1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Hexagon specific subclass of TargetSubtarget. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "HexagonSubtarget.h" 14 #include "Hexagon.h" 15 #include "HexagonInstrInfo.h" 16 #include "HexagonRegisterInfo.h" 17 #include "MCTargetDesc/HexagonMCTargetDesc.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineScheduler.h" 25 #include "llvm/CodeGen/ScheduleDAG.h" 26 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <map> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "hexagon-subtarget" 37 38 #define GET_SUBTARGETINFO_CTOR 39 #define GET_SUBTARGETINFO_TARGET_DESC 40 #include "HexagonGenSubtargetInfo.inc" 41 42 static cl::opt<bool> EnableBSBSched("enable-bsb-sched", 43 cl::Hidden, cl::ZeroOrMore, cl::init(true)); 44 45 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", 46 cl::Hidden, cl::ZeroOrMore, cl::init(false)); 47 48 static cl::opt<bool> EnableDotCurSched("enable-cur-sched", 49 cl::Hidden, cl::ZeroOrMore, cl::init(true), 50 cl::desc("Enable the scheduler to generate .cur")); 51 52 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched", 53 cl::Hidden, cl::ZeroOrMore, cl::init(false), 54 cl::desc("Disable Hexagon MI Scheduling")); 55 56 static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness", 57 cl::Hidden, cl::ZeroOrMore, cl::init(true), 58 cl::desc("Enable subregister liveness tracking for Hexagon")); 59 60 static cl::opt<bool> OverrideLongCalls("hexagon-long-calls", 61 cl::Hidden, cl::ZeroOrMore, cl::init(false), 62 cl::desc("If present, forces/disables the use of long calls")); 63 64 static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls", 65 cl::Hidden, cl::ZeroOrMore, cl::init(false), 66 cl::desc("Consider calls to be predicable")); 67 68 static cl::opt<bool> SchedPredsCloser("sched-preds-closer", 69 cl::Hidden, cl::ZeroOrMore, cl::init(true)); 70 71 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization", 72 cl::Hidden, cl::ZeroOrMore, cl::init(true)); 73 74 static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict", 75 cl::Hidden, cl::ZeroOrMore, cl::init(true), 76 cl::desc("Enable checking for cache bank conflicts")); 77 78 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU, 79 StringRef FS, const TargetMachine &TM) 80 : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS), 81 OptLevel(TM.getOptLevel()), 82 CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))), 83 TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)), 84 RegInfo(getHwMode()), TLInfo(TM, *this), 85 InstrItins(getInstrItineraryForCPU(CPUString)) { 86 Hexagon_MC::addArchSubtarget(this, FS); 87 // Beware of the default constructor of InstrItineraryData: it will 88 // reset all members to 0. 89 assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized"); 90 } 91 92 HexagonSubtarget & 93 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { 94 Optional<Hexagon::ArchEnum> ArchVer = 95 Hexagon::GetCpu(Hexagon::CpuTable, CPUString); 96 if (ArchVer) 97 HexagonArchVersion = *ArchVer; 98 else 99 llvm_unreachable("Unrecognized Hexagon processor version"); 100 101 UseHVX128BOps = false; 102 UseHVX64BOps = false; 103 UseAudioOps = false; 104 UseLongCalls = false; 105 106 UseBSBScheduling = hasV60Ops() && EnableBSBSched; 107 108 ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FS); 109 110 if (OverrideLongCalls.getPosition()) 111 UseLongCalls = OverrideLongCalls; 112 113 if (isTinyCore()) { 114 // Tiny core has a single thread, so back-to-back scheduling is enabled by 115 // default. 116 if (!EnableBSBSched.getPosition()) 117 UseBSBScheduling = false; 118 } 119 120 FeatureBitset Features = getFeatureBits(); 121 if (HexagonDisableDuplex) 122 setFeatureBits(Features.reset(Hexagon::FeatureDuplex)); 123 setFeatureBits(Hexagon_MC::completeHVXFeatures(Features)); 124 125 return *this; 126 } 127 128 bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const { 129 if (!useHVXOps()) 130 return false; 131 if (Ty.isVector()) 132 Ty = Ty.getVectorElementType(); 133 if (IncludeBool && Ty == MVT::i1) 134 return true; 135 ArrayRef<MVT> ElemTypes = getHVXElementTypes(); 136 return llvm::is_contained(ElemTypes, Ty); 137 } 138 139 bool HexagonSubtarget::isHVXVectorType(MVT VecTy, bool IncludeBool) const { 140 if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector()) 141 return false; 142 MVT ElemTy = VecTy.getVectorElementType(); 143 if (!IncludeBool && ElemTy == MVT::i1) 144 return false; 145 146 unsigned HwLen = getVectorLength(); 147 unsigned NumElems = VecTy.getVectorNumElements(); 148 ArrayRef<MVT> ElemTypes = getHVXElementTypes(); 149 150 if (IncludeBool && ElemTy == MVT::i1) { 151 // Boolean HVX vector types are formed from regular HVX vector types 152 // by replacing the element type with i1. 153 for (MVT T : ElemTypes) 154 if (NumElems * T.getSizeInBits() == 8 * HwLen) 155 return true; 156 return false; 157 } 158 159 unsigned VecWidth = VecTy.getSizeInBits(); 160 if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen) 161 return false; 162 return llvm::is_contained(ElemTypes, ElemTy); 163 } 164 165 bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const { 166 if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy)) 167 return false; 168 // Avoid types like <2 x i32*>. 169 if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy()) 170 return false; 171 // The given type may be something like <17 x i32>, which is not MVT, 172 // but can be represented as (non-simple) EVT. 173 EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false); 174 if (Ty.getSizeInBits() <= 64 || !Ty.getVectorElementType().isSimple()) 175 return false; 176 177 auto isHvxTy = [this, IncludeBool](MVT SimpleTy) { 178 if (isHVXVectorType(SimpleTy, IncludeBool)) 179 return true; 180 auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy); 181 return Action == TargetLoweringBase::TypeWidenVector; 182 }; 183 184 // Round up EVT to have power-of-2 elements, and keep checking if it 185 // qualifies for HVX, dividing it in half after each step. 186 MVT ElemTy = Ty.getVectorElementType().getSimpleVT(); 187 unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements()); 188 while (ElemTy.getSizeInBits() * VecLen > 64) { 189 MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen); 190 if (SimpleTy.isValid() && isHvxTy(SimpleTy)) 191 return true; 192 VecLen /= 2; 193 } 194 195 return false; 196 } 197 198 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) { 199 for (SUnit &SU : DAG->SUnits) { 200 if (!SU.isInstr()) 201 continue; 202 SmallVector<SDep, 4> Erase; 203 for (auto &D : SU.Preds) 204 if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF) 205 Erase.push_back(D); 206 for (auto &E : Erase) 207 SU.removePred(E); 208 } 209 } 210 211 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) { 212 for (SUnit &SU : DAG->SUnits) { 213 // Update the latency of chain edges between v60 vector load or store 214 // instructions to be 1. These instruction cannot be scheduled in the 215 // same packet. 216 MachineInstr &MI1 = *SU.getInstr(); 217 auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII); 218 bool IsStoreMI1 = MI1.mayStore(); 219 bool IsLoadMI1 = MI1.mayLoad(); 220 if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1)) 221 continue; 222 for (SDep &SI : SU.Succs) { 223 if (SI.getKind() != SDep::Order || SI.getLatency() != 0) 224 continue; 225 MachineInstr &MI2 = *SI.getSUnit()->getInstr(); 226 if (!QII->isHVXVec(MI2)) 227 continue; 228 if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) { 229 SI.setLatency(1); 230 SU.setHeightDirty(); 231 // Change the dependence in the opposite direction too. 232 for (SDep &PI : SI.getSUnit()->Preds) { 233 if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order) 234 continue; 235 PI.setLatency(1); 236 SI.getSUnit()->setDepthDirty(); 237 } 238 } 239 } 240 } 241 } 242 243 // Check if a call and subsequent A2_tfrpi instructions should maintain 244 // scheduling affinity. We are looking for the TFRI to be consumed in 245 // the next instruction. This should help reduce the instances of 246 // double register pairs being allocated and scheduled before a call 247 // when not used until after the call. This situation is exacerbated 248 // by the fact that we allocate the pair from the callee saves list, 249 // leading to excess spills and restores. 250 bool HexagonSubtarget::CallMutation::shouldTFRICallBind( 251 const HexagonInstrInfo &HII, const SUnit &Inst1, 252 const SUnit &Inst2) const { 253 if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) 254 return false; 255 256 // TypeXTYPE are 64 bit operations. 257 unsigned Type = HII.getType(*Inst2.getInstr()); 258 return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op || 259 Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM; 260 } 261 262 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 263 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 264 SUnit* LastSequentialCall = nullptr; 265 // Map from virtual register to physical register from the copy. 266 DenseMap<unsigned, unsigned> VRegHoldingReg; 267 // Map from the physical register to the instruction that uses virtual 268 // register. This is used to create the barrier edge. 269 DenseMap<unsigned, SUnit *> LastVRegUse; 270 auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo(); 271 auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 272 273 // Currently we only catch the situation when compare gets scheduled 274 // before preceding call. 275 for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) { 276 // Remember the call. 277 if (DAG->SUnits[su].getInstr()->isCall()) 278 LastSequentialCall = &DAG->SUnits[su]; 279 // Look for a compare that defines a predicate. 280 else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall) 281 DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier)); 282 // Look for call and tfri* instructions. 283 else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 && 284 shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1])) 285 DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier)); 286 // Prevent redundant register copies due to reads and writes of physical 287 // registers. The original motivation for this was the code generated 288 // between two calls, which are caused both the return value and the 289 // argument for the next call being in %r0. 290 // Example: 291 // 1: <call1> 292 // 2: %vreg = COPY %r0 293 // 3: <use of %vreg> 294 // 4: %r0 = ... 295 // 5: <call2> 296 // The scheduler would often swap 3 and 4, so an additional register is 297 // needed. This code inserts a Barrier dependence between 3 & 4 to prevent 298 // this. 299 // The code below checks for all the physical registers, not just R0/D0/V0. 300 else if (SchedRetvalOptimization) { 301 const MachineInstr *MI = DAG->SUnits[su].getInstr(); 302 if (MI->isCopy() && 303 Register::isPhysicalRegister(MI->getOperand(1).getReg())) { 304 // %vregX = COPY %r0 305 VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg(); 306 LastVRegUse.erase(MI->getOperand(1).getReg()); 307 } else { 308 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 309 const MachineOperand &MO = MI->getOperand(i); 310 if (!MO.isReg()) 311 continue; 312 if (MO.isUse() && !MI->isCopy() && 313 VRegHoldingReg.count(MO.getReg())) { 314 // <use of %vregX> 315 LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su]; 316 } else if (MO.isDef() && Register::isPhysicalRegister(MO.getReg())) { 317 for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid(); 318 ++AI) { 319 if (LastVRegUse.count(*AI) && 320 LastVRegUse[*AI] != &DAG->SUnits[su]) 321 // %r0 = ... 322 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier)); 323 LastVRegUse.erase(*AI); 324 } 325 } 326 } 327 } 328 } 329 } 330 } 331 332 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) { 333 if (!EnableCheckBankConflict) 334 return; 335 336 const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII); 337 338 // Create artificial edges between loads that could likely cause a bank 339 // conflict. Since such loads would normally not have any dependency 340 // between them, we cannot rely on existing edges. 341 for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) { 342 SUnit &S0 = DAG->SUnits[i]; 343 MachineInstr &L0 = *S0.getInstr(); 344 if (!L0.mayLoad() || L0.mayStore() || 345 HII.getAddrMode(L0) != HexagonII::BaseImmOffset) 346 continue; 347 int64_t Offset0; 348 unsigned Size0; 349 MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0); 350 // Is the access size is longer than the L1 cache line, skip the check. 351 if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32) 352 continue; 353 // Scan only up to 32 instructions ahead (to avoid n^2 complexity). 354 for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) { 355 SUnit &S1 = DAG->SUnits[j]; 356 MachineInstr &L1 = *S1.getInstr(); 357 if (!L1.mayLoad() || L1.mayStore() || 358 HII.getAddrMode(L1) != HexagonII::BaseImmOffset) 359 continue; 360 int64_t Offset1; 361 unsigned Size1; 362 MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1); 363 if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 || 364 BaseOp0->getReg() != BaseOp1->getReg()) 365 continue; 366 // Check bits 3 and 4 of the offset: if they differ, a bank conflict 367 // is unlikely. 368 if (((Offset0 ^ Offset1) & 0x18) != 0) 369 continue; 370 // Bits 3 and 4 are the same, add an artificial edge and set extra 371 // latency. 372 SDep A(&S0, SDep::Artificial); 373 A.setLatency(1); 374 S1.addPred(A, true); 375 } 376 } 377 } 378 379 /// Enable use of alias analysis during code generation (during MI 380 /// scheduling, DAGCombine, etc.). 381 bool HexagonSubtarget::useAA() const { 382 if (OptLevel != CodeGenOpt::None) 383 return true; 384 return false; 385 } 386 387 /// Perform target specific adjustments to the latency of a schedule 388 /// dependency. 389 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx, 390 SUnit *Dst, int DstOpIdx, 391 SDep &Dep) const { 392 if (!Src->isInstr() || !Dst->isInstr()) 393 return; 394 395 MachineInstr *SrcInst = Src->getInstr(); 396 MachineInstr *DstInst = Dst->getInstr(); 397 const HexagonInstrInfo *QII = getInstrInfo(); 398 399 // Instructions with .new operands have zero latency. 400 SmallSet<SUnit *, 4> ExclSrc; 401 SmallSet<SUnit *, 4> ExclDst; 402 if (QII->canExecuteInBundle(*SrcInst, *DstInst) && 403 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { 404 Dep.setLatency(0); 405 return; 406 } 407 408 if (!hasV60Ops()) 409 return; 410 411 // Set the latency for a copy to zero since we hope that is will get removed. 412 if (DstInst->isCopy()) 413 Dep.setLatency(0); 414 415 // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine 416 // the correct latency. 417 if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) { 418 Register DReg = DstInst->getOperand(0).getReg(); 419 MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr(); 420 unsigned UseIdx = -1; 421 for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) { 422 const MachineOperand &MO = DDst->getOperand(OpNum); 423 if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) { 424 UseIdx = OpNum; 425 break; 426 } 427 } 428 int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 429 0, *DDst, UseIdx)); 430 DLatency = std::max(DLatency, 0); 431 Dep.setLatency((unsigned)DLatency); 432 } 433 434 // Try to schedule uses near definitions to generate .cur. 435 ExclSrc.clear(); 436 ExclDst.clear(); 437 if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) && 438 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { 439 Dep.setLatency(0); 440 return; 441 } 442 443 updateLatency(*SrcInst, *DstInst, Dep); 444 } 445 446 void HexagonSubtarget::getPostRAMutations( 447 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 448 Mutations.push_back(std::make_unique<UsrOverflowMutation>()); 449 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>()); 450 Mutations.push_back(std::make_unique<BankConflictMutation>()); 451 } 452 453 void HexagonSubtarget::getSMSMutations( 454 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 455 Mutations.push_back(std::make_unique<UsrOverflowMutation>()); 456 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>()); 457 } 458 459 // Pin the vtable to this file. 460 void HexagonSubtarget::anchor() {} 461 462 bool HexagonSubtarget::enableMachineScheduler() const { 463 if (DisableHexagonMISched.getNumOccurrences()) 464 return !DisableHexagonMISched; 465 return true; 466 } 467 468 bool HexagonSubtarget::usePredicatedCalls() const { 469 return EnablePredicatedCalls; 470 } 471 472 void HexagonSubtarget::updateLatency(MachineInstr &SrcInst, 473 MachineInstr &DstInst, SDep &Dep) const { 474 if (Dep.isArtificial()) { 475 Dep.setLatency(1); 476 return; 477 } 478 479 if (!hasV60Ops()) 480 return; 481 482 auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo()); 483 484 // BSB scheduling. 485 if (QII.isHVXVec(SrcInst) || useBSBScheduling()) 486 Dep.setLatency((Dep.getLatency() + 1) >> 1); 487 } 488 489 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const { 490 MachineInstr *SrcI = Src->getInstr(); 491 for (auto &I : Src->Succs) { 492 if (!I.isAssignedRegDep() || I.getSUnit() != Dst) 493 continue; 494 Register DepR = I.getReg(); 495 int DefIdx = -1; 496 for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) { 497 const MachineOperand &MO = SrcI->getOperand(OpNum); 498 bool IsSameOrSubReg = false; 499 if (MO.isReg()) { 500 Register MOReg = MO.getReg(); 501 if (DepR.isVirtual()) { 502 IsSameOrSubReg = (MOReg == DepR); 503 } else { 504 IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg); 505 } 506 if (MO.isDef() && IsSameOrSubReg) 507 DefIdx = OpNum; 508 } 509 } 510 assert(DefIdx >= 0 && "Def Reg not found in Src MI"); 511 MachineInstr *DstI = Dst->getInstr(); 512 SDep T = I; 513 for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) { 514 const MachineOperand &MO = DstI->getOperand(OpNum); 515 if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) { 516 int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI, 517 DefIdx, *DstI, OpNum)); 518 519 // For some instructions (ex: COPY), we might end up with < 0 latency 520 // as they don't have any Itinerary class associated with them. 521 Latency = std::max(Latency, 0); 522 523 I.setLatency(Latency); 524 updateLatency(*SrcI, *DstI, I); 525 } 526 } 527 528 // Update the latency of opposite edge too. 529 T.setSUnit(Src); 530 auto F = find(Dst->Preds, T); 531 assert(F != Dst->Preds.end()); 532 F->setLatency(I.getLatency()); 533 } 534 } 535 536 /// Change the latency between the two SUnits. 537 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat) 538 const { 539 for (auto &I : Src->Succs) { 540 if (!I.isAssignedRegDep() || I.getSUnit() != Dst) 541 continue; 542 SDep T = I; 543 I.setLatency(Lat); 544 545 // Update the latency of opposite edge too. 546 T.setSUnit(Src); 547 auto F = find(Dst->Preds, T); 548 assert(F != Dst->Preds.end()); 549 F->setLatency(Lat); 550 } 551 } 552 553 /// If the SUnit has a zero latency edge, return the other SUnit. 554 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) { 555 for (auto &I : Deps) 556 if (I.isAssignedRegDep() && I.getLatency() == 0 && 557 !I.getSUnit()->getInstr()->isPseudo()) 558 return I.getSUnit(); 559 return nullptr; 560 } 561 562 // Return true if these are the best two instructions to schedule 563 // together with a zero latency. Only one dependence should have a zero 564 // latency. If there are multiple choices, choose the best, and change 565 // the others, if needed. 566 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst, 567 const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc, 568 SmallSet<SUnit*, 4> &ExclDst) const { 569 MachineInstr &SrcInst = *Src->getInstr(); 570 MachineInstr &DstInst = *Dst->getInstr(); 571 572 // Ignore Boundary SU nodes as these have null instructions. 573 if (Dst->isBoundaryNode()) 574 return false; 575 576 if (SrcInst.isPHI() || DstInst.isPHI()) 577 return false; 578 579 if (!TII->isToBeScheduledASAP(SrcInst, DstInst) && 580 !TII->canExecuteInBundle(SrcInst, DstInst)) 581 return false; 582 583 // The architecture doesn't allow three dependent instructions in the same 584 // packet. So, if the destination has a zero latency successor, then it's 585 // not a candidate for a zero latency predecessor. 586 if (getZeroLatency(Dst, Dst->Succs) != nullptr) 587 return false; 588 589 // Check if the Dst instruction is the best candidate first. 590 SUnit *Best = nullptr; 591 SUnit *DstBest = nullptr; 592 SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds); 593 if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) { 594 // Check that Src doesn't have a better candidate. 595 DstBest = getZeroLatency(Src, Src->Succs); 596 if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum) 597 Best = Dst; 598 } 599 if (Best != Dst) 600 return false; 601 602 // The caller frequently adds the same dependence twice. If so, then 603 // return true for this case too. 604 if ((Src == SrcBest && Dst == DstBest ) || 605 (SrcBest == nullptr && Dst == DstBest) || 606 (Src == SrcBest && Dst == nullptr)) 607 return true; 608 609 // Reassign the latency for the previous bests, which requires setting 610 // the dependence edge in both directions. 611 if (SrcBest != nullptr) { 612 if (!hasV60Ops()) 613 changeLatency(SrcBest, Dst, 1); 614 else 615 restoreLatency(SrcBest, Dst); 616 } 617 if (DstBest != nullptr) { 618 if (!hasV60Ops()) 619 changeLatency(Src, DstBest, 1); 620 else 621 restoreLatency(Src, DstBest); 622 } 623 624 // Attempt to find another opprotunity for zero latency in a different 625 // dependence. 626 if (SrcBest && DstBest) 627 // If there is an edge from SrcBest to DstBst, then try to change that 628 // to 0 now. 629 changeLatency(SrcBest, DstBest, 0); 630 else if (DstBest) { 631 // Check if the previous best destination instruction has a new zero 632 // latency dependence opportunity. 633 ExclSrc.insert(Src); 634 for (auto &I : DstBest->Preds) 635 if (ExclSrc.count(I.getSUnit()) == 0 && 636 isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst)) 637 changeLatency(I.getSUnit(), DstBest, 0); 638 } else if (SrcBest) { 639 // Check if previous best source instruction has a new zero latency 640 // dependence opportunity. 641 ExclDst.insert(Dst); 642 for (auto &I : SrcBest->Succs) 643 if (ExclDst.count(I.getSUnit()) == 0 && 644 isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst)) 645 changeLatency(SrcBest, I.getSUnit(), 0); 646 } 647 648 return true; 649 } 650 651 unsigned HexagonSubtarget::getL1CacheLineSize() const { 652 return 32; 653 } 654 655 unsigned HexagonSubtarget::getL1PrefetchDistance() const { 656 return 32; 657 } 658 659 bool HexagonSubtarget::enableSubRegLiveness() const { 660 return EnableSubregLiveness; 661 } 662