());
452     F->setLatency(I.getLatency());
453   }
454 }
455 
456 /// Change the latency between the two SUnits.
457 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
458       const {
459   for (auto &I : Src->Succs) {
460     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
461       continue;
462     SDep T = I;
463     I.setLatency(Lat);
464 
465     // Update the latency of opposite edge too.
466     T.setSUnit(Src);
467     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
468     assert(F != Dst->Preds.end());
469     F->setLatency(Lat);
470   }
471 }
472 
473 /// If the SUnit has a zero latency edge, return the other SUnit.
474 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
475   for (auto &I : Deps)
476     if (I.isAssignedRegDep() && I.getLatency() == 0 &&
477         !I.getSUnit()->getInstr()->isPseudo())
478       return I.getSUnit();
479   return nullptr;
480 }
481 
482 // Return true if these are the best two instructions to schedule
483 // together with a zero latency. Only one dependence should have a zero
484 // latency. If there are multiple choices, choose the best, and change
485 // the others, if needed.
486 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
487       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
488       SmallSet<SUnit*, 4> &ExclDst) const {
489   MachineInstr &SrcInst = *Src->getInstr();
490   MachineInstr &DstInst = *Dst->getInstr();
491 
492   // Ignore Boundary SU nodes as these have null instructions.
493   if (Dst->isBoundaryNode())
494     return false;
495 
496   if (SrcInst.isPHI() || DstInst.isPHI())
497     return false;
498 
499   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
500       !TII->canExecuteInBundle(SrcInst, DstInst))
501     return false;
502 
503   // The architecture doesn't allow three dependent instructions in the same
504   // packet. So, if the destination has a zero latency successor, then it's
505   // not a candidate for a zero latency predecessor.
506   if (getZeroLatency(Dst, Dst->Succs) != nullptr)
507     return false;
508 
509   // Check if the Dst instruction is the best candidate first.
510   SUnit *Best = nullptr;
511   SUnit *DstBest = nullptr;
512   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
513   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
514     // Check that Src doesn't have a better candidate.
515     DstBest = getZeroLatency(Src, Src->Succs);
516     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
517       Best = Dst;
518   }
519   if (Best != Dst)
520     return false;
521 
522   // The caller frequently adds the same dependence twice. If so, then
523   // return true for this case too.
524   if ((Src == SrcBest && Dst == DstBest ) ||
525       (SrcBest == nullptr && Dst == DstBest) ||
526       (Src == SrcBest && Dst == nullptr))
527     return true;
528 
529   // Reassign the latency for the previous bests, which requires setting
530   // the dependence edge in both directions.
531   if (SrcBest != nullptr) {
532     if (!hasV60Ops())
533       changeLatency(SrcBest, Dst, 1);
534     else
535       restoreLatency(SrcBest, Dst);
536   }
537   if (DstBest != nullptr) {
538     if (!hasV60Ops())
539       changeLatency(Src, DstBest, 1);
540     else
541       restoreLatency(Src, DstBest);
542   }
543 
544   // Attempt to find another opprotunity for zero latency in a different
545   // dependence.
546   if (SrcBest && DstBest)
547     // If there is an edge from SrcBest to DstBst, then try to change that
548     // to 0 now.
549     changeLatency(SrcBest, DstBest, 0);
550   else if (DstBest) {
551     // Check if the previous best destination instruction has a new zero
552     // latency dependence opportunity.
553     ExclSrc.insert(Src);
554     for (auto &I : DstBest->Preds)
555       if (ExclSrc.count(I.getSUnit()) == 0 &&
556           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
557         changeLatency(I.getSUnit(), DstBest, 0);
558   } else if (SrcBest) {
559     // Check if previous best source instruction has a new zero latency
560     // dependence opportunity.
561     ExclDst.insert(Dst);
562     for (auto &I : SrcBest->Succs)
563       if (ExclDst.count(I.getSUnit()) == 0 &&
564           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
565         changeLatency(SrcBest, I.getSUnit(), 0);
566   }
567 
568   return true;
569 }
570 
571 unsigned HexagonSubtarget::getL1CacheLineSize() const {
572   return 32;
573 }
574 
575 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
576   return 32;
577 }
578 
579 bool HexagonSubtarget::enableSubRegLiveness() const {
580   return EnableSubregLiveness;
581 }
582