1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Hexagon specific subclass of TargetSubtarget. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "HexagonSubtarget.h" 14 #include "Hexagon.h" 15 #include "HexagonInstrInfo.h" 16 #include "HexagonRegisterInfo.h" 17 #include "MCTargetDesc/HexagonMCTargetDesc.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineScheduler.h" 25 #include "llvm/CodeGen/ScheduleDAG.h" 26 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 27 #include "llvm/IR/IntrinsicsHexagon.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <map> 34 #include <optional> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "hexagon-subtarget" 39 40 #define GET_SUBTARGETINFO_CTOR 41 #define GET_SUBTARGETINFO_TARGET_DESC 42 #include "HexagonGenSubtargetInfo.inc" 43 44 static cl::opt<bool> EnableBSBSched("enable-bsb-sched", cl::Hidden, 45 cl::init(true)); 46 47 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", cl::Hidden, 48 cl::init(false)); 49 50 static cl::opt<bool> 51 EnableDotCurSched("enable-cur-sched", cl::Hidden, cl::init(true), 52 cl::desc("Enable the scheduler to generate .cur")); 53 54 static cl::opt<bool> 55 DisableHexagonMISched("disable-hexagon-misched", cl::Hidden, 56 cl::desc("Disable Hexagon MI Scheduling")); 57 58 static cl::opt<bool> OverrideLongCalls( 59 "hexagon-long-calls", cl::Hidden, 60 cl::desc("If present, forces/disables the use of long calls")); 61 62 static cl::opt<bool> 63 EnablePredicatedCalls("hexagon-pred-calls", cl::Hidden, 64 cl::desc("Consider calls to be predicable")); 65 66 static cl::opt<bool> SchedPredsCloser("sched-preds-closer", cl::Hidden, 67 cl::init(true)); 68 69 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization", 70 cl::Hidden, cl::init(true)); 71 72 static cl::opt<bool> EnableCheckBankConflict( 73 "hexagon-check-bank-conflict", cl::Hidden, cl::init(true), 74 cl::desc("Enable checking for cache bank conflicts")); 75 76 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU, 77 StringRef FS, const TargetMachine &TM) 78 : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS), 79 OptLevel(TM.getOptLevel()), 80 CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))), 81 TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)), 82 RegInfo(getHwMode()), TLInfo(TM, *this), 83 InstrItins(getInstrItineraryForCPU(CPUString)) { 84 Hexagon_MC::addArchSubtarget(this, FS); 85 // Beware of the default constructor of InstrItineraryData: it will 86 // reset all members to 0. 87 assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized"); 88 } 89 90 HexagonSubtarget & 91 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { 92 std::optional<Hexagon::ArchEnum> ArchVer = Hexagon::getCpu(CPUString); 93 if (ArchVer) 94 HexagonArchVersion = *ArchVer; 95 else 96 llvm_unreachable("Unrecognized Hexagon processor version"); 97 98 UseHVX128BOps = false; 99 UseHVX64BOps = false; 100 UseAudioOps = false; 101 UseLongCalls = false; 102 103 SubtargetFeatures Features(FS); 104 105 // Turn on QFloat if the HVX version is v68+. 106 // The function ParseSubtargetFeatures will set feature bits and initialize 107 // subtarget's variables all in one, so there isn't a good way to preprocess 108 // the feature string, other than by tinkering with it directly. 109 auto IsQFloatFS = [](StringRef F) { 110 return F == "+hvx-qfloat" || F == "-hvx-qfloat"; 111 }; 112 if (!llvm::count_if(Features.getFeatures(), IsQFloatFS)) { 113 auto getHvxVersion = [&Features](StringRef FS) -> StringRef { 114 for (StringRef F : llvm::reverse(Features.getFeatures())) { 115 if (F.starts_with("+hvxv")) 116 return F; 117 } 118 for (StringRef F : llvm::reverse(Features.getFeatures())) { 119 if (F == "-hvx") 120 return StringRef(); 121 if (F.starts_with("+hvx") || F == "-hvx") 122 return F.take_front(4); // Return "+hvx" or "-hvx". 123 } 124 return StringRef(); 125 }; 126 127 bool AddQFloat = false; 128 StringRef HvxVer = getHvxVersion(FS); 129 if (HvxVer.starts_with("+hvxv")) { 130 int Ver = 0; 131 if (!HvxVer.drop_front(5).consumeInteger(10, Ver) && Ver >= 68) 132 AddQFloat = true; 133 } else if (HvxVer == "+hvx") { 134 if (hasV68Ops()) 135 AddQFloat = true; 136 } 137 138 if (AddQFloat) 139 Features.AddFeature("+hvx-qfloat"); 140 } 141 142 std::string FeatureString = Features.getString(); 143 ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FeatureString); 144 145 if (useHVXV68Ops()) 146 UseHVXFloatingPoint = UseHVXIEEEFPOps || UseHVXQFloatOps; 147 148 if (UseHVXQFloatOps && UseHVXIEEEFPOps && UseHVXFloatingPoint) 149 LLVM_DEBUG( 150 dbgs() << "Behavior is undefined for simultaneous qfloat and ieee hvx codegen..."); 151 152 if (OverrideLongCalls.getPosition()) 153 UseLongCalls = OverrideLongCalls; 154 155 UseBSBScheduling = hasV60Ops() && EnableBSBSched; 156 157 if (isTinyCore()) { 158 // Tiny core has a single thread, so back-to-back scheduling is enabled by 159 // default. 160 if (!EnableBSBSched.getPosition()) 161 UseBSBScheduling = false; 162 } 163 164 FeatureBitset FeatureBits = getFeatureBits(); 165 if (HexagonDisableDuplex) 166 setFeatureBits(FeatureBits.reset(Hexagon::FeatureDuplex)); 167 setFeatureBits(Hexagon_MC::completeHVXFeatures(FeatureBits)); 168 169 return *this; 170 } 171 172 bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const { 173 if (!useHVXOps()) 174 return false; 175 if (Ty.isVector()) 176 Ty = Ty.getVectorElementType(); 177 if (IncludeBool && Ty == MVT::i1) 178 return true; 179 ArrayRef<MVT> ElemTypes = getHVXElementTypes(); 180 return llvm::is_contained(ElemTypes, Ty); 181 } 182 183 bool HexagonSubtarget::isHVXVectorType(EVT VecTy, bool IncludeBool) const { 184 if (!VecTy.isSimple()) 185 return false; 186 if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector()) 187 return false; 188 MVT ElemTy = VecTy.getSimpleVT().getVectorElementType(); 189 if (!IncludeBool && ElemTy == MVT::i1) 190 return false; 191 192 unsigned HwLen = getVectorLength(); 193 unsigned NumElems = VecTy.getVectorNumElements(); 194 ArrayRef<MVT> ElemTypes = getHVXElementTypes(); 195 196 if (IncludeBool && ElemTy == MVT::i1) { 197 // Boolean HVX vector types are formed from regular HVX vector types 198 // by replacing the element type with i1. 199 for (MVT T : ElemTypes) 200 if (NumElems * T.getSizeInBits() == 8 * HwLen) 201 return true; 202 return false; 203 } 204 205 unsigned VecWidth = VecTy.getSizeInBits(); 206 if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen) 207 return false; 208 return llvm::is_contained(ElemTypes, ElemTy); 209 } 210 211 bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const { 212 if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy)) 213 return false; 214 // Avoid types like <2 x i32*>. 215 Type *ScalTy = VecTy->getScalarType(); 216 if (!ScalTy->isIntegerTy() && 217 !(ScalTy->isFloatingPointTy() && useHVXFloatingPoint())) 218 return false; 219 // The given type may be something like <17 x i32>, which is not MVT, 220 // but can be represented as (non-simple) EVT. 221 EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false); 222 if (!Ty.getVectorElementType().isSimple()) 223 return false; 224 225 auto isHvxTy = [this, IncludeBool](MVT SimpleTy) { 226 if (isHVXVectorType(SimpleTy, IncludeBool)) 227 return true; 228 auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy); 229 return Action == TargetLoweringBase::TypeWidenVector; 230 }; 231 232 // Round up EVT to have power-of-2 elements, and keep checking if it 233 // qualifies for HVX, dividing it in half after each step. 234 MVT ElemTy = Ty.getVectorElementType().getSimpleVT(); 235 unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements()); 236 while (VecLen > 1) { 237 MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen); 238 if (SimpleTy.isValid() && isHvxTy(SimpleTy)) 239 return true; 240 VecLen /= 2; 241 } 242 243 return false; 244 } 245 246 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) { 247 for (SUnit &SU : DAG->SUnits) { 248 if (!SU.isInstr()) 249 continue; 250 SmallVector<SDep, 4> Erase; 251 for (auto &D : SU.Preds) 252 if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF) 253 Erase.push_back(D); 254 for (auto &E : Erase) 255 SU.removePred(E); 256 } 257 } 258 259 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) { 260 for (SUnit &SU : DAG->SUnits) { 261 // Update the latency of chain edges between v60 vector load or store 262 // instructions to be 1. These instruction cannot be scheduled in the 263 // same packet. 264 MachineInstr &MI1 = *SU.getInstr(); 265 auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII); 266 bool IsStoreMI1 = MI1.mayStore(); 267 bool IsLoadMI1 = MI1.mayLoad(); 268 if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1)) 269 continue; 270 for (SDep &SI : SU.Succs) { 271 if (SI.getKind() != SDep::Order || SI.getLatency() != 0) 272 continue; 273 MachineInstr &MI2 = *SI.getSUnit()->getInstr(); 274 if (!QII->isHVXVec(MI2)) 275 continue; 276 if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) { 277 SI.setLatency(1); 278 SU.setHeightDirty(); 279 // Change the dependence in the opposite direction too. 280 for (SDep &PI : SI.getSUnit()->Preds) { 281 if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order) 282 continue; 283 PI.setLatency(1); 284 SI.getSUnit()->setDepthDirty(); 285 } 286 } 287 } 288 } 289 } 290 291 // Check if a call and subsequent A2_tfrpi instructions should maintain 292 // scheduling affinity. We are looking for the TFRI to be consumed in 293 // the next instruction. This should help reduce the instances of 294 // double register pairs being allocated and scheduled before a call 295 // when not used until after the call. This situation is exacerbated 296 // by the fact that we allocate the pair from the callee saves list, 297 // leading to excess spills and restores. 298 bool HexagonSubtarget::CallMutation::shouldTFRICallBind( 299 const HexagonInstrInfo &HII, const SUnit &Inst1, 300 const SUnit &Inst2) const { 301 if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) 302 return false; 303 304 // TypeXTYPE are 64 bit operations. 305 unsigned Type = HII.getType(*Inst2.getInstr()); 306 return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op || 307 Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM; 308 } 309 310 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 311 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 312 SUnit* LastSequentialCall = nullptr; 313 // Map from virtual register to physical register from the copy. 314 DenseMap<unsigned, unsigned> VRegHoldingReg; 315 // Map from the physical register to the instruction that uses virtual 316 // register. This is used to create the barrier edge. 317 DenseMap<unsigned, SUnit *> LastVRegUse; 318 auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo(); 319 auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 320 321 // Currently we only catch the situation when compare gets scheduled 322 // before preceding call. 323 for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) { 324 // Remember the call. 325 if (DAG->SUnits[su].getInstr()->isCall()) 326 LastSequentialCall = &DAG->SUnits[su]; 327 // Look for a compare that defines a predicate. 328 else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall) 329 DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier)); 330 // Look for call and tfri* instructions. 331 else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 && 332 shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1])) 333 DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier)); 334 // Prevent redundant register copies due to reads and writes of physical 335 // registers. The original motivation for this was the code generated 336 // between two calls, which are caused both the return value and the 337 // argument for the next call being in %r0. 338 // Example: 339 // 1: <call1> 340 // 2: %vreg = COPY %r0 341 // 3: <use of %vreg> 342 // 4: %r0 = ... 343 // 5: <call2> 344 // The scheduler would often swap 3 and 4, so an additional register is 345 // needed. This code inserts a Barrier dependence between 3 & 4 to prevent 346 // this. 347 // The code below checks for all the physical registers, not just R0/D0/V0. 348 else if (SchedRetvalOptimization) { 349 const MachineInstr *MI = DAG->SUnits[su].getInstr(); 350 if (MI->isCopy() && MI->getOperand(1).getReg().isPhysical()) { 351 // %vregX = COPY %r0 352 VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg(); 353 LastVRegUse.erase(MI->getOperand(1).getReg()); 354 } else { 355 for (const MachineOperand &MO : MI->operands()) { 356 if (!MO.isReg()) 357 continue; 358 if (MO.isUse() && !MI->isCopy() && 359 VRegHoldingReg.count(MO.getReg())) { 360 // <use of %vregX> 361 LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su]; 362 } else if (MO.isDef() && MO.getReg().isPhysical()) { 363 for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid(); 364 ++AI) { 365 if (LastVRegUse.count(*AI) && 366 LastVRegUse[*AI] != &DAG->SUnits[su]) 367 // %r0 = ... 368 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier)); 369 LastVRegUse.erase(*AI); 370 } 371 } 372 } 373 } 374 } 375 } 376 } 377 378 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) { 379 if (!EnableCheckBankConflict) 380 return; 381 382 const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII); 383 384 // Create artificial edges between loads that could likely cause a bank 385 // conflict. Since such loads would normally not have any dependency 386 // between them, we cannot rely on existing edges. 387 for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) { 388 SUnit &S0 = DAG->SUnits[i]; 389 MachineInstr &L0 = *S0.getInstr(); 390 if (!L0.mayLoad() || L0.mayStore() || 391 HII.getAddrMode(L0) != HexagonII::BaseImmOffset) 392 continue; 393 int64_t Offset0; 394 LocationSize Size0 = 0; 395 MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0); 396 // Is the access size is longer than the L1 cache line, skip the check. 397 if (BaseOp0 == nullptr || !BaseOp0->isReg() || !Size0.hasValue() || 398 Size0.getValue() >= 32) 399 continue; 400 // Scan only up to 32 instructions ahead (to avoid n^2 complexity). 401 for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) { 402 SUnit &S1 = DAG->SUnits[j]; 403 MachineInstr &L1 = *S1.getInstr(); 404 if (!L1.mayLoad() || L1.mayStore() || 405 HII.getAddrMode(L1) != HexagonII::BaseImmOffset) 406 continue; 407 int64_t Offset1; 408 LocationSize Size1 = 0; 409 MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1); 410 if (BaseOp1 == nullptr || !BaseOp1->isReg() || !Size0.hasValue() || 411 Size1.getValue() >= 32 || BaseOp0->getReg() != BaseOp1->getReg()) 412 continue; 413 // Check bits 3 and 4 of the offset: if they differ, a bank conflict 414 // is unlikely. 415 if (((Offset0 ^ Offset1) & 0x18) != 0) 416 continue; 417 // Bits 3 and 4 are the same, add an artificial edge and set extra 418 // latency. 419 SDep A(&S0, SDep::Artificial); 420 A.setLatency(1); 421 S1.addPred(A, true); 422 } 423 } 424 } 425 426 /// Enable use of alias analysis during code generation (during MI 427 /// scheduling, DAGCombine, etc.). 428 bool HexagonSubtarget::useAA() const { 429 if (OptLevel != CodeGenOptLevel::None) 430 return true; 431 return false; 432 } 433 434 /// Perform target specific adjustments to the latency of a schedule 435 /// dependency. 436 void HexagonSubtarget::adjustSchedDependency( 437 SUnit *Src, int SrcOpIdx, SUnit *Dst, int DstOpIdx, SDep &Dep, 438 const TargetSchedModel *SchedModel) const { 439 if (!Src->isInstr() || !Dst->isInstr()) 440 return; 441 442 MachineInstr *SrcInst = Src->getInstr(); 443 MachineInstr *DstInst = Dst->getInstr(); 444 const HexagonInstrInfo *QII = getInstrInfo(); 445 446 // Instructions with .new operands have zero latency. 447 SmallSet<SUnit *, 4> ExclSrc; 448 SmallSet<SUnit *, 4> ExclDst; 449 if (QII->canExecuteInBundle(*SrcInst, *DstInst) && 450 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { 451 Dep.setLatency(0); 452 return; 453 } 454 455 // Set the latency for a copy to zero since we hope that is will get 456 // removed. 457 if (DstInst->isCopy()) 458 Dep.setLatency(0); 459 460 // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine 461 // the correct latency. 462 // If there are multiple uses of the def of COPY/REG_SEQUENCE, set the latency 463 // only if the latencies on all the uses are equal, otherwise set it to 464 // default. 465 if ((DstInst->isRegSequence() || DstInst->isCopy())) { 466 Register DReg = DstInst->getOperand(0).getReg(); 467 std::optional<unsigned> DLatency; 468 for (const auto &DDep : Dst->Succs) { 469 MachineInstr *DDst = DDep.getSUnit()->getInstr(); 470 int UseIdx = -1; 471 for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) { 472 const MachineOperand &MO = DDst->getOperand(OpNum); 473 if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) { 474 UseIdx = OpNum; 475 break; 476 } 477 } 478 479 if (UseIdx == -1) 480 continue; 481 482 std::optional<unsigned> Latency = 483 InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0, *DDst, UseIdx); 484 485 // Set DLatency for the first time. 486 if (!DLatency) 487 DLatency = Latency; 488 489 // For multiple uses, if the Latency is different across uses, reset 490 // DLatency. 491 if (DLatency != Latency) { 492 DLatency = std::nullopt; 493 break; 494 } 495 } 496 Dep.setLatency(DLatency ? *DLatency : 0); 497 } 498 499 // Try to schedule uses near definitions to generate .cur. 500 ExclSrc.clear(); 501 ExclDst.clear(); 502 if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) && 503 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { 504 Dep.setLatency(0); 505 return; 506 } 507 int Latency = Dep.getLatency(); 508 bool IsArtificial = Dep.isArtificial(); 509 Latency = updateLatency(*SrcInst, *DstInst, IsArtificial, Latency); 510 Dep.setLatency(Latency); 511 } 512 513 void HexagonSubtarget::getPostRAMutations( 514 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 515 Mutations.push_back(std::make_unique<UsrOverflowMutation>()); 516 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>()); 517 Mutations.push_back(std::make_unique<BankConflictMutation>()); 518 } 519 520 void HexagonSubtarget::getSMSMutations( 521 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 522 Mutations.push_back(std::make_unique<UsrOverflowMutation>()); 523 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>()); 524 } 525 526 // Pin the vtable to this file. 527 void HexagonSubtarget::anchor() {} 528 529 bool HexagonSubtarget::enableMachineScheduler() const { 530 if (DisableHexagonMISched.getNumOccurrences()) 531 return !DisableHexagonMISched; 532 return true; 533 } 534 535 bool HexagonSubtarget::usePredicatedCalls() const { 536 return EnablePredicatedCalls; 537 } 538 539 int HexagonSubtarget::updateLatency(MachineInstr &SrcInst, 540 MachineInstr &DstInst, bool IsArtificial, 541 int Latency) const { 542 if (IsArtificial) 543 return 1; 544 if (!hasV60Ops()) 545 return Latency; 546 547 auto &QII = static_cast<const HexagonInstrInfo &>(*getInstrInfo()); 548 // BSB scheduling. 549 if (QII.isHVXVec(SrcInst) || useBSBScheduling()) 550 Latency = (Latency + 1) >> 1; 551 return Latency; 552 } 553 554 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const { 555 MachineInstr *SrcI = Src->getInstr(); 556 for (auto &I : Src->Succs) { 557 if (!I.isAssignedRegDep() || I.getSUnit() != Dst) 558 continue; 559 Register DepR = I.getReg(); 560 int DefIdx = -1; 561 for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) { 562 const MachineOperand &MO = SrcI->getOperand(OpNum); 563 bool IsSameOrSubReg = false; 564 if (MO.isReg()) { 565 Register MOReg = MO.getReg(); 566 if (DepR.isVirtual()) { 567 IsSameOrSubReg = (MOReg == DepR); 568 } else { 569 IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg); 570 } 571 if (MO.isDef() && IsSameOrSubReg) 572 DefIdx = OpNum; 573 } 574 } 575 assert(DefIdx >= 0 && "Def Reg not found in Src MI"); 576 MachineInstr *DstI = Dst->getInstr(); 577 SDep T = I; 578 for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) { 579 const MachineOperand &MO = DstI->getOperand(OpNum); 580 if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) { 581 std::optional<unsigned> Latency = InstrInfo.getOperandLatency( 582 &InstrItins, *SrcI, DefIdx, *DstI, OpNum); 583 584 // For some instructions (ex: COPY), we might end up with < 0 latency 585 // as they don't have any Itinerary class associated with them. 586 if (!Latency) 587 Latency = 0; 588 bool IsArtificial = I.isArtificial(); 589 Latency = updateLatency(*SrcI, *DstI, IsArtificial, *Latency); 590 I.setLatency(*Latency); 591 } 592 } 593 594 // Update the latency of opposite edge too. 595 T.setSUnit(Src); 596 auto F = find(Dst->Preds, T); 597 assert(F != Dst->Preds.end()); 598 F->setLatency(I.getLatency()); 599 } 600 } 601 602 /// Change the latency between the two SUnits. 603 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat) 604 const { 605 for (auto &I : Src->Succs) { 606 if (!I.isAssignedRegDep() || I.getSUnit() != Dst) 607 continue; 608 SDep T = I; 609 I.setLatency(Lat); 610 611 // Update the latency of opposite edge too. 612 T.setSUnit(Src); 613 auto F = find(Dst->Preds, T); 614 assert(F != Dst->Preds.end()); 615 F->setLatency(Lat); 616 } 617 } 618 619 /// If the SUnit has a zero latency edge, return the other SUnit. 620 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) { 621 for (auto &I : Deps) 622 if (I.isAssignedRegDep() && I.getLatency() == 0 && 623 !I.getSUnit()->getInstr()->isPseudo()) 624 return I.getSUnit(); 625 return nullptr; 626 } 627 628 // Return true if these are the best two instructions to schedule 629 // together with a zero latency. Only one dependence should have a zero 630 // latency. If there are multiple choices, choose the best, and change 631 // the others, if needed. 632 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst, 633 const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc, 634 SmallSet<SUnit*, 4> &ExclDst) const { 635 MachineInstr &SrcInst = *Src->getInstr(); 636 MachineInstr &DstInst = *Dst->getInstr(); 637 638 // Ignore Boundary SU nodes as these have null instructions. 639 if (Dst->isBoundaryNode()) 640 return false; 641 642 if (SrcInst.isPHI() || DstInst.isPHI()) 643 return false; 644 645 if (!TII->isToBeScheduledASAP(SrcInst, DstInst) && 646 !TII->canExecuteInBundle(SrcInst, DstInst)) 647 return false; 648 649 // The architecture doesn't allow three dependent instructions in the same 650 // packet. So, if the destination has a zero latency successor, then it's 651 // not a candidate for a zero latency predecessor. 652 if (getZeroLatency(Dst, Dst->Succs) != nullptr) 653 return false; 654 655 // Check if the Dst instruction is the best candidate first. 656 SUnit *Best = nullptr; 657 SUnit *DstBest = nullptr; 658 SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds); 659 if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) { 660 // Check that Src doesn't have a better candidate. 661 DstBest = getZeroLatency(Src, Src->Succs); 662 if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum) 663 Best = Dst; 664 } 665 if (Best != Dst) 666 return false; 667 668 // The caller frequently adds the same dependence twice. If so, then 669 // return true for this case too. 670 if ((Src == SrcBest && Dst == DstBest ) || 671 (SrcBest == nullptr && Dst == DstBest) || 672 (Src == SrcBest && Dst == nullptr)) 673 return true; 674 675 // Reassign the latency for the previous bests, which requires setting 676 // the dependence edge in both directions. 677 if (SrcBest != nullptr) { 678 if (!hasV60Ops()) 679 changeLatency(SrcBest, Dst, 1); 680 else 681 restoreLatency(SrcBest, Dst); 682 } 683 if (DstBest != nullptr) { 684 if (!hasV60Ops()) 685 changeLatency(Src, DstBest, 1); 686 else 687 restoreLatency(Src, DstBest); 688 } 689 690 // Attempt to find another opprotunity for zero latency in a different 691 // dependence. 692 if (SrcBest && DstBest) 693 // If there is an edge from SrcBest to DstBst, then try to change that 694 // to 0 now. 695 changeLatency(SrcBest, DstBest, 0); 696 else if (DstBest) { 697 // Check if the previous best destination instruction has a new zero 698 // latency dependence opportunity. 699 ExclSrc.insert(Src); 700 for (auto &I : DstBest->Preds) 701 if (ExclSrc.count(I.getSUnit()) == 0 && 702 isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst)) 703 changeLatency(I.getSUnit(), DstBest, 0); 704 } else if (SrcBest) { 705 // Check if previous best source instruction has a new zero latency 706 // dependence opportunity. 707 ExclDst.insert(Dst); 708 for (auto &I : SrcBest->Succs) 709 if (ExclDst.count(I.getSUnit()) == 0 && 710 isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst)) 711 changeLatency(SrcBest, I.getSUnit(), 0); 712 } 713 714 return true; 715 } 716 717 unsigned HexagonSubtarget::getL1CacheLineSize() const { 718 return 32; 719 } 720 721 unsigned HexagonSubtarget::getL1PrefetchDistance() const { 722 return 32; 723 } 724 725 bool HexagonSubtarget::enableSubRegLiveness() const { return true; } 726 727 Intrinsic::ID HexagonSubtarget::getIntrinsicId(unsigned Opc) const { 728 struct Scalar { 729 unsigned Opcode; 730 Intrinsic::ID IntId; 731 }; 732 struct Hvx { 733 unsigned Opcode; 734 Intrinsic::ID Int64Id, Int128Id; 735 }; 736 737 static Scalar ScalarInts[] = { 738 #define GET_SCALAR_INTRINSICS 739 #include "HexagonDepInstrIntrinsics.inc" 740 #undef GET_SCALAR_INTRINSICS 741 }; 742 743 static Hvx HvxInts[] = { 744 #define GET_HVX_INTRINSICS 745 #include "HexagonDepInstrIntrinsics.inc" 746 #undef GET_HVX_INTRINSICS 747 }; 748 749 const auto CmpOpcode = [](auto A, auto B) { return A.Opcode < B.Opcode; }; 750 [[maybe_unused]] static bool SortedScalar = 751 (llvm::sort(ScalarInts, CmpOpcode), true); 752 [[maybe_unused]] static bool SortedHvx = 753 (llvm::sort(HvxInts, CmpOpcode), true); 754 755 auto [BS, ES] = std::make_pair(std::begin(ScalarInts), std::end(ScalarInts)); 756 auto [BH, EH] = std::make_pair(std::begin(HvxInts), std::end(HvxInts)); 757 758 auto FoundScalar = std::lower_bound(BS, ES, Scalar{Opc, 0}, CmpOpcode); 759 if (FoundScalar != ES && FoundScalar->Opcode == Opc) 760 return FoundScalar->IntId; 761 762 auto FoundHvx = std::lower_bound(BH, EH, Hvx{Opc, 0, 0}, CmpOpcode); 763 if (FoundHvx != EH && FoundHvx->Opcode == Opc) { 764 unsigned HwLen = getVectorLength(); 765 if (HwLen == 64) 766 return FoundHvx->Int64Id; 767 if (HwLen == 128) 768 return FoundHvx->Int128Id; 769 } 770 771 std::string error = "Invalid opcode (" + std::to_string(Opc) + ")"; 772 llvm_unreachable(error.c_str()); 773 return 0; 774 } 775