xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Hexagon specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Hexagon.h"
14 #include "HexagonInstrInfo.h"
15 #include "HexagonRegisterInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "MCTargetDesc/HexagonMCTargetDesc.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <map>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "hexagon-subtarget"
36 
37 #define GET_SUBTARGETINFO_CTOR
38 #define GET_SUBTARGETINFO_TARGET_DESC
39 #include "HexagonGenSubtargetInfo.inc"
40 
41 
42 static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
43   cl::Hidden, cl::ZeroOrMore, cl::init(true));
44 
45 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
46   cl::Hidden, cl::ZeroOrMore, cl::init(false));
47 
48 static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
49   cl::Hidden, cl::ZeroOrMore, cl::init(true),
50   cl::desc("Enable the scheduler to generate .cur"));
51 
52 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
53   cl::Hidden, cl::ZeroOrMore, cl::init(false),
54   cl::desc("Disable Hexagon MI Scheduling"));
55 
56 static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
57   cl::Hidden, cl::ZeroOrMore, cl::init(true),
58   cl::desc("Enable subregister liveness tracking for Hexagon"));
59 
60 static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
61   cl::Hidden, cl::ZeroOrMore, cl::init(false),
62   cl::desc("If present, forces/disables the use of long calls"));
63 
64 static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
65   cl::Hidden, cl::ZeroOrMore, cl::init(false),
66   cl::desc("Consider calls to be predicable"));
67 
68 static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
69   cl::Hidden, cl::ZeroOrMore, cl::init(true));
70 
71 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
72   cl::Hidden, cl::ZeroOrMore, cl::init(true));
73 
74 static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
75   cl::Hidden, cl::ZeroOrMore, cl::init(true),
76   cl::desc("Enable checking for cache bank conflicts"));
77 
78 
79 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
80                                    StringRef FS, const TargetMachine &TM)
81     : HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()),
82       CPUString(Hexagon_MC::selectHexagonCPU(CPU)),
83       InstrInfo(initializeSubtargetDependencies(CPU, FS)),
84       RegInfo(getHwMode()), TLInfo(TM, *this),
85       InstrItins(getInstrItineraryForCPU(CPUString)) {
86   // Beware of the default constructor of InstrItineraryData: it will
87   // reset all members to 0.
88   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
89 }
90 
91 HexagonSubtarget &
92 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
93   static std::map<StringRef, Hexagon::ArchEnum> CpuTable{
94       {"generic", Hexagon::ArchEnum::V60},
95       {"hexagonv5", Hexagon::ArchEnum::V5},
96       {"hexagonv55", Hexagon::ArchEnum::V55},
97       {"hexagonv60", Hexagon::ArchEnum::V60},
98       {"hexagonv62", Hexagon::ArchEnum::V62},
99       {"hexagonv65", Hexagon::ArchEnum::V65},
100       {"hexagonv66", Hexagon::ArchEnum::V66},
101   };
102 
103   auto FoundIt = CpuTable.find(CPUString);
104   if (FoundIt != CpuTable.end())
105     HexagonArchVersion = FoundIt->second;
106   else
107     llvm_unreachable("Unrecognized Hexagon processor version");
108 
109   UseHVX128BOps = false;
110   UseHVX64BOps = false;
111   UseLongCalls = false;
112 
113   UseBSBScheduling = hasV60Ops() && EnableBSBSched;
114 
115   ParseSubtargetFeatures(CPUString, FS);
116 
117   if (OverrideLongCalls.getPosition())
118     UseLongCalls = OverrideLongCalls;
119 
120   FeatureBitset Features = getFeatureBits();
121   if (HexagonDisableDuplex)
122     setFeatureBits(Features.set(Hexagon::FeatureDuplex, false));
123   setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
124 
125   return *this;
126 }
127 
128 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
129   for (SUnit &SU : DAG->SUnits) {
130     if (!SU.isInstr())
131       continue;
132     SmallVector<SDep, 4> Erase;
133     for (auto &D : SU.Preds)
134       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
135         Erase.push_back(D);
136     for (auto &E : Erase)
137       SU.removePred(E);
138   }
139 }
140 
141 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
142   for (SUnit &SU : DAG->SUnits) {
143     // Update the latency of chain edges between v60 vector load or store
144     // instructions to be 1. These instruction cannot be scheduled in the
145     // same packet.
146     MachineInstr &MI1 = *SU.getInstr();
147     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
148     bool IsStoreMI1 = MI1.mayStore();
149     bool IsLoadMI1 = MI1.mayLoad();
150     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
151       continue;
152     for (SDep &SI : SU.Succs) {
153       if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
154         continue;
155       MachineInstr &MI2 = *SI.getSUnit()->getInstr();
156       if (!QII->isHVXVec(MI2))
157         continue;
158       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
159         SI.setLatency(1);
160         SU.setHeightDirty();
161         // Change the dependence in the opposite direction too.
162         for (SDep &PI : SI.getSUnit()->Preds) {
163           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
164             continue;
165           PI.setLatency(1);
166           SI.getSUnit()->setDepthDirty();
167         }
168       }
169     }
170   }
171 }
172 
173 // Check if a call and subsequent A2_tfrpi instructions should maintain
174 // scheduling affinity. We are looking for the TFRI to be consumed in
175 // the next instruction. This should help reduce the instances of
176 // double register pairs being allocated and scheduled before a call
177 // when not used until after the call. This situation is exacerbated
178 // by the fact that we allocate the pair from the callee saves list,
179 // leading to excess spills and restores.
180 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
181       const HexagonInstrInfo &HII, const SUnit &Inst1,
182       const SUnit &Inst2) const {
183   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
184     return false;
185 
186   // TypeXTYPE are 64 bit operations.
187   unsigned Type = HII.getType(*Inst2.getInstr());
188   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
189          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
190 }
191 
192 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
193   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
194   SUnit* LastSequentialCall = nullptr;
195   // Map from virtual register to physical register from the copy.
196   DenseMap<unsigned, unsigned> VRegHoldingReg;
197   // Map from the physical register to the instruction that uses virtual
198   // register. This is used to create the barrier edge.
199   DenseMap<unsigned, SUnit *> LastVRegUse;
200   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
201   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
202 
203   // Currently we only catch the situation when compare gets scheduled
204   // before preceding call.
205   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
206     // Remember the call.
207     if (DAG->SUnits[su].getInstr()->isCall())
208       LastSequentialCall = &DAG->SUnits[su];
209     // Look for a compare that defines a predicate.
210     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
211       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
212     // Look for call and tfri* instructions.
213     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
214              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
215       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
216     // Prevent redundant register copies due to reads and writes of physical
217     // registers. The original motivation for this was the code generated
218     // between two calls, which are caused both the return value and the
219     // argument for the next call being in %r0.
220     // Example:
221     //   1: <call1>
222     //   2: %vreg = COPY %r0
223     //   3: <use of %vreg>
224     //   4: %r0 = ...
225     //   5: <call2>
226     // The scheduler would often swap 3 and 4, so an additional register is
227     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
228     // this.
229     // The code below checks for all the physical registers, not just R0/D0/V0.
230     else if (SchedRetvalOptimization) {
231       const MachineInstr *MI = DAG->SUnits[su].getInstr();
232       if (MI->isCopy() &&
233           TargetRegisterInfo::isPhysicalRegister(MI->getOperand(1).getReg())) {
234         // %vregX = COPY %r0
235         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
236         LastVRegUse.erase(MI->getOperand(1).getReg());
237       } else {
238         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
239           const MachineOperand &MO = MI->getOperand(i);
240           if (!MO.isReg())
241             continue;
242           if (MO.isUse() && !MI->isCopy() &&
243               VRegHoldingReg.count(MO.getReg())) {
244             // <use of %vregX>
245             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
246           } else if (MO.isDef() &&
247                      TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
248             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
249                  ++AI) {
250               if (LastVRegUse.count(*AI) &&
251                   LastVRegUse[*AI] != &DAG->SUnits[su])
252                 // %r0 = ...
253                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
254               LastVRegUse.erase(*AI);
255             }
256           }
257         }
258       }
259     }
260   }
261 }
262 
263 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
264   if (!EnableCheckBankConflict)
265     return;
266 
267   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
268 
269   // Create artificial edges between loads that could likely cause a bank
270   // conflict. Since such loads would normally not have any dependency
271   // between them, we cannot rely on existing edges.
272   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
273     SUnit &S0 = DAG->SUnits[i];
274     MachineInstr &L0 = *S0.getInstr();
275     if (!L0.mayLoad() || L0.mayStore() ||
276         HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
277       continue;
278     int64_t Offset0;
279     unsigned Size0;
280     MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
281     // Is the access size is longer than the L1 cache line, skip the check.
282     if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
283       continue;
284     // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
285     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
286       SUnit &S1 = DAG->SUnits[j];
287       MachineInstr &L1 = *S1.getInstr();
288       if (!L1.mayLoad() || L1.mayStore() ||
289           HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
290         continue;
291       int64_t Offset1;
292       unsigned Size1;
293       MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
294       if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
295           BaseOp0->getReg() != BaseOp1->getReg())
296         continue;
297       // Check bits 3 and 4 of the offset: if they differ, a bank conflict
298       // is unlikely.
299       if (((Offset0 ^ Offset1) & 0x18) != 0)
300         continue;
301       // Bits 3 and 4 are the same, add an artificial edge and set extra
302       // latency.
303       SDep A(&S0, SDep::Artificial);
304       A.setLatency(1);
305       S1.addPred(A, true);
306     }
307   }
308 }
309 
310 /// Enable use of alias analysis during code generation (during MI
311 /// scheduling, DAGCombine, etc.).
312 bool HexagonSubtarget::useAA() const {
313   if (OptLevel != CodeGenOpt::None)
314     return true;
315   return false;
316 }
317 
318 /// Perform target specific adjustments to the latency of a schedule
319 /// dependency.
320 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst,
321                                              SDep &Dep) const {
322   MachineInstr *SrcInst = Src->getInstr();
323   MachineInstr *DstInst = Dst->getInstr();
324   if (!Src->isInstr() || !Dst->isInstr())
325     return;
326 
327   const HexagonInstrInfo *QII = getInstrInfo();
328 
329   // Instructions with .new operands have zero latency.
330   SmallSet<SUnit *, 4> ExclSrc;
331   SmallSet<SUnit *, 4> ExclDst;
332   if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
333       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
334     Dep.setLatency(0);
335     return;
336   }
337 
338   if (!hasV60Ops())
339     return;
340 
341   // Set the latency for a copy to zero since we hope that is will get removed.
342   if (DstInst->isCopy())
343     Dep.setLatency(0);
344 
345   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
346   // the correct latency.
347   if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
348     unsigned DReg = DstInst->getOperand(0).getReg();
349     MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
350     unsigned UseIdx = -1;
351     for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
352       const MachineOperand &MO = DDst->getOperand(OpNum);
353       if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
354         UseIdx = OpNum;
355         break;
356       }
357     }
358     int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
359                                                 0, *DDst, UseIdx));
360     DLatency = std::max(DLatency, 0);
361     Dep.setLatency((unsigned)DLatency);
362   }
363 
364   // Try to schedule uses near definitions to generate .cur.
365   ExclSrc.clear();
366   ExclDst.clear();
367   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
368       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
369     Dep.setLatency(0);
370     return;
371   }
372 
373   updateLatency(*SrcInst, *DstInst, Dep);
374 }
375 
376 void HexagonSubtarget::getPostRAMutations(
377     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
378   Mutations.push_back(llvm::make_unique<UsrOverflowMutation>());
379   Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>());
380   Mutations.push_back(llvm::make_unique<BankConflictMutation>());
381 }
382 
383 void HexagonSubtarget::getSMSMutations(
384     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
385   Mutations.push_back(llvm::make_unique<UsrOverflowMutation>());
386   Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>());
387 }
388 
389 // Pin the vtable to this file.
390 void HexagonSubtarget::anchor() {}
391 
392 bool HexagonSubtarget::enableMachineScheduler() const {
393   if (DisableHexagonMISched.getNumOccurrences())
394     return !DisableHexagonMISched;
395   return true;
396 }
397 
398 bool HexagonSubtarget::usePredicatedCalls() const {
399   return EnablePredicatedCalls;
400 }
401 
402 void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
403       MachineInstr &DstInst, SDep &Dep) const {
404   if (Dep.isArtificial()) {
405     Dep.setLatency(1);
406     return;
407   }
408 
409   if (!hasV60Ops())
410     return;
411 
412   auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
413 
414   // BSB scheduling.
415   if (QII.isHVXVec(SrcInst) || useBSBScheduling())
416     Dep.setLatency((Dep.getLatency() + 1) >> 1);
417 }
418 
419 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
420   MachineInstr *SrcI = Src->getInstr();
421   for (auto &I : Src->Succs) {
422     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
423       continue;
424     unsigned DepR = I.getReg();
425     int DefIdx = -1;
426     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
427       const MachineOperand &MO = SrcI->getOperand(OpNum);
428       if (MO.isReg() && MO.isDef() && MO.getReg() == DepR)
429         DefIdx = OpNum;
430     }
431     assert(DefIdx >= 0 && "Def Reg not found in Src MI");
432     MachineInstr *DstI = Dst->getInstr();
433     SDep T = I;
434     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
435       const MachineOperand &MO = DstI->getOperand(OpNum);
436       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
437         int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
438                                                    DefIdx, *DstI, OpNum));
439 
440         // For some instructions (ex: COPY), we might end up with < 0 latency
441         // as they don't have any Itinerary class associated with them.
442         Latency = std::max(Latency, 0);
443 
444         I.setLatency(Latency);
445         updateLatency(*SrcI, *DstI, I);
446       }
447     }
448 
449     // Update the latency of opposite edge too.
450     T.setSUnit(Src);
451     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
452     assert(F != Dst->Preds.end());
453     F->setLatency(I.getLatency());
454   }
455 }
456 
457 /// Change the latency between the two SUnits.
458 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
459       const {
460   for (auto &I : Src->Succs) {
461     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
462       continue;
463     SDep T = I;
464     I.setLatency(Lat);
465 
466     // Update the latency of opposite edge too.
467     T.setSUnit(Src);
468     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
469     assert(F != Dst->Preds.end());
470     F->setLatency(Lat);
471   }
472 }
473 
474 /// If the SUnit has a zero latency edge, return the other SUnit.
475 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
476   for (auto &I : Deps)
477     if (I.isAssignedRegDep() && I.getLatency() == 0 &&
478         !I.getSUnit()->getInstr()->isPseudo())
479       return I.getSUnit();
480   return nullptr;
481 }
482 
483 // Return true if these are the best two instructions to schedule
484 // together with a zero latency. Only one dependence should have a zero
485 // latency. If there are multiple choices, choose the best, and change
486 // the others, if needed.
487 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
488       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
489       SmallSet<SUnit*, 4> &ExclDst) const {
490   MachineInstr &SrcInst = *Src->getInstr();
491   MachineInstr &DstInst = *Dst->getInstr();
492 
493   // Ignore Boundary SU nodes as these have null instructions.
494   if (Dst->isBoundaryNode())
495     return false;
496 
497   if (SrcInst.isPHI() || DstInst.isPHI())
498     return false;
499 
500   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
501       !TII->canExecuteInBundle(SrcInst, DstInst))
502     return false;
503 
504   // The architecture doesn't allow three dependent instructions in the same
505   // packet. So, if the destination has a zero latency successor, then it's
506   // not a candidate for a zero latency predecessor.
507   if (getZeroLatency(Dst, Dst->Succs) != nullptr)
508     return false;
509 
510   // Check if the Dst instruction is the best candidate first.
511   SUnit *Best = nullptr;
512   SUnit *DstBest = nullptr;
513   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
514   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
515     // Check that Src doesn't have a better candidate.
516     DstBest = getZeroLatency(Src, Src->Succs);
517     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
518       Best = Dst;
519   }
520   if (Best != Dst)
521     return false;
522 
523   // The caller frequently adds the same dependence twice. If so, then
524   // return true for this case too.
525   if ((Src == SrcBest && Dst == DstBest ) ||
526       (SrcBest == nullptr && Dst == DstBest) ||
527       (Src == SrcBest && Dst == nullptr))
528     return true;
529 
530   // Reassign the latency for the previous bests, which requires setting
531   // the dependence edge in both directions.
532   if (SrcBest != nullptr) {
533     if (!hasV60Ops())
534       changeLatency(SrcBest, Dst, 1);
535     else
536       restoreLatency(SrcBest, Dst);
537   }
538   if (DstBest != nullptr) {
539     if (!hasV60Ops())
540       changeLatency(Src, DstBest, 1);
541     else
542       restoreLatency(Src, DstBest);
543   }
544 
545   // Attempt to find another opprotunity for zero latency in a different
546   // dependence.
547   if (SrcBest && DstBest)
548     // If there is an edge from SrcBest to DstBst, then try to change that
549     // to 0 now.
550     changeLatency(SrcBest, DstBest, 0);
551   else if (DstBest) {
552     // Check if the previous best destination instruction has a new zero
553     // latency dependence opportunity.
554     ExclSrc.insert(Src);
555     for (auto &I : DstBest->Preds)
556       if (ExclSrc.count(I.getSUnit()) == 0 &&
557           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
558         changeLatency(I.getSUnit(), DstBest, 0);
559   } else if (SrcBest) {
560     // Check if previous best source instruction has a new zero latency
561     // dependence opportunity.
562     ExclDst.insert(Dst);
563     for (auto &I : SrcBest->Succs)
564       if (ExclDst.count(I.getSUnit()) == 0 &&
565           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
566         changeLatency(SrcBest, I.getSUnit(), 0);
567   }
568 
569   return true;
570 }
571 
572 unsigned HexagonSubtarget::getL1CacheLineSize() const {
573   return 32;
574 }
575 
576 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
577   return 32;
578 }
579 
580 bool HexagonSubtarget::enableSubRegLiveness() const {
581   return EnableSubregLiveness;
582 }
583