xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Hexagon specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonSubtarget.h"
14 #include "Hexagon.h"
15 #include "HexagonInstrInfo.h"
16 #include "HexagonRegisterInfo.h"
17 #include "MCTargetDesc/HexagonMCTargetDesc.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
27 #include "llvm/IR/IntrinsicsHexagon.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <map>
34 #include <optional>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "hexagon-subtarget"
39 
40 #define GET_SUBTARGETINFO_CTOR
41 #define GET_SUBTARGETINFO_TARGET_DESC
42 #include "HexagonGenSubtargetInfo.inc"
43 
44 static cl::opt<bool> EnableBSBSched("enable-bsb-sched", cl::Hidden,
45                                     cl::init(true));
46 
47 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", cl::Hidden,
48                                           cl::init(false));
49 
50 static cl::opt<bool>
51     EnableDotCurSched("enable-cur-sched", cl::Hidden, cl::init(true),
52                       cl::desc("Enable the scheduler to generate .cur"));
53 
54 static cl::opt<bool>
55     DisableHexagonMISched("disable-hexagon-misched", cl::Hidden,
56                           cl::desc("Disable Hexagon MI Scheduling"));
57 
58 static cl::opt<bool> OverrideLongCalls(
59     "hexagon-long-calls", cl::Hidden,
60     cl::desc("If present, forces/disables the use of long calls"));
61 
62 static cl::opt<bool>
63     EnablePredicatedCalls("hexagon-pred-calls", cl::Hidden,
64                           cl::desc("Consider calls to be predicable"));
65 
66 static cl::opt<bool> SchedPredsCloser("sched-preds-closer", cl::Hidden,
67                                       cl::init(true));
68 
69 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
70                                              cl::Hidden, cl::init(true));
71 
72 static cl::opt<bool> EnableCheckBankConflict(
73     "hexagon-check-bank-conflict", cl::Hidden, cl::init(true),
74     cl::desc("Enable checking for cache bank conflicts"));
75 
76 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
77                                    StringRef FS, const TargetMachine &TM)
78     : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
79       OptLevel(TM.getOptLevel()),
80       CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
81       TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
82       RegInfo(getHwMode()), TLInfo(TM, *this),
83       InstrItins(getInstrItineraryForCPU(CPUString)) {
84   Hexagon_MC::addArchSubtarget(this, FS);
85   // Beware of the default constructor of InstrItineraryData: it will
86   // reset all members to 0.
87   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
88 }
89 
90 HexagonSubtarget &
91 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
92   std::optional<Hexagon::ArchEnum> ArchVer = Hexagon::getCpu(CPUString);
93   if (ArchVer)
94     HexagonArchVersion = *ArchVer;
95   else
96     llvm_unreachable("Unrecognized Hexagon processor version");
97 
98   UseHVX128BOps = false;
99   UseHVX64BOps = false;
100   UseAudioOps = false;
101   UseLongCalls = false;
102 
103   SubtargetFeatures Features(FS);
104 
105   // Turn on QFloat if the HVX version is v68+.
106   // The function ParseSubtargetFeatures will set feature bits and initialize
107   // subtarget's variables all in one, so there isn't a good way to preprocess
108   // the feature string, other than by tinkering with it directly.
109   auto IsQFloatFS = [](StringRef F) {
110     return F == "+hvx-qfloat" || F == "-hvx-qfloat";
111   };
112   if (!llvm::count_if(Features.getFeatures(), IsQFloatFS)) {
113     auto getHvxVersion = [&Features](StringRef FS) -> StringRef {
114       for (StringRef F : llvm::reverse(Features.getFeatures())) {
115         if (F.starts_with("+hvxv"))
116           return F;
117       }
118       for (StringRef F : llvm::reverse(Features.getFeatures())) {
119         if (F == "-hvx")
120           return StringRef();
121         if (F.starts_with("+hvx") || F == "-hvx")
122           return F.take_front(4);  // Return "+hvx" or "-hvx".
123       }
124       return StringRef();
125     };
126 
127     bool AddQFloat = false;
128     StringRef HvxVer = getHvxVersion(FS);
129     if (HvxVer.starts_with("+hvxv")) {
130       int Ver = 0;
131       if (!HvxVer.drop_front(5).consumeInteger(10, Ver) && Ver >= 68)
132         AddQFloat = true;
133     } else if (HvxVer == "+hvx") {
134       if (hasV68Ops())
135         AddQFloat = true;
136     }
137 
138     if (AddQFloat)
139       Features.AddFeature("+hvx-qfloat");
140   }
141 
142   std::string FeatureString = Features.getString();
143   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FeatureString);
144 
145   if (useHVXV68Ops())
146     UseHVXFloatingPoint = UseHVXIEEEFPOps || UseHVXQFloatOps;
147 
148   if (UseHVXQFloatOps && UseHVXIEEEFPOps && UseHVXFloatingPoint)
149     LLVM_DEBUG(
150         dbgs() << "Behavior is undefined for simultaneous qfloat and ieee hvx codegen...");
151 
152   if (OverrideLongCalls.getPosition())
153     UseLongCalls = OverrideLongCalls;
154 
155   UseBSBScheduling = hasV60Ops() && EnableBSBSched;
156 
157   if (isTinyCore()) {
158     // Tiny core has a single thread, so back-to-back scheduling is enabled by
159     // default.
160     if (!EnableBSBSched.getPosition())
161       UseBSBScheduling = false;
162   }
163 
164   FeatureBitset FeatureBits = getFeatureBits();
165   if (HexagonDisableDuplex)
166     setFeatureBits(FeatureBits.reset(Hexagon::FeatureDuplex));
167   setFeatureBits(Hexagon_MC::completeHVXFeatures(FeatureBits));
168 
169   return *this;
170 }
171 
172 bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const {
173   if (!useHVXOps())
174     return false;
175   if (Ty.isVector())
176     Ty = Ty.getVectorElementType();
177   if (IncludeBool && Ty == MVT::i1)
178     return true;
179   ArrayRef<MVT> ElemTypes = getHVXElementTypes();
180   return llvm::is_contained(ElemTypes, Ty);
181 }
182 
183 bool HexagonSubtarget::isHVXVectorType(EVT VecTy, bool IncludeBool) const {
184   if (!VecTy.isSimple())
185     return false;
186   if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector())
187     return false;
188   MVT ElemTy = VecTy.getSimpleVT().getVectorElementType();
189   if (!IncludeBool && ElemTy == MVT::i1)
190     return false;
191 
192   unsigned HwLen = getVectorLength();
193   unsigned NumElems = VecTy.getVectorNumElements();
194   ArrayRef<MVT> ElemTypes = getHVXElementTypes();
195 
196   if (IncludeBool && ElemTy == MVT::i1) {
197     // Boolean HVX vector types are formed from regular HVX vector types
198     // by replacing the element type with i1.
199     for (MVT T : ElemTypes)
200       if (NumElems * T.getSizeInBits() == 8 * HwLen)
201         return true;
202     return false;
203   }
204 
205   unsigned VecWidth = VecTy.getSizeInBits();
206   if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen)
207     return false;
208   return llvm::is_contained(ElemTypes, ElemTy);
209 }
210 
211 bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const {
212   if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy))
213     return false;
214   // Avoid types like <2 x i32*>.
215   Type *ScalTy = VecTy->getScalarType();
216   if (!ScalTy->isIntegerTy() &&
217       !(ScalTy->isFloatingPointTy() && useHVXFloatingPoint()))
218     return false;
219   // The given type may be something like <17 x i32>, which is not MVT,
220   // but can be represented as (non-simple) EVT.
221   EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false);
222   if (!Ty.getVectorElementType().isSimple())
223     return false;
224 
225   auto isHvxTy = [this, IncludeBool](MVT SimpleTy) {
226     if (isHVXVectorType(SimpleTy, IncludeBool))
227       return true;
228     auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy);
229     return Action == TargetLoweringBase::TypeWidenVector;
230   };
231 
232   // Round up EVT to have power-of-2 elements, and keep checking if it
233   // qualifies for HVX, dividing it in half after each step.
234   MVT ElemTy = Ty.getVectorElementType().getSimpleVT();
235   unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements());
236   while (VecLen > 1) {
237     MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen);
238     if (SimpleTy.isValid() && isHvxTy(SimpleTy))
239       return true;
240     VecLen /= 2;
241   }
242 
243   return false;
244 }
245 
246 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
247   for (SUnit &SU : DAG->SUnits) {
248     if (!SU.isInstr())
249       continue;
250     SmallVector<SDep, 4> Erase;
251     for (auto &D : SU.Preds)
252       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
253         Erase.push_back(D);
254     for (auto &E : Erase)
255       SU.removePred(E);
256   }
257 }
258 
259 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
260   for (SUnit &SU : DAG->SUnits) {
261     // Update the latency of chain edges between v60 vector load or store
262     // instructions to be 1. These instruction cannot be scheduled in the
263     // same packet.
264     MachineInstr &MI1 = *SU.getInstr();
265     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
266     bool IsStoreMI1 = MI1.mayStore();
267     bool IsLoadMI1 = MI1.mayLoad();
268     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
269       continue;
270     for (SDep &SI : SU.Succs) {
271       if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
272         continue;
273       MachineInstr &MI2 = *SI.getSUnit()->getInstr();
274       if (!QII->isHVXVec(MI2))
275         continue;
276       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
277         SI.setLatency(1);
278         SU.setHeightDirty();
279         // Change the dependence in the opposite direction too.
280         for (SDep &PI : SI.getSUnit()->Preds) {
281           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
282             continue;
283           PI.setLatency(1);
284           SI.getSUnit()->setDepthDirty();
285         }
286       }
287     }
288   }
289 }
290 
291 // Check if a call and subsequent A2_tfrpi instructions should maintain
292 // scheduling affinity. We are looking for the TFRI to be consumed in
293 // the next instruction. This should help reduce the instances of
294 // double register pairs being allocated and scheduled before a call
295 // when not used until after the call. This situation is exacerbated
296 // by the fact that we allocate the pair from the callee saves list,
297 // leading to excess spills and restores.
298 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
299       const HexagonInstrInfo &HII, const SUnit &Inst1,
300       const SUnit &Inst2) const {
301   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
302     return false;
303 
304   // TypeXTYPE are 64 bit operations.
305   unsigned Type = HII.getType(*Inst2.getInstr());
306   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
307          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
308 }
309 
310 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
311   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
312   SUnit* LastSequentialCall = nullptr;
313   // Map from virtual register to physical register from the copy.
314   DenseMap<unsigned, unsigned> VRegHoldingReg;
315   // Map from the physical register to the instruction that uses virtual
316   // register. This is used to create the barrier edge.
317   DenseMap<unsigned, SUnit *> LastVRegUse;
318   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
319   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
320 
321   // Currently we only catch the situation when compare gets scheduled
322   // before preceding call.
323   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
324     // Remember the call.
325     if (DAG->SUnits[su].getInstr()->isCall())
326       LastSequentialCall = &DAG->SUnits[su];
327     // Look for a compare that defines a predicate.
328     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
329       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
330     // Look for call and tfri* instructions.
331     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
332              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
333       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
334     // Prevent redundant register copies due to reads and writes of physical
335     // registers. The original motivation for this was the code generated
336     // between two calls, which are caused both the return value and the
337     // argument for the next call being in %r0.
338     // Example:
339     //   1: <call1>
340     //   2: %vreg = COPY %r0
341     //   3: <use of %vreg>
342     //   4: %r0 = ...
343     //   5: <call2>
344     // The scheduler would often swap 3 and 4, so an additional register is
345     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
346     // this.
347     // The code below checks for all the physical registers, not just R0/D0/V0.
348     else if (SchedRetvalOptimization) {
349       const MachineInstr *MI = DAG->SUnits[su].getInstr();
350       if (MI->isCopy() && MI->getOperand(1).getReg().isPhysical()) {
351         // %vregX = COPY %r0
352         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
353         LastVRegUse.erase(MI->getOperand(1).getReg());
354       } else {
355         for (const MachineOperand &MO : MI->operands()) {
356           if (!MO.isReg())
357             continue;
358           if (MO.isUse() && !MI->isCopy() &&
359               VRegHoldingReg.count(MO.getReg())) {
360             // <use of %vregX>
361             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
362           } else if (MO.isDef() && MO.getReg().isPhysical()) {
363             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
364                  ++AI) {
365               if (LastVRegUse.count(*AI) &&
366                   LastVRegUse[*AI] != &DAG->SUnits[su])
367                 // %r0 = ...
368                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
369               LastVRegUse.erase(*AI);
370             }
371           }
372         }
373       }
374     }
375   }
376 }
377 
378 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
379   if (!EnableCheckBankConflict)
380     return;
381 
382   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
383 
384   // Create artificial edges between loads that could likely cause a bank
385   // conflict. Since such loads would normally not have any dependency
386   // between them, we cannot rely on existing edges.
387   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
388     SUnit &S0 = DAG->SUnits[i];
389     MachineInstr &L0 = *S0.getInstr();
390     if (!L0.mayLoad() || L0.mayStore() ||
391         HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
392       continue;
393     int64_t Offset0;
394     LocationSize Size0 = 0;
395     MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
396     // Is the access size is longer than the L1 cache line, skip the check.
397     if (BaseOp0 == nullptr || !BaseOp0->isReg() || !Size0.hasValue() ||
398         Size0.getValue() >= 32)
399       continue;
400     // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
401     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
402       SUnit &S1 = DAG->SUnits[j];
403       MachineInstr &L1 = *S1.getInstr();
404       if (!L1.mayLoad() || L1.mayStore() ||
405           HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
406         continue;
407       int64_t Offset1;
408       LocationSize Size1 = 0;
409       MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
410       if (BaseOp1 == nullptr || !BaseOp1->isReg() || !Size0.hasValue() ||
411           Size1.getValue() >= 32 || BaseOp0->getReg() != BaseOp1->getReg())
412         continue;
413       // Check bits 3 and 4 of the offset: if they differ, a bank conflict
414       // is unlikely.
415       if (((Offset0 ^ Offset1) & 0x18) != 0)
416         continue;
417       // Bits 3 and 4 are the same, add an artificial edge and set extra
418       // latency.
419       SDep A(&S0, SDep::Artificial);
420       A.setLatency(1);
421       S1.addPred(A, true);
422     }
423   }
424 }
425 
426 /// Enable use of alias analysis during code generation (during MI
427 /// scheduling, DAGCombine, etc.).
428 bool HexagonSubtarget::useAA() const {
429   if (OptLevel != CodeGenOptLevel::None)
430     return true;
431   return false;
432 }
433 
434 /// Perform target specific adjustments to the latency of a schedule
435 /// dependency.
436 void HexagonSubtarget::adjustSchedDependency(
437     SUnit *Src, int SrcOpIdx, SUnit *Dst, int DstOpIdx, SDep &Dep,
438     const TargetSchedModel *SchedModel) const {
439   if (!Src->isInstr() || !Dst->isInstr())
440     return;
441 
442   MachineInstr *SrcInst = Src->getInstr();
443   MachineInstr *DstInst = Dst->getInstr();
444   const HexagonInstrInfo *QII = getInstrInfo();
445 
446   // Instructions with .new operands have zero latency.
447   SmallSet<SUnit *, 4> ExclSrc;
448   SmallSet<SUnit *, 4> ExclDst;
449   if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
450       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
451     Dep.setLatency(0);
452     return;
453   }
454 
455   // Set the latency for a copy to zero since we hope that is will get
456   // removed.
457   if (DstInst->isCopy())
458     Dep.setLatency(0);
459 
460   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
461   // the correct latency.
462   // If there are multiple uses of the def of COPY/REG_SEQUENCE, set the latency
463   // only if the latencies on all the uses are equal, otherwise set it to
464   // default.
465   if ((DstInst->isRegSequence() || DstInst->isCopy())) {
466     Register DReg = DstInst->getOperand(0).getReg();
467     std::optional<unsigned> DLatency;
468     for (const auto &DDep : Dst->Succs) {
469       MachineInstr *DDst = DDep.getSUnit()->getInstr();
470       int UseIdx = -1;
471       for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
472         const MachineOperand &MO = DDst->getOperand(OpNum);
473         if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
474           UseIdx = OpNum;
475           break;
476         }
477       }
478 
479       if (UseIdx == -1)
480         continue;
481 
482       std::optional<unsigned> Latency =
483           InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0, *DDst, UseIdx);
484 
485       // Set DLatency for the first time.
486       if (!DLatency)
487         DLatency = Latency;
488 
489       // For multiple uses, if the Latency is different across uses, reset
490       // DLatency.
491       if (DLatency != Latency) {
492         DLatency = std::nullopt;
493         break;
494       }
495     }
496     Dep.setLatency(DLatency ? *DLatency : 0);
497   }
498 
499   // Try to schedule uses near definitions to generate .cur.
500   ExclSrc.clear();
501   ExclDst.clear();
502   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
503       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
504     Dep.setLatency(0);
505     return;
506   }
507   int Latency = Dep.getLatency();
508   bool IsArtificial = Dep.isArtificial();
509   Latency = updateLatency(*SrcInst, *DstInst, IsArtificial, Latency);
510   Dep.setLatency(Latency);
511 }
512 
513 void HexagonSubtarget::getPostRAMutations(
514     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
515   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
516   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
517   Mutations.push_back(std::make_unique<BankConflictMutation>());
518 }
519 
520 void HexagonSubtarget::getSMSMutations(
521     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
522   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
523   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
524 }
525 
526 // Pin the vtable to this file.
527 void HexagonSubtarget::anchor() {}
528 
529 bool HexagonSubtarget::enableMachineScheduler() const {
530   if (DisableHexagonMISched.getNumOccurrences())
531     return !DisableHexagonMISched;
532   return true;
533 }
534 
535 bool HexagonSubtarget::usePredicatedCalls() const {
536   return EnablePredicatedCalls;
537 }
538 
539 int HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
540                                     MachineInstr &DstInst, bool IsArtificial,
541                                     int Latency) const {
542   if (IsArtificial)
543     return 1;
544   if (!hasV60Ops())
545     return Latency;
546 
547   auto &QII = static_cast<const HexagonInstrInfo &>(*getInstrInfo());
548   // BSB scheduling.
549   if (QII.isHVXVec(SrcInst) || useBSBScheduling())
550     Latency = (Latency + 1) >> 1;
551   return Latency;
552 }
553 
554 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
555   MachineInstr *SrcI = Src->getInstr();
556   for (auto &I : Src->Succs) {
557     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
558       continue;
559     Register DepR = I.getReg();
560     int DefIdx = -1;
561     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
562       const MachineOperand &MO = SrcI->getOperand(OpNum);
563       bool IsSameOrSubReg = false;
564       if (MO.isReg()) {
565         Register MOReg = MO.getReg();
566         if (DepR.isVirtual()) {
567           IsSameOrSubReg = (MOReg == DepR);
568         } else {
569           IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
570         }
571         if (MO.isDef() && IsSameOrSubReg)
572           DefIdx = OpNum;
573       }
574     }
575     assert(DefIdx >= 0 && "Def Reg not found in Src MI");
576     MachineInstr *DstI = Dst->getInstr();
577     SDep T = I;
578     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
579       const MachineOperand &MO = DstI->getOperand(OpNum);
580       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
581         std::optional<unsigned> Latency = InstrInfo.getOperandLatency(
582             &InstrItins, *SrcI, DefIdx, *DstI, OpNum);
583 
584         // For some instructions (ex: COPY), we might end up with < 0 latency
585         // as they don't have any Itinerary class associated with them.
586         if (!Latency)
587           Latency = 0;
588         bool IsArtificial = I.isArtificial();
589         Latency = updateLatency(*SrcI, *DstI, IsArtificial, *Latency);
590         I.setLatency(*Latency);
591       }
592     }
593 
594     // Update the latency of opposite edge too.
595     T.setSUnit(Src);
596     auto F = find(Dst->Preds, T);
597     assert(F != Dst->Preds.end());
598     F->setLatency(I.getLatency());
599   }
600 }
601 
602 /// Change the latency between the two SUnits.
603 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
604       const {
605   for (auto &I : Src->Succs) {
606     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
607       continue;
608     SDep T = I;
609     I.setLatency(Lat);
610 
611     // Update the latency of opposite edge too.
612     T.setSUnit(Src);
613     auto F = find(Dst->Preds, T);
614     assert(F != Dst->Preds.end());
615     F->setLatency(Lat);
616   }
617 }
618 
619 /// If the SUnit has a zero latency edge, return the other SUnit.
620 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
621   for (auto &I : Deps)
622     if (I.isAssignedRegDep() && I.getLatency() == 0 &&
623         !I.getSUnit()->getInstr()->isPseudo())
624       return I.getSUnit();
625   return nullptr;
626 }
627 
628 // Return true if these are the best two instructions to schedule
629 // together with a zero latency. Only one dependence should have a zero
630 // latency. If there are multiple choices, choose the best, and change
631 // the others, if needed.
632 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
633       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
634       SmallSet<SUnit*, 4> &ExclDst) const {
635   MachineInstr &SrcInst = *Src->getInstr();
636   MachineInstr &DstInst = *Dst->getInstr();
637 
638   // Ignore Boundary SU nodes as these have null instructions.
639   if (Dst->isBoundaryNode())
640     return false;
641 
642   if (SrcInst.isPHI() || DstInst.isPHI())
643     return false;
644 
645   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
646       !TII->canExecuteInBundle(SrcInst, DstInst))
647     return false;
648 
649   // The architecture doesn't allow three dependent instructions in the same
650   // packet. So, if the destination has a zero latency successor, then it's
651   // not a candidate for a zero latency predecessor.
652   if (getZeroLatency(Dst, Dst->Succs) != nullptr)
653     return false;
654 
655   // Check if the Dst instruction is the best candidate first.
656   SUnit *Best = nullptr;
657   SUnit *DstBest = nullptr;
658   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
659   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
660     // Check that Src doesn't have a better candidate.
661     DstBest = getZeroLatency(Src, Src->Succs);
662     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
663       Best = Dst;
664   }
665   if (Best != Dst)
666     return false;
667 
668   // The caller frequently adds the same dependence twice. If so, then
669   // return true for this case too.
670   if ((Src == SrcBest && Dst == DstBest ) ||
671       (SrcBest == nullptr && Dst == DstBest) ||
672       (Src == SrcBest && Dst == nullptr))
673     return true;
674 
675   // Reassign the latency for the previous bests, which requires setting
676   // the dependence edge in both directions.
677   if (SrcBest != nullptr) {
678     if (!hasV60Ops())
679       changeLatency(SrcBest, Dst, 1);
680     else
681       restoreLatency(SrcBest, Dst);
682   }
683   if (DstBest != nullptr) {
684     if (!hasV60Ops())
685       changeLatency(Src, DstBest, 1);
686     else
687       restoreLatency(Src, DstBest);
688   }
689 
690   // Attempt to find another opprotunity for zero latency in a different
691   // dependence.
692   if (SrcBest && DstBest)
693     // If there is an edge from SrcBest to DstBst, then try to change that
694     // to 0 now.
695     changeLatency(SrcBest, DstBest, 0);
696   else if (DstBest) {
697     // Check if the previous best destination instruction has a new zero
698     // latency dependence opportunity.
699     ExclSrc.insert(Src);
700     for (auto &I : DstBest->Preds)
701       if (ExclSrc.count(I.getSUnit()) == 0 &&
702           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
703         changeLatency(I.getSUnit(), DstBest, 0);
704   } else if (SrcBest) {
705     // Check if previous best source instruction has a new zero latency
706     // dependence opportunity.
707     ExclDst.insert(Dst);
708     for (auto &I : SrcBest->Succs)
709       if (ExclDst.count(I.getSUnit()) == 0 &&
710           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
711         changeLatency(SrcBest, I.getSUnit(), 0);
712   }
713 
714   return true;
715 }
716 
717 unsigned HexagonSubtarget::getL1CacheLineSize() const {
718   return 32;
719 }
720 
721 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
722   return 32;
723 }
724 
725 bool HexagonSubtarget::enableSubRegLiveness() const { return true; }
726 
727 Intrinsic::ID HexagonSubtarget::getIntrinsicId(unsigned Opc) const {
728   struct Scalar {
729     unsigned Opcode;
730     Intrinsic::ID IntId;
731   };
732   struct Hvx {
733     unsigned Opcode;
734     Intrinsic::ID Int64Id, Int128Id;
735   };
736 
737   static Scalar ScalarInts[] = {
738 #define GET_SCALAR_INTRINSICS
739 #include "HexagonDepInstrIntrinsics.inc"
740 #undef GET_SCALAR_INTRINSICS
741   };
742 
743   static Hvx HvxInts[] = {
744 #define GET_HVX_INTRINSICS
745 #include "HexagonDepInstrIntrinsics.inc"
746 #undef GET_HVX_INTRINSICS
747   };
748 
749   const auto CmpOpcode = [](auto A, auto B) { return A.Opcode < B.Opcode; };
750   [[maybe_unused]] static bool SortedScalar =
751       (llvm::sort(ScalarInts, CmpOpcode), true);
752   [[maybe_unused]] static bool SortedHvx =
753       (llvm::sort(HvxInts, CmpOpcode), true);
754 
755   auto [BS, ES] = std::make_pair(std::begin(ScalarInts), std::end(ScalarInts));
756   auto [BH, EH] = std::make_pair(std::begin(HvxInts), std::end(HvxInts));
757 
758   auto FoundScalar = std::lower_bound(BS, ES, Scalar{Opc, 0}, CmpOpcode);
759   if (FoundScalar != ES && FoundScalar->Opcode == Opc)
760     return FoundScalar->IntId;
761 
762   auto FoundHvx = std::lower_bound(BH, EH, Hvx{Opc, 0, 0}, CmpOpcode);
763   if (FoundHvx != EH && FoundHvx->Opcode == Opc) {
764     unsigned HwLen = getVectorLength();
765     if (HwLen == 64)
766       return FoundHvx->Int64Id;
767     if (HwLen == 128)
768       return FoundHvx->Int128Id;
769   }
770 
771   std::string error = "Invalid opcode (" + std::to_string(Opc) + ")";
772   llvm_unreachable(error.c_str());
773   return 0;
774 }
775