xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp (revision 1e4896b176ff664dc9c2fce5426bf2fdf8017a7d)
1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Hexagon specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Hexagon.h"
14 #include "HexagonInstrInfo.h"
15 #include "HexagonRegisterInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "MCTargetDesc/HexagonMCTargetDesc.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <map>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "hexagon-subtarget"
36 
37 #define GET_SUBTARGETINFO_CTOR
38 #define GET_SUBTARGETINFO_TARGET_DESC
39 #include "HexagonGenSubtargetInfo.inc"
40 
41 
42 static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
43   cl::Hidden, cl::ZeroOrMore, cl::init(true));
44 
45 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
46   cl::Hidden, cl::ZeroOrMore, cl::init(false));
47 
48 static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
49   cl::Hidden, cl::ZeroOrMore, cl::init(true),
50   cl::desc("Enable the scheduler to generate .cur"));
51 
52 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
53   cl::Hidden, cl::ZeroOrMore, cl::init(false),
54   cl::desc("Disable Hexagon MI Scheduling"));
55 
56 static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
57   cl::Hidden, cl::ZeroOrMore, cl::init(true),
58   cl::desc("Enable subregister liveness tracking for Hexagon"));
59 
60 static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
61   cl::Hidden, cl::ZeroOrMore, cl::init(false),
62   cl::desc("If present, forces/disables the use of long calls"));
63 
64 static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
65   cl::Hidden, cl::ZeroOrMore, cl::init(false),
66   cl::desc("Consider calls to be predicable"));
67 
68 static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
69   cl::Hidden, cl::ZeroOrMore, cl::init(true));
70 
71 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
72   cl::Hidden, cl::ZeroOrMore, cl::init(true));
73 
74 static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
75   cl::Hidden, cl::ZeroOrMore, cl::init(true),
76   cl::desc("Enable checking for cache bank conflicts"));
77 
78 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
79                                    StringRef FS, const TargetMachine &TM)
80     : HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()),
81       CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
82       TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
83       RegInfo(getHwMode()), TLInfo(TM, *this),
84       InstrItins(getInstrItineraryForCPU(CPUString)) {
85   Hexagon_MC::addArchSubtarget(this, FS);
86   // Beware of the default constructor of InstrItineraryData: it will
87   // reset all members to 0.
88   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
89 }
90 
91 HexagonSubtarget &
92 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
93   Optional<Hexagon::ArchEnum> ArchVer =
94       Hexagon::GetCpu(Hexagon::CpuTable, CPUString);
95   if (ArchVer)
96     HexagonArchVersion = *ArchVer;
97   else
98     llvm_unreachable("Unrecognized Hexagon processor version");
99 
100   UseHVX128BOps = false;
101   UseHVX64BOps = false;
102   UseAudioOps = false;
103   UseLongCalls = false;
104 
105   UseBSBScheduling = hasV60Ops() && EnableBSBSched;
106 
107   ParseSubtargetFeatures(CPUString, FS);
108 
109   if (OverrideLongCalls.getPosition())
110     UseLongCalls = OverrideLongCalls;
111 
112   if (isTinyCore()) {
113     // Tiny core has a single thread, so back-to-back scheduling is enabled by
114     // default.
115     if (!EnableBSBSched.getPosition())
116       UseBSBScheduling = false;
117   }
118 
119   FeatureBitset Features = getFeatureBits();
120   if (HexagonDisableDuplex)
121     setFeatureBits(Features.reset(Hexagon::FeatureDuplex));
122   setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
123 
124   return *this;
125 }
126 
127 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
128   for (SUnit &SU : DAG->SUnits) {
129     if (!SU.isInstr())
130       continue;
131     SmallVector<SDep, 4> Erase;
132     for (auto &D : SU.Preds)
133       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
134         Erase.push_back(D);
135     for (auto &E : Erase)
136       SU.removePred(E);
137   }
138 }
139 
140 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
141   for (SUnit &SU : DAG->SUnits) {
142     // Update the latency of chain edges between v60 vector load or store
143     // instructions to be 1. These instruction cannot be scheduled in the
144     // same packet.
145     MachineInstr &MI1 = *SU.getInstr();
146     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
147     bool IsStoreMI1 = MI1.mayStore();
148     bool IsLoadMI1 = MI1.mayLoad();
149     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
150       continue;
151     for (SDep &SI : SU.Succs) {
152       if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
153         continue;
154       MachineInstr &MI2 = *SI.getSUnit()->getInstr();
155       if (!QII->isHVXVec(MI2))
156         continue;
157       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
158         SI.setLatency(1);
159         SU.setHeightDirty();
160         // Change the dependence in the opposite direction too.
161         for (SDep &PI : SI.getSUnit()->Preds) {
162           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
163             continue;
164           PI.setLatency(1);
165           SI.getSUnit()->setDepthDirty();
166         }
167       }
168     }
169   }
170 }
171 
172 // Check if a call and subsequent A2_tfrpi instructions should maintain
173 // scheduling affinity. We are looking for the TFRI to be consumed in
174 // the next instruction. This should help reduce the instances of
175 // double register pairs being allocated and scheduled before a call
176 // when not used until after the call. This situation is exacerbated
177 // by the fact that we allocate the pair from the callee saves list,
178 // leading to excess spills and restores.
179 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
180       const HexagonInstrInfo &HII, const SUnit &Inst1,
181       const SUnit &Inst2) const {
182   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
183     return false;
184 
185   // TypeXTYPE are 64 bit operations.
186   unsigned Type = HII.getType(*Inst2.getInstr());
187   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
188          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
189 }
190 
191 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
192   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
193   SUnit* LastSequentialCall = nullptr;
194   // Map from virtual register to physical register from the copy.
195   DenseMap<unsigned, unsigned> VRegHoldingReg;
196   // Map from the physical register to the instruction that uses virtual
197   // register. This is used to create the barrier edge.
198   DenseMap<unsigned, SUnit *> LastVRegUse;
199   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
200   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
201 
202   // Currently we only catch the situation when compare gets scheduled
203   // before preceding call.
204   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
205     // Remember the call.
206     if (DAG->SUnits[su].getInstr()->isCall())
207       LastSequentialCall = &DAG->SUnits[su];
208     // Look for a compare that defines a predicate.
209     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
210       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
211     // Look for call and tfri* instructions.
212     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
213              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
214       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
215     // Prevent redundant register copies due to reads and writes of physical
216     // registers. The original motivation for this was the code generated
217     // between two calls, which are caused both the return value and the
218     // argument for the next call being in %r0.
219     // Example:
220     //   1: <call1>
221     //   2: %vreg = COPY %r0
222     //   3: <use of %vreg>
223     //   4: %r0 = ...
224     //   5: <call2>
225     // The scheduler would often swap 3 and 4, so an additional register is
226     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
227     // this.
228     // The code below checks for all the physical registers, not just R0/D0/V0.
229     else if (SchedRetvalOptimization) {
230       const MachineInstr *MI = DAG->SUnits[su].getInstr();
231       if (MI->isCopy() &&
232           Register::isPhysicalRegister(MI->getOperand(1).getReg())) {
233         // %vregX = COPY %r0
234         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
235         LastVRegUse.erase(MI->getOperand(1).getReg());
236       } else {
237         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
238           const MachineOperand &MO = MI->getOperand(i);
239           if (!MO.isReg())
240             continue;
241           if (MO.isUse() && !MI->isCopy() &&
242               VRegHoldingReg.count(MO.getReg())) {
243             // <use of %vregX>
244             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
245           } else if (MO.isDef() && Register::isPhysicalRegister(MO.getReg())) {
246             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
247                  ++AI) {
248               if (LastVRegUse.count(*AI) &&
249                   LastVRegUse[*AI] != &DAG->SUnits[su])
250                 // %r0 = ...
251                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
252               LastVRegUse.erase(*AI);
253             }
254           }
255         }
256       }
257     }
258   }
259 }
260 
261 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
262   if (!EnableCheckBankConflict)
263     return;
264 
265   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
266 
267   // Create artificial edges between loads that could likely cause a bank
268   // conflict. Since such loads would normally not have any dependency
269   // between them, we cannot rely on existing edges.
270   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
271     SUnit &S0 = DAG->SUnits[i];
272     MachineInstr &L0 = *S0.getInstr();
273     if (!L0.mayLoad() || L0.mayStore() ||
274         HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
275       continue;
276     int64_t Offset0;
277     unsigned Size0;
278     MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
279     // Is the access size is longer than the L1 cache line, skip the check.
280     if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
281       continue;
282     // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
283     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
284       SUnit &S1 = DAG->SUnits[j];
285       MachineInstr &L1 = *S1.getInstr();
286       if (!L1.mayLoad() || L1.mayStore() ||
287           HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
288         continue;
289       int64_t Offset1;
290       unsigned Size1;
291       MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
292       if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
293           BaseOp0->getReg() != BaseOp1->getReg())
294         continue;
295       // Check bits 3 and 4 of the offset: if they differ, a bank conflict
296       // is unlikely.
297       if (((Offset0 ^ Offset1) & 0x18) != 0)
298         continue;
299       // Bits 3 and 4 are the same, add an artificial edge and set extra
300       // latency.
301       SDep A(&S0, SDep::Artificial);
302       A.setLatency(1);
303       S1.addPred(A, true);
304     }
305   }
306 }
307 
308 /// Enable use of alias analysis during code generation (during MI
309 /// scheduling, DAGCombine, etc.).
310 bool HexagonSubtarget::useAA() const {
311   if (OptLevel != CodeGenOpt::None)
312     return true;
313   return false;
314 }
315 
316 /// Perform target specific adjustments to the latency of a schedule
317 /// dependency.
318 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx,
319                                              SUnit *Dst, int DstOpIdx,
320                                              SDep &Dep) const {
321   if (!Src->isInstr() || !Dst->isInstr())
322     return;
323 
324   MachineInstr *SrcInst = Src->getInstr();
325   MachineInstr *DstInst = Dst->getInstr();
326   const HexagonInstrInfo *QII = getInstrInfo();
327 
328   // Instructions with .new operands have zero latency.
329   SmallSet<SUnit *, 4> ExclSrc;
330   SmallSet<SUnit *, 4> ExclDst;
331   if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
332       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
333     Dep.setLatency(0);
334     return;
335   }
336 
337   if (!hasV60Ops())
338     return;
339 
340   // Set the latency for a copy to zero since we hope that is will get removed.
341   if (DstInst->isCopy())
342     Dep.setLatency(0);
343 
344   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
345   // the correct latency.
346   if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
347     Register DReg = DstInst->getOperand(0).getReg();
348     MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
349     unsigned UseIdx = -1;
350     for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
351       const MachineOperand &MO = DDst->getOperand(OpNum);
352       if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
353         UseIdx = OpNum;
354         break;
355       }
356     }
357     int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
358                                                 0, *DDst, UseIdx));
359     DLatency = std::max(DLatency, 0);
360     Dep.setLatency((unsigned)DLatency);
361   }
362 
363   // Try to schedule uses near definitions to generate .cur.
364   ExclSrc.clear();
365   ExclDst.clear();
366   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
367       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
368     Dep.setLatency(0);
369     return;
370   }
371 
372   updateLatency(*SrcInst, *DstInst, Dep);
373 }
374 
375 void HexagonSubtarget::getPostRAMutations(
376     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
377   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
378   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
379   Mutations.push_back(std::make_unique<BankConflictMutation>());
380 }
381 
382 void HexagonSubtarget::getSMSMutations(
383     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
384   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
385   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
386 }
387 
388 // Pin the vtable to this file.
389 void HexagonSubtarget::anchor() {}
390 
391 bool HexagonSubtarget::enableMachineScheduler() const {
392   if (DisableHexagonMISched.getNumOccurrences())
393     return !DisableHexagonMISched;
394   return true;
395 }
396 
397 bool HexagonSubtarget::usePredicatedCalls() const {
398   return EnablePredicatedCalls;
399 }
400 
401 void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
402       MachineInstr &DstInst, SDep &Dep) const {
403   if (Dep.isArtificial()) {
404     Dep.setLatency(1);
405     return;
406   }
407 
408   if (!hasV60Ops())
409     return;
410 
411   auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
412 
413   // BSB scheduling.
414   if (QII.isHVXVec(SrcInst) || useBSBScheduling())
415     Dep.setLatency((Dep.getLatency() + 1) >> 1);
416 }
417 
418 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
419   MachineInstr *SrcI = Src->getInstr();
420   for (auto &I : Src->Succs) {
421     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
422       continue;
423     unsigned DepR = I.getReg();
424     int DefIdx = -1;
425     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
426       const MachineOperand &MO = SrcI->getOperand(OpNum);
427       bool IsSameOrSubReg = false;
428       if (MO.isReg()) {
429         unsigned MOReg = MO.getReg();
430         if (Register::isVirtualRegister(DepR)) {
431           IsSameOrSubReg = (MOReg == DepR);
432         } else {
433           IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
434         }
435         if (MO.isDef() && IsSameOrSubReg)
436           DefIdx = OpNum;
437       }
438     }
439     assert(DefIdx >= 0 && "Def Reg not found in Src MI");
440     MachineInstr *DstI = Dst->getInstr();
441     SDep T = I;
442     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
443       const MachineOperand &MO = DstI->getOperand(OpNum);
444       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
445         int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
446                                                    DefIdx, *DstI, OpNum));
447 
448         // For some instructions (ex: COPY), we might end up with < 0 latency
449         // as they don't have any Itinerary class associated with them.
450         Latency = std::max(Latency, 0);
451 
452         I.setLatency(Latency);
453         updateLatency(*SrcI, *DstI, I);
454       }
455     }
456 
457     // Update the latency of opposite edge too.
458     T.setSUnit(Src);
459     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
460     assert(F != Dst->Preds.end());
461     F->setLatency(I.getLatency());
462   }
463 }
464 
465 /// Change the latency between the two SUnits.
466 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
467       const {
468   for (auto &I : Src->Succs) {
469     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
470       continue;
471     SDep T = I;
472     I.setLatency(Lat);
473 
474     // Update the latency of opposite edge too.
475     T.setSUnit(Src);
476     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
477     assert(F != Dst->Preds.end());
478     F->setLatency(Lat);
479   }
480 }
481 
482 /// If the SUnit has a zero latency edge, return the other SUnit.
483 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
484   for (auto &I : Deps)
485     if (I.isAssignedRegDep() && I.getLatency() == 0 &&
486         !I.getSUnit()->getInstr()->isPseudo())
487       return I.getSUnit();
488   return nullptr;
489 }
490 
491 // Return true if these are the best two instructions to schedule
492 // together with a zero latency. Only one dependence should have a zero
493 // latency. If there are multiple choices, choose the best, and change
494 // the others, if needed.
495 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
496       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
497       SmallSet<SUnit*, 4> &ExclDst) const {
498   MachineInstr &SrcInst = *Src->getInstr();
499   MachineInstr &DstInst = *Dst->getInstr();
500 
501   // Ignore Boundary SU nodes as these have null instructions.
502   if (Dst->isBoundaryNode())
503     return false;
504 
505   if (SrcInst.isPHI() || DstInst.isPHI())
506     return false;
507 
508   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
509       !TII->canExecuteInBundle(SrcInst, DstInst))
510     return false;
511 
512   // The architecture doesn't allow three dependent instructions in the same
513   // packet. So, if the destination has a zero latency successor, then it's
514   // not a candidate for a zero latency predecessor.
515   if (getZeroLatency(Dst, Dst->Succs) != nullptr)
516     return false;
517 
518   // Check if the Dst instruction is the best candidate first.
519   SUnit *Best = nullptr;
520   SUnit *DstBest = nullptr;
521   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
522   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
523     // Check that Src doesn't have a better candidate.
524     DstBest = getZeroLatency(Src, Src->Succs);
525     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
526       Best = Dst;
527   }
528   if (Best != Dst)
529     return false;
530 
531   // The caller frequently adds the same dependence twice. If so, then
532   // return true for this case too.
533   if ((Src == SrcBest && Dst == DstBest ) ||
534       (SrcBest == nullptr && Dst == DstBest) ||
535       (Src == SrcBest && Dst == nullptr))
536     return true;
537 
538   // Reassign the latency for the previous bests, which requires setting
539   // the dependence edge in both directions.
540   if (SrcBest != nullptr) {
541     if (!hasV60Ops())
542       changeLatency(SrcBest, Dst, 1);
543     else
544       restoreLatency(SrcBest, Dst);
545   }
546   if (DstBest != nullptr) {
547     if (!hasV60Ops())
548       changeLatency(Src, DstBest, 1);
549     else
550       restoreLatency(Src, DstBest);
551   }
552 
553   // Attempt to find another opprotunity for zero latency in a different
554   // dependence.
555   if (SrcBest && DstBest)
556     // If there is an edge from SrcBest to DstBst, then try to change that
557     // to 0 now.
558     changeLatency(SrcBest, DstBest, 0);
559   else if (DstBest) {
560     // Check if the previous best destination instruction has a new zero
561     // latency dependence opportunity.
562     ExclSrc.insert(Src);
563     for (auto &I : DstBest->Preds)
564       if (ExclSrc.count(I.getSUnit()) == 0 &&
565           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
566         changeLatency(I.getSUnit(), DstBest, 0);
567   } else if (SrcBest) {
568     // Check if previous best source instruction has a new zero latency
569     // dependence opportunity.
570     ExclDst.insert(Dst);
571     for (auto &I : SrcBest->Succs)
572       if (ExclDst.count(I.getSUnit()) == 0 &&
573           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
574         changeLatency(SrcBest, I.getSUnit(), 0);
575   }
576 
577   return true;
578 }
579 
580 unsigned HexagonSubtarget::getL1CacheLineSize() const {
581   return 32;
582 }
583 
584 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
585   return 32;
586 }
587 
588 bool HexagonSubtarget::enableSubRegLiveness() const {
589   return EnableSubregLiveness;
590 }
591