xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Hexagon specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonSubtarget.h"
14 #include "Hexagon.h"
15 #include "HexagonInstrInfo.h"
16 #include "HexagonRegisterInfo.h"
17 #include "MCTargetDesc/HexagonMCTargetDesc.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <map>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "hexagon-subtarget"
37 
38 #define GET_SUBTARGETINFO_CTOR
39 #define GET_SUBTARGETINFO_TARGET_DESC
40 #include "HexagonGenSubtargetInfo.inc"
41 
42 static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
43   cl::Hidden, cl::ZeroOrMore, cl::init(true));
44 
45 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
46   cl::Hidden, cl::ZeroOrMore, cl::init(false));
47 
48 static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
49   cl::Hidden, cl::ZeroOrMore, cl::init(true),
50   cl::desc("Enable the scheduler to generate .cur"));
51 
52 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
53   cl::Hidden, cl::ZeroOrMore, cl::init(false),
54   cl::desc("Disable Hexagon MI Scheduling"));
55 
56 static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
57   cl::Hidden, cl::ZeroOrMore, cl::init(true),
58   cl::desc("Enable subregister liveness tracking for Hexagon"));
59 
60 static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
61   cl::Hidden, cl::ZeroOrMore, cl::init(false),
62   cl::desc("If present, forces/disables the use of long calls"));
63 
64 static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
65   cl::Hidden, cl::ZeroOrMore, cl::init(false),
66   cl::desc("Consider calls to be predicable"));
67 
68 static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
69   cl::Hidden, cl::ZeroOrMore, cl::init(true));
70 
71 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
72   cl::Hidden, cl::ZeroOrMore, cl::init(true));
73 
74 static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
75   cl::Hidden, cl::ZeroOrMore, cl::init(true),
76   cl::desc("Enable checking for cache bank conflicts"));
77 
78 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
79                                    StringRef FS, const TargetMachine &TM)
80     : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
81       OptLevel(TM.getOptLevel()),
82       CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
83       TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
84       RegInfo(getHwMode()), TLInfo(TM, *this),
85       InstrItins(getInstrItineraryForCPU(CPUString)) {
86   Hexagon_MC::addArchSubtarget(this, FS);
87   // Beware of the default constructor of InstrItineraryData: it will
88   // reset all members to 0.
89   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
90 }
91 
92 HexagonSubtarget &
93 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
94   Optional<Hexagon::ArchEnum> ArchVer =
95       Hexagon::GetCpu(Hexagon::CpuTable, CPUString);
96   if (ArchVer)
97     HexagonArchVersion = *ArchVer;
98   else
99     llvm_unreachable("Unrecognized Hexagon processor version");
100 
101   UseHVX128BOps = false;
102   UseHVX64BOps = false;
103   UseAudioOps = false;
104   UseLongCalls = false;
105 
106   UseBSBScheduling = hasV60Ops() && EnableBSBSched;
107 
108   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FS);
109 
110   if (OverrideLongCalls.getPosition())
111     UseLongCalls = OverrideLongCalls;
112 
113   if (isTinyCore()) {
114     // Tiny core has a single thread, so back-to-back scheduling is enabled by
115     // default.
116     if (!EnableBSBSched.getPosition())
117       UseBSBScheduling = false;
118   }
119 
120   FeatureBitset Features = getFeatureBits();
121   if (HexagonDisableDuplex)
122     setFeatureBits(Features.reset(Hexagon::FeatureDuplex));
123   setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
124 
125   return *this;
126 }
127 
128 bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const {
129   if (!useHVXOps())
130     return false;
131   if (Ty.isVector())
132     Ty = Ty.getVectorElementType();
133   if (IncludeBool && Ty == MVT::i1)
134     return true;
135   ArrayRef<MVT> ElemTypes = getHVXElementTypes();
136   return llvm::is_contained(ElemTypes, Ty);
137 }
138 
139 bool HexagonSubtarget::isHVXVectorType(MVT VecTy, bool IncludeBool) const {
140   if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector())
141     return false;
142   MVT ElemTy = VecTy.getVectorElementType();
143   if (!IncludeBool && ElemTy == MVT::i1)
144     return false;
145 
146   unsigned HwLen = getVectorLength();
147   unsigned NumElems = VecTy.getVectorNumElements();
148   ArrayRef<MVT> ElemTypes = getHVXElementTypes();
149 
150   if (IncludeBool && ElemTy == MVT::i1) {
151     // Boolean HVX vector types are formed from regular HVX vector types
152     // by replacing the element type with i1.
153     for (MVT T : ElemTypes)
154       if (NumElems * T.getSizeInBits() == 8 * HwLen)
155         return true;
156     return false;
157   }
158 
159   unsigned VecWidth = VecTy.getSizeInBits();
160   if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen)
161     return false;
162   return llvm::is_contained(ElemTypes, ElemTy);
163 }
164 
165 bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const {
166   if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy))
167     return false;
168   // Avoid types like <2 x i32*>.
169   if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
170     return false;
171   // The given type may be something like <17 x i32>, which is not MVT,
172   // but can be represented as (non-simple) EVT.
173   EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false);
174   if (Ty.getSizeInBits() <= 64 || !Ty.getVectorElementType().isSimple())
175     return false;
176 
177   auto isHvxTy = [this, IncludeBool](MVT SimpleTy) {
178     if (isHVXVectorType(SimpleTy, IncludeBool))
179       return true;
180     auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy);
181     return Action == TargetLoweringBase::TypeWidenVector;
182   };
183 
184   // Round up EVT to have power-of-2 elements, and keep checking if it
185   // qualifies for HVX, dividing it in half after each step.
186   MVT ElemTy = Ty.getVectorElementType().getSimpleVT();
187   unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements());
188   while (ElemTy.getSizeInBits() * VecLen > 64) {
189     MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen);
190     if (SimpleTy.isValid() && isHvxTy(SimpleTy))
191       return true;
192     VecLen /= 2;
193   }
194 
195   return false;
196 }
197 
198 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
199   for (SUnit &SU : DAG->SUnits) {
200     if (!SU.isInstr())
201       continue;
202     SmallVector<SDep, 4> Erase;
203     for (auto &D : SU.Preds)
204       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
205         Erase.push_back(D);
206     for (auto &E : Erase)
207       SU.removePred(E);
208   }
209 }
210 
211 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
212   for (SUnit &SU : DAG->SUnits) {
213     // Update the latency of chain edges between v60 vector load or store
214     // instructions to be 1. These instruction cannot be scheduled in the
215     // same packet.
216     MachineInstr &MI1 = *SU.getInstr();
217     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
218     bool IsStoreMI1 = MI1.mayStore();
219     bool IsLoadMI1 = MI1.mayLoad();
220     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
221       continue;
222     for (SDep &SI : SU.Succs) {
223       if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
224         continue;
225       MachineInstr &MI2 = *SI.getSUnit()->getInstr();
226       if (!QII->isHVXVec(MI2))
227         continue;
228       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
229         SI.setLatency(1);
230         SU.setHeightDirty();
231         // Change the dependence in the opposite direction too.
232         for (SDep &PI : SI.getSUnit()->Preds) {
233           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
234             continue;
235           PI.setLatency(1);
236           SI.getSUnit()->setDepthDirty();
237         }
238       }
239     }
240   }
241 }
242 
243 // Check if a call and subsequent A2_tfrpi instructions should maintain
244 // scheduling affinity. We are looking for the TFRI to be consumed in
245 // the next instruction. This should help reduce the instances of
246 // double register pairs being allocated and scheduled before a call
247 // when not used until after the call. This situation is exacerbated
248 // by the fact that we allocate the pair from the callee saves list,
249 // leading to excess spills and restores.
250 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
251       const HexagonInstrInfo &HII, const SUnit &Inst1,
252       const SUnit &Inst2) const {
253   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
254     return false;
255 
256   // TypeXTYPE are 64 bit operations.
257   unsigned Type = HII.getType(*Inst2.getInstr());
258   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
259          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
260 }
261 
262 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
263   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
264   SUnit* LastSequentialCall = nullptr;
265   // Map from virtual register to physical register from the copy.
266   DenseMap<unsigned, unsigned> VRegHoldingReg;
267   // Map from the physical register to the instruction that uses virtual
268   // register. This is used to create the barrier edge.
269   DenseMap<unsigned, SUnit *> LastVRegUse;
270   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
271   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
272 
273   // Currently we only catch the situation when compare gets scheduled
274   // before preceding call.
275   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
276     // Remember the call.
277     if (DAG->SUnits[su].getInstr()->isCall())
278       LastSequentialCall = &DAG->SUnits[su];
279     // Look for a compare that defines a predicate.
280     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
281       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
282     // Look for call and tfri* instructions.
283     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
284              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
285       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
286     // Prevent redundant register copies due to reads and writes of physical
287     // registers. The original motivation for this was the code generated
288     // between two calls, which are caused both the return value and the
289     // argument for the next call being in %r0.
290     // Example:
291     //   1: <call1>
292     //   2: %vreg = COPY %r0
293     //   3: <use of %vreg>
294     //   4: %r0 = ...
295     //   5: <call2>
296     // The scheduler would often swap 3 and 4, so an additional register is
297     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
298     // this.
299     // The code below checks for all the physical registers, not just R0/D0/V0.
300     else if (SchedRetvalOptimization) {
301       const MachineInstr *MI = DAG->SUnits[su].getInstr();
302       if (MI->isCopy() &&
303           Register::isPhysicalRegister(MI->getOperand(1).getReg())) {
304         // %vregX = COPY %r0
305         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
306         LastVRegUse.erase(MI->getOperand(1).getReg());
307       } else {
308         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
309           const MachineOperand &MO = MI->getOperand(i);
310           if (!MO.isReg())
311             continue;
312           if (MO.isUse() && !MI->isCopy() &&
313               VRegHoldingReg.count(MO.getReg())) {
314             // <use of %vregX>
315             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
316           } else if (MO.isDef() && Register::isPhysicalRegister(MO.getReg())) {
317             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
318                  ++AI) {
319               if (LastVRegUse.count(*AI) &&
320                   LastVRegUse[*AI] != &DAG->SUnits[su])
321                 // %r0 = ...
322                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
323               LastVRegUse.erase(*AI);
324             }
325           }
326         }
327       }
328     }
329   }
330 }
331 
332 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
333   if (!EnableCheckBankConflict)
334     return;
335 
336   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
337 
338   // Create artificial edges between loads that could likely cause a bank
339   // conflict. Since such loads would normally not have any dependency
340   // between them, we cannot rely on existing edges.
341   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
342     SUnit &S0 = DAG->SUnits[i];
343     MachineInstr &L0 = *S0.getInstr();
344     if (!L0.mayLoad() || L0.mayStore() ||
345         HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
346       continue;
347     int64_t Offset0;
348     unsigned Size0;
349     MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
350     // Is the access size is longer than the L1 cache line, skip the check.
351     if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
352       continue;
353     // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
354     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
355       SUnit &S1 = DAG->SUnits[j];
356       MachineInstr &L1 = *S1.getInstr();
357       if (!L1.mayLoad() || L1.mayStore() ||
358           HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
359         continue;
360       int64_t Offset1;
361       unsigned Size1;
362       MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
363       if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
364           BaseOp0->getReg() != BaseOp1->getReg())
365         continue;
366       // Check bits 3 and 4 of the offset: if they differ, a bank conflict
367       // is unlikely.
368       if (((Offset0 ^ Offset1) & 0x18) != 0)
369         continue;
370       // Bits 3 and 4 are the same, add an artificial edge and set extra
371       // latency.
372       SDep A(&S0, SDep::Artificial);
373       A.setLatency(1);
374       S1.addPred(A, true);
375     }
376   }
377 }
378 
379 /// Enable use of alias analysis during code generation (during MI
380 /// scheduling, DAGCombine, etc.).
381 bool HexagonSubtarget::useAA() const {
382   if (OptLevel != CodeGenOpt::None)
383     return true;
384   return false;
385 }
386 
387 /// Perform target specific adjustments to the latency of a schedule
388 /// dependency.
389 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx,
390                                              SUnit *Dst, int DstOpIdx,
391                                              SDep &Dep) const {
392   if (!Src->isInstr() || !Dst->isInstr())
393     return;
394 
395   MachineInstr *SrcInst = Src->getInstr();
396   MachineInstr *DstInst = Dst->getInstr();
397   const HexagonInstrInfo *QII = getInstrInfo();
398 
399   // Instructions with .new operands have zero latency.
400   SmallSet<SUnit *, 4> ExclSrc;
401   SmallSet<SUnit *, 4> ExclDst;
402   if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
403       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
404     Dep.setLatency(0);
405     return;
406   }
407 
408   if (!hasV60Ops())
409     return;
410 
411   // Set the latency for a copy to zero since we hope that is will get removed.
412   if (DstInst->isCopy())
413     Dep.setLatency(0);
414 
415   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
416   // the correct latency.
417   if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
418     Register DReg = DstInst->getOperand(0).getReg();
419     MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
420     unsigned UseIdx = -1;
421     for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
422       const MachineOperand &MO = DDst->getOperand(OpNum);
423       if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
424         UseIdx = OpNum;
425         break;
426       }
427     }
428     int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
429                                                 0, *DDst, UseIdx));
430     DLatency = std::max(DLatency, 0);
431     Dep.setLatency((unsigned)DLatency);
432   }
433 
434   // Try to schedule uses near definitions to generate .cur.
435   ExclSrc.clear();
436   ExclDst.clear();
437   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
438       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
439     Dep.setLatency(0);
440     return;
441   }
442 
443   updateLatency(*SrcInst, *DstInst, Dep);
444 }
445 
446 void HexagonSubtarget::getPostRAMutations(
447     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
448   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
449   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
450   Mutations.push_back(std::make_unique<BankConflictMutation>());
451 }
452 
453 void HexagonSubtarget::getSMSMutations(
454     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
455   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
456   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
457 }
458 
459 // Pin the vtable to this file.
460 void HexagonSubtarget::anchor() {}
461 
462 bool HexagonSubtarget::enableMachineScheduler() const {
463   if (DisableHexagonMISched.getNumOccurrences())
464     return !DisableHexagonMISched;
465   return true;
466 }
467 
468 bool HexagonSubtarget::usePredicatedCalls() const {
469   return EnablePredicatedCalls;
470 }
471 
472 void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
473       MachineInstr &DstInst, SDep &Dep) const {
474   if (Dep.isArtificial()) {
475     Dep.setLatency(1);
476     return;
477   }
478 
479   if (!hasV60Ops())
480     return;
481 
482   auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
483 
484   // BSB scheduling.
485   if (QII.isHVXVec(SrcInst) || useBSBScheduling())
486     Dep.setLatency((Dep.getLatency() + 1) >> 1);
487 }
488 
489 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
490   MachineInstr *SrcI = Src->getInstr();
491   for (auto &I : Src->Succs) {
492     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
493       continue;
494     Register DepR = I.getReg();
495     int DefIdx = -1;
496     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
497       const MachineOperand &MO = SrcI->getOperand(OpNum);
498       bool IsSameOrSubReg = false;
499       if (MO.isReg()) {
500         Register MOReg = MO.getReg();
501         if (DepR.isVirtual()) {
502           IsSameOrSubReg = (MOReg == DepR);
503         } else {
504           IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
505         }
506         if (MO.isDef() && IsSameOrSubReg)
507           DefIdx = OpNum;
508       }
509     }
510     assert(DefIdx >= 0 && "Def Reg not found in Src MI");
511     MachineInstr *DstI = Dst->getInstr();
512     SDep T = I;
513     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
514       const MachineOperand &MO = DstI->getOperand(OpNum);
515       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
516         int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
517                                                    DefIdx, *DstI, OpNum));
518 
519         // For some instructions (ex: COPY), we might end up with < 0 latency
520         // as they don't have any Itinerary class associated with them.
521         Latency = std::max(Latency, 0);
522 
523         I.setLatency(Latency);
524         updateLatency(*SrcI, *DstI, I);
525       }
526     }
527 
528     // Update the latency of opposite edge too.
529     T.setSUnit(Src);
530     auto F = find(Dst->Preds, T);
531     assert(F != Dst->Preds.end());
532     F->setLatency(I.getLatency());
533   }
534 }
535 
536 /// Change the latency between the two SUnits.
537 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
538       const {
539   for (auto &I : Src->Succs) {
540     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
541       continue;
542     SDep T = I;
543     I.setLatency(Lat);
544 
545     // Update the latency of opposite edge too.
546     T.setSUnit(Src);
547     auto F = find(Dst->Preds, T);
548     assert(F != Dst->Preds.end());
549     F->setLatency(Lat);
550   }
551 }
552 
553 /// If the SUnit has a zero latency edge, return the other SUnit.
554 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
555   for (auto &I : Deps)
556     if (I.isAssignedRegDep() && I.getLatency() == 0 &&
557         !I.getSUnit()->getInstr()->isPseudo())
558       return I.getSUnit();
559   return nullptr;
560 }
561 
562 // Return true if these are the best two instructions to schedule
563 // together with a zero latency. Only one dependence should have a zero
564 // latency. If there are multiple choices, choose the best, and change
565 // the others, if needed.
566 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
567       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
568       SmallSet<SUnit*, 4> &ExclDst) const {
569   MachineInstr &SrcInst = *Src->getInstr();
570   MachineInstr &DstInst = *Dst->getInstr();
571 
572   // Ignore Boundary SU nodes as these have null instructions.
573   if (Dst->isBoundaryNode())
574     return false;
575 
576   if (SrcInst.isPHI() || DstInst.isPHI())
577     return false;
578 
579   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
580       !TII->canExecuteInBundle(SrcInst, DstInst))
581     return false;
582 
583   // The architecture doesn't allow three dependent instructions in the same
584   // packet. So, if the destination has a zero latency successor, then it's
585   // not a candidate for a zero latency predecessor.
586   if (getZeroLatency(Dst, Dst->Succs) != nullptr)
587     return false;
588 
589   // Check if the Dst instruction is the best candidate first.
590   SUnit *Best = nullptr;
591   SUnit *DstBest = nullptr;
592   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
593   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
594     // Check that Src doesn't have a better candidate.
595     DstBest = getZeroLatency(Src, Src->Succs);
596     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
597       Best = Dst;
598   }
599   if (Best != Dst)
600     return false;
601 
602   // The caller frequently adds the same dependence twice. If so, then
603   // return true for this case too.
604   if ((Src == SrcBest && Dst == DstBest ) ||
605       (SrcBest == nullptr && Dst == DstBest) ||
606       (Src == SrcBest && Dst == nullptr))
607     return true;
608 
609   // Reassign the latency for the previous bests, which requires setting
610   // the dependence edge in both directions.
611   if (SrcBest != nullptr) {
612     if (!hasV60Ops())
613       changeLatency(SrcBest, Dst, 1);
614     else
615       restoreLatency(SrcBest, Dst);
616   }
617   if (DstBest != nullptr) {
618     if (!hasV60Ops())
619       changeLatency(Src, DstBest, 1);
620     else
621       restoreLatency(Src, DstBest);
622   }
623 
624   // Attempt to find another opprotunity for zero latency in a different
625   // dependence.
626   if (SrcBest && DstBest)
627     // If there is an edge from SrcBest to DstBst, then try to change that
628     // to 0 now.
629     changeLatency(SrcBest, DstBest, 0);
630   else if (DstBest) {
631     // Check if the previous best destination instruction has a new zero
632     // latency dependence opportunity.
633     ExclSrc.insert(Src);
634     for (auto &I : DstBest->Preds)
635       if (ExclSrc.count(I.getSUnit()) == 0 &&
636           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
637         changeLatency(I.getSUnit(), DstBest, 0);
638   } else if (SrcBest) {
639     // Check if previous best source instruction has a new zero latency
640     // dependence opportunity.
641     ExclDst.insert(Dst);
642     for (auto &I : SrcBest->Succs)
643       if (ExclDst.count(I.getSUnit()) == 0 &&
644           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
645         changeLatency(SrcBest, I.getSUnit(), 0);
646   }
647 
648   return true;
649 }
650 
651 unsigned HexagonSubtarget::getL1CacheLineSize() const {
652   return 32;
653 }
654 
655 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
656   return 32;
657 }
658 
659 bool HexagonSubtarget::enableSubRegLiveness() const {
660   return EnableSubregLiveness;
661 }
662