xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSplitDouble.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- HexagonSplitDouble.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonInstrInfo.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/CodeGen/MachineBasicBlock.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Compiler.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <limits>
38 #include <map>
39 #include <set>
40 #include <utility>
41 #include <vector>
42 
43 #define DEBUG_TYPE "hsdr"
44 
45 using namespace llvm;
46 
47 namespace llvm {
48 
49   FunctionPass *createHexagonSplitDoubleRegs();
50   void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
51 
52 } // end namespace llvm
53 
54 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
55     cl::desc("Maximum number of split partitions"));
56 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
57     cl::desc("Do not split loads or stores"));
58   static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false),
59       cl::desc("Split all partitions"));
60 
61 namespace {
62 
63   class HexagonSplitDoubleRegs : public MachineFunctionPass {
64   public:
65     static char ID;
66 
67     HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {}
68 
69     StringRef getPassName() const override {
70       return "Hexagon Split Double Registers";
71     }
72 
73     void getAnalysisUsage(AnalysisUsage &AU) const override {
74       AU.addRequired<MachineLoopInfo>();
75       AU.addPreserved<MachineLoopInfo>();
76       MachineFunctionPass::getAnalysisUsage(AU);
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80 
81   private:
82     static const TargetRegisterClass *const DoubleRC;
83 
84     const HexagonRegisterInfo *TRI = nullptr;
85     const HexagonInstrInfo *TII = nullptr;
86     const MachineLoopInfo *MLI;
87     MachineRegisterInfo *MRI;
88 
89     using USet = std::set<unsigned>;
90     using UUSetMap = std::map<unsigned, USet>;
91     using UUPair = std::pair<unsigned, unsigned>;
92     using UUPairMap = std::map<unsigned, UUPair>;
93     using LoopRegMap = std::map<const MachineLoop *, USet>;
94 
95     bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
96     bool isVolatileInstr(const MachineInstr *MI) const;
97     bool isFixedInstr(const MachineInstr *MI) const;
98     void partitionRegisters(UUSetMap &P2Rs);
99     int32_t profit(const MachineInstr *MI) const;
100     int32_t profit(Register Reg) const;
101     bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
102 
103     void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
104     void collectIndRegs(LoopRegMap &IRM);
105 
106     void createHalfInstr(unsigned Opc, MachineInstr *MI,
107         const UUPairMap &PairMap, unsigned SubR);
108     void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
109     void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
110     void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
111     void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
112     void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
113     void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
114     bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
115     void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
116     void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
117     bool splitPartition(const USet &Part);
118 
119     static int Counter;
120 
121     static void dump_partition(raw_ostream&, const USet&,
122        const TargetRegisterInfo&);
123   };
124 
125 } // end anonymous namespace
126 
127 char HexagonSplitDoubleRegs::ID;
128 int HexagonSplitDoubleRegs::Counter = 0;
129 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
130     &Hexagon::DoubleRegsRegClass;
131 
132 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
133   "Hexagon Split Double Registers", false, false)
134 
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
137       const USet &Part, const TargetRegisterInfo &TRI) {
138   dbgs() << '{';
139   for (auto I : Part)
140     dbgs() << ' ' << printReg(I, &TRI);
141   dbgs() << " }";
142 }
143 #endif
144 
145 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
146   for (auto I : IRM) {
147     const USet &Rs = I.second;
148     if (Rs.find(Reg) != Rs.end())
149       return true;
150   }
151   return false;
152 }
153 
154 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
155   for (auto &MO : MI->memoperands())
156     if (MO->isVolatile() || MO->isAtomic())
157       return true;
158   return false;
159 }
160 
161 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
162   if (MI->mayLoadOrStore())
163     if (MemRefsFixed || isVolatileInstr(MI))
164       return true;
165   if (MI->isDebugInstr())
166     return false;
167 
168   unsigned Opc = MI->getOpcode();
169   switch (Opc) {
170     default:
171       return true;
172 
173     case TargetOpcode::PHI:
174     case TargetOpcode::COPY:
175       break;
176 
177     case Hexagon::L2_loadrd_io:
178       // Not handling stack stores (only reg-based addresses).
179       if (MI->getOperand(1).isReg())
180         break;
181       return true;
182     case Hexagon::S2_storerd_io:
183       // Not handling stack stores (only reg-based addresses).
184       if (MI->getOperand(0).isReg())
185         break;
186       return true;
187     case Hexagon::L2_loadrd_pi:
188     case Hexagon::S2_storerd_pi:
189 
190     case Hexagon::A2_tfrpi:
191     case Hexagon::A2_combineii:
192     case Hexagon::A4_combineir:
193     case Hexagon::A4_combineii:
194     case Hexagon::A4_combineri:
195     case Hexagon::A2_combinew:
196     case Hexagon::CONST64:
197 
198     case Hexagon::A2_sxtw:
199 
200     case Hexagon::A2_andp:
201     case Hexagon::A2_orp:
202     case Hexagon::A2_xorp:
203     case Hexagon::S2_asl_i_p_or:
204     case Hexagon::S2_asl_i_p:
205     case Hexagon::S2_asr_i_p:
206     case Hexagon::S2_lsr_i_p:
207       break;
208   }
209 
210   for (auto &Op : MI->operands()) {
211     if (!Op.isReg())
212       continue;
213     Register R = Op.getReg();
214     if (!R.isVirtual())
215       return true;
216   }
217   return false;
218 }
219 
220 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
221   using UUMap = std::map<unsigned, unsigned>;
222   using UVect = std::vector<unsigned>;
223 
224   unsigned NumRegs = MRI->getNumVirtRegs();
225   BitVector DoubleRegs(NumRegs);
226   for (unsigned i = 0; i < NumRegs; ++i) {
227     Register R = Register::index2VirtReg(i);
228     if (MRI->getRegClass(R) == DoubleRC)
229       DoubleRegs.set(i);
230   }
231 
232   BitVector FixedRegs(NumRegs);
233   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
234     Register R = Register::index2VirtReg(x);
235     MachineInstr *DefI = MRI->getVRegDef(R);
236     // In some cases a register may exist, but never be defined or used.
237     // It should never appear anywhere, but mark it as "fixed", just to be
238     // safe.
239     if (!DefI || isFixedInstr(DefI))
240       FixedRegs.set(x);
241   }
242 
243   UUSetMap AssocMap;
244   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
245     if (FixedRegs[x])
246       continue;
247     Register R = Register::index2VirtReg(x);
248     LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~");
249     USet &Asc = AssocMap[R];
250     for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
251          U != Z; ++U) {
252       MachineOperand &Op = *U;
253       MachineInstr *UseI = Op.getParent();
254       if (isFixedInstr(UseI))
255         continue;
256       for (MachineOperand &MO : UseI->operands()) {
257         // Skip non-registers or registers with subregisters.
258         if (&MO == &Op || !MO.isReg() || MO.getSubReg())
259           continue;
260         Register T = MO.getReg();
261         if (!T.isVirtual()) {
262           FixedRegs.set(x);
263           continue;
264         }
265         if (MRI->getRegClass(T) != DoubleRC)
266           continue;
267         unsigned u = Register::virtReg2Index(T);
268         if (FixedRegs[u])
269           continue;
270         LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI));
271         Asc.insert(T);
272         // Make it symmetric.
273         AssocMap[T].insert(R);
274       }
275     }
276     LLVM_DEBUG(dbgs() << '\n');
277   }
278 
279   UUMap R2P;
280   unsigned NextP = 1;
281   USet Visited;
282   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
283     Register R = Register::index2VirtReg(x);
284     if (Visited.count(R))
285       continue;
286     // Create a new partition for R.
287     unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
288     UVect WorkQ;
289     WorkQ.push_back(R);
290     for (unsigned i = 0; i < WorkQ.size(); ++i) {
291       unsigned T = WorkQ[i];
292       if (Visited.count(T))
293         continue;
294       R2P[T] = ThisP;
295       Visited.insert(T);
296       // Add all registers associated with T.
297       USet &Asc = AssocMap[T];
298       append_range(WorkQ, Asc);
299     }
300   }
301 
302   for (auto I : R2P)
303     P2Rs[I.second].insert(I.first);
304 }
305 
306 static inline int32_t profitImm(unsigned Imm) {
307   int32_t P = 0;
308   if (Imm == 0 || Imm == 0xFFFFFFFF)
309     P += 10;
310   return P;
311 }
312 
313 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
314   unsigned ImmX = 0;
315   unsigned Opc = MI->getOpcode();
316   switch (Opc) {
317     case TargetOpcode::PHI:
318       for (const auto &Op : MI->operands())
319         if (!Op.getSubReg())
320           return 0;
321       return 10;
322     case TargetOpcode::COPY:
323       if (MI->getOperand(1).getSubReg() != 0)
324         return 10;
325       return 0;
326 
327     case Hexagon::L2_loadrd_io:
328     case Hexagon::S2_storerd_io:
329       return -1;
330     case Hexagon::L2_loadrd_pi:
331     case Hexagon::S2_storerd_pi:
332       return 2;
333 
334     case Hexagon::A2_tfrpi:
335     case Hexagon::CONST64: {
336       uint64_t D = MI->getOperand(1).getImm();
337       unsigned Lo = D & 0xFFFFFFFFULL;
338       unsigned Hi = D >> 32;
339       return profitImm(Lo) + profitImm(Hi);
340     }
341     case Hexagon::A2_combineii:
342     case Hexagon::A4_combineii: {
343       const MachineOperand &Op1 = MI->getOperand(1);
344       const MachineOperand &Op2 = MI->getOperand(2);
345       int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0;
346       int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0;
347       return Prof1 + Prof2;
348     }
349     case Hexagon::A4_combineri:
350       ImmX++;
351       // Fall through into A4_combineir.
352       [[fallthrough]];
353     case Hexagon::A4_combineir: {
354       ImmX++;
355       const MachineOperand &OpX = MI->getOperand(ImmX);
356       if (OpX.isImm()) {
357         int64_t V = OpX.getImm();
358         if (V == 0 || V == -1)
359           return 10;
360       }
361       // Fall through into A2_combinew.
362       [[fallthrough]];
363     }
364     case Hexagon::A2_combinew:
365       return 2;
366 
367     case Hexagon::A2_sxtw:
368       return 3;
369 
370     case Hexagon::A2_andp:
371     case Hexagon::A2_orp:
372     case Hexagon::A2_xorp: {
373       Register Rs = MI->getOperand(1).getReg();
374       Register Rt = MI->getOperand(2).getReg();
375       return profit(Rs) + profit(Rt);
376     }
377 
378     case Hexagon::S2_asl_i_p_or: {
379       unsigned S = MI->getOperand(3).getImm();
380       if (S == 0 || S == 32)
381         return 10;
382       return -1;
383     }
384     case Hexagon::S2_asl_i_p:
385     case Hexagon::S2_asr_i_p:
386     case Hexagon::S2_lsr_i_p:
387       unsigned S = MI->getOperand(2).getImm();
388       if (S == 0 || S == 32)
389         return 10;
390       if (S == 16)
391         return 5;
392       if (S == 48)
393         return 7;
394       return -10;
395   }
396 
397   return 0;
398 }
399 
400 int32_t HexagonSplitDoubleRegs::profit(Register Reg) const {
401   assert(Reg.isVirtual());
402 
403   const MachineInstr *DefI = MRI->getVRegDef(Reg);
404   switch (DefI->getOpcode()) {
405     case Hexagon::A2_tfrpi:
406     case Hexagon::CONST64:
407     case Hexagon::A2_combineii:
408     case Hexagon::A4_combineii:
409     case Hexagon::A4_combineri:
410     case Hexagon::A4_combineir:
411     case Hexagon::A2_combinew:
412       return profit(DefI);
413     default:
414       break;
415   }
416   return 0;
417 }
418 
419 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
420       const {
421   unsigned FixedNum = 0, LoopPhiNum = 0;
422   int32_t TotalP = 0;
423 
424   for (unsigned DR : Part) {
425     MachineInstr *DefI = MRI->getVRegDef(DR);
426     int32_t P = profit(DefI);
427     if (P == std::numeric_limits<int>::min())
428       return false;
429     TotalP += P;
430     // Reduce the profitability of splitting induction registers.
431     if (isInduction(DR, IRM))
432       TotalP -= 30;
433 
434     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
435          U != W; ++U) {
436       MachineInstr *UseI = U->getParent();
437       if (isFixedInstr(UseI)) {
438         FixedNum++;
439         // Calculate the cost of generating REG_SEQUENCE instructions.
440         for (auto &Op : UseI->operands()) {
441           if (Op.isReg() && Part.count(Op.getReg()))
442             if (Op.getSubReg())
443               TotalP -= 2;
444         }
445         continue;
446       }
447       // If a register from this partition is used in a fixed instruction,
448       // and there is also a register in this partition that is used in
449       // a loop phi node, then decrease the splitting profit as this can
450       // confuse the modulo scheduler.
451       if (UseI->isPHI()) {
452         const MachineBasicBlock *PB = UseI->getParent();
453         const MachineLoop *L = MLI->getLoopFor(PB);
454         if (L && L->getHeader() == PB)
455           LoopPhiNum++;
456       }
457       // Splittable instruction.
458       int32_t P = profit(UseI);
459       if (P == std::numeric_limits<int>::min())
460         return false;
461       TotalP += P;
462     }
463   }
464 
465   if (FixedNum > 0 && LoopPhiNum > 0)
466     TotalP -= 20*LoopPhiNum;
467 
468   LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
469   if (SplitAll)
470     return true;
471   return TotalP > 0;
472 }
473 
474 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
475       USet &Rs) {
476   const MachineBasicBlock *HB = L->getHeader();
477   const MachineBasicBlock *LB = L->getLoopLatch();
478   if (!HB || !LB)
479     return;
480 
481   // Examine the latch branch. Expect it to be a conditional branch to
482   // the header (either "br-cond header" or "br-cond exit; br header").
483   MachineBasicBlock *TB = nullptr, *FB = nullptr;
484   MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
485   SmallVector<MachineOperand,2> Cond;
486   bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
487   // Only analyzable conditional branches. HII::analyzeBranch will put
488   // the branch opcode as the first element of Cond, and the predicate
489   // operand as the second.
490   if (BadLB || Cond.size() != 2)
491     return;
492   // Only simple jump-conditional (with or without negation).
493   if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
494     return;
495   // Must go to the header.
496   if (TB != HB && FB != HB)
497     return;
498   assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
499   // Expect a predicate register.
500   Register PR = Cond[1].getReg();
501   assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
502 
503   // Get the registers on which the loop controlling compare instruction
504   // depends.
505   Register CmpR1, CmpR2;
506   const MachineInstr *CmpI = MRI->getVRegDef(PR);
507   while (CmpI->getOpcode() == Hexagon::C2_not)
508     CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
509 
510   int64_t Mask = 0, Val = 0;
511   bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
512   if (!OkCI)
513     return;
514   // Eliminate non-double input registers.
515   if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
516     CmpR1 = 0;
517   if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
518     CmpR2 = 0;
519   if (!CmpR1 && !CmpR2)
520     return;
521 
522   // Now examine the top of the loop: the phi nodes that could poten-
523   // tially define loop induction registers. The registers defined by
524   // such a phi node would be used in a 64-bit add, which then would
525   // be used in the loop compare instruction.
526 
527   // Get the set of all double registers defined by phi nodes in the
528   // loop header.
529   using UVect = std::vector<unsigned>;
530 
531   UVect DP;
532   for (auto &MI : *HB) {
533     if (!MI.isPHI())
534       break;
535     const MachineOperand &MD = MI.getOperand(0);
536     Register R = MD.getReg();
537     if (MRI->getRegClass(R) == DoubleRC)
538       DP.push_back(R);
539   }
540   if (DP.empty())
541     return;
542 
543   auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
544     for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
545          I != E; ++I) {
546       const MachineInstr *UseI = I->getParent();
547       if (UseI->getOpcode() != Hexagon::A2_addp)
548         continue;
549       // Get the output from the add. If it is one of the inputs to the
550       // loop-controlling compare instruction, then R is likely an induc-
551       // tion register.
552       Register T = UseI->getOperand(0).getReg();
553       if (T == CmpR1 || T == CmpR2)
554         return false;
555     }
556     return true;
557   };
558   UVect::iterator End = llvm::remove_if(DP, NoIndOp);
559   Rs.insert(DP.begin(), End);
560   Rs.insert(CmpR1);
561   Rs.insert(CmpR2);
562 
563   LLVM_DEBUG({
564     dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
565     dump_partition(dbgs(), Rs, *TRI);
566     dbgs() << '\n';
567   });
568 }
569 
570 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
571   using LoopVector = std::vector<MachineLoop *>;
572 
573   LoopVector WorkQ;
574 
575   append_range(WorkQ, *MLI);
576   for (unsigned i = 0; i < WorkQ.size(); ++i)
577     append_range(WorkQ, *WorkQ[i]);
578 
579   USet Rs;
580   for (MachineLoop *L : WorkQ) {
581     Rs.clear();
582     collectIndRegsForLoop(L, Rs);
583     if (!Rs.empty())
584       IRM.insert(std::make_pair(L, Rs));
585   }
586 }
587 
588 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
589       const UUPairMap &PairMap, unsigned SubR) {
590   MachineBasicBlock &B = *MI->getParent();
591   DebugLoc DL = MI->getDebugLoc();
592   MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
593 
594   for (auto &Op : MI->operands()) {
595     if (!Op.isReg()) {
596       NewI->addOperand(Op);
597       continue;
598     }
599     // For register operands, set the subregister.
600     Register R = Op.getReg();
601     unsigned SR = Op.getSubReg();
602     bool isVirtReg = R.isVirtual();
603     bool isKill = Op.isKill();
604     if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
605       isKill = false;
606       UUPairMap::const_iterator F = PairMap.find(R);
607       if (F == PairMap.end()) {
608         SR = SubR;
609       } else {
610         const UUPair &P = F->second;
611         R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
612         SR = 0;
613       }
614     }
615     auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
616           Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
617           Op.isInternalRead());
618     NewI->addOperand(CO);
619   }
620 }
621 
622 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
623       const UUPairMap &PairMap) {
624   bool Load = MI->mayLoad();
625   unsigned OrigOpc = MI->getOpcode();
626   bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
627                   OrigOpc == Hexagon::S2_storerd_pi);
628   MachineInstr *LowI, *HighI;
629   MachineBasicBlock &B = *MI->getParent();
630   DebugLoc DL = MI->getDebugLoc();
631 
632   // Index of the base-address-register operand.
633   unsigned AdrX = PostInc ? (Load ? 2 : 1)
634                           : (Load ? 1 : 0);
635   MachineOperand &AdrOp = MI->getOperand(AdrX);
636   unsigned RSA = getRegState(AdrOp);
637   MachineOperand &ValOp = Load ? MI->getOperand(0)
638                                : (PostInc ? MI->getOperand(3)
639                                           : MI->getOperand(2));
640   UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
641   assert(F != PairMap.end());
642 
643   if (Load) {
644     const UUPair &P = F->second;
645     int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
646     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
647              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
648              .addImm(Off);
649     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
650               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
651               .addImm(Off+4);
652   } else {
653     const UUPair &P = F->second;
654     int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
655     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
656              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
657              .addImm(Off)
658              .addReg(P.first);
659     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
660               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
661               .addImm(Off+4)
662               .addReg(P.second);
663   }
664 
665   if (PostInc) {
666     // Create the increment of the address register.
667     int64_t Inc = Load ? MI->getOperand(3).getImm()
668                        : MI->getOperand(2).getImm();
669     MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
670     const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
671     Register NewR = MRI->createVirtualRegister(RC);
672     assert(!UpdOp.getSubReg() && "Def operand with subreg");
673     BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
674       .addReg(AdrOp.getReg(), RSA)
675       .addImm(Inc);
676     MRI->replaceRegWith(UpdOp.getReg(), NewR);
677     // The original instruction will be deleted later.
678   }
679 
680   // Generate a new pair of memory-operands.
681   MachineFunction &MF = *B.getParent();
682   for (auto &MO : MI->memoperands()) {
683     const MachinePointerInfo &Ptr = MO->getPointerInfo();
684     MachineMemOperand::Flags F = MO->getFlags();
685     Align A = MO->getAlign();
686 
687     auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4 /*size*/, A);
688     LowI->addMemOperand(MF, Tmp1);
689     auto *Tmp2 =
690         MF.getMachineMemOperand(Ptr, F, 4 /*size*/, std::min(A, Align(4)));
691     HighI->addMemOperand(MF, Tmp2);
692   }
693 }
694 
695 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
696       const UUPairMap &PairMap) {
697   MachineOperand &Op0 = MI->getOperand(0);
698   MachineOperand &Op1 = MI->getOperand(1);
699   assert(Op0.isReg() && Op1.isImm());
700   uint64_t V = Op1.getImm();
701 
702   MachineBasicBlock &B = *MI->getParent();
703   DebugLoc DL = MI->getDebugLoc();
704   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
705   assert(F != PairMap.end());
706   const UUPair &P = F->second;
707 
708   // The operand to A2_tfrsi can only have 32 significant bits. Immediate
709   // values in MachineOperand are stored as 64-bit integers, and so the
710   // value -1 may be represented either as 64-bit -1, or 4294967295. Both
711   // will have the 32 higher bits truncated in the end, but -1 will remain
712   // as -1, while the latter may appear to be a large unsigned value
713   // requiring a constant extender. The casting to int32_t will select the
714   // former representation. (The same reasoning applies to all 32-bit
715   // values.)
716   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
717     .addImm(int32_t(V & 0xFFFFFFFFULL));
718   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
719     .addImm(int32_t(V >> 32));
720 }
721 
722 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
723       const UUPairMap &PairMap) {
724   MachineOperand &Op0 = MI->getOperand(0);
725   MachineOperand &Op1 = MI->getOperand(1);
726   MachineOperand &Op2 = MI->getOperand(2);
727   assert(Op0.isReg());
728 
729   MachineBasicBlock &B = *MI->getParent();
730   DebugLoc DL = MI->getDebugLoc();
731   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
732   assert(F != PairMap.end());
733   const UUPair &P = F->second;
734 
735   if (!Op1.isReg()) {
736     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
737       .add(Op1);
738   } else {
739     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
740       .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
741   }
742 
743   if (!Op2.isReg()) {
744     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
745       .add(Op2);
746   } else {
747     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
748       .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
749   }
750 }
751 
752 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
753       const UUPairMap &PairMap) {
754   MachineOperand &Op0 = MI->getOperand(0);
755   MachineOperand &Op1 = MI->getOperand(1);
756   assert(Op0.isReg() && Op1.isReg());
757 
758   MachineBasicBlock &B = *MI->getParent();
759   DebugLoc DL = MI->getDebugLoc();
760   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
761   assert(F != PairMap.end());
762   const UUPair &P = F->second;
763   unsigned RS = getRegState(Op1);
764 
765   BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
766     .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
767   BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
768     .addReg(Op1.getReg(), RS, Op1.getSubReg())
769     .addImm(31);
770 }
771 
772 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
773       const UUPairMap &PairMap) {
774   using namespace Hexagon;
775 
776   MachineOperand &Op0 = MI->getOperand(0);
777   MachineOperand &Op1 = MI->getOperand(1);
778   MachineOperand &Op2 = MI->getOperand(2);
779   assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
780   int64_t Sh64 = Op2.getImm();
781   assert(Sh64 >= 0 && Sh64 < 64);
782   unsigned S = Sh64;
783 
784   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
785   assert(F != PairMap.end());
786   const UUPair &P = F->second;
787   Register LoR = P.first;
788   Register HiR = P.second;
789 
790   unsigned Opc = MI->getOpcode();
791   bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
792   bool Left = !Right;
793   bool Signed = (Opc == S2_asr_i_p);
794 
795   MachineBasicBlock &B = *MI->getParent();
796   DebugLoc DL = MI->getDebugLoc();
797   unsigned RS = getRegState(Op1);
798   unsigned ShiftOpc = Left ? S2_asl_i_r
799                            : (Signed ? S2_asr_i_r : S2_lsr_i_r);
800   unsigned LoSR = isub_lo;
801   unsigned HiSR = isub_hi;
802 
803   if (S == 0) {
804     // No shift, subregister copy.
805     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
806       .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
807     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
808       .addReg(Op1.getReg(), RS, HiSR);
809   } else if (S < 32) {
810     const TargetRegisterClass *IntRC = &IntRegsRegClass;
811     Register TmpR = MRI->createVirtualRegister(IntRC);
812     // Expansion:
813     // Shift left:    DR = shl R, #s
814     //   LoR  = shl R.lo, #s
815     //   TmpR = extractu R.lo, #s, #32-s
816     //   HiR  = or (TmpR, asl(R.hi, #s))
817     // Shift right:   DR = shr R, #s
818     //   HiR  = shr R.hi, #s
819     //   TmpR = shr R.lo, #s
820     //   LoR  = insert TmpR, R.hi, #s, #32-s
821 
822     // Shift left:
823     //   LoR  = shl R.lo, #s
824     // Shift right:
825     //   TmpR = shr R.lo, #s
826 
827     // Make a special case for A2_aslh and A2_asrh (they are predicable as
828     // opposed to S2_asl_i_r/S2_asr_i_r).
829     if (S == 16 && Left)
830       BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
831         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
832     else if (S == 16 && Signed)
833       BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
834         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
835     else
836       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
837         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
838         .addImm(S);
839 
840     if (Left) {
841       // TmpR = extractu R.lo, #s, #32-s
842       BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
843         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
844         .addImm(S)
845         .addImm(32-S);
846       // HiR  = or (TmpR, asl(R.hi, #s))
847       BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
848         .addReg(TmpR)
849         .addReg(Op1.getReg(), RS, HiSR)
850         .addImm(S);
851     } else {
852       // HiR  = shr R.hi, #s
853       BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
854         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
855         .addImm(S);
856       // LoR  = insert TmpR, R.hi, #s, #32-s
857       BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
858         .addReg(TmpR)
859         .addReg(Op1.getReg(), RS, HiSR)
860         .addImm(S)
861         .addImm(32-S);
862     }
863   } else if (S == 32) {
864     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
865       .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
866     if (!Signed)
867       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
868         .addImm(0);
869     else  // Must be right shift.
870       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
871         .addReg(Op1.getReg(), RS, HiSR)
872         .addImm(31);
873   } else if (S < 64) {
874     S -= 32;
875     if (S == 16 && Left)
876       BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
877         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
878     else if (S == 16 && Signed)
879       BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
880         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
881     else
882       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
883         .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
884         .addImm(S);
885 
886     if (Signed)
887       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
888         .addReg(Op1.getReg(), RS, HiSR)
889         .addImm(31);
890     else
891       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
892         .addImm(0);
893   }
894 }
895 
896 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
897       const UUPairMap &PairMap) {
898   using namespace Hexagon;
899 
900   MachineOperand &Op0 = MI->getOperand(0);
901   MachineOperand &Op1 = MI->getOperand(1);
902   MachineOperand &Op2 = MI->getOperand(2);
903   MachineOperand &Op3 = MI->getOperand(3);
904   assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
905   int64_t Sh64 = Op3.getImm();
906   assert(Sh64 >= 0 && Sh64 < 64);
907   unsigned S = Sh64;
908 
909   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
910   assert(F != PairMap.end());
911   const UUPair &P = F->second;
912   unsigned LoR = P.first;
913   unsigned HiR = P.second;
914 
915   MachineBasicBlock &B = *MI->getParent();
916   DebugLoc DL = MI->getDebugLoc();
917   unsigned RS1 = getRegState(Op1);
918   unsigned RS2 = getRegState(Op2);
919   const TargetRegisterClass *IntRC = &IntRegsRegClass;
920 
921   unsigned LoSR = isub_lo;
922   unsigned HiSR = isub_hi;
923 
924   // Op0 = S2_asl_i_p_or Op1, Op2, Op3
925   // means:  Op0 = or (Op1, asl(Op2, Op3))
926 
927   // Expansion of
928   //   DR = or (R1, asl(R2, #s))
929   //
930   //   LoR  = or (R1.lo, asl(R2.lo, #s))
931   //   Tmp1 = extractu R2.lo, #s, #32-s
932   //   Tmp2 = or R1.hi, Tmp1
933   //   HiR  = or (Tmp2, asl(R2.hi, #s))
934 
935   if (S == 0) {
936     // DR  = or (R1, asl(R2, #0))
937     //    -> or (R1, R2)
938     // i.e. LoR = or R1.lo, R2.lo
939     //      HiR = or R1.hi, R2.hi
940     BuildMI(B, MI, DL, TII->get(A2_or), LoR)
941       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
942       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
943     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
944       .addReg(Op1.getReg(), RS1, HiSR)
945       .addReg(Op2.getReg(), RS2, HiSR);
946   } else if (S < 32) {
947     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
948       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
949       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
950       .addImm(S);
951     Register TmpR1 = MRI->createVirtualRegister(IntRC);
952     BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
953       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
954       .addImm(S)
955       .addImm(32-S);
956     Register TmpR2 = MRI->createVirtualRegister(IntRC);
957     BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
958       .addReg(Op1.getReg(), RS1, HiSR)
959       .addReg(TmpR1);
960     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
961       .addReg(TmpR2)
962       .addReg(Op2.getReg(), RS2, HiSR)
963       .addImm(S);
964   } else if (S == 32) {
965     // DR  = or (R1, asl(R2, #32))
966     //    -> or R1, R2.lo
967     // LoR = R1.lo
968     // HiR = or R1.hi, R2.lo
969     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
970       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
971     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
972       .addReg(Op1.getReg(), RS1, HiSR)
973       .addReg(Op2.getReg(), RS2, LoSR);
974   } else if (S < 64) {
975     // DR  = or (R1, asl(R2, #s))
976     //
977     // LoR = R1:lo
978     // HiR = or (R1:hi, asl(R2:lo, #s-32))
979     S -= 32;
980     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
981       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
982     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
983       .addReg(Op1.getReg(), RS1, HiSR)
984       .addReg(Op2.getReg(), RS2, LoSR)
985       .addImm(S);
986   }
987 }
988 
989 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
990       const UUPairMap &PairMap) {
991   using namespace Hexagon;
992 
993   LLVM_DEBUG(dbgs() << "Splitting: " << *MI);
994   bool Split = false;
995   unsigned Opc = MI->getOpcode();
996 
997   switch (Opc) {
998     case TargetOpcode::PHI:
999     case TargetOpcode::COPY: {
1000       Register DstR = MI->getOperand(0).getReg();
1001       if (MRI->getRegClass(DstR) == DoubleRC) {
1002         createHalfInstr(Opc, MI, PairMap, isub_lo);
1003         createHalfInstr(Opc, MI, PairMap, isub_hi);
1004         Split = true;
1005       }
1006       break;
1007     }
1008     case A2_andp:
1009       createHalfInstr(A2_and, MI, PairMap, isub_lo);
1010       createHalfInstr(A2_and, MI, PairMap, isub_hi);
1011       Split = true;
1012       break;
1013     case A2_orp:
1014       createHalfInstr(A2_or, MI, PairMap, isub_lo);
1015       createHalfInstr(A2_or, MI, PairMap, isub_hi);
1016       Split = true;
1017       break;
1018     case A2_xorp:
1019       createHalfInstr(A2_xor, MI, PairMap, isub_lo);
1020       createHalfInstr(A2_xor, MI, PairMap, isub_hi);
1021       Split = true;
1022       break;
1023 
1024     case L2_loadrd_io:
1025     case L2_loadrd_pi:
1026     case S2_storerd_io:
1027     case S2_storerd_pi:
1028       splitMemRef(MI, PairMap);
1029       Split = true;
1030       break;
1031 
1032     case A2_tfrpi:
1033     case CONST64:
1034       splitImmediate(MI, PairMap);
1035       Split = true;
1036       break;
1037 
1038     case A2_combineii:
1039     case A4_combineir:
1040     case A4_combineii:
1041     case A4_combineri:
1042     case A2_combinew:
1043       splitCombine(MI, PairMap);
1044       Split = true;
1045       break;
1046 
1047     case A2_sxtw:
1048       splitExt(MI, PairMap);
1049       Split = true;
1050       break;
1051 
1052     case S2_asl_i_p:
1053     case S2_asr_i_p:
1054     case S2_lsr_i_p:
1055       splitShift(MI, PairMap);
1056       Split = true;
1057       break;
1058 
1059     case S2_asl_i_p_or:
1060       splitAslOr(MI, PairMap);
1061       Split = true;
1062       break;
1063 
1064     default:
1065       llvm_unreachable("Instruction not splitable");
1066       return false;
1067   }
1068 
1069   return Split;
1070 }
1071 
1072 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1073       const UUPairMap &PairMap) {
1074   for (auto &Op : MI->operands()) {
1075     if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1076       continue;
1077     Register R = Op.getReg();
1078     UUPairMap::const_iterator F = PairMap.find(R);
1079     if (F == PairMap.end())
1080       continue;
1081     const UUPair &P = F->second;
1082     switch (Op.getSubReg()) {
1083       case Hexagon::isub_lo:
1084         Op.setReg(P.first);
1085         break;
1086       case Hexagon::isub_hi:
1087         Op.setReg(P.second);
1088         break;
1089     }
1090     Op.setSubReg(0);
1091   }
1092 }
1093 
1094 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1095       const UUPairMap &PairMap) {
1096   MachineBasicBlock &B = *MI->getParent();
1097   DebugLoc DL = MI->getDebugLoc();
1098 
1099   for (auto &Op : MI->operands()) {
1100     if (!Op.isReg() || !Op.isUse())
1101       continue;
1102     Register R = Op.getReg();
1103     if (!R.isVirtual())
1104       continue;
1105     if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1106       continue;
1107     UUPairMap::const_iterator F = PairMap.find(R);
1108     if (F == PairMap.end())
1109       continue;
1110     const UUPair &Pr = F->second;
1111     Register NewDR = MRI->createVirtualRegister(DoubleRC);
1112     BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1113       .addReg(Pr.first)
1114       .addImm(Hexagon::isub_lo)
1115       .addReg(Pr.second)
1116       .addImm(Hexagon::isub_hi);
1117     Op.setReg(NewDR);
1118   }
1119 }
1120 
1121 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1122   using MISet = std::set<MachineInstr *>;
1123 
1124   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1125   bool Changed = false;
1126 
1127   LLVM_DEBUG(dbgs() << "Splitting partition: ";
1128              dump_partition(dbgs(), Part, *TRI); dbgs() << '\n');
1129 
1130   UUPairMap PairMap;
1131 
1132   MISet SplitIns;
1133   for (unsigned DR : Part) {
1134     MachineInstr *DefI = MRI->getVRegDef(DR);
1135     SplitIns.insert(DefI);
1136 
1137     // Collect all instructions, including fixed ones.  We won't split them,
1138     // but we need to visit them again to insert the REG_SEQUENCE instructions.
1139     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1140          U != W; ++U)
1141       SplitIns.insert(U->getParent());
1142 
1143     Register LoR = MRI->createVirtualRegister(IntRC);
1144     Register HiR = MRI->createVirtualRegister(IntRC);
1145     LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
1146                       << printReg(HiR, TRI) << ':' << printReg(LoR, TRI)
1147                       << '\n');
1148     PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1149   }
1150 
1151   MISet Erase;
1152   for (auto *MI : SplitIns) {
1153     if (isFixedInstr(MI)) {
1154       collapseRegPairs(MI, PairMap);
1155     } else {
1156       bool Done = splitInstr(MI, PairMap);
1157       if (Done)
1158         Erase.insert(MI);
1159       Changed |= Done;
1160     }
1161   }
1162 
1163   for (unsigned DR : Part) {
1164     // Before erasing "double" instructions, revisit all uses of the double
1165     // registers in this partition, and replace all uses of them with subre-
1166     // gisters, with the corresponding single registers.
1167     MISet Uses;
1168     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1169          U != W; ++U)
1170       Uses.insert(U->getParent());
1171     for (auto *M : Uses)
1172       replaceSubregUses(M, PairMap);
1173   }
1174 
1175   for (auto *MI : Erase) {
1176     MachineBasicBlock *B = MI->getParent();
1177     B->erase(MI);
1178   }
1179 
1180   return Changed;
1181 }
1182 
1183 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1184   if (skipFunction(MF.getFunction()))
1185     return false;
1186 
1187   LLVM_DEBUG(dbgs() << "Splitting double registers in function: "
1188                     << MF.getName() << '\n');
1189 
1190   auto &ST = MF.getSubtarget<HexagonSubtarget>();
1191   TRI = ST.getRegisterInfo();
1192   TII = ST.getInstrInfo();
1193   MRI = &MF.getRegInfo();
1194   MLI = &getAnalysis<MachineLoopInfo>();
1195 
1196   UUSetMap P2Rs;
1197   LoopRegMap IRM;
1198 
1199   collectIndRegs(IRM);
1200   partitionRegisters(P2Rs);
1201 
1202   LLVM_DEBUG({
1203     dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1204     for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1205       dbgs() << '#' << I->first << " -> ";
1206       dump_partition(dbgs(), I->second, *TRI);
1207       dbgs() << '\n';
1208     }
1209   });
1210 
1211   bool Changed = false;
1212   int Limit = MaxHSDR;
1213 
1214   for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1215     if (I->first == 0)
1216       continue;
1217     if (Limit >= 0 && Counter >= Limit)
1218       break;
1219     USet &Part = I->second;
1220     LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first
1221                       << '\n');
1222     if (!isProfitable(Part, IRM))
1223       continue;
1224     Counter++;
1225     Changed |= splitPartition(Part);
1226   }
1227 
1228   return Changed;
1229 }
1230 
1231 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1232   return new HexagonSplitDoubleRegs();
1233 }
1234